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Algorithmic and data refinement are well studied topics that provide a mathematically rigorous ap-
proach to gradually introducing details in the implementation of software. Program refinements are
performed in the context of some programming language, but mainstream languages lack features for
recording the sequence of refinement steps in the program text. To experiment with the combination
of refinement, automated verification, and language design, refinement features have been added to
the verification-aware programming language Dafny. This paper describes those features and reflects
on some initial usage thereof.

0. Introduction

Two major problems faced by software engineers are the development of software and the maintenance
of software. In addition to fixing bugs, maintenance involves adapting the software to new or previously
underappreciated scenarios, for example, using new APIs, supporting new hardware, or improving the
performance. Software version control systems track the history of software changes, but older versions
typically do not play any significant role in understanding or evolving the software further. For exam-
ple, when a simple but inefficient data structure is replaced by a more efficient one, the program edits
are destructive. Consequently, understanding the new code may be significantly more difficult than un-
derstanding the initial version, because the source code will only show how the more complicated data
structure is used.

The initial development of the software may proceed in a similar way, whereby a software engi-
neer first implements the basic functionality and then extends it with additional functionality or more
advanced behaviors. For example, the development of a library that provides binary decision diagrams
(BDDs) may proceed as follows: the initial version may use a simple data structure; then, reductions are
implemented; to facilitate quicker look-ups, hash-consing is added; caches are added to speed up com-
monly occurring operations; the garbage collection provided by the programming language is replaced
by a custom allocator and collector that are specific to the needs of the BDD library; the functionality is
extended to allow setting the variable ordering; watch dogs are added to monitor how the variable order-
ing is affecting performance; a system for automatically changing the variable ordering dynamically is
added. Much before these steps have all been added, the software has reached considerable complexity
and has become difficult to understand and costly to maintain.

If the design of a piece of software were explained from one software engineer to another, the expla-
nations would surely be staged to explain the subsequent layers of complexity gradually. In this paper,
we consider how a programming language can give software engineers the ability to write the source
code in logical stages, in the same way that it may be explained in person. In particular, we describe our
design of refinement features in the verification-aware programming language Dafny [16].

Stepwise program refinement, including data refinement, has been studied a great deal in the last
several decades, see, e.g., [0, 3, 23, 26]. It provides a mathematical framework for gradually introducing
complexity into a design. It has been implemented in software construction and modeling tools, like
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KIV [26], Atelier B, and Rodin [1]. However, the input to these tools take a larger departure from
today’s programming languages than we would like. From the language design perspective, we are
looking for something more in the spirit of the Transform [8, 9] or SETL [27], but with tool support for
both compilation and reasoning. As we report in this paper, we have found it difficult to design a usable
set of features in the programming language. We are not ready to give up, however. Instead, we hope
that our mixed experiences will inspire improved designs in the future.

We describe our design goals in Section 1. In Section 2, we describe Dafny’s refinement features and
illustrate these with small examples. Refining an instance of a simple class into an aggregate object that
uses new instances of library-defined classes is difficult [6, 20]. In Section 3, we show how this is done
in Dafny. In the last sections of the paper, we reflect on our experience, compare with related work, and
conclude.

1. Design Goals

Our view is that the programming language is a software engineer’s most important tool. Therefore,
we think it is important to try to capture more of the design of a program into the program text itself.
A program can use the constructs in a language to aid in making a design understandable, which is
important both for development and maintenance.

A central pedagogical principle lies in presenting details at the right time, and this principle is man-
ifested in many well-known programming facilities. Among these, procedural abstraction—whereby
computational descriptions are divided into named, reusable routines—is perhaps the most universal.
(Interface and implementation) modules provide another way to hide details, for example as the “one
secret per module” guideline enunciated by Parnas [25]. In object-oriented software, subclassing gives
a way to collect common behavior and to customize details in class-specific ways. In functional pro-
gramming, type parametricity gives a way to operate over data without needing to be concerned with the
specifics of the data, thus abstracting over the details. Cross-cutting details can also be introduced using
aspects, which give a whole-program way to customize behavior [14]. We are hoping for refinement
features that give yet another way to stage the complexity of a program. Whereas procedural abstraction
allows layering of the call graph, refinement features aim to layer the logical complexity.

Our design goals are to provide:

• Programming in stages. We want the refinement features to allow logical, gradual introduction of
details. We also want the result to be easier to understand than what alternative constructs provide
today.

• A program structuring device. While it seems desirable for modules to provide strict information-
hiding barriers, this is not usually a strong concern in procedural abstraction. Procedures internal
to a module frequently factor out behavior without going as far as making sure callers and callees
are entirely decoupled. For example, a change in the caller may require a change in the callee, and
vice versa. It may be helpful to think of this as the one-developer view, where the one software
developer is in control of both sides of the procedural abstraction boundary. Our aim is for the
refinement features to have such a one-developer view. That is, we do not see a refinement bound-
ary as a boundary that must support all sorts of uses. Instead, a refinement may be introduced as
a program structuring device that just helps organize the program into logically staged pieces. A
developer will not be shamed when making changes to the software that require changes to other
sides of refinement boundaries. In particular, we will allow an initial design to anticipate further
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refinements. For example, this makes it okay for the program to contain “shims” or “refinement
points” that are to be filled in or referenced later.

• Program-like constructs. By considering refinement in the programming language, we are doing
something that is different from mainstream programming languages. However, we do not want to
stray too far—we want the result to still look, more or less, like mainstream programs today.

• Lightweight. We want the refinement features to be easy to use, without the need for bulky syntax
that reduces understanding.

• Support reuse. Though we have the one-developer view, we do wish for constructs that lend
themselves to reuse.

• Modular verification and compilation. We want it to be possible to reason about a piece of code
without having to know the details of future refinements. Similarly, we want it to be possible to
compile uses of an abstraction before all the details of the refinement have been decided.

2. Refinement in Dafny

Dafny is a programming language designed with reasoning in mind [16]. Its features include a reper-
toire of imperative and functional features. In addition, the language integrates constructs for specifying
the intended behavior of programs, like pre- and postconditions, as well as features that facilitate stating
lemmas and writing proofs. Dafny has a program verifier that checks that a program meets its given spec-
ifications. The integrated development environment (IDE) for the language constantly runs the verifier
in the background in order to expedite feedback to the user [19].

Dafny’s focus on reasoning and correctness makes it especially appealing as a testbed for introducing
refinement features. We describe Dafny’s refinement features in modules, in specifications of functions
and methods, in method bodies, and across modules. In Section 3, we use a longer example to describe
refinement features in classes.

2.0. Modules

A Dafny program is divided into modules. A module contains declarations of methods, functions, types
(like inductive datatypes and instantiable classes, where classes themselves declare fields, methods, and
functions), iterators, and nested modules. In addition, a module can import other modules.

One module can be declared to be a refinement of another module, as indicated by following the name
of the new module with the keyword refines and the name of the module to be refined. The refining
module is based on the module it refines, but it is a separate module. More precisely, the contents of the
refined module is copied into the refining module, modulated by three kinds of directives:0

• Extend the refining module with additional declarations (for example, declare a new type or a new
method)

• Define entities whose definition the refined module omitted (for example, define a previously
opaque type or give a body of a previously body-less function)

0We speak about different kinds of directives only in order to explain the functionality provided in Dafny. The user never
needs to name these directives when writing the program or running the verifier or compiler. Instead, which kind of directive
to apply is implicit from the program text, as we shall see in examples.
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abstract module A {

type T

function F(x: T): T

function Twice(x: T): T

{ F(F(x)) }

}

module B refines A {

type T = T’

datatype T’ = Leaf(int) | Node(T, T)

function F...

{ match x

case Leaf(w) => Leaf(w+1)

case Node(left, right) => Node(F(left), F(right))

} }

Figure 0. Two example modules, one (B) declared as a refinement of the other (A).

• Refine previously given specifications (for example, strengthening postconditions) and previously
given bodies of methods and (in one special case) functions

For example, Figure 0 shows a module A that declares an opaque type T and two functions, one of which
(F) is body-less (that is, uninterpreted). In this example, A has been declared as abstract, which tells the
compiler not to generate any code for A. Without the abstract keyword, the compiler would complain
about the missing type definition and function body. (Note, a module that defines all its entities need
not be abstract to be refined.) Module B is declared as a refinement of A. It extends A by declaring an
inductive datatype T’. It also defines T to be a synonym for T’ and it defines a body for F. Note that
module B also contains function Twice, which is copied from module A. Also, recall that the presence of
module B in the program does not affect module A; they are two separate modules.

In our example, we chose not to repeat the signature of F, but instead to use the syntax .... Dafny
also allows the type signature of F to be repeated (allowing renamings of parameters) in the refining
module.1

Because Dafny’s refinement operates at the level of modules, it is possible to simultaneously refine
a set of types. Compare this to the limited one-type refinements achievable by a disciplined use of
subclassing in object-oriented languages.

One mechanical way to describe the refinement features in Dafny is to think of them as an elaborate
template mechanism. However, Dafny restricts the use of the features to adhere to the standard Principle
of Semantic Refinement, meaning that any client that is correct when using a module A is also guaranteed
to be correct if A is replaced by any refinement of A. By analogy, object-oriented languages tend to
provide a syntactic mechanism for subclassing, but do not insist that this mechanism be used only in
accordance with behavioral subtyping [5, 21]. Since Dafny is equipped with a program verifier, its
definition can afford to insist on following the Principle of Semantic Refinement (as opposed to just

1We have considered requiring the ... syntax. This would always make it clear that the function is a refinement, and it
would reduce the clutter and brittle nature of having to textually copy the signature. However, as even this simple example
shows, the fact that the ... syntax does not repeat the names of the parameters can also be confusing when looking at the body
of the function (“What is x?”).
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providing a syntactic template mechanism).
Next, we will start to see how Dafny’s restrictions preserve semantic refinements.

2.1. Specifications

Dafny distinguishes between methods, which are procedures with statements that can modify the pro-
gram’s heap, and functions, which are mathematical functions. Both can have specifications: pre- and
postconditions (given by requires and ensures clauses), frame specifications (modifies clauses for
methods and reads clauses for functions), and termination metrics (decreases clauses). A refinement
module is allowed to add more ensures clauses, thus strengthening the postcondition of the method or
function. In an analogous way, it would be sound to weaken preconditions and shrink frame specifica-
tions, but Dafny does not provide any syntax for doing so. Methods are allowed to be declared with
decreases *, which says that the method is allowed to diverge. A refinement module is allowed to
change this specification by giving a termination metric that proves termination.

For example, method Max in module A of Figure 1 has a weak specification. It allows the method to
diverge, and if the method does terminate, the specification only says that the result (which is returned
in the output parameter m) must not be smaller than the input parameters. Module B strengthens the
postcondition of Max to say that the result is one of the input parameters. By giving a termination metric,
it also says that Max terminates.

Because Dafny enforces the Principle of Semantic Refinement, the work of the verifier does not need
to be repeated in refinement modules. In this example, when Dafny verifies module A, it checks that
the implementation of Max meets the weak postcondition. When it verifies module B, it only checks that
the implementation meets the additional postcondition and that the lexicographic tuple x < y, x - y

strictly decreases with each recursive call.
From the specification of Max in B, Dafny also verifies the correctness of the assert statement in Main.

Note, if no termination metric is given for Max in B, then it would inherit the “divergence allowed” from
A; in that case, Dafny would complain that Main, which is not specified to allow divergence, is calling a
possibly diverging method.

The two examples given so far show the directives Extend and Define. The Refine directive is more
involved, as we describe next.

2.2. Statements

In what we have shown so far, a refining method can supply a body if the refined method omitted it.
Dafny’s Refine directive goes deeper than this and admits two kinds of change directives to a given
method body:

• Tighten Up statements, to reduce nondeterminism

• Superimpose statements onto the refined method body, to introduce and modify additional pro-
gram state

Since these directives apply to previously given statements or program points, there is a need to explain,
as part of the program, where the directives are to apply. For this purpose, we have borrowed the code
skeletons from Chalice [20]. Code skeletons work by listing in the refining method the changes from the
refined method, when necessary mimicking the structure of the code in the refined method. We explain
this functionality by example; see [20] for a full merge algorithm.
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module A {

method Max(x: int, y: int) returns (m: int)

ensures x <= m && y <= m

decreases *
{

if x == y {

m := x;

} else if x < y {

m := Max(y, x);

} else {

m := Max(x-1, y);

m := m + 1;

} } }

module B refines A {

method Max...

ensures m == y || m == x

decreases x < y, x - y

method Main() {

var m := Max(10, 20);

assert m == 20;

} }

Figure 1. A convoluted implementation for computing the maximum of two numbers. The specification
of Max in module B strengthens the specification of Max in A.
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Dafny offers several nondeterministic statements. These can be replaced by more deterministic state-
ments. The replacement itself may incur some proof obligation, but previous proof obligations are not
re-verified. For example, the “assign such that” statement x :| P; says to set variable x to any value
satisfying the predicate P (there is a proof obligation that such an x exists) [18]. By the Tighten Up
directive, this statement can be replaced by an ordinary assignment statement x := E;, incurring a proof
obligation that P with x replaced by E holds.

For example, the pivot selection in QuickSort can first be implemented by a statement

var pivot :| lo <= pivot < hi;

and later refined to

var p0, p1, p2 := lo, (lo + hi) / 2, hi - 1;

if a[p2] < a[p0] {

p0, p2 := p2, p0;

}

var pivot := if a[p1] < a[p0] then p0 else if a[p2] < a[p1] then p2 else p1;

This refinement superimposes statements that declare and assign to new local variables p0, p1, and p2,
and then tightens up the assign-such-that statement to set pivot according to the “median of three”
strategy. Dafny is able to distinguish the superimposition from the tighten up, since the merge algorithm
matches the two assignments—one nondeterministic in the refined module and one deterministic in the
refining module—to pivot. The refining module incurs a proof obligation that the value it assigns to
pivot does indeed satisfy the condition indicated in the refined module.

The refining method is allowed to tighten up previous assignments and to modify superimposed
state, but is not otherwise allowed to assign to previously declared variables. We refer to this as the
New State Principle. For instance, the assignments to the new local variable p0 in the example above are
allowed and so is the assignment that tightens up the value of pivot, but pivot itself cannot be used as
a temporary variable to hold any intermediate values.

Figure 2 shows another example where method Abs is specified to compute the absolute value of
a given integer. Module M0 uses a nondeterministic if statement that defines two control paths. One
path sets the output parameter a to x and the other hopes to make a equal to -x using a loop. The
method implementation establishes the postcondition only if the assumed conditions hold at the program
points indicated. Note, for example, how the final assumption implies the last two conjuncts of the
postcondition. Neither of the two assume statements is provable in module M0; not the first, because not
enough information is known about a after the loop, and not the second, because the if statement allows
control to flow through either branch.

Module M1 in Figure 2 refines M0 and tightens up the choice of which if branch to take. This allows
the second assume statement to be turned into an assert statement. That is, the replacement of the
assume with an assert incurs a proof obligation that the condition does hold at that program point,
which is provable in module M1. The elision statement, ...;, directs the merge algorithm to match any
code sequence. Dafny implicitly inserts an elision statement at the end of every code block, that is, just
before every “}”, so all “...;” statements in the figure could have been omitted.

Dafny allows any number of refinement steps. The figure shows module M1 being further refined by
module M2. It turns the first assume statement into an assert, which is provable because of the added
loop invariant. Note how expressions from the refined method are not repeated but instead replaced by
“...”.
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abstract module M0 {

method Abs(x: int) returns (a: int)

ensures (a == x || a == -x) && x <= a && -x <= a

{

if * {

a := x;

} else {

a := 0;

var b := x;

while b < 0 {

a, b := a + 1, b + 1;

}

assume a == -x;

}

assume x <= a && -x <= a;

} }

abstract module M1 refines M0 {

method Abs... {

if 0 <= x {

...;

} else {

...;

}

assert ...;

} }

module M2 refines M1 {

method Abs... {

if ... {

...;

} else {

...;

while ...

invariant a + x == b <= 0

{ ...; }

assert ...;

}

...;

} }

Figure 2. An artificial example that shows several Tighten Up refinements. The Abs method in module
M0 postpones some proof obligations by introducing assume statements, and leaves some room for later
deciding which if branch to take. Module M1 tightens up the control flow and module M2 fills in missing
parts of the program’s correctness argument.
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Dafny provides a few statement refinement directives in addition to the ones we have shown by the
example above. The general idea, as we have shown, is for the refining methods to mimic the structure of
the method being refined, using ...; to stand for elided code, superimposing new statements, and giving
replacement statements that tighten up nondeterminism in the refined method. Dafny allows statements
to be labeled (which outside of refinement is useful with break statements). Labels can be repeated in a
refining method, which can occasionally be helpful as an aid for the merge algorithm.

With one exception, the refining method is not allowed to disrupt previous control flow. For example,
the refining method is not allowed to add break statements that exit out a loop. The one exception is that
new return statements are allowed. Dafny checks that the method’s postcondition holds at those points
in the refining method. This is useful, for example, if the refinement adds a cache or algorithmic support
that enables a fast path in the method implementation.

Dafny includes two statements for the sole purpose of supporting refinements, the elision statement
and the modify statement. The latter has the form

modify W { Body }

where W is a frame specification (which, like in a modifies clause, says which heap locations may be
modified, and { Body } is a block statement. Dafny treats the statement as the given block statement,
but enforces that its heap modifications are in accordance with the frame specification. As we shall see
in Section 3, the body of the modify statement can be postponed and defined in a refining method. If the
body is omitted, the semantics of the statement is that of causing any arbitrary change permitted by the
frame specification.

2.3. Clients

As one would expect from a language with a module system, Dafny allows a module to import other
modules. This makes the declarations in the imported modules available to the importing module (the
client) via qualified names. Since a module refinement gives rise to a separate module, an issue arises of
how a client selects among the available refinements.

The basic import declaration has the form:

import X = M

where M is the name of a module defined elsewhere and X is a local name introduced as the qualifier
when referring to declarations inside M. In the common case where one chooses a local name identical to
the name of the imported module, the import declaration is abbreviated by just import M. The module
import relation in a program must be acyclic. Moreover, an abstract module can be imported only by
other abstract modules.

Consider a module A0 and a refinement module A1 (for brevity, we show the modules without contents
here):

module A0 { }

module A1 refines A0 { }

A client module can choose to import either one of these by using import A = A0 or import A = A1.
It is also possible to be less specific, by replacing the = with an as. The import declaration

import A as A0

says to use A as a local name for some module that adheres to A0, that is, whose contents (method
bodies excluded) is a superset of the contents of A0. The eventual module imported can be A0 itself, any
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abstract module TotalOrder {

type T

predicate Below(x: T, y: T)

lemma Transitive(x: T, y: T, z: T)

requires Below(x, y) && Below(y, z)

ensures Below(x, z)

// other properties omitted from the figure

}

abstract module GenericSorting {

import O as TotalOrder

// sorting methods omitted from the figure

}

Figure 3. A sketch of a module that defines an ordering on a type T, and the import declaration of a
module that makes use of that ordering.

refinement of A0, or in fact any other module that structurally is like A0 or a refinement thereof.2

An “as” import in a module can be tightened up in a refinement module, as illustrated by the follow-
ing example:

module B0 {

import A as A0

}

module B1 refines B0 {

import A = A1

}

Dafny checks that A1 adheres to A0, which if A1 is a module that refines A0 is a trivial check. If B1 wants
to rely on the declarations in A1that were not in A0, but anticipates a further refinement of the imported
module, then it can instead use an “as” import.

As an example, consider the modules in Figure 3. Module TotalOrder defines a type T, a relation
Below on that type, and an unproved lemma (that is, an axiom) that states a property of Below. We have
omitted lemma declarations for other properties that might also be useful. Module GenericSorting

imports some module like TotalOrder. This lets it define methods (omitted in the figure) that sort values
of type O.T according to the order O.Below.

Figure 4 shows refinements of the modules in Figure 3. In particular, module IntOrder defines T to
be a synonym for int, defines Below to be the less-or-equal ordering on integers, and gives a (trivial)
proof that the property Transitive holds. Module IntSorting refines GenericSorting by tightening
up the import declaration. Consequently, the refining module will contain copies of the refined module’s
methods, but specialized for integers.

Note that the features we discuss in this paper do not give rise to dynamic dispatch (like the traits
feature in Dafny does [2]). There is no relation between refinement modules that can be exploited
dynamically at run time.

2It is also possible to combine the as and = imports: the declaration import A as A0 default A1 is essentially treated like
import A as A0 by the verifier and as import A = A1 by the compiler.
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module IntOrder refines TotalOrder {

type T = int

predicate Below... { x <= y }

lemma Transitive... { }

// proofs of other properties omitted from the figure

}

module IntSorting refines GenericSorting {

import O = IntOrder

}

Figure 4. The modules of Figure 3 specialized to integers.

3. Classes and Data Refinement

An important part of giving a simple description of a program lies in choosing variables with simple
types. For example, sets and maps are often used, but details of how to represent such sets and maps are
not. The systematic coordinate transformation from such abstract data structures to more efficient ones is
called data refinement (among many other sources, see [3, 8, 9]). Getting data refinement to work in the
presence of classes is difficult, because of encapsulation issues with references to dynamically allocated
objects [6, 20].

To present a small example that gives brief taste of the essential problem, consider the following
class:

class Interval { var width: int }

With appropriate refinement rules, it is known how such a data structure can be refined into, say:

class IntervalEndPoints {

var start: int

var end: int

}

where width is represented as the difference end - start. In this case, the fields start and end are
introduced in the refinement, and thus by the New State Principle, these assignments to start and end

are allowed in the refinement
As an alternative refinement that involves reuse of library components, suppose a library contains a

class Cell:

class Cell { var data: int }

We may now consider a refinement like this:

class IntervalCell {

var start: Cell

var end: Cell

}

where width is represented as end.data - start.data. However, the soundness of this kind of refine-
ment is much more involved. First, although the fields start and end are introduced in the refining
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class, the field data was available already in the program being refined, and thus the simple New State
Principle does not apply. Instead, allowing the refinement to modify the values of start.data and
end.data requires more elaborate refinement rules. The intuition is that the particular objects referenced
by start and end were never allocated in the program being refined, so start.data and end.data in
effect constitute new state. For more information about this problem, along with solutions, see [6, 20].

Dafny uses idioms of dynamic frames to specify behavior of the heap [13, 15, 28]. The basic idea is
to programmatically keep track of the set of individual objects that as an aggregate provide the behavior
of the abstract object. This representation set is often stored in a field

ghost var Repr: set〈object〉

The field is declared as ghost, meaning it is used only for reasoning about the program. The compiler
erases ghost code, so at run time they appear only in spirit [7, 16].

Dafny does not have any specific data refinement or transform constructs [8, 9], but the combination
of ghost code, superimposition, and a directive that allows predicates to be strengthened gives the ability
to introduce data structures in stages. We proceed by giving an example, introduced in several stages.

3.0. A Counter Specification

In the first stage, we give a specification of a very simple class, see Figure 5. Abstractly, the class
represents a counter, whose value is stored in ghost field N. The class also declares a field Repr as
described above and a predicate Valid() that holds when the object is in its steady state. That is, the
body of Valid() (omitted in module M0) is the class invariant of Counter [22]. (We explain the keyword
protected in Section 3.2.)

The class also declares a constructor and two methods. The last postcondition of each of these is
the familiar specification. The other parts of the specifications are exactly the idiomatic Dafny dynamic-
frame specifications for a constructor, a mutating method, and a query method, respectively.3 The oc-
currences of Valid() express that the class invariant holds on all method boundaries. The conjuncts that
mention fresh say that any objects that the constructor or mutating method add to the representation set
are freshly allocated, which is important for callers to know [15]. Finally, the modifies clauses say that
the constructor is only allowed to modify the state of the object being constructed (which for the purpose
of these specifications is treated as if it was allocated immediately before the constructor is called) and
that Inc is allowed to modify the state of any object in the set Repr. In addition, every constructor and
method is allowed to allocate new object and modify their state.

Module M0 gives a client’s view of the Counter class. The refinements that follow give the imple-
mentation of the class.

3.1. Defining Bodies

We now define the predicate, constructor, and methods by giving them bodies, see Figure 6. By sepa-
rating modules M0 and M1, we simply achieve what in a language like, say, Modula-3 would be done by
writing a module interface and a module implementation [24].

Predicate Valid() says that the receiver is always part of the representation set, and the null ref-
erence is not. The constructor needs to add to Repr all objects that are to be part of the object’s initial
representation. The details of this set are determined in further refinements. The constructor body in M1

3By marking a class with the {:autocontracts} attribute, a pre-pass of the Dafny verifier will fill in the idiomatic parts of
specifications automatically, thus reducing clutter in the program text.
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abstract module M0 {

class Counter {

ghost var N: int

ghost var Repr: set〈object〉
protected predicate Valid()

reads this, Repr

constructor ()

modifies this

ensures Valid() && fresh(Repr - {this})

ensures N == 0

method Inc()

requires Valid()

modifies Repr

ensures Valid() && fresh(Repr - old(Repr))

ensures N == old(N) + 1

method Get() returns (n: int)

requires Valid()

ensures n == N

} }

Figure 5. A module that gives the standard, idiomatic dynamic-frames specification of a simple class.

abstract module M1 refines M0 {

class Counter {

protected predicate Valid... {

this in Repr && null !in Repr

}

constructor ... {

ghost var repr: set〈object〉 :| null !in repr && fresh(repr);

N, Repr := 0, repr + {this};

}

method Inc... {

N := N + 1;

modify Repr - {this};

}

method Get... {

n :| assume n == N;

} } }

Figure 6. A refinement of the module in Figure 5, containing a simple Counter class. Module M1 defines
the bodies in terms of the ghost fields Repr and N.
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anticipates these further additions by introducing a local variable repr, which it allows to contain any set
of newly allocated objects.

Similarly, method Inc uses the modify statement, anticipating that further refinements will want to
do state changes of any representation object other than this. (Note that by the New State Principle, a
refinement can still modify fields of this, provided those fields are declared in the refinement module.)

Method Get sets output parameter n to N, but in a somewhat roundabout way. First, in order to allow
refinements to change how n is computed, Get uses an assign-such-that statement rather than a more
straightforward assignment statement n := N;. Second, since n is not a ghost variable, the right-hand
side of the assignment ordinarily must not depend on ghost variables like N. Use of the keyword assume

in the assign-such-that statement indicates to Dafny that this statement is not intended to be compiled, so
Dafny relaxes the ordinary restriction on ghost dependencies.4

3.2. An Implementation

We introduce a concrete implementation of the counter. We assume there is some Library module with a
Cell class and use two instances of this class. The value of the counter, N, is represented as the difference
between the data field of these two objects, see Figure 7.

The class is extended with the declaration of new fields c and d. By superimpositions, the constructor
straightforwardly allocates two Cell objects and assigns these to c and d. The constructor then tightens
up the value assigned to repr.

Method Inc defines a body for the modify statement and method Get tightens up the assignment to
n by assigning it a value computed from non-ghost fields. To discharge the proof obligation that the
modify body modifies only what is allowed by the frame specification and the proof obligation incurred
by the tighten-up directive, it is necessary to have a stronger class invariant. In particular, the former
proof obligation requires c in Repr and the latter requires N == c.data - d.data. In addition, the
well-formedness checks for the statements introduced require c and d to be non-null.

Strengthening the class invariant comes down to changing the definition of Valid() to a stronger
predicate. This is dicey, because Valid() appears in preconditions and it is not sound to strengthen
preconditions in general. Inside the refining module, the verifier can arrange to re-verify proof obligations
that involve establishing Valid() or assuming !Valid(). But what about client modules that were
verified against the module being refined? Such verifications would also have to be redone, which means
verification would no longer be modular. For this reason, Dafny allows a predicate to be strengthened
only if it is marked as protected, which means the predicate’s exact definition will never be revealed
outside the module. Consequently, other modules cannot rely on the exact definition of the predicate,
and so they are insensitive to any changes of it.

The syntax for this Predicate Strengthening directive is the same as that to Define a predicate. In
other words, if a refining module gives a body for a predicate that already had a body, the effect is that
of changing the definition of the predicate to the conjunction of the two bodies. This is allowed only for
predicates marked as protected.

It is possible to continue refining M2 into a subsequent module with more state, but doing so requires
changes to M2 that let it anticipate further refinements. For example, module M2 may need to introduce
another variable like repr in the constructor and to superimpose another modify statement in method
Inc—in the same way that M1 anticipated the further refinements given by M2. Methodologically, the fact

4The fact that assume has the desired effect here is rather coincidental. It would probably be better to change Dafny to allow
ghost variables in right-hand sides of assign-such-that statements in abstract modules.
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module M2 refines M1 {

import Library

class Counter {

var c: Library.Cell

var d: Library.Cell

protected predicate Valid... {

c in Repr && d in Repr &&

c 6= d &&

N == c.data - d.data

}

constructor ... {

c := new Library.Cell(0);

d := new Library.Cell(0);

ghost var repr: set〈object〉 := {c,d};

}

method Inc... {

...;

modify ... {

c.data := c.data + 1;

}

}

method Get... {

n := c.data - d.data;

} } }

Figure 7. A further refinement of the module that defines the Counter class. This refinement implements
the counter in terms of two dynamically allocated Cell objects.
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module M3 refines M2 {

class Counter {

method Get... {

if d.data == 0 { return c.data; }

...;

} } }

module M4 refines M3 {

class Counter {

protected predicate Valid... { d.data == 0 }

} }

Figure 8. Module M3 adds a fast path to the Get method of module M2, and module M4 strengthens
predicate Valid() to demonstrate that d.data == 0 is in fact an invariant of the class.

that further refinements may require changes to the module to be refined is justified (and even considered
normal) by the one-developer view. An analogous situation arises in object-oriented programming, when
a new subclass needs an existing class to introduce dynamically dispatched calls to a new method.

Rather than taking our example in the direction of adding more state, we will in the next subsection
illustrate the gist of a performance optimization that does not require further data refinements.

3.3. A Performance Optimization

Figure 8 shows a module M3 that refines M2. It applies a directive only to method Get, into whose
body it superimposes an if statement. The new code sets up a fast path in the event that the stated
condition holds. In Dafny, the return statement with argument expressions has the effect of assigning
the expressions to the output parameters and then returning from the method. Since output parameters
do not fall under the New State Principle, the refinement is normally not allowed new assignments to
them; however, as this is a useful and harmless case, the implicit assignments to output parameters that
happens as part of a superimposed return statement are allowed.

In our simple example, the fast path we introduced will not give rise to any actual performance
improvement unless the compiler realizes that d.data == 0 actually always holds (in which case the
condition does not need to be tested in the emitted code). To illustrate how refinements could help give
that information to the compiler, we can strengthen the class invariant further, see module M4 in Figure 8.

It is worth mentioning once more that M2, M3, and M4 are three separate modules. Dafny checks the
refinement among these successive modules, but does not relate the classes they define. In particular,
classes M2.Counter, M3.Counter, and M4.Counter are three separate types and are not subclasses of one
another.

This completes our illustration of how a class can be built in stages. Looking back at Figures 5
through 8, the elisions are such that the refinements from module to module stand out. A user can
inspect what any ellipsis stands for by placing the mouse pointer above the ellipsis in the Dafny IDE,
upon which the elided information will be displayed as a hover text.
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4. Experience, Evaluation, and Related Work

We have used the refinement features in Dafny for a number of toy programs. Although the provided
directives can accomplish the usual refinement tasks, our impression is that refinement works more
smoothly on paper than in our language. Things that, due to hand waving, may be simple to achieve
on paper (like the problem solved by the local variable repr in Figure 6) look more clumsy in our lan-
guage design.

One could argue that useful formal-methods techniques are also useful if applied informally, that is,
without actually carrying through the proofs. This argument leads to asking if our superimposition and
tighten-up directives are useful devices for program structuring. Here, too, it is not clear that our design
gets a good score. For one, the fact that one needs to declare another module in order to stage some
refinements can feel bulky.

A similar bulkiness issue also arises in Event-B [0] implemented in the Rodin tool [1], where all
unchanged events have to be copied into the file that contains the subsequent refinement. An alternative
is given by the “refinement layer” annotations in Civil [12]. These allow several stages of refinement to
be given in a single source text. The verifier processes a given program once for each declared layer,
suitably ignoring the declarations of higher-numbered layers.

When authoring or reading a sequence of refinements, one sometimes wants to see only the changes
from one module to the next and sometimes wants to see the full resulting program. Our elision state-
ments only address the former, and our IDE’s hover text does not adequately address the latter. We had
chosen the elision statements under a rather traditional view that a program is a printable piece of pro-
gram text. A more modern or even futuristic view would be to let the sequence of refinements appear
as layered text in the IDE. A user could then be given various ways to input and read the program. The
refinement tools KIV [26] and Rodin [1] have embraced the idea that the IDE can manage the program
better than a line-by-line editor can. We hope such environments will also be developed for languages
that look more similar to today’s mainstream languages than KIV and Event-B do.

A desirable scenario to support in staged program development is to write a program in an abstract
way and then replace the operations on certain variables with other, more efficient operations on alterna-
tive variables. This is a central goal of the transform by Gries et al. [8, 9]. At first, the rather syntactic
match-and-replace rules in these transforms appear brittle. But given that this is a scenario we would
like to support smoothly, and given that we are buying into the one-developer-view idea of anticipating
refinements, we would be interested in incorporating the transform into Dafny.

The Dafny design that a refinement module creates a separate module is a feature in some cases.
For example, it allows multiple refinements of the TotalOrder module in Figure 3, each one of which
can benefit from reuse. It has also been used to define common processing of different services in
the IronFleet project, which was authored in Dafny [11]. But we have also seen it make the common
interface-implementation pattern rather verbose, since it requires a refinement module when a client
wants to tighten up which implementation gets used for the abstract module it as-imported. (We have
started exploring an alternative module design wherein every abstract module has a default refinement
module.)

An early tool for machine-assisted program development lets the user apply refinement tactics to
massage a formal specification into code [10]. The tactics applied are recorded and can be displayed.
Moreover, the IDE allows a user to expand a sub-specification to see what it has been refined into;
conversely, the details can be elided to instead show just the more abstract sub-specification that they
implement. We would wish for an IDE that keeps track of the program-derivation tree in this way. How-
ever, we also note that Dafny provides greater flexibility in introducing correlated transformations (like
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the addition of an assume statement in each branch of an if to justify some other refinement transfor-
mation after the if statement), and it is not clear how these can be presented with an equally simple
IDE.

Despite many shortcomings in our language design, the current refinement features in Dafny have
been useful in some complex examples. One such example is a break-down of the Schorr-Waite algo-
rithm into stages. More precisely, the proof obligations, loop invariants, and ghost variables used in the
proof were broken down into a sequence of refinements that seems to separate concerns in a desired way.
Another example is the formalization of the Cloudmake algorithm [4]. It introduces some axiomatized
functions and later uses refinements to prove the feasibility of those axioms. Interestingly enough, these
examples use the refinement features mostly to structure proofs, not to structure the executable statements
of the program.

The examples in our paper can be tried online at http://rise4fun.com/Dafny/{4FH, 74s9, jrJQ,
jX5Y, n07}. Additional examples can be found in the Dafny test suite at http://dafny.codeplex.com.
A video of a SPLASH 2012 keynote with live demos is also available online [17].

5. Concluding Remarks

We have described the refinement features in version 1.9.5 of Dafny. While far from perfect, we have
combined refinement and automated verification into a programming language. We hope that use of our
system will inspire further exploration and innovation in incorporating refinement features in day-to-day
programming languages.
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