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Abstract. The power and automation offered by modern satisfiability-modulo-
theories (SMT) solvers is changing the landscape for mechanized formal theorem
proving. For instance, the SMT-based program verifier Dafny supports a number
of proof features traditionally found only in interactive proof assistants, like in-
ductive, co-inductive, and declarative proofs. To show that proof tools rooted in
SMT are growing up, this paper presents, using Dafny, a series of examples that
illustrate how theorems are expressed and proved. Since the SMT solver takes
care of many formal trivialities automatically, users can focus more of their time
on the creative ingredients of proofs.

0 Introduction

A growing number of theorems about mathematics, logic, programming-language se-
mantics, and computer programs are formalized and proved using mechanized proof
assistants. Examples of such proof assistants are ACL2 [23], Agda [8,34], Coq [5],
Guru [39], HOL Light [18], Isabelle/HOL [33], PVS [35], and Twelf [36]. The as-
sistants vary in their level of expressivity and automation as well as in the size of
their trusted computing base. Satisfiability-modulo-theories (SMT) solvers (for exam-
ple, Alt-Ergo [6], CVC3 [2], OpenSMT [9], Simplify [13], and Z3 [12]) are collec-
tions of (semi-)decision procedures for certain theories. SMT solvers provide a high
degree of automation and have, in the last couple of decades, undergone impressive
improvements in power. Therefore, it has become increasingly common for proof as-
sistants to use SMT solvers as subroutines, as is done for example in PVS [35] and in
Isabelle/HOL’s Sledgehammer tactic [7].

Although general proof assistants can be used to verify the correctness of computer
programs, there are also some verification tools dedicated to verifying programs. These
include Chalice [29], Dafny [25], F* [40], Frama-C [11], Hi-Lite Ada [17], KeY [3],
KIV [38], Pangolin [37], Spec# [1], VCC [10], VeriFast [20], and Why3 [16]. Many of
these use as their underlying reasoning engine an SMT solver, typically accessed via an
intermediate verification language like Boogie [0] or Why [15]. This tool architecture
facilitates automation, and it also tends to move the user’s interaction with the tool from
the formula level (like in general proof assistants) to the program level. This lets users
express necessary proof ingredients in program-centric declarations like preconditions
or loop invariants. We might therefore refer to this kind of program verifier as auto-
active—a mix of automatic decision procedures and user interaction at the program
level [27].



Just as some proof assistants have incorporated special tactics to better handle
program verification (e.g., Ynot [32]), auto-active program verifiers are incorporat-
ing features to better support user-guided mathematical proofs (e.g., VeriFast [21] and
Dafny [25]). While such program verifiers do not yet achieve the full expressivity of
some proof assistants and generally have a much larger trusted computing base, their
automation can be remarkable. This automation matters, since it affects the amount of
human time required to use the tool. Curiously, these SMT-based tools are primarily
program verifiers, but that seems to have happened more by serendipity; one can easily
imagine similar SMT-based tools that focus on mathematics rather than on programs.

In this paper, and in the invited talk that the paper accompanies, I argue and show-
case that the future may hold room for proof assistants that are entirely based on
SMT solving. I focus on the programming language and auto-active program verifier
Dafny [25], which supports proof features like induction [26], co-induction [28], and
declarative calculations [30]. The paper is a collection of examples that give an idea of
what these proof features can do and how they are represented in the Dafny input.

Sec. 1 defines a type and a function that will be used throughout the examples.
Sec. 2 states a lemma and proves it by induction. It also shows a proof calculation.
Sec. 3 then turns to the infinite by considering co-inductive declarations and proofs.
Sec. 4 combines the inductive and co-inductive features into a famous “filter”” function,
and Sec. 5 proves a theorem about filters by simultaneously applying induction and
co-induction. Sec. 6 summarizes the examples and concludes.

1 A Types and a Function

As a basis for all the examples in this paper, let us define a type Stream whose values
are infinite lists. Such a type is called a co-inductive datatype, but this fancy name need
not cause any alarms.

codatatype Stream<T> = Cons(head: T, tail: Stream)

The stream type is parameterized by the type of its elements, T. The stream type has
one constructor, Cons. The names of the parameters to the constructor (head and tail)
declare destructors. For example, for any stream s, we have

s = Cons(s.head, s.tail)

The type of tail is Stream<T>, but here and in other signatures, the type argument T
can be supplied automatically by Dafny, so I omit it.

Next, let us declare a function that returns a suffix of a given stream. In particular,
Tail(s, n) returns s.tail®. Here is its inductive definition:

function Tail(s: Stream, n: nat): Stream

{
if n = 0 then s else Tail(s.tail, n-1)

3

Each function is checked for well-definedness. For a recursive function, this includes
a check of well-foundedness among the recursive calls. Well-foundedness is checked



using a variant function, which conceptually is evaluated on entry to a call. If the value
of the variant function is smaller for the callee than for the caller, well-foundedness
follows. If no variant function is explicitly supplied, Dafny guesses one. The guess is
the lexicographic ordering on the tuple of the function’s arguments, omitting arguments
whose types have no ordering, like co-inductive datatypes. For Tail, Dafny (correctly)
guesses the variant function n and, using it, checks that Tail’s recursion is indeed well-
founded. No further input is required from the user—the tool automatically initiates
the check—and since the check succeeds, the user is not bothered by any messages
from the tool (except for a small indication in the margin of the integrated development
environment that for a split second shows that the verifier is active).

2 An Inductive Proof

In order to show how lemmas and proofs are set up, let us consider an alternative defi-
nition of Tail:

function Tail_Alt(s: Stream, n: nat): Stream
{

if n = 0 then s else Tail_Alt(s, n-1).tail
¥

and let us prove that Tail and Tail_Alt give the same result.

A lemma is expressed as a method in the programming language, that is, as a code
procedure with a pre- and postcondition. As usual (e.g., [19]), such a method says that
for any values of the method parameters that satisfy the method’s precondition, the
method will terminate in a state satisfying the postcondition.’ This corresponds to what
is done in mathematics for a lemma: a lemma says that for any values of the lemma
parameters that satisfy the lemma’s antecedent, the lemma’s conclusion holds. So, we
express our lemma about Tail and Tail_Alt by declaring the following method:

ghost method Tail _Lemma(s: Stream, n: int)
requires 0 < n;
ensures Tail(s, n) = Tail_Alt(s, n);

The precondition of this method (keyword requires) says that n is a natural number
(which, alternatively, we could have indicated by declaring the type of n to be nat). The
postcondition (keyword ensures) gives the property we want to prove. The designation
of the method as a ghost says that we do not want the Dafny compiler to emit any
executable code. In other words, a ghost method is for the verifier only; the compiler
ignores it.

To get the program verifier to prove the lemma, we supply a method body and let the
verifier convince itself that all code control paths terminate and establish the postcon-
dition. The body we supply typically consists of if statements and (possibly recursive)
method calls, but other statements (e.g., while loops) can also be used. A recursive call

% In general, methods can have effects on the memory of the program. Such effects are declared
with a modifies clause in the method specification. However, since there is no need for such
effects here, I ignore further discussion of them.



corresponds to invoking an inductive hypothesis, because the effect on the proof is to
obtain the proof goal (stated in the postcondition) for the callee’s arguments, which in
a well-foundedness check are verified to be “smaller” than the caller’s arguments. It is
common to supply assertions that act as in-place lemmas: a statement assert Q tells
the verifier to check that the boolean condition Q holds, after which the verifier can
make use of that condition. A more systematic way to direct the verifier is provided by
Dafny’s calc statement, whose verified calculations take the form of human-readable
equational proofs [30].
Here is a proof of the lemma:

ghost method Tail _Lemma(s: Stream, n: int)
requires 0 < n;
ensures Tail(s, n) = Tail_Alt(s, n);
{
if n < 2 {
// def. of Tail and Tail_Alt
} else {
calc {
Tail(s, n);
= // def. Tail, since n# 0
Tail(s.tail, n-1);
{ Tail_Lemma(s.tail, n-1); } // induction hypothesis
Tail_Alt(s.tail, n-1);
= // def. Tail_Alt, since n-1# 0
Tail_Alt(s.tail, n-2).tail;
= { Tail_Lemma(s.tail, n-2); } // induction hypothesis
Tail(s.tail, n-2).tail;
= // def. Tail, since n-1# 0
Tail(s, n-1).tail;
= { Tail_Lemma(s, n-1); } // induction hypothesis
Tail_Alt(s, n-1).tail;
= // def. Tail_Alt, since n# 0
Tail_Alt(s, n);
}

}

The method body provides two code paths. For the n < 2 branch, the verifier can prove
the postcondition by unwinding the definitions of each of Tail and Tail_Alt once or
twice (which the verifier is willing to do automatically). The else branch uses a calc
statement with a number of equality-preserving steps, each of which is verified. Some
steps are simple and need no further justification; the code comments give explanations
for human consumption. Other steps are justified by hints, which are given as code
blocks (in curly braces). Here, each hint makes a recursive call to Tail_Lemma, which
in effect invokes the induction hypothesis.

In more detail, for each step in a calculation, the verifier checks that the equality
entailed by the step is provable after the code in the associated hint (if any). In the



calculation above, each of the provided hints consists of a single recursive call. As usual
in program verification, the verifier thus checks that the precondition of the callee is met,
checks that the variant function is decreased for the call (to ensure that the recursion
will terminate), and can then assume the postcondition of the callee. For example, the
postcondition that holds after the first recursive call is:

Tail(s.tail, n-1) = Tail_Alt(s.tail, n-1)

which is essentially the induction hypothesis for s,n := s.tail,n-1. Since no variant
function is supplied explicitly, Dafny guesses n, which it verifies to decrease. Thus, the
recursion—and indeed, the induction—is well-founded.

For brevity, the equality signs between the lines in the calculation can be omitted.
Or, if desired, they can be replaced by different operators, like =, <=, or <.

The calculation in the example gives more detail than the Dafny verifier needs, but,
as given, yields a presentation of the proof that is better suited for a human. In fact,
the proof calculation is quite readable; it looks almost identical to how one would write
an equational-style proof by hand. For a comparison with other styles of declarative
proofs, like Isar [41], and with tactic-based proofs, see [30].

3 Co-recursion and a Co-inductive Proof

In this section, we consider how values of a co-datatype are constructed and how one
states and proves properties of such values.

Values of co-inductive datatypes may be of an infinite nature. For example, a stream
represents an infinite list of elements. Here is a function that defines such a value,
namely the stream whose elements are the integers from n upward in increasing order:

function Up(n: int): Stream<int>
{

Cons(n, Up(n+l))
}

It may look as if invocations of Up will never terminate, but the self-call of Up is iden-
tified by Dafny as being co-recursive, because it is positioned as an argument to a co-
datatype constructor. Co-recursive calls are compiled into lazily evaluated code, so that
the arguments to the constructor are not evaluated until their values are used by the ex-
ecuting program (if ever). Consequently, for a co-recursive call, there is no need for the
verifier to enforce a decrease of a variant function.

Here is another function on streams:

function Prune(s: Stream): Stream
{
Cons(s.head, Prune(s.tail.tail))

}

It defines a stream consisting of half of the elements of the given stream: every other
element, starting with the first. Note that the self-call to Prune is co-recursive, so the
verifier does not need to check termination.



To define a property of a co-inductive datatype, one uses a co-predicate. For exam-
ple, the following co-predicate holds for streams that consist of even integers:

copredicate AllEven(s: Stream<int>)
{

s.head % 2 = 0 A AllEven(s.tail)
}

Co-predicates are defined by greatest fix-points, that is, as the greatest solutions of the
recursive equations to which their definitions give rise. Applied to the example, this
means that A11Even(s) evaluates to true as long as there is no suffix t of s such that
t.head % 2 # 0. Eager evaluation of a co-predicate may fail to terminate and lazy
evaluation would not be meaningful, so co-predicates are always ghost. In other words,
they are never part of executing code, but they can be used to describe and reason about
executing code.

We have now seen three features from the quartet of co-inductive features in Dafny:
co-datatypes define possibly infinite data structures, co-recursive function calls make
it possible to define values of co-datatypes, and co-predicates define properties of co-
datatypes. The fourth feature is co-methods, whose purpose is to enable co-inductive
proofs. Let us consider an example.

We will state a theorem that for any even n, Prune(Up(n)) consists only of even
integers. Because we intend to prove the theorem by co-induction, we use a co-method:

comethod Theorem(n: int)
requires n % 2 = 0;
ensures AllEven(Prune(Up(n)));
{
Theorem(n+2);

3

Ignoring the issue of termination, this proof can be understood in the same manner as
inductive proofs: A11Even says something about the head of the stream Prune(Up(n)),
which is proved automatically. It also says something about the tail of the stream, which
follows from the postcondition of the call Theorem(n+2) and the definitions of the func-
tions involved. To make this argument more explicit, the call could have been preceded
by the following calculation (where, for brevity and variety, I have chosen to omit the
optional equality signs between lines in the left margin):

calc {
Prune(Up(n)).tail;
Prune(Up(n).tail.tail);
{ assert Up(n).tail.tail = Up(n+2); }
Prune(Up(n+2));

}

In contrast to methods, whose recursive calls are checked to terminate (by checking
that they decrease the variant function), calls to co-methods are always allowed. In
other words, the co-induction hypothesis can always be obtained; however, the use of
it is restricted. Intuitively, the co-induction hypothesis can be used to discharge only



those conjuncts that show up after one unwinding of the co-predicate in the co-method’s
postcondition. I will give some details about this in Sec. 5.

For example, suppose the body of co-method Theorem were replaced by the call
Theorem(n). With unrestricted use of the postcondition of this call, the co-induction
hypothesis obtained would trivially prove the theorem itself. However, because the co-
induction hypothesis can be used only on conjuncts from an unwinding of the postcon-
dition, the call Theorem(n) provides no benefit here.

4 A Filter Function

Let us now consider a more difficult function definition, namely that of a filter function
on streams. For any stream s, we want the filter function to return the stream consisting
of those elements of s that satisfy some predicate P. A filter function like this is used,
for example, in the prime number sieve of Eratosthenes (cf. [4, 24, 14]).

Conceptually, the filter function and all related lemmas are parameterized by the
predicate P. Lacking the higher-order features necessary to take P as a parameter, we
represent an arbitrary predicate by declaring a (here, global) generic predicate without
a defining body:'

predicate P<T>(x: T)
The definition of Filter has the following form:

function Filter(s: Stream): Stream
//...specification to be written...
{
if P(s.head) then
Cons(s.head, Filter(s.tail))
else
Filter(s.tail)
}

The first branch of this definition is fine, because its call to Filter is co-recursive.
However, the other call to Filter is not co-recursive, so it is subject to a termination
check. This makes sense, because if the given stream has no elements that satisfy P,
then Filter would never terminate in its computation to produce the next element of
the resulting stream. Note, thus, how Dafny allows one function to be involved in both
recursive and co-recursive calls. Next, we will consider how to deal with the termination
of the recursive call.

To avoid non-termination, we must restrict Filter’s input to streams that contain
infinitely many elements that satisfy P. We give the following definitions:

predicate HasAnother(s: Stream)

{

! Dafny allows such a body-less predicate to be placed in a module. Other modules can then be
declared as refinements of this module, and each refinement module can give its own specific
definition of the predicate.



dn e 0<n A P(Tail(s, n).head)

}
copredicate AlwaysAnother(s: Stream)
{
HasAnother(s) A AlwaysAnother(s.tail)
}

Predicate HasAnother(s) says that, after some finite prefix of s, there is an element
that satisfies P, and AlwaysAnother(s) says that HasAnother holds at every point in the
stream. We can now restrict the input to Filter by adding a precondition:

requires AlwaysAnother(s);

Even with this precondition, the verifier complains that it cannot prove termination.
To remedy the situation, we supply a variant function explicitly. As the variant function,
we will use the length of the non-P prefix of s, that is, the number of steps to the next
element satisfying P. Using StepsToNext (s) to denote that number of steps, we add to
the specification of Filter the following clause:

decreases StepsToNext(s);

Given a stream that satisfies AlwaysAnother, function StepsToNext returns a natu-
ral number. It is tempting to define it with a body like

if P(s.head) then 0 else 1 + StepsToNext(s.tail)

but to prove that this recursive call to StepsToNext terminates, we would need a variant
function like StepsToNext itself. Instead, we find a number of steps that will yield some
P element, and then we use this number as an upper bound in a linear search to the first
P element:

function StepsToNext(s: Stream): nat
requires AlwaysAnother(s);
{
var n :| 0 <n A P(Tail(s, n).head);
Steps(s, n)
}
function Steps(s: Stream, n: nat): nat
requires P(Tail(s, n).head);
ensures P(Tail(s, Steps(s, n)).head);
ensures V i e 0 < i < Steps(s, n) —> —P(Tail(s, i).head);

if P(s.head) then 0 else 1 + Steps(s.tail, n-1)
}

These definitions require some explanation.

The “let such that” expression var x :| Q; E evaluates to E in which all free oc-
currences of x are bound to a value that satisfies Q. The expression is well-defined only
if there exists a value for x that satisfies Q. In StepsToNext, this proviso follows from
the precondition AlwaysAnother (s). Note that n may be set to any number of steps that
will reach a P element in s, not necessarily the smallest.



The specification of the auxiliary function Steps requires s to reach a P element
in n steps. It ensures that the result value, which in the ensures clause is denoted by
Steps(s, n), is not only a number of steps that reaches a P element (first ensures
clause) but also the smallest such number (second ensures clause).

The body of Steps encodes a straightforward linear search.

To prove the recursive call in the body of Filter(s) to be well-founded, the verifier
checks that the given variant function decreases, that is,

StepsToNext(s.tail) < StepsToNext(s)

This condition rests on the fact that StepsToNext returns the smallest number of steps
to reach a P element, which is spelled out by the postcondition of Steps. Note that
StepsToNext does not need to declare such a postcondition, because Dafny unwinds the
definition of StepsToNext and obtains an expression in terms of Steps. Since Steps is
recursive, the needed property is not evident from any bounded number of unwindings,
so the presence of the postcondition essentially facilitates an inductive argument.
Finally, rather than introducing the auxiliary function Steps, one could consider
replacing the body of StepsToNext with one whose let-such-that condition is stronger:

var n :| 0 <n A P(Tail(s, n).head) A
Vi e 0<i<n= —P(Tail(s, i).head);
n

However, Dafny is unable to prove the existence of such an n directly from the precondi-
tion AlwaysAnother(s). The use of Steps is one way to set up the necessary inductive
argument.

5 A Property of Filter

The interesting property to prove about Filter(s) is that it returns the subsequence of
s that consists of exactly those elements that satisfy P. The notion of such a subsequence
can be divided up into the property that Filter returns the right set of elements:

V x e x € Filter(s) < x € s A P(x)

(where I have taken the liberty of using operator € as if stream were sets) and the
property that Filter(s) preserves the order of elements in s. Let us look at one possible
way to state and prove the latter.

To simplify matters, let us suppose that there is a function Ord from the elements of
streams to the integers.

function Ord<T>(x: T): int
Using a co-predicate, we define what it means for a stream’s elements to be strictly
increasing:

copredicate Increasing(s: Stream)

{
Ord(s.head) < Ord(s.tail.head) A Increasing(s.tail)

3
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Now we can state the order-preservation theorem that we want to prove:

ghost method Theorem_FilterPreservesOrdering(s: Stream)
requires AlwaysAnother(s) A Increasing(s);
ensures Increasing(Filter(s));

This theorem is not the most general order-preservation theorem we can state, but it
suffices for our purpose of showing an interesting proof.
To prove the theorem, we introduce an alternative definition of Increasing:

copredicate IncrFrom(s: Stream, low: int)
{

low < Ord(s.head) A IncrFrom(s.tail, Ord(s.head) + 1)
}

The two definitions are interchangeable, as the following two lemmas show.

comethod Lemma_IncrO(s: Stream, low: int)
requires IncrFrom(s, low);
ensures Increasing(s);
{
}
comethod Lemma_Incrl(s: Stream)
requires Increasing(s);
ensures IncrFrom(s, Ord(s.head));

Lemma_Incrl(s.tail);

3

The co-inductive proof of Lemma_IncrO is done automatically, whereas the other re-
quires an explicit appeal to the co-induction hypothesis.
We can now write the theorem in terms of IncrFrom:

comethod Lemma_FilterPreservesIncrFrom(s: Stream, low: int)
requires AlwaysAnother(s) A IncrFrom(s, low) A low < Ord(s.head);
ensures IncrFrom(Filter(s), low);
decreases StepsToNext(s);

if P(s.head) {

Lemma_FilterPreservesIncrFrom(s.tail, Ord(s.head) + 1);
} else {

Lemma_FilterPreservesIncrFrom#[_k](s.tail, low);

3

The proof of this lemma is interesting because it uses co-induction and induction to-
gether. The first branch of the if statement makes an appeal to the co-induction hy-
pothesis. Dafny will actually fill it in automatically, so the proof also goes through with
that call omitted. In the else branch, we cannot use the co-induction hypothesis, because,
as discussed above, the co-induction hypothesis can be used only after one unwinding
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of the proof goal. To make use of the lemma’s postcondition for s.tail directly, we
instead make a recursive call to the lemma. Syntactically, this is achieved by the char-
acters “#[_k]”. The recursive call gives rise to a proof obligation of termination, which
is addressed by the explicit decreases clause.

Co-methods are used to establish the validity of co-predicates (including equality
on co-datatype values, which is a built-in co-predicate). These co-inductive proof obli-
gations are actually carried out by induction, in conjunction with a meta-theorem. For
any co-predicate Q(x), let the prefix predicate Q#[_k](x) denote the first _k unrollings
of Q, defined inductively. For example, the prefix predicate for co-predicate A11Even

1832

predicate AllEven#[_k: nat](s: Stream<int>)

{
if _k = 0 then
true
else
s.head % 2 = 0 A AllEven#[_k-1](s.tail)
}

Similarly, for each co-method M(x), Dafny generates a prefix method M#[_k] (x), where
each call M(E) in the co-method’s body is turned into a call M#[_k-1](E) in the corre-
sponding prefix method. In more detail, the following co-method:

comethod M(x: T)
ensures Q(x);
decreases D(x);

{

. M(E);

}

is turned into:

ghost method M#[_k: nat](x: T)
ensures Q#[_k](x);
decreases _k, D(x);
{
if _k#0 {
. M#[_k-1]1(E);
b
}

Any explicit prefix-method call in the body of M (like the one in the else branch of the
filter lemma co-method above) is left unchanged in the corresponding prefix method. A
recursive call to M#[K] where K < _k corresponds to obtaining the co-induction hypoth-
esis (for use after _k - K unwindings of the co-predicate in the proof goal), whereas

2 Prefix predicates are declared automatically. The made-up declaration syntax shown here is
suggestive of how prefix predicates are actually invoked, with the unrolling-depth argument in
square brackets, set apart from the other arguments.
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a call to M#[_k] is just an ordinary recursive call corresponding to the induction hy-
pothesis. By verifying the inductive prefix method for any _k, the postcondition of the
co-method follows on account of the following meta-theorem [31, 28]:

Vx: T e Q(x) < V _k: nat e Q#[_k](x)

For more details, see [28].
Finally, the proof of Theorem_FilterPreservesOrdering is given as follows:

Lemma_Incrl(s);
Lemma_FilterPreservesIncrFrom(s, Ord(s.head));
Lemma_IncrO(Filter(s), Ord(s.head));

}

6 Conclusion

In this paper, I have conveyed a flavor of Dafny’s proof features by showing examples
of inductive and co-inductive definitions, proofs by induction and by co-induction, as
well as human-readable proofs. These are features that until recently were confined to
interactive proof assistants, but they can now be supported by auto-active verifiers.

To try the examples in the Dafny tool, the only input given to the tool are the lines
shown in this paper—no additional proof tactics need to be supplied.

The given examples showcase the high degree of automation that is possible in a
tool powered by an SMT solver and designed to keep the interaction at the problem
level (and not, for example, at the level of defining and using necessary prover tactics).
Users are not bothered with trivial details (like the associativity of logical and arith-
metic operators) and the human involvement to prove that user-defined functions are
mathematically consistent is small. Even the tricky recursive call of Filter is solved
by defining and using StepsToNext as a variant function, which does not require an
excessive amount of human effort. When more information is needed, human-readable
calculations can be used, putting proofs in a format akin to what may be done by hand.

For each function and method in the examples shown, the verifier needs to spend
only a small fraction of a second. This makes performance good enough to be running
the verifier continuously in the background of the integrated development environment,
which is what Dafny does. Most changes of the program text yield a near-instant re-
sponse, which is important when developing proofs. Note that performance is at least
as important for failed proofs as for successful proofs, because failed proofs happen
on the user’s time (see [27] for some research directions for auto-active verification
environments).

In the future, I expect a higher degree of automation to become available in proof as-
sistants. For tools like Dafny that already provide a high degree of automation, I expect
to see a richer set of features (for example, higher-order functions, drawing inspiration

3 Dafny can be installed from http://dafny.codeplex.com. It can also be run directly in a web
browser at http://rise4fun.com/dafny.
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from Pangolin [37], Who [22], and F* [40], and user-defined theories, drawing inspira-
tion from Coq [5] and Why3 [16]) as well as work that will seek to reduce the currently
large trusted computing base for SMT-based verifiers.

Acknowledgments 1am grateful to Maria Christakis, Sophia Drossopoulou, Peter Miiller,
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