An Assertional Proof of the Stability and
Correctness of Natural Mergesort 3

K. Rustan M. Leino! and Paqui Lucio®

1 Microsoft Research, Redmond, WA, USA
leino@microsoft.com
2 The University of the Basque Country, 20080-San Sebastin, Spain
paqui.lucio@ehu.es

Abstract. We present a mechanically verified implementation of the
sorting algorithm commonly known as Natural Mergesort. The imple-
mentation consists in a few methods specified in the contract style of
pre- and post-conditions. In addition, methods are annotated with as-
sertions that, both, explain how it works, and allows the automatic verifi-
cation of the contract satisfaction. This program-proof is made using the
state-of-the-art verifier Dafny. We verify not only the standard sorted-
ness condition of the algorithm, but also that it performs a stable sort.
Along the paper we provide —and explain— the complete text of the
program-proof.

Keywords: Formal Methods, Verification, Software Engineering, Dafny, Nat-
ural Mergesort, Theorem Proving, Sorting Algorithms, Stability.

0 Introduction

Natural Mergesort ([4]) is a sorting algorithm for linear data structures (mainly,
arrays and lists) that has been widely studied mainly due to its good proper-
ties. It has Nlog(IN) worst-case complexity and, even in the case of arrays, is
slightly easier to code than heapsort. Further, it performs very well on input
data that are already mostly sorted. Another good property is stability. A sort-
ing algorithm is stable if it maintains the relative order of records with equal
keys. The most obvious application of a stable algorithm is sorting using a dif-
ferent (primary, secondary, etc.) keys. The natural mergesort algorithm —taking
advantage of the ascending and descending chains appearing in the input list—
splits the data in as many ascending sublists as required. These sublists are then
merged to produce the sorted output list. The first step of splitting the input
into ascending sequences is performed by three mutually recursive operations.
The second step uses the traditional merge of two lists, for merging all the lists
(two by two) until a single list remains. The stability of each step is a subtle and

§ This work has been partially supported by the Spanish Project TIN2007-66523 and
the Basque Projects S-PE12UN050 and GIU12/26.

strong property. Stability is, as we show in Sec. 3, stronger than the property
of preserving the multiset of elements (from the input list to the sorted output
list). Hence, stability, along with sortedness, strictly implies the correctness of
sorting algorithms.

Recently, an Isabelle/HOL proof of the correctness and stability of natural
mergesort has been published as a proof pearl in [9]. The author of [9], firstly,
specifies the algorithm as a functional program and, then, formalizes and proves
the desired properties using the proof-assistant Isabelle/HOL. The proof is ex-
trinsic to the program and uses high-order constructions. This means that the
proof is strongly based on two skillful ad-hoc induction schemes. The first one
for handling the mutually recursive functions involved in the splitting of the
input into ascending sequences. The second induction scheme is related to the
merging of the ascending lists. Correctness and stability are deduced from aux-
iliary lemmas which are proved by means of these induction schemes and with
the help of a subtle generalization of the predicate sorted. The definition of that
generalization and the induction schemes require the power of higher-order logic.

In this paper we present an implementation of Natural Mergesort over an
algebraic data type of lists. The code is enriched with its contract-based speci-
fication and a proof of its correctness and its stability. Our proof is assertional,
i.e. it uses assert statements —inserted in the code— to enable the (fully) auto-
matic verification. The assertions are first-order formulas that explain how and
why the program works. In our opinion the proof is clear and elegant. The proof
uses the state-of-the-art verifier Dafny [5], and it is made on the basis of some
lemmas that ensure natural properties. Most of the proofs are inductive and use
calculations 7] when appropriate. We believe that our program-proof is a simple
and intuitive example of how a practical verification tool can be used by software
developers with a minimum of familiarity with contract-based specifications and
first-order assertions. We aim to contribute to the spread of the educational use
of automatic tools in the development of formally verified software. We are con-
vinced that this kind of examples are very useful for the introduction of formal
software development methods and tools in software engineering courses.

Along the rest of the paper we give and explain in detail the complete text
of the program-proof. Section 2 is devoted to the basic definitions and lemmas
on which the verification of the algorithm relies. In Section 3 we provide all the
methods that make up the implementation of the natural mergesort algorithm.
We explain the assertional proof of each method. In Section 4 we provide the
proof of the lemma ensuring that stability is a stronger property than the in-
variability of the elements in the input and output lists. Finally, we give some
concluding remarks.

1 Preliminary definitions and lemmas

In this section, we give the basic definitions and lemmas. Of course, they were
arising during the design of the program-proof using the language and verifier
Dafny [5]. The Dafny programming language is imperative, sequential and sup-

ports user-defined algebraic datatypes, generic classes and many other features
for object-oriented programming. The Dafny specification language includes the
usual assertional language for pre-post contract, invariant, decreasing expres-
sions for termination proofs, etc. Since Dafny is designed with the main purpose
of facilitate the construction of correct code, Dafny notation is compact and
easy to understand. For the sake of readability and conciseness, the Dafny proof
language includes constructors for structuring proofs such as lemmas and the
more recently calculation proofs [7]. Dafny automatically generates executable
.NET code for verified programs.

1.0 Lists

We start defining a polymorphic data type of lists with the usual destructors
functions of head and tail.
datatype List(T) = Nil | Cons(head: T, tail: List(T))

Over this data type, we define some common functions that enable us to specify
the contracts of methods of our implementation in a natural way. By default in
Dafny, functions do not generate code and can then be used only in specifications.
To override this default, so that the compiler will generate code for a function,
the function is declared with “function method” and similarly for predicates,
which are boolean functions. The lemma declarations we will see later are like
methods, but no code is generated for them.

function length(T) (xs: List(T)): nat

{
match xs
case Nil = 0
case Cons(-,t) = 1l+length(t)
}
function append(T) (xs: List(T), ys: List(T)): List(T)
{

match xs
case Nil = ys
case Cons(h,t) = Cons(h,append(t,ys))

function method reverse(T) (xs: List(T), acc: List(T)): List(T)
{

match xs

case Nil = acc

case Cons(h,t) = reverse(t,Cons(h,acc))

}

function flatten(T) (xxs: List(List(T))): List(T)
{

match xxs

case Nil = Nil

case Cons(h,t) = append(h,flatten(t))

function multiset_of(T) (xs: List(T)): multiset(T)
match xs

case Nil = multiset{}
case Cons(h,t) = multiset{h} U multiset_of(t)

The function length is used only in decreasing expressions required for ter-
mination proofs. The remaining functions are mainly used in assertions. The
function reverse is also called from real code, hence it have been declared as
function methods. We will see later that the function append is also call from real
code, but the call is in the actual parameter of a ghost variable. Ghost variables
are not represented at run time, they are only used by the verifier. Hence, code
for append is not required.

The following three natural lemmas on append and flatten have an easy proof
by induction on their first argument xs. Indeed, they are automatically proved
by Dafny. Hence, the three proofs (bodies) are empty, represented by {}. Dafny
automatically sets up the induction hypothesis ans also heuristically identifies
user-supplied properties whose proof may benefit from induction, see [6].

lemma AppendNil(T) (xs: List(T))
ensures append(xs, Nil) = xs;

{3

lemma AssocAppend(T)(xs: List(T),ys: List(T),zs: List(T))
ensures append(xs,append(ys,zs)) = append(append(xs,ys), zs);

{}

lemma FlattenConsAppend(T) (xs: List(T), ys: List(T), zzs: List(List(T)))
ensures flatten (Cons(append(xs,ys),zzs)) = append(xs,append(ys, flatten(zzs)));

{

Next lemma easily follows from the asserted commutativity property of append
and reverse, which is automatically proved (by induction on a).

lemma ReverseCons(T) (xs: List(T),rev: List(T),x: T)

requires xs = reverse(rev, Nil);
ensures append(xs, Cons(x,Nil)) = reverse(Cons(x,rev),Nil);
assert V a,b,c e append(reverse(a,b),c) = reverse(a,append(b,c));

1.1 Sortedness

The rest of the program-proof is parametric in the type E of the elements of the
list to be sorted, and also in an abstract (non-body) function that associates a
key with each element of type E. Since function key is abstract, we implicitly
assume that it is total. Rather than axiomatizing some order relation on E, we
simply let the key be an integer number.

type E
function method key (e:E): int

Lists are ordered on the basis of that key. Hence, we define the predicates greater-
than (GT), equal (EQ) and sorted as follows.

E) { key(x) > key(y) }
Eg { key(x) = key(y) }

predicate method GT (x:E, y
predicate method EQ (x:E, y
predicate sorted (xs: List(

E

xs # Nil = (V x e x in multiset_of(xs.tail) = —GT(xs.head, x))
A sorted(xs.tail)

Now, we prove two lemmas on (respectively) sorted lists of elements of type E
and lists of sorted lists. The first of these requires induction, the second just
needs a consideration of cases. Dafny proves both of them automaticaly. The
sortedness-part of our correctness proof is based on these two lemmas.

lemma SortedAppend (xs: List(E), u:E)
requires sorted(xs);
requires V z e z in multiset_of(xs) = —GT(z,u);
ensures sorted (append(xs,Cons(u, Nil)));

{

lemma SortedConsList (ys: List(E), xxs: List(List(E)))
requires sorted(ys);
requires V xs o xs in multiset_of(xxs) = sorted(xs);
ensures V xs o xs in multiset_of(Cons(ys,xxs)) = sorted(xs);

{3

1.2 Stability

The binary predicate stable characterizes the stability property as a binary rela-
tion on lists. For defining stable, we first introduce a function that filters all the
elements of a given list that have the same key as a given element.

function filterEQ (e: E,xs: List(E)): List(E)

{
match xs
case Nil = Nil
case Cons(h, t) = if EQ(e,h)
then Cons(h, filterEQ (e, t))
else filterEQ (e, t)
}
predicate stable(xs: List(E), ys: List(E))
{ V x e filterEQ(x,xs) = filterEQ(x,ys) }

The following two lemmas prove two basic properties of the function filterEQ
that are useful for proving the stability property of our implementation. Lemma
DistrFilterApp ensures that filtering is distributive with respect to append. Lemma
NullFilter warrants that filtering w.r.t. an element, whose key does not appear
in the given list, produces a null list. Both are automatically proved.

lemma DistrFilterApp (x:E, xs: List(E),ys: List(E))
ensures filterEQ (x,append(xs,ys)) = append(filterEQ(x,xs),filterEQ (x,ys));
{}

lemma NullFilter (x:E,ys: List(E))
requires V y e y in multiset_of(ys) = —EQ(x.,y);
ensures filterEQ(x,ys) = Nil;

{

}

On the basis of these two properties we give an easy calculation proof of the
following lemma StableLifting , which states that whenever GT(zs.head,ws.head)
and zs is sorted (non-decreasing), the list append(zs,ws) is stable-related to the
list that results from lifting in append(zs,ws) the head of ws to the first position,
i.e. the list append(Cons(ws.head,zs),ws. tail).

lemma StableLifting (zs: List(E),ws: List(E))
requires zs # Nil A ws # Nil
requires GT(zs.head,ws.head);

requires sorted(zs);
ensures stable(append(zs,ws),append(Cons(ws.head, zs), ws. tail));

forall x:E {
calc {
filterEQ (x,append(zs,ws));
={DistrFilterApp(x,zs,ws);}
append(filterEQ(x,zs),filterEQ (x,ws));
= // ws = Cons(ws.head,ws. tail)
append(filterEQ (x,zs),filterEQ (x,Cons(ws.head ,ws. tail)));
=// definitions of filterEQ and append
append(filterEQ(x,zs),
append(filterEQ (x,Cons(ws.head, Nil)), filterEQ (x,ws. tail)));

={AssocAppend(filterEQ (x,zs),

filterEQ (x,Cons(ws.head, Nil)),

filterEQ (x,ws. tail));
append (append(filterEQ (x,zs),filterEQ (x,Cons(ws.head, Nil))),

filterEQ (x,ws. tail));
={if EQ(x,ws.head) {NullFilter(x,zs);}
else {AppendNil(filterEQ(x,zs));}}

append (filterEQ (x,Cons(ws.head,zs)), filterEQ(x,ws. tail));
={DistrFilterApp(x,Cons(ws.head,zs),ws. tail);}
filterEQ (x,append(Cons(ws.head,zs),ws. tail));

filterEQ (x, Cons(ws.head, append(zs,ws.tail)));

¥
}
)i

The proof is a calculation that has been parametrized in the universal variable
x. We prove that the result of filtering (any) x through append(zs,ws) is equal
to filtering x through append(Cons(ws.head,zs),ws. tail)). First, we use the previ-
ous lemma DistrFilterApp that ensures the distributive property of filtering w.r.t.
append. Note that the used lemma is enclosed in curly-brackets after the symbol
= which it helps to prove. Then, we unfold ws into “the cons of its head and
its tail” and apply the definitions of append and filterEQ. After that, we apply
the associativity of append (also previously established as a lemma). Then, de-
pending on the case of EQ(x,ws.head), a different lemma allows us to reduce the
first argument subexpression append(filterEQ(x, zs), filterEQ (x, Cons(ws.head, Nil)))
to filterEQ (x,Cons(ws.head,zs)). Note that the preconditions GT(zs.head,ws.head)
and sorted (zs) are crucial in this calculation step. In the last two steps, we use
again DistrFilterApp and then the definition of the function append.

The last two preliminary lemmas state that the operation of appending a
given list xs preserves stability whatever would be the hand-side where xs is
appended. Each lemma StableAppendL and StableAppendR respectively considers
the left and right hand-side for appending xs. It is worthy to note their different
(though equivalent) kind of contracts.

lemma StableAppendL (xs: List(E) ,ws: List(E) ,ws': List(E))
ensures stable(ws,ws') = stable(append(xs,ws),append(xs,ws'));
{

match xs

case Nil =
case Cons(x,t) = StableAppendL(t,ws,ws’);

}

lemma StableAppendR (ws: List(E) ,ws’: List(E) 6 xs: List(E))
requires stable(ws,ws’);
ensures stable(append(ws,xs),append(ws’', K xs));

forall x:E { calc {
filterEQ (x,append(ws,xs));
={DistrFilterApp(x,ws,xs);}
append(filterEQ(x,ws), filterEQ(x,xs));
= //by precondition
append(filterEQ(x,ws'), filterEQ (x,xs));
={DistrFilterApp(x,ws’',h xs);}
filterEQ (x,append(ws’, xs));
}
}
)i

The first lemma has an easy inductive proof. The calculation proof in the second

lemma is easy to follow.

2 The code

In this section we explain the annotated methods that make up the implemen-
tation, and which are compiled into executable .NET code. Each body method
contains the assertions that ensures the Dafny-verification of its contract.

The following method natural _mergesort is the basis of the our program-proof.
The contract and proof of natural _mergesort is based on the fact that the con-
junction of stability and sortedness is a stronger enough property for warranting
the correctness of a sorting algorithm. Indeed, any two lists in a stable pair have
exactly the same (multisef of) elements, as we prove in Section 3. °

method natural_mergesort (xs: List(E)) returns (ys: List(E))
ensures sorted(ys);
ensures stable(xs,ys);

ensures multiset _of(xs) = multiset _of(ys);
{
var aux := sequences(Xxs);
ys := mergeAll(aux);
assert stable(flatten (aux),xs);
EQMultisetsOfStables(xs,ys); //Lemma
}

To check that natural _mergesort satisfies its contract we only need to inspect the
specifications (contracts) of the two methods and the lemma involved in its body:

method sequences (xs: List(E)) returns (xxs: List(List(E)))
ensures V zs e zs in multiset_of(xxs) = sorted(zs);
ensures xxs # Nil;
ensures stable(flatten(xxs),xs);

B }

method mergeAll (xxs: List(List(E))) returns (ys: List(E))
requires xxs # Nil;
requires V zs e zs in multiset_of(xxs) = sorted(zs);
ensures sorted(ys);
ensures stable(ys, flatten(xxs));

lemma EQMultisetsOfStables (xs: List(E),ys: List(E))
requires stable(xs,ys);
ensures multiset _of(xs) = multiset _of(ys);

B...}

9 In order to facilitate the view of the real code, we have indented the assertions and
the lemma calls. We also use comments which are prefixed by //. Sometimes we also
use comments to give illustrative, although unnecessary, assertions.

Let us check that natural _mergesort satisfies its contract whenever the three pieces
above also satisfy their contracts. First, sequences has a trivial precondition and
the preconditions of mergeAll follow directly from the postconditions of sequences.
The sortedness postcondition of natural _mergesort follows from the postcondi-
tion of mergeAll and the same-elements postcondition follows from the lemma
EQMultisetsOfStables. The stability postcondition of natural _mergesort, which is
also a precondition of the lemma, follows from stable (flatten (aux),xs) which is a
postcondition of sequences, and stable (ys, flatten (aux)), which is a postcondition
of mergeAll. However, because of the way quantifiers and functions are involved,
the Dafny verifier needs the hint that stable (flatten (aux),xs) also holds after the
call to mergeAll, so we assert that condition explicitly.!

In the rest of this section, we separately concentrate in the verification of the
methods sequences and mergeAll. The lemma EQMultisetsOfStables will be presented
in the next section.

2.1 The method sequences

The method sequences is implemented by simultaneous recursion with the two
methods ascending and descending. Bellow we depict the annotated body of sequences
and the contract specification of ascending and descending. For now, we omit the
three decreases clauses, which are related to their simultaneous recursion. Ter-
mination is explained at the end of this subsection.

method sequences (xs: List(E)) returns (xxs: List(List(E))
ensures V zs e zs in multiset_of(xxs) = sorted(zs
ensures xxs # Nil;
ensures stable(flatten(xxs), xs);

)
):

{
match xs {
case Nil = xxs := Cons(Nil, Nil);
case Cons(h,t) =
match t {
case Nil = xxs := Cons(Cons(h, Nil), Nil);
case Cons(ht,tt) =
if GT(h,ht)
{ xxs := descending(ht,Cons(h, Nil), tt);
//by simultaneous induction hypothesis:
//assert stable(flatten (xxs), Cons(ht,append(Cons(h, Nil),tt)));
assert stable(Cons(ht,append(Cons(h, Nil),tt)), xs);
}
else { xxs := ascending(ht,Cons(h, Nil),Cons(h, Nil),tt);
//by simultaneous induction hypothesis
//assert stable(flatten (xxs),append(Cons(h, Nil), Cons(ht,tt)));
assert stable(append(Cons(h, Nil),Cons(ht,tt)), xs);
}
}
}
}

method descending (min:E, grow: List(E), xs: List(E)) returns (xxs: List(List(E)))
requires grow # Nil A sorted(grow);
requires —GT(min, grow.head);

! The reason is that Dafny encodes functions, like filterEQ, as if they could depend
on the heap even if they do not. This may change in a future version of Dafny.

ensures V zs e zs in multiset_of(xxs) = sorted(zs);
ensures stable(flatten(xxs), append(Cons(min, grow), xs));

By...}

method ascending (max: E, ghost grow: List(E), shrink: List(E), xs: List(E)
returns (xxs: List(List(E

)
)))

requires grow # Nil A sorted(grow);

requires reverse(shrink , Nil) = grow;

requires V z e z in multiset_of(grow) = —GT(z, max);

ensures V zs e zs in multiset _of(xxs) = sorted(zs);

ensures stable(flatten(xxs), append(grow, Cons(max,xs)));
B{...}
The first two postconditions of sequences are automatically inferred from the
contracts of the invoked methods. Only the stability property needs an assert
statement in each branch of the if-then-else. This assert, along with the respective
induction hypothesis (which follows from the contracts), allows Dafny to prove
the third postcondition stable (flatten (xxs),xs), by transitivity of the relation
stable. It should be noted that this property is also automatically deduced.

Now, let us provide the code of the methods descending and ascending (for

now, without decreases clauses).

method descending (min:E, grow: List(E), xs: List(E)) returns (xxs: List(List(E)))
requires grow # Nil A sorted(grow);
requires —GT(min, grow.head);
ensures V zs e zs in multiset_of(xxs) = sorted(zs);
ensures stable(flatten(xxs), append(Cons(min,grow),xs));

if xs # Nil A GT(min,xs.head)
xxs := descending(xs.head, Cons(min,grow),xs.tail);

//by induction hypothesis
//assert stable(flatten (xxs),
append(Cons(xs.head, Cons(min,grow)),xs.tail));
StableLifting (Cons(min, grow) ,hxs);
//assert stable(append(Cons(xs.head, Cons(min,grow)),xs. tail),
append (Cons(min, grow),xs));

else {
var aux := sequences(xs);
xxs := Cons(Cons(min,grow), aux);

SortedConsList (Cons(min, grow),aux);
//by simultaneous induction hypothesis
//assert stable(flatten (aux), xs);
StableAppendL (Cons(min, grow), flatten (aux),xs);
//assert stable(append(Cons(min, grow), flatten (aux)),
append (Cons(min, grow),xs));
assert append(Cons(min,grow), flatten (aux))
= flatten (Cons(Cons(min, grow), aux));
//assert flatten (xxs) = flatten (Cons(Cons(min, grow),aux));

}

Almost all the assertions and lemma calls annotating the body of descending
are designed for proving stability. The only exception is the call to the lemma
SortedConsList (in the else-branch) which forces Dafny to check that Cons(min,grow)
and every list in aux is sorted, which easily follows from the two precondi-
tions of descending. Then, it infers that every member of the value taken by
xxs —i.e. Cons(Cons(min,grow),aux))— is sorted. Hence, the first postcondition of
descending is proved. Regarding the second (stability) postcondition, in the then-

branch, the induction hypothesis stable-relates the list flatten (xxs) to the list
append(Cons(xs.head, Cons(min, grow)), xs. tail). The latter, by lemma StableLifting ,
is stable-related to append(Cons(min,grow),xs). Hence, the postcondition is achieved
by the transitivity of the relation stable. A very similar reasoning is used in
the else-branch. In this case, by induction hypothesis, the list flatten (xxs) is
stable-related to xs. Then, by lemma StableAppendL, we can relate the two lists
that result from respectively append flatten (xxs) and xs to the left hand-side of
Cons(min,grow). Finally, we assert that the first component of such stable pair
coincides with flatten (xxs) (for the current value of xxs). Hence, this list is also
stable-related to the second component in the pair, as ensured by the second
postcondition.

The method ascending is almost dual to descending, though there is a difference
that is immediately apparent: the variable grow now is ghost and a new variable
shrink is introduced. We next explain the reason for that change.

method ascending (max: E, ghost grow: List(E), shrink: List(E), xs: List(E))
returns (xxs: List(List(E)))
requires grow # Nil A sorted(grow);
requires reverse(shrink , Nil) = grow;
requires V z e z in multiset_of(grow) = —GT(z, max);
ensures V zs e zs in multiset_of(xxs) = sorted(zs);
ensures stable(flatten(xxs), append(grow, Cons(max,xs)));

if xs # Nil A =GT(max, xs.head)

assert V xs,ys,z:E o z in multiset_of(append(xs,ys)) <=
z in multiset _of(xs) V z in multiset _of(ys);
//assert ¥ x e x in multiset_of(append(grow, Cons(max, Nil)))
= —GT(x,max);
SortedAppend (grow ,max);
ReverseCons(grow, shrink ,max);

xxs := ascending(xs.head,append(grow, Cons(max, Nil)), Cons(max, shrink),
xs.tail);
//by induction hypothesis
//assert stable(flatten (xxs),append(append(grow, Cons(max, Nil)), 6 xs));
AssocAppend (grow, Cons(max, Nil), xs);
//assert append(grow, append(Cons(max, Nil), xs))
// = append(grow, Cons(max, xs));
}
else {
var aux := sequences(xs);
xxs := Cons(reverse(Cons(max,shrink), Nil), aux);

ReverseCons (grow, shrink ,max);
SortedAppend (grow ,max);
//assert flatten (xxs) = flatten (Cons(append(grow, Cons(max, Nil)), b aux));
FlattenConsAppend (grow, Cons(max, Nil),aux);
//assert flatten (Cons(append(grow, Cons(max, Nil)), 6 aux))

= append (grow, append (Cons(max, Nil), flatten (aux)))

= append (grow, Cons(max, flatten (aux)));
//by induction hypothesis: assert stable(flatten (aux), xs);
assert stable(Cons(max, flatten (aux)),Cons(max,xs));
StableAppendL (grow, Cons(max, flatten (aux)), Cons(max, xs));
//assert stable(append(grow, Cons(max, flatten (aux))),

append (grow, Cons(max, xs)));

}

The use of grow allows us to write a contract for ascending that reflects the
natural duality to descending and enables a similar assertional proof. However,

shrink is used to bound the (else-branch) computation of xxs to linear complexity.
That is, leaving aside shrink (and keeping grow to be non-ghost) the else-branch?
assignment to xs should be

xxs := Cons(append(grow, Cons(max, Nil)), aux);

Doing so, the computation of xxs is quadratic on length(grow). We use the vari-
able shrink to overcome this problem. The precondition states that grow is the
reverse of shrink. The starting assert in the then-branch and the lemma calls to
SortedAppend and ReverseCons are all designed to ensure that the actual param-
eter of the recursive call satisfies the preconditions that the method ascending
imposes to the formal parameters grow and shrink. The lemma ReverseCons is also
used in the else-branch for showing that reverse (Cons(max, shrink), Nil)) —which
is the first element of xxs— is equal to append(grow,Cons(max,Nil)). The remaining
details of the assertional proof for this method are very similar to the previously
explained proof of descending. We have also provided commented asserts to fur-
ther aid the interested reader.

Since sequences, descending and ascending are mutually recursive methods, their
termination proofs must be jointly explained. A clause decreases xs would be
perfect for the then-branch of sequences, but it does not work for the else-branch
where sequences is called with the same parameter. Dafny allows —in decreases
clauses— tuples of expressions and interprets them in lexicographic order. Hence,
we add decreases xs,0 to the contract of sequences and decreases xs,1 to the con-
tract of descending. This works since when the first component coincides, the
second component decreases (0 <1). Likewise decreases xs,1 ensures termination
for ascending.

2.2 The method mergeAll

The method mergeAll is implemented as a repeated application of the following
function method merge. For easy reading of the code, the result of the function
appears as the last expression of every branch and is non-indented.

function method merge (xs: List(E), ys: List(E)): List(E)
requires sorted(xs) A sorted(ys);
ensures sorted (merge(xs,ys));
ensures stable(merge(xs,ys), append(xs,ys));

match xs
case Nil = ys
case Cons(hxs,txs) =
match ys
case Nil = AppendNil(xs);
xs
case Cons(hys,tys) =
if GT(hxs, hys)
then
//by induction hypothesis:
//assert stable(merge(xs,tys),append(xs,tys));
//assert stable(Cons(hys, merge(xs,tys)),
Cons(hys ,append(xs,tys)));

2 In the then-branch append(grow,Cons(max,Nil)) is the actual parameter of a ghost
variable, whereas calculation is performed through Cons(max,shrink).

}

StableLifting (xs,ys);
//assert stable(Cons(hys,append(xs,tys)),
append(xs, Cons(hys,tys)));

//assert stable(Cons(hys, merge(xs,tys)),append(xs,ys));
Cons(hys, merge(xs,tys))
else

//by induction hypothesis:

//assert stable(merge(txs,ys),append(txs,ys));

//assert stable(Cons(hxs, merge(txs,ys)),

// Cons(hxs ,append(txs,ys)));

assert stable(Cons(hxs, merge(txs,hys)),append(xs,ys));
Cons(hxs , merge(txs,ys))

In the first case, the result of merge is xs that is sorted by precondition. Since
the other list is null, AppendNil is used to ensure that the append of both list also
yields xs. The first postcondition of merge (sortedness) is automatically proved
by Dafny, also in the remaining two cases. The second case (then-branch) use the
lemma StableLifting to prove that the lifting of the head (hys) of ys to the first
position in Cons(hys,merge(xs, tys)) preserves stability. The third case (else-branch)
is much easier. It is based in the following fact: any pair of lists constructed from
a fixed head and respective tails taken from a pair of stable lists is also stable.
Now, the method for merging all the sorted lists into a unique sorted list is:

method mergeAll

(xxs: List (List(E))) returns (ys: List(E))

requires xxs # Nil;

requires V zs e zs in multiset _of(xxs) = sorted(zs);
ensures sorted(ys);

ensures stable(ys, flatten(xxs));

decreases length (xxs);

{

match xxs {
case Cons(hxs

,txs) =

match txs {

case Nil
ys

=

:= hxs;

// assert flatten (xxs) = append(hxs, Nil);
AppendNil (hxs);

case Cons(htxs, ttxs) =

ys

assert htxs in multiset _of (txs);
assert length(xxs) = 1 + length(Cons(merge(hxs, htxs),ttxs));

:= mergeAll(Cons(merge(hxs, htxs), ttxs));

calc {
stable (merge(hxs, htxs), append(hxs, htxs));
—>{StableAppendR (merge(hxs, htxs), append(hxs, htxs),
flatten (ttxs));}
stable (append(merge(hxs, htxs), flatten (ttxs)),
append(append(hxs, htxs), flatten (ttxs)));
—> {assert append(merge(hxs,h htxs), flatten (ttxs))
= flatten (Cons(merge(hxs, htxs), ttxs));}
stable(flatten (Cons(merge(hxs, htxs),ttxs)),
append (append(hxs, htxs), flatten (ttxs)));
=—> {AssocAppend(hxs, htxs, flatten (ttxs));}
stable(flatten (Cons(merge(hxs, htxs), ttxs)),
append(hxs,append(htxs, flatten (ttxs))));
= //by induction hypothesis:
{assert stable(ys

flatten (Cons(merge(hxs, htxs), ttxs)));}

stable(ys, flatten (xxs));

The base case is trivial, but the lemma AppendNil is needed to prove that the
flatten of the input list is identical to the output list. In the inductive case, we
first prove an assertion that allows Dafny to infer that the second list is sorted,?
so that it satisfies the precondition of merge. After that, we prove the assertion
that ensures the termination of the method or, in other words, the validity
of the clause decreases. The first postcondition is automatically inferred from
the induction hypothesis. Finally, the second postcondition is proved through a
succession of implications (with their explanations enclosed in curly-brackets)
starting on the stability property ensured by the merge contract.

3 The lemma EQMultisetsOfStables

In this section we prove that stability is stronger that equivalence of multisets.
That is, the lemma EQMultisetsOfStables ensures that any pair of stable lists
has identical multisets. We first give a definition and two natural properties
(lemmas) on the relationships between filtering and multisets. Using them, a
short and elegant proof —for lemma EQMultisetsOfStables— is constructed.

The following function filtertNotEQ is dual to the previously defined function
filtertEQ . Consequently, lemma ComplFilters is automatically proved.

function filterNotEQ (e: E, xs: List(E)): List(E)

match xs

case Nil = Nil

case Cons(h, t) = if —EQ(e,h) then Cons(h, filterNotEQ(e,t))
else filterNotEQ (e, t)

}
lemma ComplFilters (xs: List(E))
ensures V z e multiset_of(xs) = multiset_of (filterEQ(z,xs))
U multiset _of (filterNotEQ (z,xs));
{

The second auxiliary lemma FilterNotHeadPresStab ensures that the operation of
filtering all the elements whose key is different to xs.head, from each of a pair of
(non-empty) lists xs and ys, preserves stability.

lemma FilterNotHeadPresStab (xs: List(E),ys: List(E))
requires stable(xs,ys);
ensures xs # Nil
—> stable(filterNotEQ (xs.head,h xs), filterNotEQ (xs.head,ys));

{
assert V z,zs e filterEQ(z,filterNotEQ(z,zs)) = Nil;
assert V z, z', zs e —-EQ(z,z') = filterEQ(z,filterNotEQ(z',zs))
= filterEQ(z,zs);
assert V z, z', zs e EQ(z,z') = filterEQ(z, zs)
= filterEQ(z', zs);
}

The proof reflects that the result is a logical consequence of three natural and
general properties on the duality of filterNotEQ and filterEQ .
Finally, we can prove the main lemma of this section.

3 This fact is automatically inferred for the first list, but not for the second.

lemma EQMultisetsOfStables (xs: List(E),ys: List(E))
requires stable(xs,ys);
ensures multiset _of(xs) = multiset _of(ys);
decreases length(xs);

{
if xs = Nil { assert ys = Nil; }
else {
assert V z,zs e length(filterNotEQ(z,zs)) < length(zs);
// assert length(filterNotEQ (xs.head,xs)) < length(xs);
calc {
multiset _of(xs);
={ComplFilters(xs);}
multiset _of (filterEQ (xs.head, xs))
U multiset _of (filterNotEQ (xs.head, xs));
={FilterNotHeadPresStab(xs,ys);
//by induction hypothesis
EQMultisetsOfStables (filterNotEQ (xs.head, xs),
filterNotEQ (xs.head,ys));}
multiset _of (filterEQ (xs.head,ys))
U multiset _of (filterNotEQ (xs.head,ys));
={ComplFilters(ys);}
multiset _of(ys);
}
}

The proof is by induction on xs. The base case relies on the fact that any list
stable-related to the empty list is also empty. The else-branch is the induc-
tive case. First, in order to ensure the well-foundedness of the induction, we
force Dafny to prove a more general property relating the lengths of any list
and the result of filtering any arbitrary element. From that, and the defini-
tion of filterNotEQ, the well-foundedness condition (i.e. the commented asser-
tion) is deduced by Dafny. Then, we prove the inductive case by a calculation
that uses the lemma ComplFilters to split xs (and symmetrically ys at the end
of the proof) into the union on two multisets. The first one contains all the
elements in xs whose key coincides with the xs.head key and the second con-
tains the remaining elements in xs. By stability, the first set coincides with
all the elements in ys whose key coincides with the xs.head key. In order to
prove that the second set also coincides with the remaining elements in ys, we
use the lemma FilterNotHeadPresStab — which ensures the stability of the pair
(filterNotEQ (xs.head,xs), filterNotEQ (xs.head,ys))— then the induction hypothe-
sis does the remaining work. The last step, similar to the first one, is due to
ComplFilters.

4 Conclusion

State-of-the-art tools for software verification are becoming more and more valu-
able from the practical point of view. Nowadays, tools can be applied to real
world software with a reasonable effort and skill. Hoare logic and first-order as-
sertions are in the foundations of programming. Indeed, fundamental courses
in programming technology and programming languages include these topics.
This kind of formal software development is, in general, well understood in the
computer science community. Program-proofs —even when subtle properties are

involved— can be written in a clear and structured style. Software developers can
isolate the required properties and concentrate once in its proof and separately
in its application.

There are many formalizations of the natural mergesort algorithm —and also
of different sorting algorithms (such as insertsort, quicksort, heapsort, etc)— in
various systems, such as Coq [1], Isabelle/HOL [8], Why3 [2], ACL2 [3], etc.
However, to the best of our knowledge, stability is only considered in [9] and
in our assertional proof. Our program-proof —as it is written in this paper—
consists of 352 (non-blank) lines. Many of them are dedicated to very common
function definitions and obvious lemmas that can be automatically proved ot
have an easy proof. The program-proof is composed by 9 functions (including 3
function methods), 4 predicates (including 2 predicate methods), 14 lemmas and
5 (pure) methods. The verified algorithm has Nlog(N) complexity in the worst-
case and linear complexity in the case of already sorted (or reverse-sorted) lists.
The interested reader can access the file (and verify it online) at the following
permalink: http://rise4fun. com/Dafny/Ubuw.

Acknoledgments We are very grateful to Jean-Christophe Filliatre for
many valuable comments on a previous draft of this paper.

References

1. Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program De-
velopment. Coq’Art: The Calculus of Inductive Constructions. Springer, 2004.

2. Jean-Christophe Fillidtre and Andrei Paskevich. Why3 — where programs meet
provers. In Matthias Felleisen and Philippa Gardner, editors, Proceedings of the 22nd
European Symposium on Programming, volume 7792 of Lecture Notes in Computer
Science, pages 125-128. Springer, March 2013.

3. Matt Kaufmann, J. Strother Moore, and Panagiotis Manolios. Computer-Aided
Reasoning: An Approach. Kluwer Academic Publishers, Norwell, MA, USA, 2000.

4. Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting and
Searching. Addison-Wesley, 1973.

5. K. Rustan M. Leino. Dafny: An automatic program verifier for functional correct-
ness. In Edmund M. Clarke and Andrei Voronkov, editors, LPAR (Dakar), volume
6355 of Lecture Notes in Computer Science, pages 348-370. Springer, 2010.

6. K. Rustan M. Leino. Automating induction with an SMT solver. In Proceedings
of the 13th International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI12), pages 315-331. Springer-Verlag, 2012.

7. K. Rustan M. Leino and Nadia Polikarpova. Verified calculations. In Ernie Co-
hen and Andrey Rybalchenko, editors, VSTTE, volume 8164 of Lecture Notes in
Computer Science, pages 170-190. Springer, 2013.

8. Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL: A Proof
Assistant for Higher-order Logic. Springer-Verlag, Berlin, Heidelberg, 2002.

9. Christian Sternagel. Proof pearl - a mechanized proof of ghc’s mergesort. J. Autom.
Reasoning, 51(4):357-370, 2013.

