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I .  INTRODUCTION 
Moire patterns can be caused by crossed gratings or by the 
discrete sampling of a single grating. The crossed-gratings case 
can be seen in everyday surroundings in layers of fences or 
screens. Figure 1 shows a superposition of two crossed gratings 
that give rise to a moire pattern. If one of the crossed gratings 
is distorted, the moire pattern will be distorted too. This phe- 
nomenon has been extensively exploited in metrology applica- 
tions. One of the constituent gratings is projected onto a distorted 
object and observed through a second, flat grating. Since the 
resulting moire pattern is sensitive to small distortions in the 
object grating, accurate measurements of the object’s shape can 
be derived. The object’s shape is a function of both the geometric 
layout of the original, undistorted gratings and the resulting 
moire pattern. Post’ has shown that an analysis of the profiles 
of the crossed gratings can be used to sharpen the moire fringe 
patterns, making i t  easier to track the fringes and thus easier to 
determine the shape of the object. Therefore, both the geometry 
and brightness profiles of the moire method are important to 
consider. 

Abstract. Traditional “crossed-grating” moire a s  well a s  the newer “sam- 
pled-grating” (scanning) moire have proved to be effective methods of 
shape measurement. There is speculation that the moire patterns of a 
sampled grating, which are due to aliasing, can be modeled with crossed 
gratings. We compare the two by writing notationally consistent models 
of each and show that while crossed gratings can correctly predict the 
frequencies of a sampled grating, they cannot correctly predict the am- 
plitudes. Our sampled-grating model is a new formulation that accounts 
for multiple stages of sampling and transmission. We show how neglect- 
ing multiple stages can lead to mistakes in moire analysis. We demonstrate 
our models with an experiment using a digital imaging system. 
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Moire patterns can also be caused by aliasing in the discrete 
sampling of a single grating. The sampled-grating case can often 
be seen on television when a relatively high-spatial-frequency 
gratin?, say a striped shirt, is shown. Idesawa. Yatagai, and 
Soma have shown that the flat grating in traditional, crossed- 
grating moire metrology can be replaced by a digital camera. 
still maintaining observable moire patterns using o n l y  a single. 
object grating. We will distinguish these two methods by calling 
the former “crossed-grating” moire and the later “sampled- 
grating” moire. The moire patterns from both methods are sini- 
ilar, and it has been shown that sampled-grating moire can au- 
tomate many time-consuming, subjective procedures of the tra- 
ditional, crossed-grating paradigm. 

Idesawa et al. assert that the camera can be modeled by a 
second grating, thus allowing the application of a considerable 
amount of past study on crossed gratings to sampled gratings. 
However, this is not completely accurate. The two phenomena 
are fundamentally different, and it has never been shown ex- 
plicitly how well crossed gratings can model the effects of a 
digital camera. The moire patterns that result from crossed grat- 
ings are due to the heterodyning of their respective spatial fre- 
quencies, and such patterns require at least two gratings. Moire 
patterns from digital cameras (or any periodic, discrete, sampling 
device) come from aliasing of the spatial frequencies o f  the 
imaged grating and may be produced with a single grating. There 
have been moire pattern models that explicitly account for this 
discrete sampling, but they do not account for lens blur or mul- 
tiple stages of filtering and sampling as we do. 

Our goals in this paper are to develop a useful model of 
sampled-grating moire and then to compare it to crossed-grating 
moire. Toward these ends, we first develop a model of crossed- 
grating moire that will be notationally consistent with the sam- 
pled-grating model. Both models are formulated in the Fourier 
domain for convenience. Our sampled-grating model is a new 
formulation that accounts for the video transmission (including 
lens blur) and multiple sampling stages in most digital imaging 
systems. We use our multiple stage sampling model to dem- 
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Fig. 1. Crossed gratings making a moire pattern. 
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Fig. 2. Square wave transmittance profile. 

onstrate how ignoring multiple sampling stages can lead to mis- 
takes in moire analysis. We present results of an experiment that 
partially verifies the model used in the sampled-grating formu- 
lation. In our comparison of the two types of moire patterns, 
we examine the ability of crossed gratings to model sampled 
gratings by developing a model of sampled-grating moire pat- 
terns using crossed gratings, and we verify the model qualita- 
tively with a simple experiment. 

The next section contains our crossed-grating model, fol- 
lowed by our sampled-grating model in Sec. 3. We verify the 
sampled-grating model in  Sec. 4, and Sec. 5 presents a com- 
parison of the two models. 

2. MOIRE PATTERNS FROM CROSSED GRATINGS 
In this section we derive the Fourier transform of the superpo- 
sition of an arbitrary number of flat, periodic, crossed gratings 
with arbitrary profiles. Gratings are usually considered as trans- 
parencies with regions of transmittance varying between zero 
and one. We can express the transmittance of any infinite, 2-D, 
periodic grating whose transmittance profile satisfies the Diri- 
chlet conditions and that is oriented so that its lines run perpen- 
dicular to the x axis, as the following Fourier series: 

where T is the period of the grating and the e,, are the complex 
coefficients of the Fourier series of the I-D transmission profile 
along the x axis. We note that any physically realizable trans- 
mittance grating will satisfy the Dirichlet conditions. 

If the profile of the grating g ( x . y )  is a square wave, as shown 
in Fig. 2, the c, will be given by e, = hsinc(nh), where sinc(x) 
= s in (m) /m and h is the fraction of a period that is transparent. 
If h = 112, then the grating is called a Ronchi ruling, shown 
in Fig. 3. 

The frequenciesf, andf,. are in units o f  cycleshnit length. We 
use uppercase letters to indicate the Fourier transforms of  cor- 
responding lowercase, spatial functions. Substituting the Fourier 
series for the general grating g(x,y) into the Fourier transform 
equation gives 

This is a set of evenly spaced, Dirac &functions spread along 
thef, axis. The volumes of the 6's are given by the Fourier 
series coefficients. Figure 4 shows a plot of the Fourier transform 
of the Ronchi ruling in Fig. 3. The dots show the position of 
the 6-functions, with the corresponding value of n in parentheses 
above each. The area of a dot is proportional to the magnitude 
of its coefficient. For a Ronchi ruling, however, every 6 with 
an even, nonzero n will have a coefficient of zero. We show 
these with small dots. 

We will call the orientation of g ( x . y )  zero because the 6's of 
its Fourier transform occur along thef, axis. If g ( x , y )  is rotated 
around the origin by an angle 6, its Fourier transform rotates in 
exactly the same way. This is shown in Figs. 5 and 6, where 
we show a Ronchi ruling rotated 15" and its Fourier transform. 
The dots in Fig. 6 are labeled like those in Fig. 4. If g; (x ,y )  is 
a rotated version of g ( x , y ) ,  its Fourier transform is 

z / 

(4) 

where we have begun subscripting with i to account for multiple 
gratings. Only the positions of the 6's change, not the coeffi- 
cients. 

If two of these transmittance gratings, go(x ,y)  and g l ( x , y ) ,  
are superimposed, the resulting net transmittance will be given 
by the product of the constituent transmittances, go(x.y)gl(x,y). 
The Fourier transform of the net transmittance will be the 2-D 
convolution of the Fourier transforms, G o ( f f v ) * C ~ ( f r f y ) .  We 
show the two Ronchi rulings of Figs. 3 and 5 crossed in Fig. 7. 
The Fourier transform of the crossed gratings is shown in Fig. 8. 
The parameters for the Ronchi rulings in the figures are To = TI  = I ,  
60=0, and 01 = 15". 

We can think of the convolution operation graphically by 
considering the Fourier transforms of the two constituent gratings 
in Figs. 4 and 6. The first step in a 2-D convolution is to flip 
either one of the Fourier transforms around both thef, andf, 
axes. Since the Fourier transforms of the gratings as we have 
defined them are symmetric lines of 6's. this operation leaves 
the function unchanged. The next step is to record the value of 
the product of the two functions as a function of the offset of 
one of them. If we slide, say, the Fourier transform of the rotated 
grating around in (fxfy> space over the Fourier transform of the 
unrotated grating, we see that the product will only be nonzero 
when two 6's overlap, at which point the product will be the 
product of the coefficients of the overlapping 6 's .  As the Fourier 
transform of the rotated grating is moved, &he position of its 
center 6 will indicate the value of the offset. Since two different 
lines cannot intersect at more than one point, it is clear that there 
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Fig. 3. Ronchi ruling at 0". 
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Fig. 4. Fourier transform of Fig. 3. 

Fig. 5. Ronchi ruling at 15". 

fY 
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-6.50 i 
Fig. 6. Fourier transform of Fig. 5. 

-2.50 1 
Fig. 7. Crossed Ronchi rulings at 0" and 15". fig. 8. Fourier transform of Fig. 7. 
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will be, at most, only one pair of overlapping 6's for any given 
offset. Thus, we overlap every possible pair of 6's, recording 
the product of their coefficients at the position of the center peak 
of the sliding Fourier transform. 

If g;(.x,y) has period T I ,  angle O f ,  and Fourier series coeffi- 
cients c r z l ,  then the Fourier transform of two superimposed grat- 
ings will be 

Go(f,,f,) * Gl(f,fJ = 

In general, the locations of the 6's in frequency space are given 
by vectors 

for no,nl = --crc ,..., - 1 ,O,I ,..., a. This vector interpretation 
was suggested by Br~ngdah l .~  The ordered pairs in the Fourier 
transform in Fig. 8 show ( n o , n l ) .  The amplitudes of the cor- 
responding complex exponentials in the spatial domain are given 
by C , ~ ~ C , , ~ .  A moire pattern is obvious when a 6 with sufficient 
amplitude falls closer to the origin than the fundamental fre- 
quencies of either of the constituent gratings. In the case of 
Fig. 8, the fundamental frequency of both gratings is 1 cycle/ 
unit length. The lowest frequency shown in the Fourier transform 
of the superimposed gratings is for (no,nl) = + ( - 1,  I ) ,  whose 
frequency is about 0.26 cycles/unit length in the direction of 
97.5'. These are the frequency and direction of the dark, nearly 
horizontal bands seen in  the moire pattern in Fig. 7. 

For every relatively prime pair (no ,n l )  in the Fourier transform 
of the superimposed gratings (Fig. 8), there will be a set of 6's 
that fall on a line through the origin of frequency space and 
whose n's are given by (mno,rnnl), m= --oo ...., - l,O,l, ..., a. 
These lines of 6's in frequency space form periodic patterns in 
the spatial domain because their harmonics are spaced at equal 
intervals. The line of 6's whose relatively prime pair is 
(no,nl)=( - 1 , l )  in Fig. 8 is responsible for the obvious moire 
pattern in Fig. 7 because it happens to have a low fundamental 
frequency with a relatively large amplitude. There are, however, 
an infinite number of relatively prime pairs, all of which serve 
as the fundamental frequency of a line of 6's and all of which 
could be considered moire patterns. The well-known method of 
partial sum extraction' is to pick a relatively prime pair and sum 
up all of the frequency components along that line. Normally, 
higher absolute values of n have associated with them lower 
values of c, , so these higher frequency moire patterns have small 
amplitudes and are much less noticeable. Lines of 6's with higher 
fundamental frequencies are sometimes ignored as noise.5 

If k transmittance gratings are superimposed, Eq. (5) for the 
Fourier transform generalizes to 

with coefficients of crli .  Equation (5) serves as our model of two 
crossed gratings, and Eq. (7) is our model ofk crossed gratings. 

3. MOIRE PATTERNS FROM SAMPLED GRATINGS 
The previous section shows how moire patterns develop from 
crossed gratings. Digital cameras cause moire patterns by dis- 
crete sampling. The development of moire patterns in sampled 
images is fundamentally different from crossed gratings. Sam- 
pled-grating moire patterns occur when a periodic pattern is 
sampled at a rate less than twice the highest spatial frequency 
of the periodic pattern. This is the familiar phenomenon of al- 
iasing. Spatial frequencies that are greater than half the Nyquist 
frequency are aliased into lower frequencies. Thus, much like 
the crossed-gratings case, high frequency patterns beget patterns 
of lower frequencies. 

At least two sampled-grating moire models have appeared in 
the literature. Bell and Koliopoulos6 consider discrete, 2-D sam- 
pling of a projected, cosinusoidal grating and develop a rule for 
producing unambiguous moire fringes. Cetica. Francini. and 
Bertani' specialize Bell and Koliopoulos's result to one dimen- 
sion and report an experiment with a linear, photodiode array. 
Neither model takes into account the effects of camera blurring 
or the multiple stages of sampling that are common in digital 
imaging systems. We develop a model that accounts for these 
factors in the next subsection and then apply i t  to a flat. periodic 
grating. It is seen that blurring and multiple-stage sampling have 
a significant impact on the brightness and geometry of moire 
fringes. 
3.1. Model of multiple stage reconstruction and sampling 
We give a brief formulation of a single-stage, image sampling 
system to demonstrate aliasing and to establish our notation; 
similar formulations can be found in most texts on image pro- 
cessing. The model can be easily explained in terms of a digital 
camera recording an image, although we show how the model 
can be applied, recursively, to subsequent stages of image trans- 
fer and display. The input to the sampling system is an arbitrary 
image of intensities g(x,y). Before sampling, it is blurred by a 
convolution with p(x,y)-the point spread function (PSF). For 
the case of a camera, g(x,y) is the ideal input image and p ( x , y )  
represents the effects of misfocus, diffraction, and pixel re- 
sponse, all of which can be described by convolution. (We are 
neglecting geometric and photometric scale factors here.) The 
image sampled by the photosensitive camera cells is then p ( x , y )  
* g(x,y). The Fourier transform of this image is P( f i - , fV)C( fifi.), 
where P ( f x f v )  is the Fourier transform of the PSF and G(f,$,.) 
is the Fourier transform of the ideal image. The camera's sam- 
pling grid can be represented by a grid of 6-functions, each 
centered on a photosensitive cell on the image plane. If  the 
rectangular spacing of the cells in the x and y directions is 
T, and T y ,  the sampling grid is given by 

P m 

This is a distribution of &functions at Here we have neglected the finite size of the sampling array. 
This can be accounted for by multiplying the array by a zero- 
one function in the shape of the sampling grid (usually a rec- 
tangle). Bell and Koliopoulos do this in their analysis of moire 

(8) 
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patterns, but for our purposes i t  only leads to unnecessary com- 
plications. This is because although a truncated sampling grid 
can have a significant impact on the frequency-domain repre- 
sentation of a sampled-grating, its spatial-domain representation 
(where moire pattern analysis is ultimately carried out) is simply 
a truncated version of the infinite moire pattern. The sampled 
image is given by the product of the blurred image and the 
sampling array as 

x 

The Fourier transform of this is the convolution of the Fourier 
transform of the blurred image and the Fourier transform of the 
sampling grid: 

This equation indicates that the Fourier transform of the blurred 
image is repeated at intervals of ( l/Tr, l/T,,) in frequency space. 
These copies of the Fourier transform &e called the spectral 
orders of the function g ( x , y ) ,  with the 0th spectral order centered 
at the origin of frequency space. 

Figure 9 shows the Fourier transform of a function g(x,y)  
that is to be sampled. In this case, the function happens to be 
a grating. The &functions are shown as X 's. After sampling, 
the Fourier transform looks like Fig. 10. The original Fourier 
transform has been repeated into an infinite number of spectral 
orders. The 0th spectral order is shown as x 's, while the others 
are shown as 0's. The centers of the spectral orders are shown 
with larger symbols. 

Interpolation is applied to the samples to extract a continuous 
estimate of the original image. This can be formulated in the 
spatial domain as a convolution of an interpolation function, 
usually some kind of narrow pulse, with the samples. The con- 
volution operation means that the interpolation function is re- 
peated at every sample point and modulated by the values of the 
discrete samples. In frequency space, interpolation amounts to 
multiplying the distribution of spectral orders by the Fourier 
transform of the interpolation function. This function may be 
chosen to reduce the effects of aliasing or noise, but it is always 
bandlimited by the Nyquist frequencies, [ 2 l/(2Tx), + l/(2T,*)]. 
These limits are shown as a rectangle in Fig. 10. If frequencies 
from spectral orders other than the 0th fall inside the nonzero 
region of the interpolation function, aliasing will occur. This 
has happened in Fig. 10. 

For a typical digital image capture and storage system, this 
model is incomplete. Once the image is sampled into charge 
levels in the camera, the samples are converted into an analog, 
video signal for transmission, then amplified, filtered, and re- 
sampled by an analog-to-digital converter. Thus, one set of sam- 
ples is turned into another, and the sampling rates may not be 
equal. We show the frequency domain effects of a second stage 
of sampling in Figs. I 1  and 12. The 0th spectral order in these 
two figures (shown with X 's) contains all of the frequencies 
from inside the interpolation rectangle of Fig. IO. If the second 
stage has smaller sampling periods than the first (i.e., higher 
sampling frequencies), the spectral orders after the second stage 
will be spread in frequency space such that no overlap occurs, 
as in Fig. 1 1 .  The box indicates the Nyquist bounds of the second 
sampling stage. I f ,  on the other hand, the sampling rates of the 

second stage are lower than those ofthe first stage. more aliasing 
could occur. This is the case in Fig. 12. We see that the Nyquist 
bounding box includes some frequencies from neighboring spec- 
tral orders and excludes some from the 0th order. 

We can think of such a system as a multiple stage recon- 
struction and sampling process. We assume the system has a 
series of spatial sampling stages separated by linear components. 
As shown in Fig. 13, each pass produces a new set of samples 
that are fed back through the system. The index i is incremented 
for each pass. The initial input to the system is the original, 
ideal image from the scene. I t  is first blurred and then sampled. 
The samples are then sent back through the system, where they 
are reconstructed into a continuous image and blurred (in the 
same step), and then sampled again. The process can be repeated 
over and over. 

As mentioned, the reconstructed image is bandlimited by the 
Nyquist frequencies. Since a pass through the loop does not 
impose any higher frequencies on the reconstructed image, the 
final reconstructed image, no matter how many times the loop 
has been traversed, will be bandlimited by the minimum Nyquist 
frequency encountered during any pass. Thus, no aliasing can 
occur after the minimum sampling frequency has been encoun- 
tered. Alternatively, if the sampling rate decreases between any 
two passes, there may be a complex interaction of frequencies 
as aliased frequencies become aliased themselves. These argu- 
ments apply independently to the x and v directions. 

The process can be characterized mathematically by putting 
subscripts on Eq. ( IO) ,  which describes one pass in the frequency 
domain: 

We have replaced G with S to stand for "samples." One pass 
may be interpreted as follows: The samples S; ~ I (.fi , f V )  are con- 
verted to a continuous signal by filtering with P ; c f i f , ) .  P, rep- 
resents not only the interpolation function but the amplification 
and filtering that occur before the ith sampling stage. The analog 
signal is then sampled with x and y spacings of TI; and T,.;, 
giving a new set of samples in S;(fif,.). 

The process of creating a stored, digital image of a scene 
may be cast in this multiple stage model. We start with the ideal 
image G(f,$,), which serves as So(f,fi.), the initial sampled 
image. While this is not really a sampled image, i t  is the ap- 
propriate place to start the looping. The first sampling loop ( i = 1 ) 
is the digital camera. P,(f ,$ , )  accounts for lens defocus, dif- 
fraction, and the area integration of the pixels spaced at intervals 
of T, I and Tv I. The resulting samples are manifest as charges 
present on the image plane. The second sampling loop ( i  = 2) 
is the analog-to-digital conversion. This stage starts by con- 
verting the image plane charges to a I-D analog signal using 
Pz(fX$,). P2 takes into account the cascaded effects of inter- 
polating the discrete charges into an analog signal as well as any 
filtering of the analog signal that occurs before the conversion 
to digital. Since the image plane samples are usually scanned 
out row by row, there is no blurring in the y direction in this 
step. For the same reason, TV2 = T,,., . T,, and TI I are not 
necessarily equal because the sampling rate on  the image plane 
may be different from the sampling rate of the digitizer. We 
could go around the loop once more to model the conversion to 
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Fig. 9. Fourier transform of grating. 
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Fig. 10. Spectral orders after first stage sampling. 

discrete charges on the phosphors of a display device. Yet an- 
other pass could model certain facets of human vision since the 
discrete sampling of the human fovea can produce moire pat- 
terns, suggesting that it, too, has a fairly regular sampling grid 
(although not rectangular'). This would require that the model 
be modified to accommodate a nonrectangular sampling grid. 

The impossibility of aliasing after encountering the minimum 
sampling rate can be seen in Eq. ( 1  1 ) .  Suppose that in pass i 
= 1 (e.g., the sampling on the camera's image plane), the 
sampling periods Tx I and Ty I are larger than the sampling periods 
of the digitizer, Tx2 and Ty2 in pass i = 2. That is, the sampling 
frequency of the first stage is lower than that of the second stage. 
The Fourier transform of the first set of samples will be a dis- 
tribution of spectral orders at intervals of (l/Txl, UTyI). When 
this signal is reconstructed in preparation for resampling in the 
second stage, it will be bandlimited by the Nyquist frequencies 
of the first sampling stage, [ f l/(2Txl), f l/(2Tyl)]. The Fourier 
transform of the second set of samples will again be a distribution 
of spectral orders, centered at intervals of ( l/Tx2, UTy2). Since 
these centers are farther apart than the maximum dimensions of 

Fig. 11. Spectral orders after second stage sampling with no addi- 
tional aliasing because of high frequency sampling. 

fY 

Fig. 12. Spectral orders after second stage sampling showing ad- 
ditional aliasing because of low frequency sampling. 

the Fourier transform of the reconstructed image, there will be 
no overlap in frequencies, and thus no aliasing. 

If any stage in this system causes aliasing, the system is not 
linear, since aliasing introduces new frequencies. However, once 
the minimum sampling rate stage has been passed, the system 
may be treated as linear. The practical effect of this is that the 
transfer functions P; after the minimum sampling rate stage may 
be multiplied into one effective transfer function to describe all 
subsequent stages. 

3.2. Moire patterns 
We can use the multiple stage sampling and reconstruction model 
above to predict the development of moire patterns in an image 
sampling system. Equation ( 1  1 )  gives the expression for one 
pass through the sampling system with an arbitrary input function 
S;-l(fxfy). Equation (4) is a grating with an arbitrary profile 
at an angle 8. If we substitute this grating equation (with i = 
0) into the sampling equation for Si- 1(fx$,), we see that the 
result of one stage of sampling on a rotated grating is 
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Fig. 13. Block diagram illustrating multiple stage reconstruction and sampling. 

This is a distribution of 6’s whose locations are given by 

(13) 

The grating variables are given by those variables with a 0 
subscript. The 6’s of the grating’s Fourier transform are indexed 
by no, while the spectral orders are indexed by (nxl,ny,). The 
coefficients of the 6-functions are independent of the particular 
spectral order but depend on the relative displacement from the 
center of the spectral order. As with crossed gratings, a moire 
pattern will be especially obvious if the first fundamental fre- 
quency from another spectral order falls closer to the origin than 
the fundamental frequency of the 0th spectral order, because the 
first fundamental usually has significant amplitude. See Rosen- 
feld and Kak’ for a simple example. 

In most digital imaging systems, this image will be recon- 
structed and sampled again. This process can have a significant 
effect on the moire patterns observed in the final image. Given 
a suitable set of geometric parameters (Le., the rotation of the 
grating and the sampling intervals), there could actually be moire 
patterns developed in the first stage that are aliased into other 
moire patterns in subsequent stages. This was shown in Figs. 
10 and 12, where frequencies that were aliased in the first sam- 
pling stage were again aliased in the second stage. These extra, 
aliased frequencies cannot be accounted for in a single-stage 
sampling model, and they would likely confound current moire 
fringe analysis techniques. 

In addition to affecting the geometry of moire fringes, mul- 
tiple sampling stages also affect their brightness. Each sampling 
stage has associated with it its own PSF that describes the com- 
bined effects of interpolated reconstruction and transmission to 
the next sampling stage. Mathematically, the applications of the 
sampling grids and PSF must be interleaved, which means that 
in general, no single PSF can be used to characterize multiple 
sampling stages. Previous models of sampled-grating moire have 
used either a simple, single-stage model with only one PSF or 
else no PSF at all. As was shown in Post’s work on fringe 
sharpening,’ a careful analysis of the brightness profiles of moire 

fringes can lead to more robust detection of the fringes. Thus, 
it is important to have an accurate model of the sampling sys- 
tem’s effect on the fringe profiles. 

4. EXPERIMENTAL VERIFICATION OF SAMPLED- 
GRATING MOIRE 
We performed an experiment to verify our model of sampled- 
grating moire patterns by taking a digital image of a square- 
wave grating using a standard CCD camera and digitizer. A 
64 x 64 subsection of the image is shown in Fig. 20. We com- 
pared the discrete Fourier transform (DFT) of the actual image 
with the predicted Fourier transform. The experiment is de- 
scribed in more detail in another paper” and is only summarized 
here. The system could be modeled in two stages corresponding 
to CCD sampling and video digitizer sampling. We found it 
convenient to express linear dimensions in terms of “y-pix- 
e1s”-the vertical distance between CCD pixel centers. Using 
this unit, along with the fact that the image is scanned from the 
CCD in rows, both vertical sampling periods were equal to one, 
i.e., Tyl  = Ty2 = 1 y-pixel. The imaged grating had a period 
of TO = 1.21 y-pixels, an angle of 00 = 88.38”, and a duty 
ratio h = 0.48. The CCD sampling periods were (T!l,T,.,) = 
(1.70,l .OO) y-pixels, and the digitizer sampling periods were 
(Tx2,Ty2) = (1.28,l .OO) y-pixels. Since our setup happened to 
have its lowest x sampling rate on the CCD, we did not have 
to concern ourselves with aliasing in the digitization stage. 

Because we were purposefully inducing aliasing in the sys- 
tem, the PSFs of the system components could not be cascaded 
into one. We had to separately account for the PSFs of the lens/ 
CCD combination ( P I )  and the interpolatiodvideo signal filter- 
ing (P2) that occurred after the charges were read off the CCD. 
While it is difficult enough to determine the PSF of a bare CCD, 
it is virtually impossible to measure both PSFs in a digital camera 
system without detailed optical and electronic analysis. Our sim- 
ple models based on end-to-end inputloutput analysis captured 
the general low-pass nature of the components, but little else. 
We suspect also that the electronics of our camera do not admit 
to a linear model. Thus, our predictions for the intensity of the 
sampled-grating moire pattern were inaccurate. And although 
our model is a good one for describing linear components in- 
terleaved with discrete sampling, it can be difficult to charac- 
terize the linear components. 

Geometrically, we found good agreement between our model 
and experiment. This was partly because we could easily mea- 
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sure the geometric parameters of the system and partly because 
we could ignore the second sampling stage because no more 
aliasing would be induced after the CCD. The assessment of the 
model was based on visually matching positions of the actual 
peaks in the DIT to the peaks predicted from Eq. (13). The 
primary moire pattern was caused by the 6 with (no.n,,ny) = 
( - I ,0, I ) .  With these n's and the geometric parameters above, 
Eq. ( 13) predicts the fundamental frequency of the obvious moire 
pattern to be 0.175 cycles/y-pixel at 97.65'. The corresponding 
peak in the actual DIT was 0. I8 1 cycles/y-pixel at 96.79'. This 
error in frequency magnitude is about 1.2% of the maximum 
possible frequency of 0.5 cycles/y-pixel. Our predictions for the 
positions were worse for those frequency vectors with higher 
values of no and n, because these values tend to amplify slight 
errors in our measurements of the geometric parameters of the 
system, as can be seen from Eq. (13). Practically, this shows 
that moire patterns taken from higher order harmonics of the 
object grating (high value of no) or higher spectral orders (high 
values of n, or n.) should be suspect because they magnify errors 
in the measured geometric parameters of the system. 

Interestingly, all of the measurable frequency peaks had n, 
= 0. Since T,  I appears only as n,lT,I in Eq. ( 13) for the position 
of the a's, the CCD sampling period in the x-direction had no 
effect on the moire patterns. This is because the grating was 
oriented so that its lines were almost parallel to the rows of the 
CCD. If the grating were rotated through another 90°, we would 
see the dependence on Tv I lessen until all the n, = 0. We suspect 
that Idesawa et al.' had a similar situation since they actually 
consider the camera to be modeled by one grating corresponding 
to the horizontal scanning lines of the camera. 

5. CROSSED-GRATINGS MODELS OF SAMPLED 
GRATINGS 
Equation (7), which describes crossed-grating moire, and Eq. (12), 
which describes sampled-grating moire, are surprisingly similar, 
given the fundamentally different processes that they model. 
They are both regularly spaced distributions of &functions. It 
has been asserted that the moire patterns that result from digitally 
sampling gratings and those from crossed gratings can be con- 
sidered equivalent.2 The intuitive feeling behind this assertion 
is that the rows and columns of the sampling grid can be con- 
sidered as gratings that when combined with an object grating, 
make moire patterns like crossed gratings. This is important 
because it means that the considerable amount of past work on 
metrology using crossed-grating moire can be directly applied 
to the relatively new idea of "scanning moire"-moire with 
one grating and a digital camera. 

To assess the degree of similarity between crossed gratings 
and sampled gratings, we try to model a sampled grating with 
crossed gratings. We imagine a single grating go(x,y) (the object 
grating) imaged by a digital camera. The grating has period TO, 
angle 00, and Fourier series coefficients cno. If aliasing occurs, 
moire patterns will result in the reconstructed image. We would 
like to know what set of crossed gratings of the form of Eq. (4) 
would give the same moire pattern for the same object grating. 
These "effective" gratings will be chosen such that they give 
approximately the same Fourier transform as the Fourier trans- 
form of the sampled, reconstructed image of grating go(x ,y) .  
The effective gratings will serve as a sort of camera model. It 
is important to realize that the camera model is made of gratings 
(patterns of some transmission profile which is periodic along 
some direction), not arbitrary transmission functions. If we al- 

lowed arbitrary functions, then the camera model would be a 
simple inverse Fourier transform. We are restricting ourselves 
to gratings in order to test the assertion that sampled-grating 
moire patterns can be considered the same as crossed gratings. 
In addition, we will only attempt to model I 112 passes through 
our multiple stage model, meaning that the input grating is first 
blurred, sampled, and then reconstructed. This is necessary be- 
cause crossed gratings result in a continuous image, not a sam- 
pled image which results from one pass through the loop. The 
Fourier transform of a reconstructed, sampled image of grating 
go(x,y) is given by 

Here P I  is the Fourier transform of the PSF of the camera 
(including lens and pixel shape) and PZ represents the interpo- 
lation function. 

The set of effective gratings is not unique. In fact, even the 
number of effective gratings is not determined. (For instance, 
any grating can be composed of two or more parallel gratings, 
each of which makes up part of the first grating's profile.) I t  is 
reasonable, however, to consider a set of two effective gratings, 
representing the rows and columns of the sampling grid, re- 
spectively. We first derive an approximate pair of effective grat- 
ings by assuming that they are each Ronchi rulings. We then 
relax the conditions on the two effective gratings by allowing 
arbitrary profiles. 

Our strategy in both cases is to compare an equation that 
characterizes the assumed form of the effective gratings to Eq. ( 14), 
which gives the moire patterns from a digital sampling system. 
We then instantiate the free parameters of the effective gratings 
and evaluate how well the two equations match. 

5.1. Approximation with two Ronchi rulings 
Equation (7) gives the expression for k superimposed transmis- 
sion gratings. We will let k = 3 for two effective gratings and 
one arbitrary, object grating. The cn for a Ronchi ruling are sinc 
( n / 2 ) / 2 .  The expression for the superposition of the arbitrary 
grating Go(f,J;) and the two Ronchi rulings representing the 
camera is then 

where To, 00, and cno characterize the arbitrary grating. The free 
parameters are the periods and angles of the Ronchi rulings, 
Le., T I ,  T2, 01, and 02. We see from Eq. (14). which gives the 
expression for the sampled grating Go, that a reasonable choice 
is to have T I  = T,, T2 = T?, 01 = 0, and 01 = d 2 .  The 
periods and angles of the effective gratings then match the pe- 
riods and angles of the rows and columns of the sampling grid. 
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The positions of the &functions in both the sampled-grating case 
and the crossed-gratings case are thus equivalent. The ampli- 
tudes, however, are not. The most significant difference is that 
the sampled grating is bandlimited by the Nyquist frequencies, 
while the crossed gratings have no such limits. Likewise, the 
crossed gratings are not subject to the interpolation function or 
camera blur. Thus, two Ronchi rulings can accurately generate 
a superset of the frequencies from an aliased grating, but they 
will not give a good indication of the amplitudes. 

We can demonstrate the Ronchi ruling approximation in pic- 
tures. Figures 3 and 14 show the two constituent, orthogonal 
Ronchi rulings that serve to simulate the sampling grid of a 
camera. Figures 4 and I5 show the respective Fourier transforms. 
When these two gratings are crossed, they look like Fig. 16, 
and the Fourier transform looks like Fig. 17. The Fourier trans- 
form is a grid of 6's whose spacing is the reciprocal of the 
periods of the two Ronchi rulings. If the grating periods are 
equal to the sampling periods of the camera, as we have shown 
they should be, then the 6's of the two orthogonal Ronchi rulings 
will coincide with the centers of the spectral orders of a sampled 
grating. In Fig. 18 we show the two orthogonal Ronchi rulings 
crossed with a third Ronchi ruling at IS". This is the same IS" 
Ronchi ruling shown with its Fourier transform in Figs. S and 
6 .  Finally, Fig. 19 shows the Fourier transform of the three 
crossed Ronchi rulings. Although it  is difficult to tell from the 
figure, the effect of convolving the Fourier transform of the 
tilted ruling with that of the two orthogonal rulings has been to 
repeat the Fourier transform of the tilted ruling on a grid of S's, 
just like the repeated spectral orders of a sampled grating. 

5.2. Approximation with two arbitrary gratings 
When we relax the conditions on the profiles pf the two effective 
gratings, we still find that the geometric parameters should match 
those of the sampling grid. Thus, the equation for the crossed- 
gratings moire pattern becomes 

x r 

Here again the positions of the &functions in both the crossed- 
gratings case and the aliased-grating case are equivalent. The 
remaining free parameters are the Fourier series coefficients, c , ~  I 

and clI2,  of the two effective gratings. We would like these 
coefficients to account for the PSF of the camera and the inter- 
polation function of the reconstruction. We see, however, that 
this is in general impossible because these coefficients are not 
sensitive to the necessary variables. From Eq. (l4), the Fourier 
transform of the PSF appears as P 1(nocos(0o)/To, nosin(00)lTo). 
P I  is a function of no, while cn I and cl12 have no such depen- 
dence. Since the n's vary independently of each other in the 
three sums, cII cannot, in general, be equal to P dnocos(f3o)l 
To, norvin(0o)/To). A similar argument applies to the interpolation 
function P z ( j , , f , ) ,  which must be zero outside the Nyquist fre- 
quencies. For a given 111 and nz, the c,llc,,2 product will multiply 
6-functions at frequencies both inside and outside the Nyquist 
bounds because no is still free to vary and take the &functions 
inside and outside the Nyquist bounds. Thus, by relaxing the 
conditions on the profiles. we cannot generally get better results 
than from the two Ronchi rulings. 

We can reach a more concrete conclusion if we disregard the 
PSF and the interpolation function for the sampled grating case 

(by setting them to one). By comparing Eqs. (14) and ( 16) we 
then have, for the effective gratings, c,llc,12 = l / ( T , T \ ) .  We 
arbitrarily set cnl = 1/T, and c,12 = l/T\. The Fourier series 
for g l ( x , y ) ,  the effective grating with the vertical lines, becomes 

These are each a series of evenly spaced lines on otherwise 
opaque transparencies. Their product is a grid of pinholes, coin- 
cident with the centers of the pixels of the camera's image plane. 
These effective gratings model a camera with no blur and no 
Nyquist limitations. 

The practical conclusion from these two-grating approxi- 
mations is that the PSF and interpolation function cannot be 
accurately modeled using crossed gratings while the constituent 
frequencies can be. Thus, the body of research developed for 
crossed-grating moire can be applied to sampled-grating moire 
if the profiles of the moire patterns are not important. It should 
be noted that the crossed-gratings model predicts frequencies 
beyond the Nyquist bounds, which will never appear in sampled- 
grating moire. 

If we want to simulate more passes through the sampling and 
reconstruction loop, we can add two more gratings for each 
pass. The periods of the gratings should be equal to the sampling 
periods. Their angles should match the angles of the sampling 
grid. In this way, we can generate a superset of the constituent 
sinusoids of the sampled moire pattern, although the amplitudes 
will still not match. 

5.3. Visual comparison 
We present here a brief experiment to show how a sampled- 
grating moire pattern can be approximated with two crossed 
gratings. The sampled-grating moire pattern to be approximated 
is the one used for the experiment described in Sec. 4 and shown 
in Fig. 20. The figure was halftoned and reduced for publication, 
so the actual amplitudes are not shown exactly; we are concerned 
here with a qualitative comparison. 

According to the development in Sec. 5. I ,  the two gratings 
that simulate the camera should have periods equal to the CCD 
pixel spacing given in Sec. 4. Thus, (using arbitrary units) we 
set T I  = Tx,  = 1.70 and T2 = T,, = 1.00. We also have 01 
= 0 and 02 = d 2 .  Matching the actual object grating, we set 
TO = 1.21, 80 = 88.38", and the duty ratio h = 0.48. 

Figure 21 shows the superposition of three gratings, one of 
which has the geometric parameters of the imaged square wave 
and two of which have the geometric parameters of the CCD as 
described above. We arbitrarily used Ronchi rulings for the two 
orthogonal gratings that simulate the camera. 

According to our analysis in Sec. 5, we can generate a su- 
perset of the constituent frequencies of an aliased moire pattern 
by matching the geometry of the sampling system with crossed 
gratings. A visual comparison of the crossed gratings in Fig. 21 
with the aliased moire pattern in Fig. 20 shows this to be qual- 
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Fig. 14. Ronchi ruling at 90" 
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Fig. 15. Fourier transform of Fig. 14. 
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Fig. 18. Ronchi rulings at 0". 90". and 15". 
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Fig. 19. Fourier transform of Fig. 18. 
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Fig. 20. Sampled-grating moire pattern. 

Fig. 21. Sampled-grating moire pattern simulated with three crossed 
gratings. 

itatively true. The periods and angles of both moire patterns are 
about equal. In Fig. 22 we show the same crossed-gratings model 
without the vertical-line-grating that models the columns of the 
camera. Essentially the same moire pattern is visible in both. This 
is to be expected. As we have demonstrated, for our particular set 
of parameters, the sampling rate in the x direction had virtually no 
effect on the moire pattern because the lines of the object grating 
were almost parallel to the horizontal scanning lines. 

6. CONCLUSION 
Past attempts at characterizing sampled-grating moire have used 
either a crossed-gratings model or a single stage sampling model. 
We were able to evaluate these models by developing notation- 
ally consistent, frequency space models of crossed-grating moire 
and multiple stage, sampled-grating moire, of which single stage 
sampling is a special case. In evaluating the crossed-gratings 
model, we found that if we chose the periods and angles of the 
crossed gratings to match those of the sampling grid, the resulting 
crossed-grating moire pattern would contain a superset of the 
frequencies of the sampled grating. We demonstrated this fact 
with equations and a simple, qualitative experiment. We also 
showed that the crossed-gratings model cannot correctly predict 
the amplitudes of sampled-grating moire. 

Fig. 22. Sampled-grating moire pattern simulated with two crossed 
gratings. 

The single stage, sampled-grating models proposed in the 
literature are better than the crossed-gratings model for char- 
acterizing moire patterns due to aliasing. But we have shown 
how our model of multiple stage sampling accounts for multiple 
stages of aliasing, which has a significant impact on both the 
geometry and brightness of sampled-grating moire patterns. The 
geometry can become complicated if later sampling stages have 
lower sampling rates than earlier stages. Thus, in practically 
applying sampled-grating techniques, it is important to be aware 
of the sampling rates of all stages of the imaging system. Other- 
wise, there could be unanticipated aliasing effects that would 
likely lead to mistakes in shape measurement. In terms of bright- 
ness, we have shown that a single PSF cannot, in general, char- 
acterize a multiple-stage sampling system. We demonstrated 
with an experiment how our model does a good job of predicting 
the frequencies present in an actual sampled grating. 

This research demonstrates clearly the justification for using 
a crossed-gratings model to characterize sampled gratings, but 
also shows its limitations. We have demonstrated the sorts of 
errors that can result from a crossed-gratings model or single 
stage, sampled-grating model and how these errors can be avoided 
using our multiple stage, sampled-grating model. The multiple 
stage sampling model should be used to avoid errors whenever 
sampling considerations become important in a digital imaging 
system. 
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