Shape from Periodic Texture Using the Spectrogram

John Krumm and Steven A. Shafer
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA

Abstract

We show how local spatial image frequency is related to
the surface normal of a textured surface. We find that the
Fourier power spectra of any two similarly textured patches
on a plane are approximately related to each other by an
affine transformation. The transformation parameters are a
function of the plane’s surface normal. We use this relation-
ship as the basis of a new algorithm for finding surface nor-
mals of textured shapes using the spectrogram, which is one
type of local spatial frequency representation. We validate
the relationship by testing the algorithm on real textures, By
analyzing shape and texture in terms of the local spatial fre-
quency representation, we can exploit the advantages of the
representation for the shape-from-texture problem. Specifi-
cally, our algorithm requires no feature detection and can
give correct results even when the texture is aliased.

1. Introduction

Texture has long been considered an important shape cue in
monocular images. The corresponding algorithms developed
in computational vision exploit the systematic changes in a
projected texture’s appearance to find the surface normal of
the underlying shape. This effect is illustrated in Figure 1,
which shows a Brodatz[4] cotton canvas texture syntheti-
cally mapped onto a plate. The angle and changing depth of
the plate combine to make the texture appear “smaller” as the
plate recedes.

A more recent trend in image understanding is local spatial
frequency analysis. Here, the image is represented in terms
of the local spatial frequencies at every pixel -- the “space/
frequency representation”. Coherence and changes in local
spatial frequency from point to point can be used to under-
stand a rich set of image phenomena that cannot be analyzed
easily in the space or frequency domain alone[14].

Since texture is fundamentally a frequency phenomenon,
and since shape is fundamentally a spatial phenomenon, it is
natural to approach the shape-from-texture problem in terms
of this representation. In Figure 1, for example, we show the
local Fourier power spectrum (spectrogram) in two places on
the image. The frequencies on the right are higher than those
on the left, due to perspective and foreshortening. However,
there does not exist a theory that relates texture, shape, and
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Figure 1: A textured plate with part of its
spectrogram superimposed

the detailed behavior of local spatial frequency. In this paper,
we develop a theory that predicts the systematic frequency
shifts due to shape and we use the theory in a new shape-
from-texture algorithm based on the spectrogram. This has
proven to be a simple and intuitive approach to the problem.
The method is attractive because it exploits a representation
that is useful for understanding other important image phe-
nomena as well.

1.1. The Space/Frequency Representation

The space/frequency representation shows the frequencies
of a signal at every point in the signal. The space/frequency
representation of a 1-D signal is necessarily a 2-D function of
x and frequency u, since it must show a 1-D frequency distri-
bution for every point in the signal. It is like having a little
Fourier transform at every point along the x axis. If the origi-
nal signal were a two-dimensional function of x and y (an
image), then the space/frequency representation would be a
four-dimensional function of x and y and the two frequen-
cies, u and v.

The space/frequency representation can be computed in
many ways, none of them ideal even for all well-behaved
signals. We use the image spectrogram as our instantiation of
the representation. For each point in the image, we extract a
square neighborhood of surrounding pixels and multiply this
block of intensities by a window function that falls off at
block’s edges. We compute the two-dimensional Fourier
transform of this product and take the squared magnitude as
the local frequency representation, giving the local power
spectrum. This is the image spectrogram S(x, y, u, v).

There are several other methods of computing the space/
frequency representation. The well-known ones are Gabor
functions[9], the Wigner distribution[6], and wavelets[16].



We chose the spectrogram because it gives an intuitive-look-
ing picture, provides a dense sampling in space and fre-
quency, and comes with the well-developed theory of Fourier
transforms. The method of computing the representation is
really only important at the algorithmic level of our develop-
ment. The basic theory of projecting frequencies that we
develop applies regardless of the particular representation.

1.2. Shape from Texture

There is a lot of work in shape from texture, and the initial
assumptions about the texture and imaging process play a
significant role in the various algorithms. In our develop-
ment, we assume the frequencies of the frontally viewed tex-
ture remain the same from point to point -- i.e. that the
frontally viewed texture is stationary. The shifts in local spa-
tial frequencies on the perspectively projected image then
give information about the shape of the surface. The result-
ing algorithm works directly on the spectrogram of the
image, Tequiring no feature detection. This is an important
advantage over many other shape-from-texture algorithms,
as it is very difficult to reliably find texels in an image.

Local spatial frequency analysis of texture started with
descriptions and segmentation of frontally viewed textures.
Such work includes the use of the Fourier transform by
Bajcsy[1], Gramenopoulos[11] and Matsuyama ef al.[17],
Gabor filters by Turner[21], Fogel and Sagi[8], and Bovik et
al.[3] and the Wigner distribution by Reed and Wechsler[18].

Starting with Bajcsy and Lieberman[2], one branch of
shape-from-texture research has focused on using local spa-
tial frequencies. Brown and Shvaytser([5] use the autocorrela-
tion (Fourier transform of power spectrum) of an entire
texture image to determine the slant and tilt of the textured
surface. Jan and Chin[12] use the Wigner distribution, and
report good results by examining only a scalar measure of the
high spatial frequencies. Jones and Malik[13] use spatial fre-
quency disparities in a novel stereo algorithm. Super and
Bovik track frequency peaks[19] and frequency
moments[20] to get shape from texture. Our formulation and
algorithm are different in that we consider the shift of each
frequency component from point to point in the projected
texture. By maintaining a dense representation of the raw fre-
quency data, we can apply basic theory all through the algo-
rithm, allowing us to easily account for complicated
phenomena like aliasing.

2. Math

This section contains a derivation of the connection
between the surface normal of a textured surface and the
local Fourier transform of the projected texture in an image.
From this we show that the frequencies of two similarly tex-
tured image patches are related by an affine transform.

2.1. Coordinate Systems

Figure 2 shows the coordinate systems used in the deriva-
tion. The camera’s pinhole is at the origin of the (X,Y,Z)
frame. This serves as the world coordinate system, and points
defined in it will be referred to with upper-case (X, Y, Z).
The —Z axis is coincident with the camera’s optical axis and
points into the scene being imaged. The image plane is the
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t  textured surface

Figure 2: Coordinate systems used in derivation
(x,y) frame at a distance d behind the pinhole.

We imagine that each point on the locally planar textured
surface has its own coordinate frame (s, ¢, n), with the n
axis coincident with the surface normal. The surface normal
is defined with the gradient space variables (p, ¢) , thus the

(p,q,1)/r, with

unit vector along the n axis is A =

2 2 172, . .

r= (p°+q-+1) ,inthe world frame. The origin of this

surface frame is (AX, AY, AZ) with respect to the world
frame.

The 4x4 homogeneous transformation matrix that locates

and orients the surface frame with respect to the world frame
is

p’+rq’ pe(1-7) »AX
ty by by b r+q P+d
ty byt taf 21 pg(1-9) P+ q

pa( '+ q arl 1)
Iy by by by p‘+q2 P+g

0 001 -q 1 rAZ

0 0 r

P
0

This was derived by making a single rotation of the (s, £, n)
frame around the unit vector (—gq,p,0)/ ('\lp2 + q2) by an

angle ¢ with cos¢ = 1/r and sin¢ = ( (p2+q2))/r.
2.2. Projected Texture

This subsection concludes with an expression for a per-
spectively projected texture. We begin by assuming the tex-
ture on the surface is “painted” on and not a relief pattern. It
is locally characterized in the (s,t, n) surface frame as a

pattern of surface markings given by fis, ). Points on this
locally planar surface are given by coordinates (s, 0).
Applying the transformation matrix, the corresponding world
coordinates are
X =t s+ipt+AX
Y = tys+int+AY
Z =ty S+t +AZ

@



Under perspective, the origin of the (s,t,n) frame
projects to (xgp, ¥g) = —AiZ(AX, AY) on the image plane.

In order to avoid carrying a coordinate offset through the cal-
culations, we define another coordinate system, (x', y'), on
the image plane that is centered at (x, y,) with its axes par-
allel to those of the image plane. Given an (x,y) on the sur-
face,
t3; 8+ 130+ AZ
S+t +AY
t31S+ i3t +AZ

(€)

Yy =YY= Yo

Solving these two equations for (s, ) will give equations
that give a point in the surface frame for any corresponding
point in the (x',y') frame. Doing so, using
(AX, AY) = (—x¢AZ,-yyAZ)/d and the orthonormality
relationships among the vectors in the transformation matrix,
we have

AZ[d (Y 1~ 5" ty) +1u (¥ xg—x'y,)]

A,y (x' +x) +15(y' +yy) ~dAZ) (4)

AZ[d(y )~ % 1) + 1 (Y X~ 2" 3g) }
d [ty (X' +x5) + 155 (¥ +yg) —dAZ]

Thus, if the brightness pattern on a locally planar patch ona
textured surface is f{s, £), then the projected pattern on the
image plane is a nonlinear warping of the pattern given by
flsx', y'), t(x', ).

2.3. Approximating the Fourier Transform

In order to work with frequencies, we would like to find an
expression for the Fourier transform of the projected texture,
fis(x', ¥"), t(x', ¥')). But the warpings represented by Equa-
tion (4) are too complex to allow us to say anything general.
We can make progress by linearizing s(x', y') and #(x',y")
using a truncated Taylor series around (x',y') = (0,0).
The approximation is justified since we are only examining a
relatively small window of intensities around the point of
interest. We have

Hx'y') =

SGL Y)Y = sx sy ©)
(x'y)=tx +tyy
with
5, = Lsx', )l ©)
= 5 Y Nxy) = (0,0
etc. We have left out the actual expressions here to save
space. More details can be found in [15].
The projected version of f(s,#) is then approximately
fls x' + syy', X+ tyy'), which is just an affine transforma-

tion (without translation) of the coordinates. A similar rela-
tionship holds in the Fourier domain given by the following
Fourier transform pairs[10]:

fx', )y = F(u, v)
{ ' . ' 1 ty tx Sy sz
fls,x T8, tx Ly )= I'—D"I'F(Bu— BV,— 5u+ l—)v)
Q)
where D = Sely = Syt Here (u,v) are spatial frequency

coordinates in cycles/unit distance.

The significant conclusion is that the Fourier transform of a
perspectively projected texture patch is approximately an
affine transformation of the Fourier transform of the frontally
viewed texture. The affine transformation parameters are a
function of the camera focal length, the pixel coordinates of
the point of interest, and the depth and orientation of the
patch.

2.4. Relation Between Fourier Transforms of
Two Patches

Since there is usually no way to determine what the fron-
tally viewed texture looks like, we resort to comparing
patches of the same texture at different locations in the
image. We showed above that the Fourier transform of each
patch is related to the Fourier transform of the frontally
viewed texture by an affine transformation. This means that
the Fourier transforms of patches themselves are related by
affine transformations.

Suppose the two patches f(s, ¢) and f,(s, £) are related to
the frontally viewed texture by the affine parameters
(5,1 Syp by ’yl) and (s,,, Sy2 Ly ty2) . In Fourier space,

an affine transformation of the first into the second means
that

t L 3, Iy 1, [» 3, o
_l—p,(,,(z.__u)n, [__)(__)b(__],
’Dll Dl Dl Dl Dl Dl Dl DI Dl (8)

1 (¥ ta s L
=—F,(Lu——v ~£u+—v)
2

IDll Dz DI ’ D DI
where F(u, v) and F,(u, v) are the Fourier transforms of the
two patches, D, = Seify1 ~ Syrlyrs D, = Sxaly2 = Syatezs
and (ay, by, ay, b,) are the affine transformation parameters
connecting the two Fourier transforms. Note that we have
ignored phase differences here. In reality, the Fourier phases
of the two patches will be different. This difference is
masked because each patch is defined with respect to its own
local coordinate system. In our formulation, phase would

only complicate the derivation, and we discard it by comput-
ing the Fourier transform’s magnitude in our algorithm,

Equating coefficients on (u, v) in Equation (8) leads to

4 szltyZ_syltxZ
bl

__1___ txltyZ - zthyl . ©9)
a D2 sxltyZ - syltJtZ

b2 Sthyl - sy2tx1
Thus, the affine parameters connecting the two Fourier
transforms are functions of the affine parameters connecting



the two patches to the frontally viewed texture. In order to
relate this equation to the physical parameters of the camera
and the textured surface, we take the values of

(541 Sy1o txltyl) and (s, Sy2 b tyz) from Equation
(6). Before doing this, however, we will make the assump-
tion that the two texture patches have the same surface nor-
mal, ie. (py,q;) = (P4 = (pq), and that both
patches are on the same plane, i.e.

AZ, d-pxy — 9o,

KZ—l - d—pxoz—qyoz'
This makes the depth variables drop out.

The affine parameters connecting the Fourier transforms of
the two patches are then

(10)

b =

s PpALdp(qAx - pAy) ~dgr(pbx+g4y) -p(2'+4") (%9, ~ %o 20)]

4= ¢A [dq(pAy - gAx) —dpr(pbx+qAy) +4 (' + ") (% Y, ~ %030

b, = Al-dr (s + ) +dpa(ghx—pay) +dr (B, +Pary +PT %0+ 20) =P+ ) (2070, =53]

(11)
where
pxg +q¥o, ~ d

A (12)

= 3 2
dr (p*+ ¢ (pxo, +4¥o,~ d)
and Axg = xo —Xo,.and Ayg = Yo, ~ Yo,-

These equations are not easy to interpret intuitively. The
notable feature is that the only unknowns are (p, q) .

To summarize this section, we first showed how a locally
planar surface patch projects by perspective into the image.
We approximated this projection with a truncated Taylor
series. This gave an affine relationship between the frontally
viewed texture and the projected texture. A property of the
Fourier transform says that an affine transformation in space
is an affine transformation in frequency. Since the Fourier
transform of each image patch is related by an affine trans-
formation to the Fourier transform of the frontally viewed
texture, the Fourier transforms of the image patches are also
related by an affine transformation. If we assume the two
patches are on the same plane, the affine parameters that con-
nect their Fourier transforms are functions of known camera
parameters and the unknown surface normal.

3. Algorithm

Here we discuss our core shape-from-texture algorithm.,
The five major steps involved in computing a surface normal
from an image of a textured surface are

1. Manually pick two test points on the surface that

would have the same texture when viewed frontally.

2. Multiply the neighborhood of each point by a win-

dow function.

3. Compute the 2D Fourier transform of each windowed

patch.

= AL-dr(p+ ) +dpg (pAx-qay) +dr (G5 + 0% + P %, P92 +PAE + ) (R0, = T30
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Compute the squared magnitude of each Fourier
transform, giving the local power spectrum at each
point (part of the spectrogram).

Search for the (p, g) that gives the best affine warp-
ing from one local power spectrum to the other.

The window function we use is the “Blackman-Harris min-
imum 4-sample” window defined in [7]. In our experiments,
we settled on a window size of 64x64 pixels in images that
are typically 512x512 pixels. In Figure 1, the size of the two
light-colored squares is equal to the window size.

Because of varying phase, the Fourier transforms at any
two general points even on a frontally viewed texture would
be different. For the same reason, strictly speaking, Equation
(8) would not hold. In order to match the phases of two
patches, we would have to use a six-parameter affine trans-
formation (including translation) rather than the
four-parameter version (no translation) that we
use now. By using only magnitude, we can reduce
the complexity of the affine transformation and
speed up the program,

The last step of our core algorithm is an exhaus-

5.

tive search for the (p, ¢) that best transforms the
power spectrum of one patch into another. Our
current implementation searches over a 64x64 grid, with
(Ipl, Iql) € (2,2). This corresponds to a maximum slant of

about 63°. Given a (p, q) to try, we compute the corre-
sponding affine parameters from Equation (11), use these to
transform the power spectrum of the first patch using bilinear
interpolation, and compute the sum of squared differences
(ssd) between the two power spectra. We take the (p, g) that
generates the minimum ssd as the solution. The ssd surface
from the image in Figure 1 is shown in Figure 3, where we
have scaled so the minimum ssd is one. We do the gradient
space search on a 64x64 processor parallel computer, using
one processor for each candidate surface orientation.

This algorithm is better than other shape-from-texture
algorithms in several ways. It requires no feature-finding,
which is normally an unreliable step. We make no strong
assumptions about the frontally-viewed texture, only that it is

2-2

Figure 3: SSD surface from comparing patches
in Figure 1



stationary. Specifically, we don’t require that the texture be
isotropic. Theoretically, the method should work for both
periodic and random textures. We will have to find a better
spectral power estimator before we can make it work on ran-
dom textures, however. Finally, by formulating and solving
the problem with the space/frequency representation, we can
easily account for other frequency phenomena such as focus
and aliasing in the same framework. We show how the
method successfully deals with aliasing in the next section.

4. Results
4.1. Flat Plate

The plates in Figure 1 and Figure 4 are geometrically iden-
tical with different textures mapped on by a computer graph-
ics program. The surface normal of the plates is

(p,q) = (0.614,0364). In terms of slant and tilt,

(0,7) = (35.5°30.7° . The first plate in Figure 4 has a
simple intensity function of two crossed cosines. The next
two are Brodatz[4] textures: wire screen (D14) and straw
cloth (D52). The last is another pair of cosines that show
aliasing. This is discussed in the next section. Each of the
images is shown with two patches removed and replaced by
their Fourier power spectra, which are part of the total image
spectrogram. These patches are size 64x64.

We ran our algorithm on each of these images and also on
the canvas image in Figure 1. The results are shown in Table
1. The method works best on textures that are closest to being
purely periodic, like the cosine and canvas textures. It loses
some accuracy for textures with slightly more random spac-
ing like the wire screen and straw cloth. Considering that the
algorithm is only examining data from about 5.5% of the pix-
els on each textured region, these results are good. Most
algorithms for shape-from-texture examine an entire image
of a plane covering the whole field of view.

We investigated the effect of window size by running our
program on the same five textures with different window
sizes. The angle error generally decreased with increasing
window size up to a window size of 40x40, where it leveled
off.

4.2. Aliasing

The last image in Figure 4 shows moire patterns that result
from aliasing. The corresponding effects in frequency can be
seen in the series of local power spectra. The frequencies
move toward the edge of the boxes, which represent one half
the sampling rate. When a projected frequency moves
beyond the boundary, it reenters at another point. This is
aliasing. Assuming a sampling period of one, a frequency

texture computed (p,q) .  error
cosines (0.603, 0.349) 0.7°
wire screen (0.540, 0.286) 4.4°
canvas (Figure 1)  (0.603, 0.349) 0.7°
straw cloth (0.540, 0.349) 3.1°

aliased cosines (0.603, 0.286) 3.5°
Table 1: Results on textured plates
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(u.v) is aliased according to

(Ugtigs Vatias) = (u—Lu+%J,v—[v+%J) (13)
with | x| being the “floor” function, returning the largest
integer not exceeding x.

Our algorithm allows us to account for aliasing very easily.
When we test a given (p, q) , we warp the frequency coordi-
nates in one power spectrum by an affine transformation. We

simply put all the transformed (u,v)’s through Equation
(13) to adjust them for aliasing. This way, if a given (p, q)
causes frequencies to be transformed outside the half-sam-
pling-frequency limits, they will be aliased back in at the
proper coordinates. This is also a convenient way of making
sure both frequency patches overlap exactly, instead of hav-
ing one skewed off the other with no corresponding frequen-
cies in the other patch after the affine transformation.

We ran our algorithm on the left and right spectra of the

aliased texture in Figure 4 and got an error of about 3.5°.
Thus the method successfully accounts for aliasing. There
are two restrictions. First, it is assumed that the first patch is
not aliased. Second, we cannot yet account for the fact that
aliased frequencies actually sum with nonaliased frequen-
cies.

We know of no other shape-from-texture algorithm that can
account for aliasing even in this simple case. We attribute the
ability to the fact that the spectrogram preserves essentially
all the data in the original signal and that frequency is the
natural domain for the analysis of aliasing.

5. Conclusion

We have advocated the use of the space/frequency repre-
sentation, which shows an image’s spatial and local spatial
frequency characteristics simultaneously. One natural appli-
cation for such a representation is the shape-from-texture
problem. If we assume that the frontally viewed texture is
stationary, we can expect to see systematic shifts in fre-
quency from point to point due to shape and perspective pro-
jection. We developed a new theory that predicts the detailed
behavior of spatial frequencies in the image of a projected
surface. Because it makes predictions at a low level, this the-
ory can be applied to any space/frequency representation of
an image. Using this math, we developed an algorithm based
on the spectrogram that successfully finds surface normals of
textured surfaces with a search in gradient space. The algo-
rithm requires no feature-finding, working instead on a low-
level representation that is still convenient for analysis.
Because the representation is low-level, it should support
other kinds of image analysis as well. For instance, the algo-
rithm can easily handle simple cases of aliasing.
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