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Abstract

Uniformly textured surfaces in 3D scenes provide impor-
tant cues for image understanding. Texture can be used for
both segmentation and for 3D shape inference. Unfortu-
nately, virtually all current algorithms are based on assump-
tions that make it impossible to do texture segmentation and
shape-from-texture in the same image. Texture segmentation
algorithms rely on an absence of 3D effects that tend to dis-
tort the texture. Shape-from-texture algorithms depend on
these effects, relying instead on the texture being already
segmented. To really understand texture in images, texture
segmentation and shape-from-texture must be viewed as a
combined problem to be solved simultaneously. We present a
solution to this problem with a region-growing algorithm
that explicitly accounts for perspective distortions of other-
wise uniform texture. We use the image spectrogram to com-
pute local surface normals, which are in turn used to
“frontalize” the texture. These frontalized texture patches are
then subjected to a region-growing algorithm based on simi-
larity in the local frequency domain and a minimum descrip-
tion length criteria. We show results of our algorithm on real
texture images taken in the lab and outdoors.

1 The Problem and What We’re Doing About It

We can tell a lot about a scene from a single, monocular
image of it. Part of this understanding comes from uniformly
textured objects in the scene. The texture can be used to seg-
ment the object and to infer its shape. Computer vision
researchers have made significant progress toward exploiting
both of these cues. Texture segmentation has a rich history
documented in survey articles[5][14][16]. The fundamental
idea is to map the image into a compact representation (e.g.
gray-level statistics) of the texture whose parameters remain
constant over the texture region. Algorithms search this 2D
map of texture parameters for sharp changes (edge-finding)
or uniform regions (region-growing) to accomplish a seg-
mentation.

Shape-from-texture has an equally rich history. As in tex-
ture segmentation, the goal is to find the appropriate repre-
sentation. Here, however, the representation must be
sensitive in some coherent way to 3D effects. Formalizing
the connection between the representation and the surface
normal of the texture gives the foundation for a shape-from-
texture algorithm.

In spite of the clever mathematics and high-powered
algorithms focused on texture understanding, there remains
an obvious gap in applying the research to realistic, uncon-
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Figure 1: Part of the image spectrogram is shown as
the two, light-colored patches. These are the
Fourier power spectra of the underlying pixels.
Since the texture is periodic, the power spectra
show sharp peaks corresponding to 2D fundamental
and harmonic frequencies. The frequencies in the
right patch are higher (farther from frequency
origin) than the left patch, because perspective
effects make the texture elements appear

trived images. Past algorithms for texture segmentation were
limited to textures that appear uniform in the image. While
this is reasonable for aerial images, orthographic projection,
and certain contrived laboratory or industrial situations, it is
an unrealistic assumption for general images of the real
world. Past shape-from-texture algorithms have all relied on
pre-segmented images, because shape-induced texture defor-
mations could not be distinguished from changes due to
completely different objects.

Our solution is to explicitly account for the texture defor-
mation due to 3D perspective effects. Our algorithm works
by first estimating the surface normal of small patches in the
image. We make this estimate with our own spectrogram-
based shape-from-texture algorithm. The algorithm we use
works only on planar, periodic textures, so we are limited in
what type of textures the image can contain. Based on these
surface normal estimates, we “frontalize” the local spatial
frequency content of the texture. This step undoes the effect
of 3D perspective, and allows us to directly compare adja-
cent patches for matching. We merge adjacent patches based
on a minimum description length criteria to produce the final



segmentation. As a by-product of accounting for shape
cffects, we also get the surface normals of the textured
regions.

Research in shape-from-texture using spatial frequency
started with Bajcsy and Leiberman{1] in 1976. Those ideas
have been mathematically formalized and tested by Jau and
Chin(7], Brown and Shvaytser{3], Super and Bovik{13],
Krumm and Shafer(8], and Malik and Rosenholtz[10].

We explain and evaluate our spectrogram-based shape-
from-texture algorithm in Section 2. Section 3 shows how
we incorporate the shape results into a region-growing algo-
rithm, and includes results on simulated, laboratory and out-
door images.

2 Local Shape-from-Texture Using the Spectro-
gram

In order to undo the effects of 3D perspective, we need to
find the surface normals of textured objects. Our shape-
from-texture algorithm is based on the image spectrogram,
which is a series of local Fourier power spectra computed at
different locations in the image. Mathematically, if the image
is given by f(x, y) , then the spectrogram is

- 2
Sy, uv) = I I wix', VIl —x, ¥ - )ed IR =0 g 2y (1)

where w(x, y) is the window function and (« v) are the
frequency coordinates in cycles/pixel . Part of a spectrogram
taken on a periodically textured plate is shown in Figure 1.
The two light-colored patches are local power spectra of the
underlying pixels. Qur particular window function is the
“Blackman-Harris minimum 4-sample” window, recom-
mended by experts[6] for Fourier analysis. Its equation is
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where L is the (even integer) width of the window in pixels,
0<i<(L-1)/2, and [ = Jx?+y2. The coefficients are
(wg wy, wy, wa) = (0.35875, 0.48829, 0.14128,0.01168) . For
our analysis, we let L = 64 pixels.

2.1 Perspectively Projected Texture

These local power spectra show frequency shifts result-
ing from 3D perspective effects. The two power spectra
patches in Figure 1 show this shift. Since the underlying tex-
ture is periodic, the power spectra consist of delta functions.
The delta functions in the right patch are farther from the ori-
gin because that part of the textured plate is farther away
from the camera. We showed in [8] that the relationship
between the frequencies in the two patches is given by an
affine transformation:
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where (1, v,) and (uyv,) are corresponding frequency
components from the two patches, and
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and (x;,¥,) and (x,y,) are the two points on the image
plane being compared, d is the camera’s pinhole-to-sensor
distance, and (p,,q,) and (p,,q,) are gradient space vari-
ables representing the 3D surface normals of the two surface
patches. We derived this relationship by perspectively pro-
jecting two texture patches onto the image plane and then
linearizing this projection with a Taylor series.

We conclude that the frequencies of a single sinusoid
projected from the same plane to two different points in the
image are approximately related by an affine transformation.
The affine parameters are functions of the position of the two
points on the image, the camera’s pinhole-to-sensor distance,
and the plane’s surface normal.

2.2 Periodic Texture Representation

We compute the spectrogram of the image by computing
local power spectra at equally spaced centers on the image..
The windows for the power spectra are allowed to overlap.
This subsection explains our compact representation of the
spectrogram that we use for subsequent shape and segmenta-
tion routines.

If we assume the texture on the plane is periodic, then
any physically realizable such texture can be represented by
a Fourier series. Thus, we assume the frontally viewed tex-
ture brightness pattern is given by the Fourier series
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where we are unconcerned with the values of the fundamen-
tal frequency (g, v;) and the complex Fourier series coeffi-
cients ¢, . Using this definition of the Fourier transform,

Flu,v) = f jf(.t. v) e 2+ vy) dxdy (6)
the Fourier transform of the frontally-viewed texture
g(s,nis
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This is a grid of delta functions, with each delta at one com-
ponent frequency. These delta’s are apparent in the two
power spectrum patches in Figure 1.

In order to represent the spectrogram more efficiently
and to speed subsequent computations, we only store the
peak frequencies from each power spectrum patch. Our
spectrogram preprocessor finds the peaks in each patch in
order of size. It keeps looking until the current peak is less
than 20% of the magnitude of the largest peak, or until it
finds six peaks, whichever comes first. It also ignores peaks
below a frequency of 0.03 cycles/pixel. This helps eliminate
low frequencies due to shading.

In order to track frequency shifts for computing surface
normals, we need to know which peaks in one patch corre-
spond to those in neighboring patches. Our preprocessor
matches peaks between every patch and its two adjacent
patches to the right and below. We do this pairwise matching
by considering every possible match combination between
the two sets of peaks, including leaving some peaks
unmatched. We pick the combination that has simulta-
neously the most matches and no match errors that exceed a
threshold based on the largest surface normal we expect in
the scene. For a maximum (p, ¢) of (1.5, 1.5), this thresh-
old prevents matching peaks that are more than about 0.05
cycles/pixel apart for our imaging configuration. After this
preprocessing step we do not need the original spectrogram
for any of the subsequent operations. It is adequately repre-
sented by the peaks and peak matches.

2.3 Computing Local Surface Normals

We compute local surface normals by finding the (p, ¢)
that best accounts for the observed frequency shifts between
neighboring power spectrum patches. At its most basic, this
computation involves just two adjacent patches centered at
(x;,¥) and (x,y,) on the image plane. The sets of m
matching peaks from the two patches are (u,,,v,;) .
(1 v13) « (U3 v13) (U p vy ) and (g, vg))
(ypr V32) » (lp3s¥93) s oo (U vy,) - If we write the affine
parameters from Equation (4) as functions of the surface nor-
mal, we have
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This will be small if we have the correct surface normal and
the correct matches among the peaks. We perform an
exhaustive search over a grid in (p,q) and take the sur-
face normal that minimizes e _, as the solution. If we have
more than two patches to use, we find the surface normal that
minimizes the sum of the e _, 's for all unique, adjacent
pairs of patches in the region. We only consider adjacent
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pairs of patches, that is, the patches that have had their fre-
quency peaks matched by the preprocessor. This algorithm is
similar to one developed by Super and Bovik[12]. One dif-
ference is that ours uses multiple frequency peaks from a sin-
gle texture, while theirs uses a single, dominant frequency at
cach point.

2.4 Results of Shape-from-Texture

Two important parameters that affect the accuracy of our
solution are the number of patches used to compute the sur-
face normal and the center-to-center spacing of the power
spectrum patches. For a given center-to-center spacing, we
would like to use as many patches as possible, as long as
they all fall on the same textured plane, in order to have
more data contributing to the solution. We would also like to
avoid small center-to-center distances, becausc the shape-
induced frequency shifts could then be dominated by noise
and approximation errors.

Figure 2 shows four identical plates with different Bro-
datz[2] textures mapped onto them using a computer graph-
ics program. The actual surfacc normal s
(p.q) = (0.614,0.364) . We tested our algorithm on these
images using different numbers of patches and different cen-
ter-to-center spacing. In each trial, the center-to-center spac-
ing of the power spectra was equal in x and y. We let this
parameter vary from 5 to 50 pixels in increments of 5. For
each center-to-center distance, we computed (p, ¢) using as
many unique n x n squares of adjacent patches as would fit
on the textured part of the image, starting with n = 2.

We computed the average errors in degrees of our surface
normal estimates for different numbers of patches and differ-
ent center-to-center spacings. Each average was taken over
all four images and over all the nxn squares of patches
that would fit on the texture. As expected, the error decrcases
for larger numbers of widely spaced patches, with the best
estimates being in error by about six degrees. Our shape-
from-texture algorithm thus succeeds in giving good results
on periodic textures without the need for image feature
detection.

Unfortunately the need for accuracy conflicts with the
requirements of our segmentation algorithm in terms of the
number of patches and center-to-center spacing. Our seg-
mentation algorithm begins by estimating surface normals
using small parts of the image. Using smali support for these
estimates is important, because we do not want the support
to overlap texture boundaries. This means we have to keep n
and the center-to-center spacing small, which tends to com-
promise accuracy. Fortunately, though, some of the estimates
from the n x n squares are still good. even with small sup-
port and small » . We computed the average minimum error
in surface normal, where the minimum is taken over all the
n x n squares and the average is taken over the four images.
In almost every case, at least one of the n x n squares gave a
fairly accurate surface normal (to within about five degrees).
Since we start our segmentation with many possible seed



regions, we are likely to have some that are “good”, even
with small support. For the scgmentation algorithm dis-
cussed in the next section, we chose a center-to-center spac-
ing of 15 pixels, and we start our local shape computations
with only two patches. Since we do not allow interleaved
rcgions, we computed the spectrogram with the same center-
to-center spacing.

3 Segmenting Textured 3D Surfaces

Our segmentation procedure is a region-growing algo-
rithm that merges regions based on similarities in their local
power spectra. The problem with applying such an algorithm
naively to an image of 3D textured surfaces is that the power
spectra on identically textured surfaces will be different due
to 3D effects. And while a generous tolerance may still allow
such regions to be merged, this may well allow different tex-
tures to be merged also. Thus, we need to explicitly account
for the 3D effects. We do this by computing the surface nor-
mal of each region (using the algorithm in the previous sec-
tion) and then “frontalizing™ the frequencies to show what
the power spectra of the texture would be if viewed from the
front. If adjacent regions have similar frontalized frequency
content, they are merged. A detailed description of the seg-

Woven aluminum wire (D6) French canvas (D21)

Oriental straw cloth (D53) Cotton canvas (D77)

Figure 2: Images used for testing surface normal
computation. These are all from the Brodatz[4]
book of textures, and the book’s designations are
given in parentheses.
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mentation algorithm follows.
3.1 The Data Structures

The smallest elements of our image representation are
the power spectrum patches, represented by their peaks.
Since we segment based on 4-connectedness, each patch has
a list of its 4-connected neighbors. Each patch also contains
the indices of the matched peaks in the patches to the right
and the patch below.

Sets of merged patches are called hypotheses. In the
beginning, there is one hypothesis for each patch. Each
hypothesis contains the usual records needed for region
growing, i.e. the constituent patches and neighboring
hypothesis. We also use the constituent patches to compute
the surface normal using our shape-from-texture algorithm.
This surface normal is used to compute a frontalized version
of the frequency peaks for each constituent patch. The sur-
face normal is also used to compute frontalized versions of
the patches in the four-connected neighboring hypotheses. If
two hypotheses are from the same texture on the same plane,
they will have similar frontalized hypothesis.

3.2 Frontalization of Frequency Peaks

In order to assess the similarity of two sets of frequency
peaks, we need to compare them as if they had the same
depth and surface normal. We use our local surface normal
estimates to “frontalize™ the frequency peaks from power
spectrum patches that we want to compare.

Mathematically, we know that perspective projection
causes an approximately affine transformation on the fre-
quency peaks[8]. This transformation is a function of the
textured surface’s position in space and its surface normal.
Since frontalization is essentially an undoing of the perspec-
tive effects, then frontalizing the peaks is also an affine trans-
formation based on the same variables. We know everything
for the inverse transformation except for the depth. We work
around this by doing a relative frontalization on a a patch
with respect to another patch. For a group of patches that we
want to frontalize, we pick one as the reference patch and
frontalize the others to have the same depth as the reference.
If («,v) is a frequency point on a non-frontalized patch, the
frontalized version is
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The elements of F are
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the image, and the patch to be frontalized is at (x,y) . The
two patches are ?sumr.d_m have the same surface normal
(p.q),and r = pz +q2 + 1. A detailed derivation of these
equations is in [8].

The frontalization step works this way: For a group of
patches hypothesized to be on the same plane, we arbitrarily
pick one patch as the reference patch. In our case we pick the
first in the list. The affine frontalization transformation is
then computed for each patch according to Equation (9), and
each peak frequency is transformed accordingly. This does
not tell us what the true frontalized frequencies are, but it
tells us what the frequencies would be if all the patches had
the same depth as the reference patch, which is good enough
for segmentation.

3.3 Creating a Dendrogram of Hypotheses

QOur segmentation algorithm consists of building a den-
drogram of the image. A dendrogram, defined by Duda and
Hart[4], is a hierarchical clustering represented by a tree
with individual feature vectors as the leaves. In our situation,
each power spectrum patch is a feature vector. At the begin-
ning, each feature vector is its own cluster. We can build a
dendrogram by successively merging the two clusters that
are most similar (by some measure) into a new cluster. Dif-
ferent levels of the dendrogram represent different cluster-
ings. In our algorithm, clusters correspond to hypotheses.
After each merge, the number of hypotheses is reduced by
one. We only allow merges between four-connected hypoth-
eses, and at all times each patch is a member of only one
hypothesis. Different levels of our dendrogram correspond
to different segmentations of the images. We show selected
levels of a dendrogram in the middle left of in Figure 3,
where each of the 25 subimages is a little version of the
region map with merged patches shaded the same. The first
level has every patch as a separate region, while the last level
has every patch in the same region. For Figure 3, the best
segmentation occurs when there are four regions.

We build our dendrograms by successively merging the
adjacent hypotheses that give the maximum decrease in
description length. The overall description length for a
hypothesis consists of two parts that are added together: the
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description length to describe the hypothesis® region in the
image and the description length to describe the hypothesis’
texture. The description length for the region is from
Leclerc’s[9] work on gray-level image segmentation. He
argues that the description length of an image region is equal
to the number of bits it takes to describe the chain code of
unit-length line segments of the region’s boundary. He
shows that this is approximately cqual to a constant 5 times
the length of the boundary. For four-connected rcgions,
Leclerc recommends that b be between log,3 and two. We
found that b = 2 works fine for us. This part of the descrip-
tion length, then, favors merging hypotheses with longer
common boundaries.

The second part of the description length of a hypothesis
concerns the texture itself. The texture of each hypothesis is
represented by the frontalized frequency peaks of the
region’s constituent patches. If these peaks fall into a few,
tight clusters, they probably came from the same texture.
Given the frequency peaks from all the patches in a region,
we take their description length as the description length of
the best possible clustering of the peaks. We find this cluster-
ing by building another dendrogram of the peaks, whose
merge criterion is simple Euclidean distance in frequency.
Each level of the dendrogram represents a possible cluster-
ing of the peaks, and we take the level with the minimum
description length. This is based on an idea of R. Wallace’s
[15]). The formula that we use to compute this description
length is based on the assumption that the peaks are Gauss-
ian distributed around the cluster centers. It is
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where
n, = number of peaks
n, = number of clusters

n; = number of peaks in cluster i

(ujpvyy) = peak j of cluster i
) = mean of peaks in cluster ¢

o = standard deviation of peaks

The first addend of this formula gives the number of bits it
takes to label each peak with an integer giving its cluster
number. The second addend is Rissanen’s[11] estimate of the
number of bits to describe the mean and standard deviation
vectors of each cluster. The third addend is the number of
bits it takes to describe the deviation of the peaks from their
cluster centers. It is based on a Gaussian probability distribu-
tion, and is essentially -log,P (peaks|y, o) . The standard
deviation for this term could be computed from the clusters
themselves, however small clusters will give unstable val-
ues. We set the standard deviation to 0.01 for our experi-



ments. This value is rcasonable. since the Nyquist-limited
range of frequencics is [-0.5,0.5].

The dendrogram of hypotheses is built this way: At the
beginning. cach patch is its own hypothesis. To compute the
next level in the dendrogram, ail pairs of 4-connected
hypotheses are temporarily merged into new, trial hypothe-
ses. Each trial merge involves computing the surface normal
of the merged region, frontalizing the peaks. and building a
dendrogram of the frontalized peaks. We take the merge that
gives the largest reduction in description length. The “magic
numbers” are Leclerc’s value of b for the chain-code
description length, the standard deviation of the peaks, and
the level in the dendrogram of hypotheses to choose as the
final scgmentation. The first two parameters are easy to
choose. The final dendrogram level is more difficult. As our
algorithm stands now, we must choose this manually.
although some measure based on description length would
be appropriate here.

After picking the dendrogram level, we refine the edges
by shifting the region affiliation of power spectrum patches
along the region borders. If the switch lowers the total
description length, we reassign the patch, otherwise we keep
it as it was.

3.4 Results

The results of our segmentation algorithm on three dif-
ferent images arc shown in Figure 3 - Figure 5. Figure 3
shows the segmentation of three Brodatz[2] textures mapped
to three planes. Selected levels of the dendrogram are shown
below the image, where each subimage of the dendrogram is
shaded to show the regions. The bottom of the figure is a
needle diagram of the surface normals computed in our seg-
mentation algorithm. In this case, the average error was
6.71° . Next to the left dendrogram is the dendrogram we got
by ignoring the surface normals. We created this dendrogram
by changing our surface normal subroutine so that it would
always return (p,¢) = (0, 0) . This meant that the frontal-
ization step would not alter the peak positions. There are no
good segmentations in this dendrogram, which highlights the
importance of considering the surface normals. We got simi-
larly bad results from ignoring surface normals on all the
images we tested.

A textured screen guard and some untextured objects are
shown in Figure 4. This image was taken in our lab. Our
algorithm groups the untextured parts together, since they
are the same from a texture point of view. We measured the
actual angle of the screen guard with an electronic level. The
average surface normal error for the screen guard was 6.21°.
Figure 5 shows a large apartment building whose windows
make a rectangular grid.

4 Conclusions

Our algorithm fills a gap in automatic image understand-
ing. Until now, combining texture segmentation and shape-

Dendrograms with (left) and without (right) considering sur-
face normals. Ignoring surface normals gives no good seg-
mentations in the dendrogram.
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Computed surface normals, average error is 6.71 degrees

Figure 3: Synthetic image with Brodatz textures
“woven aluminum wire” (D6), “netting” (D34), and
“cotton canvas” (D77). Edge refinement gives a
noticeable improvement. Ignoring the surface
normals gives a dendrogram with no good
segmentations.

from-texture in the same image was impossible, due to con-
flicting assumptions for the two types of algorithms. Our
algorithm explicitly accounts for shape effects during seg-
mentation. We compute local surface normals with our own
shape-from-texture algorithm that requires no texel detec-
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Edges from three-region level of dendrogram

22000 e0s s st

Computed surface normals, average error is 6.21 degrees

Figure 4: Laboratory image of screen guard and
other objects. Our program can distinguish the
textured and untextured regions of an image.

tion. These surface normals allow us to undo the effects of
shape. We apply a region-growing algorithm based on
description length to the “frontalized” texture. The descrip-
tion length merge criteria provides a fairly robust and simple
way of arbitrating among possible merges. To our knowl-
edge, this is the first algorithm that can segment nonfrontal
textures by explicitly accounting for shape.
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