Developing Verified Programs with Datny

K. Rustan M. Leino
Microsoft Research, Redmond, WA, USA
leino @microsoft.com

Abstract—Dafny is a programming language and program
verifier. The language includes specification constructs and the
verifier checks that the program lives up to its specifications.
These tutorial notes give some Dafny programs used as examples
in the tutorial.

I. INTRODUCTION

Reasoning about programs is a fundamental skill that every
software engineer needs. Dafny is a programming language
designed with verification in mind [0]. It can be used to
develop provably correct code (e.g., [1]). Because its state-of-
the-art program verifier is easy to run—it runs automatically
in the background in the integrated development environment’
and it runs at the click of a button in the web version' —Dafny
also stands out as a tool that through its analysis feedback
helps teach reasoning about programs. This tutorial shows how
to use Dafny, and these tutorial notes show some example
programs that highlight major features of Dafny.

The Dafny language is type-safe and sequential. It in-
cludes constructs found in common imperative programs, like
loops and dynamic object allocation, as well as in functional
programs, like recursive functions and inductive (and co-
inductive) datatypes. Importantly, it also includes specification
constructs, like pre- and postconditions, which let a program-
mer record the intended behavior of the program along with
the executable code that is supposed to cause that behavior.
The verifier checks that the code will always behave as
described. It also checks that programs terminate and are free
of evaluation errors, like indexing an array outside its bounds.

The Dafny verifier is invoked just like the Dafny compiler.
That is, the input to the program verifier is the program text
itself. The verifier responds by giving error messages for proof
obligation it is not able to prove.

Other Dafny tutorials have been published as lecture notes
from the 2011 Marktoberdorf Summer School [2] and 2011
LASER Summer School [3].

II. BASICS

To illustrate some basic features of Dafny, consider the pro-
gram in Fig. 0. It shows a method, which is a code procedure.
The in-parameters (a,b,c) are passed by value, as are the out-
parameters (x,v,z), which can also be used as local variables
in the body of method. The method’s postcondition (keyword
ensures) spells out some conditions that the method is to
establish: the out-parameters are copies of the in-parameters,

OInstall from http://dafny.codeplex.com.
ITry it at http://rise4fun.com/dafny.

method Sort(a: int, b: int, c: int) returns (x: int, y: int, z: int)
ensures x <y < z A multiset{a, b, c} = multiset{x, y, z};

{

X, YV, 2= a, b, c;

ifz<y{y,z:=2,vy;}
ify<x{x,vi=vy, x; }
ifz<y{vy,z:=2,v;}

Fig. 0. Example that shows some basic features of Dafny. The method’s
specification says that x,y,z is a sorted version of a,b,c, and the verifier
automatically checks the code to satisfy this specification.

method TriangleNumber(N: int) returns (t: int)
requires 0 < N;
ensures t = Nx(N+1) / 2;
{
t = 0;
var n = 0;
while n < N
invariant 0 < n < N A t = nx(n+l) / 2;
{n:=n+1; t:=1t+n; }

}

Fig. 1. Illustration of the use of a loop invariant to reason about the loop.

but in sorted order. The body of the method shows uses of the
familiar if statement and of Dafny’s simultaneous-assignment
statement.

The verifier checks that all code paths lead to the postcon-
dition being established. If this were not so (for example, if
you change the code or specification in bad ways), the verifier
would complain about the error. One possible way to debug
such an error is to use the Boogie Verification Debugger [4].

III. LOOP INVARIANTS

Figure 1 shows a method that computes triangle number
N. The precondition (keyword requires) says what callers
must establish in order to invoke the method (enforced by the
verifier at call sites) and this condition can thus be assumed to
hold on entry to the method body. To reason about the loop, it
is necessary to supply a loop invariant, a condition that holds
at the very top of each loop iteration (that is, just prior to each
evaluation of the loop guard). The loop invariant is checked
to hold on entry to the loop and is checked to be maintained
by the loop body.

A central point in understanding how to reason about loops
is that it is not possible to consider a loop’s behavior by
looking at all its (infinitely many) possible unrollings. Instead,
all the information about the variables that are changed by
the loop comes from the loop invariant. For example, if we

function pow2(n: int): int
requires 0 < n;
{ if n=0 then 1 else 2 * pow2(n-1) }

Fig. 2. Function pow2 gives a straightforward recursive definition of the
mathematical expression 2™.

datatype Tree(T) = Leaf | Node(Tree, T, Tree);
function Contains(T)(t: Tree(T), v: T): bool
{
match t
case Leaf = false
case Node(left, x, right) =
x = v V Contains(left, v) V Contains(right, v)
}
method Fill(T)(t: Tree(T), a: array(T), start: int) returns (end: int)
requires a # null A 0 < start < a.Length;
modifies a;
ensures start < end < a.Length;
ensures forall i e 0 <i < start = a[i] = old(a[i]);
ensures forall i e start < i < end = Contains(t, a[i]);

match t { case Leaf = end := start;
case Node(left, x, right) =
end := Fill(left, a, start);
if end < a.Length {
alend] = x;
end := Fill(right, a, end + 1);
I }

Fig. 3. A program that defines an (immutable) Tree datatype and also uses a
(mutable) array. Part of the method’s specification is in terms of the recursive
function Contains.

leave off n < N from the loop invariant in Fig. 1, the verifier
will not know any upper bound for n after the loop and
will therefore complain that the postcondition might not hold.
In other words, the verifier does not look at the loop body
when reasoning about which program states are reachable
after an arbitrary number of iterations; instead, it relies on
the programmer-supplied invariant to provide a sufficiently
constrained description of those states. This issue is the most
important difference between reasoning about programs and
merely executing them; be sure to play around with the tool
to help you fully absorb the issue.

IV. FUNCTIONS

A function in Dafny is a mathematical function. It is defined
not by code but by an expression. Functions can be used in
a functional style of programming, and they are often used in
specifications of (possibly imperative) programs.

Figure 2 defines a recursive function for exponentiating 2.
As for a method, the precondition says when the function is
allowed to be invoked.

About the syntax, note that the function’s defining body
is not terminated by a semi-colon. Also, whereas the if
statement surrounds the then branch and the optional else
branch in curly braces, the analogous if expression uses the
keywords then and else and insists on both being present.

V. DATATYPES

The imperative and functional features of Dafny can be
used together, as illustrated in Fig. 3. Tree(T) is an inductive

datatype representing trees of T elements. The recursively
defined function Contains(t, v) returns whether or not v is
an element of tree t. Method Fill copies elements from a tree
t into an array a. The caller indicates where in a the copying
is to begin (index start). The method is allowed to change
the elements of a, as indicated by the modifies clause. The
method leaves the first start elements of the array unchanged
(second postcondition) and fills the next end-start elements
with elements from the tree (third postcondition), where end
is determined by the method implementation (subject to the
constraints in the first postcondition).

Note that the specification of Fill does not mention every
interesting aspect of the method’s behavior. For example, the
specification says nothing about the order or multiplicity of
the tree elements copied into the array. How strong or weak
to make a specification is an engineering choice—a trade-off
between assurance and the price to obtain that assurance.

VI. CLASSES

Classes offer a way to dynamically allocate mutable data
structures. References (that is, pointers) to components of
these data structures gives flexibility in programming, but
generally also make specifications more complicated (though,
arguably, also make verification more worthwhile). A common
approach to specifying a class in Dafny is to use two sets
of variables, some ghost variables that give a simple way to
understand the behavior of the class and some physical (i.e.,
non-ghost) variables that form an efficient implementation of
the class. The relation between the two sets of variables is
described in a class invariant [5], which in Dafny is typically
coded into a boolean function (a predicate) called Valid
that gets used in method specifications. The program updates
both sets of variables, maintaining the validity condition,
but the compiler emits only the physical variables into the
executable code. The Dafny language embraces the idea of
ghost constructs, not just for variables but also for other
declarations and statements.

Figure 4 gives an example class: a FIFO queue implemented
by an array. To avoid the queue’s length exceeding that of the
array, the Enqueue method sometimes has to allocate a larger
array.

To reduce the tedium of writing many of the idiomatic
specifications, the class is marked with the {:autocontracts}
attribute, which has the effect of filling in many of the
standard specifications. For example, auto-contracts looks for
the predicate Valid() and adds it as a postcondition to each
constructor and as a pre- and postcondition to each method.
It also adds some bookkeeping to handle the specification
of modifies clauses. The result is a particular encoding of
dynamic frames [6], which can also be done manually in Dafny
(see [0], [7]).

Another noteworthy aspect of the code is how Enqueue
shifts the queue elements to the beginning of the (possibly
newly allocated) array. This operation is easily coded with
Dafny’s forall statement, which simultaneously performs a
number of assignments. Not only is this more straightforward

class {:autocontracts} SimpleQueue(Data)
{
ghost var Contents: seq(Data);
var a: array(Data);
var m: int, n: int;
predicate Valid() {
a # null A a.Length # 0 A
0 <m < n < a.length A Contents = a[m..n]
}
constructor ()
ensures Contents = [];
{
a, m, n, Contents := new Data[10], 0, 0, [];
}
method Enqueue(d: Data)
ensures Contents = old(Contents) + [d];

{
if n = a.Length {
var b := a;
if m=0 { b := new Data[2 » a.Length]; }
forall (i | 0<i<n-m {
b[i] := a[m + i];
a, my n:=b, 0, n -m;
}
a[n], n, Contents := d, n + 1, Contents + [d];
}

method Dequeue() returns (d: Data)

requires Contents 75 [1;

ensures d = old(Contents)[0] A Contents = old(Contents)[1..];
{

assert a[m] = a[m..n][0];

d, m, Contents := a[m], m + 1, Contents[1..];

}

method Main()

{ var q := new SimpleQueue();
q.Enqueue(5); q.Enqueue(12);
var x := q.Dequeue();
assert x = 5;

3

Fig. 4. A class that implements a queue by an array. Ghost fields are used to
specify the class, physical fields are used to implement it, and the invariant
that glues the two together is declared as the predicate Valid().

than using a loop, but reasoning about a loop is also more
cumbersome due to having give a loop invariant to characterize
the state during the loop’s intermediate iterations.

Finally, note that the example shows a Main method that
serves as a test harness. However, rather than relying on
dynamic execution to carry out the test, the assertion is
checked by the verifier, statically. This seeks to validate that
the specifications are strong enough to be useful to a client.

VII. LEMMAS

As a more advanced topic, let us consider an example where
the verifier in unable to prove, by itself, something that is true.
As programs get more advanced, such situations arise more
frequently.

The ComputePow2 method in Fig. 5 computes the pow2
function from Fig. 2 in logarithmic time. The correctness of
the second branch hinges on the fact that 2" = (2/2)? when
n is even. This fact is stated as a lemma. More precisely, the
ghost method Lemma, which can be called when n is even,
promises to return in a state where the property holds. By
calling the lemma, ComputePow?2 thus obtains the information
it needs. The proof of the lemma is the body of the ghost
method, where every code path must convince the verifier that

method ComputePow2(n: nat) returns (p:
ensures p = pow2(n);
{
if n=0 {
p=1
} else if n % 2 =0 {
p := ComputePow2(n / 2);
p:=p * p;
Lemma(n);
} else {
p := ComputePow2(n-1);
p =2 *p;
I
ghost method Lemma(n: nat)
requires n % 2 = 0;
ensures pow2(n) = pow2(n/2) * pow2(n/2);
{
if n# 0 { Lemma(n-2); }
}

nat)

Fig. 5. The ComputePow2 method gives a logarithmic way to compute
pow2(n). nat is the non-negative subrange of int. Proving the correctness
of ComputePow2 requires using a lemma, that pow2(n) is the square of
pow2(n/2), which is stated and proved by the ghost method Lemma.

the postcondition is established. Since Lemma is recursive, the
proof corresponds to a proof by induction. Finally, note that
no executable code is generated for Lemma, since it is declared
ghost.

Another lemma is the assert statement in method Dequeue
in Fig. 4. It points out a necessary ingredient of the proof
(namely, a particular property about sequences) that the prover
does not figure out on its own.

VIII. CONCLUSIONS

Getting comfortable using the features presented takes prac-
tice. Use the tool to obtain this practice. Dafny also includes
many other features, like customized termination specifica-
tions, CLU-style iterators, staged program development via
refinement, co-recursion, and proof calculations. Look for
other tutorials, documentation, and associated papers to learn
more about these.

REFERENCES

[0] K. R. M. Leino, “Dafny: An automatic program verifier for functional
correctness,” in LPAR-16, ser. LNCS, vol. 6355. Springer, 2010, pp.
348-370.

[1] H. Mai, E. Pek, H. Xue, S. T. King, and P. Madhusudan, “Verifying
security invariants in ExpressOS,” in ASPLOS ’13. ACM, 2013, pp.
293-304.

[2] J. Koenig and K. R. M. Leino, “Getting started with Dafny: A guide,”
in Software Safety and Security: Tools for Analysis and Verification,
ser. NATO Science for Peace and Security Series D: Information and
Communication Security. IOS Press, 2012, vol. 33, pp. 152-181.

[3] L. Herbert, K. R. M. Leino, and J. Quaresma, “Using Dafny, an automatic
program verifier,” in LASER, International Summer School 2011, ser.
LNCS, vol. 7682. Springer, 2012, pp. 156-181.

[4] C. Le Goues, K. R. M. Leino, and M. Moskal, “The Boogie Verification
Debugger (tool paper),” in SEFM 2011, ser. LNCS, vol. 7041. Springer,
2011, pp. 407-414.

[5] B. Meyer, Object-oriented Software Construction, ser. Series in Computer
Science. Prentice-Hall International, 1988.

[6] I. T. Kassios, “Dynamic frames: Support for framing, dependencies
and sharing without restrictions,” in FM 2006, ser. LNCS, vol. 4085.
Springer, 2006, pp. 268-283.

[7] J. Hatcliff, G. T. Leavens, K. R. M. Leino, P. Miiller, and M. Parkinson,
“Behavioral interface specification languages,” ACM Computing Surveys,
vol. 44, no. 3, Jun. 2012, article 16.

