
Automating Induction with an SMT Solver

K. Rustan M. Leino

Microsoft Research, Redmond, WA, USA
leino@microsoft.com

Manuscript KRML 218, 5 November 2011.

Abstract. Mechanical proof assistants have always had support for inductive
proofs. Sometimes an alternative to proof assistants, satisfiability modulo the-
ories (SMT) solvers bring the hope of a higher degree of automation. However,
SMT solvers do not natively support induction, so inductive proofs require some
encoding into the SMT solver’s input.
This paper shows a surprisingly simple tactic—a rewriting strategy and a heuristic
for when to apply it—that has shown to be useful in verifying simple inductive
theorems, like those that can occur during program verification.
The paper describes the tactic and its implementation in a program verifier, and
reports on the positive experience with using the tactic.

0 Introduction

Mathematical induction is an important element of just about any kind of formal proof.
This paper concerns the use of induction in an automatic program verifier. More specif-
ically, it is concerned with providing more automation for inductively proving some
properties in the kind of program verifier that uses a satisfiability modulo theories
(SMT) solver [10, 22] as its reasoning engine.

Mechanical proof assistants have always provided support for inductive proofs,
most famously starting with the Boyer-Moore prover whose powerful heuristics tried
to determine which variables to use in induction schemes [5]. That work has been con-
tinued in proof assistants like PVS [23] and ACL2 [15]. Another technique for auto-
matically trying to discover how to construct an inductive proof for a given property
is rippling [6, 14]. As is well known, it is frequently necessary to strengthen an in-
duction hypothesis in order to make a proof go through, and techniques like rippling
heuristically try to determine when it might be appropriate to strengthen or generalize
a property to be proven. Whereas rippling is goal directed, the technique employed by
Zeno [24] is more opportunistic in the way it proceeds.

Unsurprisingly, any system that reasons about infinitely many possible executions
of a software program also makes use of induction, either explicitly or implicitly. For
example, the KeY system [2] lets a user explicitly specify which induction scheme to
apply when reasoning about the executions of a loop. Program verification (and theo-
rem proving) in Coq [3] and VeriFun [25] also tend to make heavy use of induction.
Other program verifiers, like Dafny [19], VCC [8], and VeriFast [12], implicitly rely
on induction: the loop invariants used to reason about loop executions and the pre/-
post specifications used to reason about recursive calls essentially play the role of an
induction hypothesis.

The implicit support of induction lets a user write programs whose correctness im-
plies the validity of user-provided mathematical properties, essentially giving a manual
way to write proofs using a program verifier [15, 17, 26, 13]. In this paper, I go one step
further, introducing a tactic that heuristically identifies programmer-supplied properties
whose proof may benefit from induction, then automatically sets up the induction hy-
pothesis, and finally passes the proof obligation to an SMT solver. I have implemented
the technique in the Dafny program verifier [19]0 and have used it, for example, to
automatically prove 45 of the first 47 problems in an evaluation corpus for automatic
induction. The tactic is not nearly as powerful as what is used in provers like ACL2 or
Zeno; indeed, it never strengthens or generalizes a property to be proved. Instead, the
strong appeal of the present tactic lies in its simplicity and surprising effectiveness.

1 Background on Dafny

Before getting to the induction tactic, let me review two properties about program veri-
fiers like Dafny. First, I will explain the verifier architecture, how to think about going
from source-language semantics to SMT-solver input. Second, I will show how lemmas
to be proved by induction arise in the context of a program verifier.

1.0 Verifier Architecture

A standard program-verifier architecture is to translate the source language of interest
into an intermediate verification language (IVL) and then to pass the resulting IVL
programs to a verification engine for the IVL [21, 1, 11]. In other words, the semantics
of a given source-language program are encoded into an IVL program such that the
correctness of the IVL program implies the correctness of the source program. The
verification engine for the IVL attempts to establish the correctness of IVL programs
by generating verification conditions that it passes to a reasoning engine, typically an
SMT solver.

In this paper, the source language used is Dafny [19], the IVL is Boogie 2 [20],
and the SMT solver is Z3 [9], but the tactic described is applicable to other program
verifiers and reasoning engines as well. For the purpose of this paper, it is not neces-
sary to understand the details of the Dafny-to-Boogie translation [18], and even less so
the Boogie-to-Z3 translation [1, 20]. It suffices to realize that the semantics of a given
source-language program sometimes provides certain guarantees and sometimes dic-
tates some proof obligations, and that the program verifier encodes these guarantees
and proof obligations by translation into the IVL. Next, I will explain the form of this
encoding.

A program verifier explicates source-language proof obligations by encoding them
as assert statements in the IVL. Such proof obligations arise from the semantics of
the executable constructs of the source language (for example, expressions used to in-
dex into an array must evaluate to a value within the bounds of the array) and from

0 Dafny is available as open source and can also be used without installation in a web browser,
see research.microsoft.com/dafny.

programmer-supplied specifications (for example, method postconditions). The pro-
gram verifier also explicates source-language guarantees by encoding them as assume
statements in the IVL.

For example, the Dafny verifier translates the allocation statement a := new int[E];

into the following Boogie code:

assert 0 6 E ; . . . assume dtype(a) = array(type_int());

where the assert statement encodes the proof obligation that the requested array size not
be negative and the assume statement says that the dynamic type of a , after the assign-
ment, is an array of integers (where dtype , array , and type_int are some functions
defined elsewhere in the translation).

Semantically, assert P ; is equivalent to:

assert P ; assume P ; (0)

(see [0]). Intuitively, this says that after proving P , one is entitled to assume it. This
means that a proof obligation P arising in a source language can be translated into the
intermediate verification language as the two statements (0). More generally, it is sound
to translate a proof obligation P into:

assert Q ; assume R; (1)

where Q implies P and P implies R . This can be useful if, to the SMT solver, Q is
easier to prove and R is easier to use.

1.1 Inductive Lemmas in a Program Verifier

On the way to proving the correctness of a program, it happens that one needs to state
and prove lemmas about functions or data structures that are used by the program. When
such a lemma requires an inductive proof, the induction tactic described in this paper
can be useful.

Dafny is a programming language and a program verifier; it has no special con-
structs for stating and proving lemmas. Instead, a lemma can be stated as an inline
assertion (via Dafny’s assert statement) or as a call to a method whose postcondition
is the statement of the lemma (cf. [13]). Such a method in Dafny is usually declared to
be a ghost method; the Dafny verifier treats ghost methods and other ghost constructs
like their non-ghost counterparts, but the Dafny compiler generates no code for ghost
constructs [19].

For example, the Fibonacci function can be defined in Dafny as follows:

function Fib(n : nat) : nat
{

if n < 2 then n else Fib(n-2) + Fib(n-1)

}

A function in Dafny is a mathematical function and it denotes an expression (given
in the body of the function). A method, on the other hand, denotes a behavior and is
implemented by statements with possible control flow and mutations. To state a lemma
about the Fib function, we introduce a (ghost) method with the desired lemma as the
postcondition; for example:

ghost method FibLemma()

ensures ∀ n : nat • Fib(n+1) + Fib(n+2) ≤ Fib(n+3);

{ }

Dafny will attempt to verify that the method terminates and that it terminates in a state
where the postcondition holds. A successful verification thus implies that the property
stated in the postcondition is a valid lemma. To use this lemma in some code, one
simply invokes method FibLemma. Because the method is ghost, it is not included in
the executable code, and thus the lemma has no effect on the run-time behavior of the
program.

2 The Induction Tactic

The induction tactic builds on simple concepts working in concert. I will explain each
concept in a separate subsection and then combine them to describe the tactic.

2.0 Induction Principle

The Induction Principle says that the formula

∀n • P(n) (2)

where P(n) is any expression that may have free occurrences of n , is equivalent to the
formula

∀n • (∀k • k ≺ n =⇒ P(k)) =⇒ P(n) (3)

where ≺ is any well-founded order. The antecedent in (3) is known as the induction
hypothesis. Thus, by the Induction Principle, to prove the validity of the formula (2),
we may elect to proceed by proving the validity of the ostensibly weaker formula (3).

I feel compelled to make a remark, which for readers familiar with some mechanical
proof assistants may clear up a point about what I refer to as induction. The fact that
the induction hypothesis in (3) quantifies over all k smaller than n is known as strong
induction. Many times, a weaker induction hypothesis suffices, namely the one that
quantifies only over those k that are “one smaller” than n . For example, if n and k
range over natural numbers, the weaker induction hypothesis can be stated as:

∀k • k = n − 1 =⇒ P(k)

Furthermore, by distinguishing those n that have a value “one smaller” and those n
that do not, this condition is often formulated as:

n = 0 ∨ (0 < n ∧ P(n − 1))

Using this condition in place of the antecedent in (3) and simplifying, we get:

P(0) ∧ ∀n • 0 < n ∧ P(n − 1) =⇒ P(n)

or equivalently:

P(0) ∧ ∀n • P(n) =⇒ P(n + 1) (4)

The two conjuncts in formula (4) are referred to as the base case and the induction
step, which is how induction is used in some proof assistants and is probably how most
of us learned about induction in our education. However, note that the formulation of
the Induction Principle above (that is, (2) = (3)) does not necessitate bringing in the
concept of a case distinction when defining induction. (This is somewhat analogous to
the use of recursion in programming, where a conditional statement and a call state-
ment are independent constructs that usefully come together in the body of a recursive
procedure.)

2.1 Induction Translation

Here is why observation (1) in Sec. 1.0 is interesting for induction. If a proof obligation
in a given source program takes the form (2), then the program verifier has the option
to translate it into the IVL as:

assert (3); assume (2); (5)

This Induction Translation has the effect that the SMT solver will be asked to establish
the validity of (3), after which it is entitled to assume (2). Note that SMT solver does
not need to know anything about induction. Instead, the (source-to-IVL translation of
the) program verifier takes responsibility for the soundness of the translation into (5),
and that soundness is justified by the Induction Principle.

2.2 Induction Heuristic

A program verifier has the option of translating proof obligation like (2) into the IVL
statements (5), but when would that be a good idea? Always doing so can lead to bad
performance, and always requiring the source-language programmer explicitly to say
when to use the Induction Translation could be a nuisance. Better would be to use a
good heuristic, possibly with a way to manually override the outcome of the heuristic.

A heuristic that is both simple and seems to work well, and which I will refer to as
the Induction Heuristic, is to apply the Induction Translation if the bound variable n in
(2) is used in P(n) as part of an argument to a recursive function.

I tried and rejected a less discriminating heuristic, namely to apply the Induction
Translation also if n is used in P(n) as part of an index expression into an array or
sequence. The Dafny test suite contains hundreds of methods and mentions more than
700 quantifiers, but most of the quantifiers can be proved without induction. I tried the
less discriminating heuristic on the test suite. This resulted in out-of-memory failures
for 8 of the method verifications and ten-minute timeouts for 2 others. Evidently, the
additional induction hypotheses caused the SMT solver too much distraction.

The default heuristic used by Dafny is actually more discriminating than the Induc-
tion Heuristic, in two ways. First, n cannot be just any subexpression of an argument to

a recursive function; the argument must prominently feature n . An expression promi-
nently features n if the expression is n , or if the expression has the form E + F or
E − F where E or F prominently features n . For example, in the postcondition of
method FibLemma in Sec. 1.1, all three calls to Fib prominently feature n as an argument.
Second, not all argument positions to recursive functions are considered; the formal
parameter corresponding to the argument must contribute to the variant (which is used
for proving termination) of the function. However, these two additional discriminating
factors have not made any appreciable difference in the experiments I have run.

2.3 Well-founded Orders in Dafny

The Induction Principle holds for any well-founded order ≺ . Dafny fixes a well-founded
order for each of its types and for lexicographic tuples. These are used in Dafny when
reasoning about termination of loops and recursive calls [19]. The same ordering is used
for ≺ in the Induction Translation.

The types most frequently used with induction are integers and inductive datatypes.
For integers x and y , Dafny defines x ≺ y as:

x < y ∧ 0 6 y

The lower bound 0 is somewhat arbitrary, and note that the order is not total when both
x and y are negative; however, this simple order is easy for a programmer to remember
and works well in practice.1

The ordering on inductive datatypes associates a rank with each datatype value
and defines the rank of a constructed value to be strictly above the rank of each of its
arguments. For example, given the definition:

datatype List = Nil | Cons(int, List);

Dafny defines xs ≺ Cons(x , xs) for any integer x and list xs .

2.4 Datatypes and Case Distinctions

The current version of Dafny does not use native SMT support for inductive datatypes.
Instead, it encodes constructors and destructors of datatype values using suitably ax-
iomatized functions. Every datatype value is generated by some constructor, but unre-
stricted use of this property can lead to expensive and unfruitful case distinctions in the
SMT solver, so Dafny encodes this property only in certain places [19]. The property
does tend to be useful when proving properties inductively, so Dafny makes the case
distinction available to the SMT solver when applying the Induction Translation.

For example, suppose n in (2) is of the type List defined in Sec. 2.3. Then Dafny
includes in the Induction Translation an additional antecedent:

n = Nil ∨ ∃x , xs • n = Cons(x , xs)

1 For reasoning about termination of loops and recursive calls, the lower bound can be adjusted,
because Dafny supports programmer-supplied variant expressions [19].

Actually, Dafny distributes these cases and produces one assert statement for each con-
structor, because this allows Dafny to give more precise error messages. So, the Induc-
tion Translation will produce the following 3 statements:

assert ∀n • (∀k • k ≺ n =⇒ P(k)) ∧ n = Nil =⇒ P(n);
assert ∀n • (∀k • k ≺ n =⇒ P(k)) ∧ (∃x , xs • n = Cons(x , xs))

=⇒ P(n);
assume ∀n • P(n);

If the first assertion cannot be proved, Dafny reports that (2) might not hold for values
constructed by Nil; if the second assertion cannot be proved, Dafny reports that (2)
might not hold for values constructed by Cons.

2.5 Multiple Bound Variables

If a proof obligation has multiple bound variables, Dafny evaluates the Induction Heuris-
tic for each one. If the Induction Heuristic applies to any of the bound variables, then
Dafny applies the Induction Translation for all the bound variables to which the Induc-
tion Heuristic applies, combining these into a lexicographic tuple.

For example, consider a proof obligation:

∀x , y , z • Q(x , y , z)

and suppose the Induction Heuristic applies to x and z (that is, both x and z are
prominently featured in Q(x , y , z) as arguments to recursive functions). Applying the
Induction Translation, Dafny thus produces:

∀x , y , z • (∀k ,m • (k ,m) ≺ (x , z) =⇒ Q(k , y ,m)) =⇒ Q(x , y , z)

where the definition of (k ,m) ≺ (x , z) is the ≺ ordering on lexicographic pairs:

k ≺ x ∨ (k = x ∧ m ≺ z)

Dafny only applies the Induction Translation to quantifiers that appear as positive
top-level conjuncts of proof obligations. In particular, the Induction Translation is not
applied to nested quantifiers. For example, if the proof obligation above had been for-
mulated as:

∀x , y • ∀z • Q(x , y , z)

then the Induction Translation would be:

∀x , y • (∀k • k ≺ x =⇒ ∀z • Q(k , y , z)) =⇒ ∀z • Q(x , y , z)

2.6 Overriding the Induction Heuristic

As I report in Sec. 4, the Induction Heuristic seems to work well. However, there are
times when one may wish to force or suppress the Induction Translation. Dafny has a
general mechanism for hanging custom attributes in various places in the source code
(akin to custom attributes in .NET and annotations in Java). One of those places is in

quantifiers, just after the declaration of the bound variables. While use of such custom
attributes is rare, it is sometimes a convenient feature to have.

Dafny supports an :induction attribute. Used with no arguments, this attribute says
to apply the Induction Translation to all of the quantifier’s bound variables. The :induction

attribute can also be used by listing those bound variables to which the Induction Trans-
lation should apply. Finally, :induction false says not to apply the Induction Transla-
tion to the quantifier.

For example, consider the following method declaration:

ghost method AdjacentImpliesTransitive(s : seq<int>)
requires ∀ i • 1 ≤ i < |s| =⇒ s[i-1] ≤ s[i];

ensures ∀ i,j { :induction j} • 0 ≤ i < j < |s| =⇒ s[i] ≤ s[j];

{ }

The postcondition (keyword ensures) follows from the precondition (keyword requires),
but proving that necessitates induction. Since this example does not involve any recur-
sive functions, the Induction Heuristic does not apply. However, the custom attribute
used in this example tells Dafny to apply the Induction Translation for bound variable j,
which leads to a successful verification of the postcondition. Alternatively, using the at-
tribute { :induction i,j} or simply { :induction} also leads to a successful proof. Note,
however, that { :induction i} does not, since even proving the property for i being 0

requires induction on j.

3 Examples

In this section, I show four applications of the induction tactic in the program verifier:
two are used to verify programs, one to verify a simple mathematical property, and one
to verify properties of functions over inductive datatypes. I also show an application
that exemplifies the operation of the SMT solver given the formula produced by the
program verifier.

3.0 A Simple Program

The program in Fig. 0 shows a Dafny method. It takes an array a as an in-parameter
and returns an integer r as an out-parameter. As specified by the postcondition, the
method returns an index where the array is 0, or returns -1 if the array does not contain
a 0. As specified by the precondition, the array has non-negative elements and has the
special property that an element a[i] is not much smaller than its preceding neighbor,
a[i-1]. In particular, if a[i] is smaller than a[i-1], then it is smaller only by 1. This
property allows the method implementation to do better than linear search, for if the
array element at the current position n is non-zero, then the next possible zero occurs
a[n] array elements later.

The correctness of the method implementation hinges on the fact that the update
n := n + a[n]; maintains the loop invariant, which in turn follows from the special
property of the array. However, the special property needs to be applied repeatedly
for the proof, which does not happen automatically. Instead, the programmer supplies

method FindZero(a : array<int>) returns (r : int)
requires a 6= null ∧ ∀ i • 0 ≤ i < a.Length =⇒ 0 ≤ a[i];

requires ∀ i • 0 ≤ i-1 ∧ i < a.Length =⇒ a[i-1]-1 ≤ a[i];

ensures 0 ≤ r =⇒ r < a.Length ∧ a[r] = 0;

ensures r < 0 =⇒ ∀ i • 0 ≤ i < a.Length =⇒ a[i] 6= 0;

{

var n := 0;

while (n < a.Length)

invariant ∀ i • 0 ≤ i < n ∧ i < a.Length =⇒ a[i] 6= 0;

{

if (a[n] = 0) { return n; }

assert ∀ m { :induction} •
n ≤ m < n + a[n] ∧ m < a.Length =⇒ n+a[n]-m ≤ a[m];

n := n + a[n];

}

return -1;

}

Fig. 0. A Dafny method that finds the index of a 0 in a given array a. Because the array has the
special property that successive array elements do not decrease quickly (as stated by the second
requires clause), the search is sub-linear (see the increase of n). The assert statement is proved
by induction and then used to show the correctness of the program.

a lemma, here phrased as a Dafny assert statement. Since no recursive function is
involved, the Induction Heuristic does not apply. Instead, the programmer uses the
{ :induction} attribute to indicate that the quantifier is to be proved using induction.

Feeding the program in Fig. 0 to the Dafny verifier proves the program (with no
further user interaction) instantly (in 0.04 seconds on a single thread on a modern laptop
with an Intel Core i7-M620 clocked at 2.67 GHz and running 64-bit Windows 7).

3.1 A Difficult Program

Floyd’s “tortoise and hare” algorithm is a simple method for detecting whether a given
linked-list node reaches a cycle or reaches null [16]. Its formal proof is not equally
simple. One Dafny program for the algorithm, its specification (here shown slightly
simplified)

method TortoiseAndHare() returns (reachesCycle : bool)
ensures reachesCycle ⇐⇒
∃ n • n 6= null ∧ Reaches(n) ∧ n.next 6= null ∧ n.next.Reaches(n);

and supporting definitions, and the lemmas needed for its verification is 233 (non white-
space) lines long, of which 16 lines get compiled.2 More than half of dozen of the
quantified formulas given as lemmas require the Induction Translation to be verified.
For example, one of them (slightly simplified) is:

2 See the FloydCycleDetect.dfy program in the Test/dafny2 folder of the
boogie.codeplex.com source repository.

function Sum(n : nat) : nat { if n = 0 then 0 else Sum(n-1) + n }

function CubeSum(n : nat) : nat { if n = 0 then 0 else CubeSum(n-1) + n*n*n }

ghost method ArithmeticTheorem()

ensures ∀ n : nat • CubeSum(n) = Sum(n) * Sum(n) ∧ 2*Sum(n) = n*(n+1);

{ }

Fig. 1. A Dafny encoding of the arithmetic theorem
∑n

i=0 i
3 = (

∑n
i=0 i)

2 . Because of the
induction tactic, the theorem is proved automatically.

assert ∀ j • 0 ≤ j =⇒ Nexxxt(x).Nexxxt(j) = Nexxxt(x + j);

where Nexxxt(k) returns the node obtained after k applications of the .next field. The
program relies entirely on the Induction Heuristic and does not use any occurrence of
the { :induction} attribute. The verification of the entire program takes just under 60
seconds.

3.2 Integers

Figure 1 states a familiar theorem about arithmetic. Functions Sum and CubeSum are de-
fined recursively, and the theorem CubeSum(n) = Sum(n) * Sum(n) is stated as the post-
condition of a method. Proving this arithmetic equality requires an additional fact about
function Sum, which is also stated in the postcondition. Thus, the proof does what in
mathematics is known as simultaneous induction.

The program in Fig. 1 is verified as shown (and with no further user interaction) in
0.09 seconds.

Remark: Alternatively, the closed-form property of Sum could have been given as a
postcondition of function Sum:

function Sum(n : nat) : nat
ensures 2*Sum(n) = n*(n+1);

{ if n = 0 then 0 else Sum(n-1) + n }

The proof of this postcondition does not require the Induction Translation; the standard
rules for postconditions and reasoning about (recursive) calls suffice.

3.3 Inductive Datatypes

Inductive datatypes are common in functional languages and in interactive proof as-
sistants like Isabelle/HOL, Coq, PVS, and ACL2, which are based around functional
languages. When proving properties of functions over such datatypes, it is natural to
use induction. Dafny also supports inductive datatypes as well as user-defined recur-
sive functions. Figure 2 defines two simple datatypes and three functions, the structure
of whose definitions is representative of functions on inductive datatypes. Method P19

states a theorem about these functions. The theorem is proved automatically (in 0.025
seconds), thanks to the induction tactic.

datatype Nat = Zero | Suc(Nat);

datatype List = Nil | Cons(Nat, List);

function minus(x : Nat, y : Nat) : Nat {

match x

case Zero ⇒ Zero

case Suc(a) ⇒ match y

case Zero ⇒ x

case Suc(b) ⇒ minus(a, b)

}

function len(xs : List) : Nat {

match xs case Nil ⇒ Zero case Cons(y, ys) ⇒ Suc(len(ys))

}

function drop(n : Nat, xs : List) : List {

match n

case Zero ⇒ xs

case Suc(m) ⇒ match xs

case Nil ⇒ Nil

case Cons(x, tail) ⇒ drop(m, tail)

}

ghost method P19()

ensures ∀ n, xs • len(drop(n, xs)) = minus(len(xs), n);

{ }

Fig. 2. Two user-defined inductive datatypes in Dafny along with three functions defined on those
datatypes. The postcondition of the method gives a theorem, which is proved automatically by
Dafny’s induction tactic.

3.4 Operation of the SMT Solver

As I have shown, the induction tactic is encoded in the translation from Dafny into
Boogie, that is, the translation from the source language to the intermediate verification
language. After that, Boogie and Z3 operate as usual. In other words, the induction
tactic does not require any change to Boogie or Z3. Let us take a look at an example
end to end, that is, from Dafny to Boogie to Z3 and let us also consider the operation of
Z3 on its given verification condition.

Suppose we start with the following recursive function in Dafny:

function Fac(n : int) : int { if n ≤ 1 then 1 else Fac(n-1) * n }

Dafny’s translation of this function sets up proof obligations that will check that the
function is well defined. Mimicking the Dafny function definition, the translation also
includes the following Boogie declarations:

function Fac(n: int) : int;
axiom (∀n: int • {Fac(n)}

Fac(n) = (if n 6 1 then 1 else Fac(n − 1) ∗ n));

where the expression in curly braces specifies the matching trigger for the universal
quantifier. The matching trigger tells the SMT solver how to select instantiations for the

quantifier [10]. This definition of Fac in Boogie is a bit of a simplification, because
Dafny also takes some measures that will reduce the chances of running into matching
loops, where the SMT solver would keep instantiating universal quantifiers forever.

Suppose further that the proof obligation is to show that Fac only returns positive
integers, as expressed in Dafny by the following lemma:

ghost method FacPos() ensures ∀ n • 1 ≤ Fac(n); { }

The Dafny verifier detects in this postcondition proof obligation that the bound variable
n in passed as an argument to a recursive function. So the Induction Heuristic applies
and Dafny applies the Induction Translation, obtaining the following Boogie statements
(in the Boogie procedure corresponding to the Dafny method FacPos):

assert (∀n: int • (∀k : int • 0 6 k ∧ k < n =⇒ 1 6 Fac(k))
=⇒ 1 6 Fac(n));

assume (∀n: int • 1 6 Fac(n));

Boogie then translates this into Z3 input, which essentially amounts to:

(∀n: int • {Fac(n)} Fac(n) = (if n 6 1 then 1 else Fac(n − 1) ∗ n))
=⇒
(∀n: int • (∀k : int • 0 6 k ∧ k < n =⇒ 1 6 Fac(k)) =⇒ 1 6 Fac(n))

When Z3 tries to prove that this formula is valid, it negates it and starts looking for a
satisfying assignment to the negation. The negation produces the following two con-
juncts:

(∀n: int • {Fac(n)} Fac(n) = (if n 6 1 then 1 else Fac(n − 1) ∗ n))
(∃n: int • (∀k : int • 0 6 k ∧ k < n =⇒ 1 6 Fac(k)) ∧ ¬(1 6 Fac(n)))

Z3 then Skolemizes the existential, calling it, say, Sk . Since no matching trigger was
indicated for the quantifier over k in the Z3 input, Z3 will at this time select a matching
trigger for it; here, I show that selected trigger explicitly:

(∀n: int • {Fac(n)} Fac(n) = (if n 6 1 then 1 else Fac(n − 1) ∗ n))
(∀k : int • {Fac(k)} 0 6 k ∧ k < Sk =⇒ 1 6 Fac(k))
Fac(Sk) < 1

(6)

At this time, the presence of the term Fac(Sk) will cause both quantifiers to be instan-
tiated, with n := k and k := Sk , yielding:

conjuncts (6)
Fac(Sk) = (if Sk 6 1 then 1 else Fac(Sk − 1) ∗ Sk)
0 6 Sk ∧ Sk < Sk =⇒ 1 6 Fac(Sk)

The last of these formulas will evaporate, since Z3 knows that Sk < Sk is unsatisfiable.
Z3 will now do a case distinction on the if expression.

For the then case, it gets:

conjuncts (6)
Sk 6 1
Fac(Sk) = 1

which (from Fac(Sk) < 1 and Fac(Sk) = 1) it will realize is unsatisfiable.
For the else case:

conjuncts (6)
1 < Sk
Fac(Sk) = Fac(Sk − 1) ∗ Sk

There is now a new term, Fac(Sk − 1) , which matches the given triggers, so Z3 will
produce two more instantiations, namely with n := Sk − 1 and k := Sk − 1 :

conjuncts (6)
1 < Sk
Fac(Sk) = Fac(Sk − 1) ∗ Sk
Fac(Sk − 1) = (if Sk − 1 6 1 then 1 else Fac(Sk − 1− 1) ∗ (Sk − 1))
0 6 Sk − 1 ∧ Sk − 1 < Sk =⇒ 1 6 Fac(Sk − 1)

By 1 < Sk , the antecedent 0 6 Sk − 1 ∧ Sk − 1 < Sk simplifies to true , and thus
the consequent 1 6 Fac(Sk − 1) emerges as a fact. Z3 now realizes that the conjuncts:

Fac(Sk) < 1
1 < Sk
Fac(Sk) = Fac(Sk − 1) ∗ Sk
1 6 Fac(Sk − 1)

are unsatisfiable, since the product of two positive numbers is not non-positive.
And that completes the proof.

4 Evaluation on a Test Suite for Induction

Theorem P19 in Fig. 2 is part of a test suite for automatic induction, collected and used
by the authors of the IsaPlanner system to evaluate their technique [14]. The suite con-
tains 87 problems, of which IsaPlanner (which uses rippling [6] and an analysis of case
statements) automatically solves the first 47. Beyond problem 47, the problems require
various forms of abstraction, strengthenings, and new-lemma discovery. According to a
paper on Zeno [24], ACL2s [7] automatically proves 74 of the 87 problems (with man-
ually supplied type information) and the Zeno tool automatically proves 82 of them.
The report on Zeno provides a detailed comparison of these tools on the test suite and
some other problems [24].

Of the 47 problems that IsaPlanner can prove, Dafny can prove 45. For all the prob-
lems, the Induction Heuristic applies, so Dafny automatically uses the Induction Trans-
lation. For an induction tactic that is as simple as the one in Dafny, proving 45 of the 47
problems that IsaPlanner can solve seems surprisingly good.

Like the other tools, most of the proofs are instantaneous. Dafny spends 0.21 sec-
onds on problem 39, 0.17 seconds on problem 45, and less than 0.10 seconds for each
of the others.

Dafny cannot automatically prove problem 47 (and neither can ACL2s). However,
problem 47 is verified using problem 23 as a lemma:

ghost method P47() ensures ∀ a • height(mirror(a)) = height(a); {

P23(); // invoke the statement of problem 23 as a lemma

}

(I am unsure whether each problem in the test suite is allowed to use the preceding
problems as lemmas. If so, Dafny also proves this one. Dafny proves each of the other
45 problems independently of each other.)

The other problem of the 47 that Dafny cannot automatically prove is problem 20. It
requires the use of the preceding problem 15 as a lemma, and also requires an additional
case distinction, which needs to be supplied manually:

ghost method P20()

ensures ∀ xs • len(sort(xs)) = len(xs);

{

P15(); // invoke the statement of problem 15 as a lemma

// and manually introduce a case distinction :
assert ∀ ys • sort(ys) = Nil ∨ ∃ z,zs • sort(ys) = Cons(z, zs);

}

The verification of this method requires 0.39 seconds.

5 Induction for Ghost Methods

The lemma expressed by the postcondition of method P19 in Fig. 2 says something
about all n and xs. Alternatively, the following method:

ghost method P19’(n : Nat, xs : List)

ensures len(drop(n, xs)) = minus(len(xs), n);

{ }

states the same property, but just for the particular (but arbitrary) parameters n and xs.
By universal generalization, the two methods express the same thing. Therefore, if the
program verifier can prove P19 automatically, we would expect it also to be able to prove
P19’ automatically.

Dafny’s translation of the method makes this possible: at the beginning of the body
of P19’, it effectively inserts recursive calls to P19’ for all values of the parameters that
satisfy the method’s precondition (here, just true) and are smaller than the given n,xs.
This induction translation for methods is analogous to the Induction Translation for
quantifiers, and the heuristic for when to apply this method translation is also analogous
to the Induction Heuristic for quantifiers. Two differences are noteworthy. One is that
the “smaller” ordering on parameter values is determined by the method’s (implicit or
explicit) variant expression (see [19]), as required for the recursive calls to terminate.
The other difference is that instead of inserting an induction-hypothesis antecedent, the
induction translation for methods inserts code. Inserting that many calls could severely
degrade the performance of a program, but Dafny performs this translation only for
result-less effect-free ghost methods, so there is no impact on the program’s run-time
performance.

ghost method Lemma_RevConcat(xs : List, ys : List)

ensures reverse(concat(xs, ys)) = concat(reverse(ys), reverse(xs));

{

match (xs) {

case Nil ⇒ assert ∀ ws • concat(ws, Nil) = ws;

case Cons(t, rest) ⇒
assert ∀ a,b,c • concat(a, concat(b, c)) = concat(concat(a, b), c);

} }

Fig. 3. A lemma about the list reversal and concatenation operations (whose standard recursive
definitions are elided from the figure). Dafny automatically verifies the two assert statements and
the postcondition, which altogether require 3 appeals to induction.

Thanks to the induction translation for methods, P19’ verifies as given above (in
0.01 seconds). A more interesting example, which illustrates the induction translation
for both quantifiers and methods, is shown in Fig. 3. First, the proof of the postcondi-
tion requires the properties that Nil is a right unit of concat (first assert) and that concat
is associative (second assert), both of which are handled by the Induction Translation.
Second, the proof of the postcondition requires induction on xs (in particular, it requires
knowing the postcondition for rest,ys in the Cons case), which is handled by the induc-
tion translation for methods. Method Lemma_RevConcat is verified as given in the figure
in 0.10 seconds.

6 Conclusion

In conclusion, the simple and straightforward (some may say brute force) approach of
inserting induction-hypothesis assumptions at heuristically chosen points in the verifi-
cation conditions passed to the SMT solver seems to be a win. Without unduly cluttering
up the source program, it automatically sets up the induction for the SMT solver, and
the SMT solver seems to do well at discharging the resulting proof obligations. The
soundness of the approach is justified by a simple appeal to the Induction Principle.

The tactic performs on par with one serious participant in the quest for automatic
induction, and yet is far simpler. The tactic introduces SMT solvers as a powerful
workhorse in the arena of induction solvers.

I have described the induction tactic as used in a program verifier. However, the
same tactic could be implemented in other settings, for example in a full-fledged proof
assistant, perhaps as part of Isabelle’s “sledgehammer” tactic [4].

Approaches to automatic induction are often accompanied by techniques for lemma
discovery. It would be interesting to investigate how they could be incorporated in the
context of an SMT solver or a program verifier like Dafny.

Acknowledgments I am grateful to Will Sonnex, Sophia Drossopoulou, and Susan Eisenbach
for their inspiring work on Zeno and for their encouraging comments. Thanks also to Bart Jacobs
and Jan Smans who, during a recent visit of mine to Leuven, joined in a stint to learn more about

automatic induction by rolling up their sleeves and coding up a little prototype solver. That effort
led to me to wanting better support for induction in Dafny, which in turn led to the work presented
in this paper. I appreciate the valuable comments by Jean-Christophe Filliâtre and the referees on
an earlier version of this paper. Finally, I am indebted to Michał Moskal for serving as a sounding
board for the ideas herein.

References

0. Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Systematic Introduction.
Graduate Texts in Computer Science. Springer-Verlag, 1998.

1. Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In FMCO 2005, volume
4111 of LNCS, pages 364–387. Springer, 2006.

2. Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt. Verification of Object-Oriented
Software: The KeY Approach, volume 4334 of LNAI. Springer, 2007.

3. Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development,
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science.
An EATCS Series. Springer, 2004.

4. Sascha Böhme and Tobias Nipkow. Sledgehammer: Judgement day. In Automated Reason-
ing, volume 6173 of LNCS, pages 107–121. Springer, 2010.

5. Robert S. Boyer and J Strother Moore. A Computational Logic. ACM Monograph Series.
Academic Press, 1979.

6. Alan Bundy, David Basin, Dieter Hutter, and Andrew Ireland. Rippling: Meta-level Guid-
ance for Mathematical Reasoning, volume 56 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2005.

7. Harsh Raju Chamarthi, Peter C. Dillinger, Panagiotis Manolios, and Daron Vroon. The
ACL2 Sedan Theorem Proving System. In TACAS 2011, volume 6605 of LNCS, pages 291–
295. Springer, 2011.

8. Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach, Michał Moskal,
Thomas Santen, Wolfram Schulte, and Stephan Tobies. VCC: A practical system for ver-
ifying concurrent C. In TPHOLs 2009, volume 5674 of LNCS, pages 23–42. Springer, 2009.

9. Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In TACAS 2008,
volume 4963 of LNCS, pages 337–340. Springer, 2008.

10. David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for program
checking. Journal of the ACM, 52(3):365–473, 2005.

11. Jean-Christophe Filliâtre and Claude Marché. The Why/Krakatoa/Caduceus platform for de-
ductive program verification. In CAV 2007, volume 4590 of LNCS, pages 173–177. Springer,
2007.

12. Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank
Piessens. VeriFast: A powerful, sound, predictable, fast verifier for C and Java. In NASA
Formal Methods, volume 6617 of LNCS, pages 41–55. Springer, 2011.

13. Bart Jacobs, Jan Smans, and Frank Piessens. VeriFast: Imperative programs as proofs. In
VSTTE workshop on Tools & Experiments, 2010.

14. Moa Johansson, Lucas Dixon, and Alan Bundy. Case-analysis for Rippling and inductive
proof. In ITP 2010, volume 6172 of LNCS, pages 291–306. Springer, 2010.

15. Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-Aided Reasoning:
An Approach. Kluwer Academic Publishers, 2000.

16. Donald E. Knuth. The Art of Computer Programming, vol. II: Seminumerical Algorithms.
Addison-Wesley, 1969.

17. K. Rustan M. Leino. This is Boogie 2. Technical report, Microsoft Research, 2008.
18. K. Rustan M. Leino. Specification and verification of object-oriented software. In Engi-

neering Methods and Tools for Software Safety and Security, volume 22 of NATO Science
for Peace and Security Series D: Information and Communication Security, pages 231–266.
IOS Press, 2009. Summer School Marktoberdorf 2008 lecture notes.

19. K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness. In
LPAR-16, volume 6355 of LNCS, pages 348–370. Springer, 2010.

20. K. Rustan M. Leino and Philipp Rümmer. A polymorphic intermediate verification lan-
guage: Design and logical encoding. In TACAS 2010, volume 6015 of LNCS, pages 312–327.
Springer, 2010.

21. K. Rustan M. Leino, James B. Saxe, and Raymie Stata. Checking Java programs via guarded
commands. In Formal Techniques for Java Programs, Technical Report 251. Fernuniversität
Hagen, 1999. Also available as Technical Note 1999-002, Compaq Systems Research Center.

22. Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT modulo the-
ories: From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). Journal
of the ACM, 53(6):937–977, 2006.

23. Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A prototype verification system.
In CADE-11, volume 607 of LNAI, pages 748–752. Springer, 1992.

24. William Sonnex, Sophia Drossopoulou, and Susan Eisenbach. Zeno: A tool for the auto-
matic verification of algebraic properties of functional programs. Technical report, Imperial
College London, 2011. http://pubs.doc.ic.ac.uk/zeno/.

25. Christoph Walther and Stephan Schweitzer. About VeriFun. In CADE-19, volume 2741 of
LNCS, pages 322–327. Springer, 2003.

26. Karen Zee, Viktor Kuncak, and Martin Rinard. Full functional verification of linked data
structures. In PLDI 2008, pages 349–361. ACM, 2008.

