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Abstract. Stepwise refinement is a well-studied technique for developing a pro-
gram from an abstract description to a concrete implementation. This paper de-
scribes a system with automated tool support for refinement, powered by a state-
of-the-art verification engine that uses an SMT solver. Unlike previous refine-
ment systems, users of the presented system interact only via declarations in the
programming language. Another aspect of the system is that it accounts for dy-
namically allocated objects in the heap, so that data representations in an abstract
program can be refined into ones that use more objects. Finally, the system uses
a language with familiar imperative features, including sequential composition,
loops, and recursive calls, offers a syntax with skeletons for describing program
changes between refinements, and provides a mechanism for supplying witnesses
when refining non-deterministic programs.

0 Introduction

The prevalent style of programming today uses low-level programming languages (like
C or Java) into which programmers encode the high-level design or informal specifi-
cations they have in mind. From a historical perspective, it makes sense that this style
would have come from the view that what the programming language provides is a de-
scription of the data structures and code that the executing program will use. However,
upon reflection, the style seems far from ideal, for several reasons. First, the gap be-
tween informal specifications to executable code is unnecessarily large, leaving much
room for errors. Second, errors in the informal specifications may best be discovered
by execution, simulation, or property discovery, but such processes cannot be applied
until a machine readable description—here, the low-level code—is in place. Third, pro-
grammers often understand algorithms in terms of pseudo-code, which abstracts over
many nitty-gritty details, but such pseudo-code is confined to whiteboards or the heads
of programmers, rather than being recorded as part of the program text. Fourth, inter-
esting software goes through considerable evolution, which includes the introduction of
various optimizations; these usually take the place of the old code, making them harder
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to understand both when they are being developed (“is this really doing what the un-
optimized code did?”) and when the code is later examined for human understanding.
Fifth, another important fact of program evolution is that it involves multiple develop-
ers, whose introduction to the code immediately takes them into the gory depths of all
the low-level decisions that have been made.

An alternative style of programming uses stepwise refinement, starting from a higher-
level description of what the program is intended to do and then giving various levels
of pseudo-code until the low-level code is in place. This is an old idea due to Dijk-
stra [22] and Wirth [51] and given mathematical rigor by Back [6]. It underwent much
theoretical development during the 1980’s and 1990’s (e.g., [9, 47, 28, 33, 0]), promi-
nently including Carroll Morgan’s work on programming from specifications [45]. The
technique has been successfully applied in practice where program correctness has been
critical (e.g., [2, 18, 42]). Some tool sets, like Rodin [5] and Atelier B [18], support the
refinement process.

To reap the benefits of the refinement process, the intermediate stages of program
development (that is, the various levels of pseudo-code) must be recorded and preserved
in a format that is appropriate for consumption by human engineers as well as analysis
tools. In computer science, we usually refer to such a format as a programming lan-
guage (or modeling language, or specification language). As engineers work with it, the
language and its associated tool set become the engineers’ primary thinking aid.

In this paper, we take refinement closer to important facilities of present-day pro-
gramming and verification.

On the programming side, we use an class-based language, which means that the
various stages of refinement look more like the code programmers are used to writing.
The implementation of a class is often built on other (tailor-made or library-provided)
classes. More precisely, the data of an object is represented by the object’s fields and
by other dynamically created objects accessible from those fields. While this is taken
for granted by programmers, we are aware of only one previous treatment of refinement
that allows abstract fields to be refined in a general way into new objects of instantiable
classes [25].

On the verification side, we integrate automatic verification support, like that found
in leading-edge program verifiers (e.g., [19, 14, 10, 13, 35]), based on a satisfiability-
modulo-theories (SMT)-solver foundation. This means that programmers can focus
more on the program under development with fewer distractions of having to manu-
ally guide a separate proof assistant.

More specifically, our contributions in this paper are:

0. a view of heap-manipulating code, based on a model of memory permissions, that
allows refinement steps to introduce new object instances in data representations

1. a checking algorithm that encodes refinement proof obligations (as input to an au-
tomatic verification engine) to harness the power and automation provided by an
SMT solver

2. facilities in the language for describing a refinement in terms of the differences
from the previous refinement and for supplying an abstract witness when coupling
relations are non-deterministic
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3. a prototype implementation as an extension of the language and verifier Chal-
ice [37, 38], which uses the Boogie verification engine [40] and the Z3 SMT solver
[21].

In Sec. 1, we review refinement, using an example in our refinement system. We
then describe a problem that arises when trying to introduce instances of a reusable
class as part of the data representation of another object. In Sec. 2, we review the model
of memory permissions in Chalice and then present how we use that model to provide
a sound solution to the data-refinement problem. We describe our syntactic skeletons
facility in Sec. 3 and our checking algorithm in Sec. 4.

1 Introductory Examples

Intuitively, to say that a program A is refined by a program B is to say that for any
context where A’s behavior is acceptable, substituting B for A would also make for
acceptable behavior. In other words, B’s behavior is acceptable wherever A’s behavior
is. We take the behavior of a program to be what can be observed by relating its possible
pre- and post-states, and in this paper we ignore issues of termination. In our setting, a
class is refined by another if all its methods are refined by the corresponding methods of
the other class. Consequently, the compiler or user can freely choose to replace a class
by one of its refinements, while maintaining the correctness of the program as a whole.

In Sec. 1.0, we review refinement by walking through an example development of
a program in our system. The refinement steps will be familiar to anyone acquainted
with stepwise refinement; the example gives us the opportunity to showcase how one
works with our system. The example is also available in video form as an episode
of Verification Corner.0 In Sec. 1.1, we describe a problem with data refinement and
objects.

1.0 Algorithmic Refinement

Top-Level Description Let us write a procedure that computes whether or not a given
sequence has any duplicated elements. We introduce the procedure as a method in a
class, as one would in an object-oriented language.

The initial description of the behavior of this method can be given as a pre- and post-
condition specification à la Eiffel [43], the precondition describing when the method is
defined and the postcondition describing its effect. However, there are cases where it is
more straightforward to describe the effect using a method body. In Fig. 0, we use the
latter option (with a trivial, and hence omitted, precondition true).

A sequence in our language is a mathematical value, just like booleans and integers.
A sequence subscripted by a single index returns that element of the sequence; sub-
scripted by an interval, it returns the subsequence consisting of the specified elements.
Sequence indices start with 0, the length of a sequence s is denoted |s|, and s[i := e]
(used later) denotes a sequence like s except that element i has the value e. Every in-
terval [a..b] is half-open, that is, it denotes the integers x that satisfy a 6 x < b. The

0 http://research.microsoft.com/verificationcorner
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class Duplicates0 {

method Find(s: seq<int>) returns (b: bool)
{

b := exists i in [0..|s|] :: s[i] in s[0..i];

}

}

Fig. 0: An initial description of a method that checks for duplicate elements in given
sequence. The method Find has an in-parameter s and an out-parameter b.

existential quantifier in the specification statement in Fig. 0 can be read as “there exists
an index i in the range from 0 to less than the length of s, such that element i of s also
occurs among the first i elements of s”. In other words, the existential evaluates to true
iff s has a duplicate element.

Because this is the initial description of our method, there is nothing to verify, other
than the well-definedness of the operations used. In particular, there is no check that
this actually describes the program we have in mind. However, since this description is
clearer than, say, an optimized program with loops, a human may stand a better chance
of proof reading this description.

In summary, the thing to notice about our program’s initial description in Fig. 0 is
the emphasis on what is to be computed, not how it is computed.

Introducing a Loop A compiler may or may not be able to compile the existential
quantifier we used in the body of Find, and it is unlikely to compile it efficiently. So,
let’s help it along. Figure 1 introduces a class whose Find method refines the one in
Fig. 0. To reason about the loop, we supply a loop invariant; our system checks the
invariant to hold on entry to the loop and to be maintained by the loop body. The loop
invariant and the negation of the loop guard imply that b will end with the same value
as in Fig. 0, hence establishing the correctness of the refinement.

The transformation from Fig. 0 to Fig. 1 offers two key benefits to programmers.
First, both versions of the program remain part of the program text. This means that
someone trying to understand the program can start by studying the more abstract de-
scription in Fig. 0 and then move to the more concrete description in Fig. 1. Second, our
system verifies the correctness of the transformation (in less than 0.05 seconds). This
checks the refinement step to be correct; furthermore, it ensures that future changes to
either Fig. 0 or Fig. 1 will keep the two in synch. The proof does not come entirely for
free, since loop invariants have to be supplied by the user, but in contrast to previous
refinement tools, the interaction stays at the level of the program and the user never
issues any commands to the underlying theorem prover.

Adding an Efficient Data Structure The method in Fig. 1 still contains a point of in-
efficiency, namely the assignment to c. Let’s do another refinement, this time adding (in
the jargon, superimposing) a sequence of booleans that keeps track of which numbers
have been encountered so far.
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class Duplicates1 refines Duplicates0 {

refines Find(s: seq<int>) returns (b: bool)
{

var n := 0;

b := false;
while (n < |s|)

invariant 0 6 n ∧ n 6 |s|;

invariant b <==> exists i in [0..n] :: s[i] in s[0..i];

{

var c := s[n] in s[0..n];

b := b ∨ c;

n := n + 1;

}

}

}

Fig. 1: A refined Find method, where the specification statement in Fig. 0 has been
replaced by code that uses a loop.

To simplify matters, we will add a restriction to our original program, limiting the
elements of s to be among the first 100 natural numbers, as expressed by the following
precondition:

requires forall i in s :: i in [0..100]; (0)

This going back to and changing the original description is common in practice, be-
cause all necessary restrictions may not be evident at the onset of the program develop-
ment [2].

Figure 2 shows the new refinement. It uses the keyword transforms for method
Find, which allows us to transform the method body at the level of its statements. (The
keyword refines we used in Fig. 1 is a special case of transforms that says the entire
method body is being replaced.) The body of Find in Fig. 2 uses a skeleton syntax
that we will describe in Sec. 3. Essentially, a skeleton keeps the structure of if and
while statements (but does not syntactically repeat guards or invariants), has the option
of replacing (keyword replaces) various update statements, can add (superimpose)
new statements, and uses “_” as a wildcard denoting other statement sequences of the
method body being transformed.

Our refinement introduces bitset as a sequence of 100 booleans, all initially false
(i.e., initially, true is not in the sequence, which we conveniently express here using a
specification statement [45]). The loop body sets element s[i] of bitset to true, thus
maintaining the properties that are recorded as loop invariants: the length of bitset
remains 100, any element s[i] encountered so far has been recorded in bitset, and
anything recorded in bitset has been encountered in s.

With these properties of bitset, we are able to replace the assignment of c with
a simpler assignment statement. When the refinement in Fig. 2 is verified, the loop
invariants in Fig. 1 do not need to be re-verified and neither does the postcondition that
was verified in Fig. 1. In this way, refinement localizes proof obligations.
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class Duplicates2 refines Duplicates1 {

transforms Find(s: seq<int>) returns (b: bool)
{

_

var bitset: seq<bool> [|bitset| == 100 ∧ true !in bitset];

while
invariant |bitset| == 100;

invariant forall j in [0..100] :: bitset[j] <==> j in s[0..n];

{

replaces c by {

var c := bitset[ s[n] ];

}

bitset := bitset[s[n] := true];
_

}

}

}

Fig. 2: A further refinement of Find, introducing a sequence of booleans that keep track
of which numbers have been encountered so far by the loop. The correctness of the
code relies on including precondition (0) in the original description of Find in Fig. 0.
The occurrences of “_”, and also the while statement without a loop guard, are concrete
syntax in our language and stand for the corresponding pieces of code in the method
being transformed.

Summarizing the Example This concludes our introductory example. One can imag-
ine further refinements, such as changing bitset from being a sequence to being an
array (to avoid the costly sequence-update operation in the loop in Fig. 2, or terminat-
ing the loop as soon as b is set to true, or avoiding the loop altogether if the length of
s exceeds 100).

Given Figs. 0, 1, and 2 and the precondition (0), our system performs the verification
automatically in about 1 second.

1.1 Data Refinement

The previous example did not involve the heap. Our next example does. We review
the idea of data refinement and demonstrate an important problem that occurs in the
presence of pointers and instantiable object libraries [25].

Our motivating example comes in three pieces: a class, a client of the class, and
a refinement of the class. If a sound refinement system verifies these pieces, then one
can replace the client’s use of the class by the refined class. In our example, such a
replacement would lead to a run-time error, which tells us that soundness requires the
refinement system to report some error. The question is then where the error is to be
detected and reported during verification.

The class we consider is a simple counter, see Fig. 3. Method Get() returns the
current value of the counter and Inc() increments it. The somewhat mysterious method
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class Counter {

var n: int;
method Get() returns (r: int) { r := n; }

method Inc() { n := n + 1; }

method M() returns (r: Cell) { spec r [true]; }

}

class Cell {

var x: int;
}

Fig. 3: A simple class that provides the functionality of a counter, as well as (a rather
unmotivated) method that returns a cell object.

class Client {

method Main() {

var cnt := new Counter;

call a := cnt.Get();

call cell := cnt.M();

cell.x := 12;

call b := cnt.Get();

assert a == b;

}

}

Fig. 4: An example client of the code in Fig. 3. This code is correct only if the asserted
condition will always evaluate to true.

M() is described as returning any Cell object, where Cell is another class shown in the
figure. The specification statement in the body of M() says to set r to any value satisfying
the condition in brackets. It seems reasonable that a verification system would consider
classes Counter and Cell to be correct.

In Fig. 4, we show a client of the Counter class. It allocates a Counter object.
Then, it calls Get() twice and checks, with an assert statement, that the counter was
unchanged. Between the two calls to Get(), it obtains a Cell via the M() method and
sets the cell’s x field to the arbitrary value 12.1 Here is one way one might argue for
the correctness of the client: the description of M() says that the only effect of M() is
to set its out-parameter, updating cell.x has no effect on cnt.n (after all, x and n are
different fields and cell and cnt are not aliased since they point to objects of different
types), and therefore the correctness of the assert follows from the description of Get().

In Fig. 5, we show a refinement of class Counter. It superimposes a field c, sets
c to a new (dynamically allocated) Cell object, and maintains the coupling invariant

1 If the direct access of field x in class Client bothers you, you may consider our same class but
with a SetX method in Cell.



8

class CCounter refines Counter {

var c := new Cell;

refines Get() returns (r: int) { r := c.x; }

refines Inc() { c.x := c.x + 1; }

refines M() returns (r: Cell) { r := c; }

}

Fig. 5: A sketch of a class to refine the behavior of Counter in Fig. 3. Class CCounter
implements n in Counter by c.x.

n == c.x. This kind of data refinement, where one data representation is replaced by
another, has been studied extensively (e.g., [31, 45, 28]), but—surprisingly—not much
in the presence of pointers and dynamic storage. In our example, which uses pointers
and dynamic storage, one might argue that CCounter is a correct refinement of Counter
as follows (for now, we ignore some issues, like initialization): Whatever Get() and
Inc() did with n in Counter, they now do with c.x in CCounter; moreover, Counter
says nothing about which Cell is returned by M(), giving CCounter total freedom in
what it returns.

The problem here is that CCounter fails to be a valid refinement since it cannot be
substituted in place of Counter in Client. We propose a solution to this problem that
relies on the permission model of Chalice. The solution requires more specifications
for the Counter methods. Depending on which specification is chosen for method M(),
Chalice will either blame the client or the refinement.

2 Heap Refinement

The memory model that underlies our heap-aware refinements uses permissions [15]
and implicit dynamic frames [49]. This model forms a core of the language and verifier
Chalice [37, 38], into which we have incorporated our refinement system. Chalice and
our extensions are available as open source2 and can be run either from the command
line or from within the Microsoft Visual Studio IDE.

2.0 Permissions

A heap location is identified by an object-field pair. Heap locations have associated
access permissions, which can be transferred between activation records (i.e., method-
invocation instances and loop iterations) in a running program. Every heap-location
access (i.e., read or write) requires the current activation record to have sufficient per-
missions for the access. Permissions are ghost entities: they can be mentioned in spec-
ifications and are used by the verifier, but they need not be present at run-time in a
verified program.

For example, the Inc method in Fig. 3 reads and writes the field n. As the method is
written in the figure, the Chalice verifier will report an error of insufficient permissions

2 http://boogie.codeplex.com
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for these accesses, because activation records of Inc() have no permissions. To equip
Inc() with permission to access n, one declares a precondition requires acc(n);.
The evaluation of this precondition checks that the caller does indeed have access to
n and then transfers that permission to the callee. In this example, it is also desirable
to return the permission to the caller, which is achieved by declaring a postcondition
ensures acc(n);.

Specifications can mention several access predicates, which are evaluated in order.
For example, suppose a method declares the precondition acc(x) ∧ acc(y). The caller
will then be checked for permission to x, then that permission will be transferred to the
callee, then the permission to y will be checked and transferred.

Permissions can be divided among activation records. Write access requires full per-
mission (100%), whereas any non-zero fraction of the full permission suffices for read
access. Syntactically, a fractional permission is indicated by supplying a second argu-
ment to acc, specifying a percentage of the full permission; for example, acc(x,50)
indicates half of the permission to x. One can also simply write rd(x) to denote a non-
zero permission to x and leave it to the verifier to infer an appropriate fraction; we will
not describe the details here, but see [30].

If, after evaluating the precondition, a caller still has some permission to a heap lo-
cation, then the caller can be sure the callee will not modify the heap location because
the callee will not be able to obtain the full permission. Because of the evaluation order
of predicates, acc(x,50) ∧ acc(x,50) is equivalent to acc(x), since the two fractions
add up to the full permission; and the condition acc(x,80) ∧ acc(x,30) is never sat-
isfiable, since 110% is more than 100%.

Note that all proper fractions grant the same permission to read; 1% and 20% and
99% are all the same in this respect. The reason for keeping track of specific fractions
is so that one can determine if various fractions add up to 100%, which would imply
write permission.

When an activation record allocates a new object, it receives full permission to all
fields of the object. It is possible for a program to squander permissions: any permission
remaining in an activation record after the postcondition has been evaluated is forever
lost, in effect rendering the corresponding heap locations readonly.

Access predicates can only be mentioned in positive positions (e.g., not as an-
tecedents of implications). For more details about permissions in Chalice, see [37, 30].

Consider the Counter example in Sec. 1.1. One way to make it verify is to declare
acc(n) as a pre- and postcondition of Inc() and Get(). (Alternatively, Get() could
use a fractional permission, since it only reads n.) This would also verify the client in
Fig. 4, if it were not for the update of cell.x, for which the client has no permissions.
As it stands, method M() says nothing about the Cell being returned. In particular, it
does not say or imply anything about the permission to this Cell’s x field, and therefore
the verifier will report an error that the client code attempts to modify a heap location
(namely, cell.x) to which it has no permissions.

Alternatively, if we want callers of M() to be able to (read or) modify the x field of
the Cell returned, we can change M() accordingly:

method M() returns (r: Cell)
ensures acc(r.x);
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{ spec r [acc(r.x)]; }

This postcondition gives the caller full permission to r.x, and thus Client verifies.
Note that we also updated the specification statement in the body of M(), which now
says to pick not just any Cell for r, but one for which full permission of x is available,
and thus Counter verifies.

2.1 Coupling Invariants for the Heap Refinement

In our running example, the field n of Counter is represented with c.x in the refine-
ment. The relationship between the abstract location n and the concrete location c.x is
captured in the coupling invariant declaration inside the refinement class CCounter

replaces n by acc(c) ∧ acc(c.x) ∧ n == c.x (1)

The latter part of the formula is the familiar logical equality. The former part is
unique to Chalice’s permission system. Intuitively, this coupling invariant grants CCounter
a license to trade permissions to access n for permissions to access c and c.x, appro-
priately scaled. Given such a license, the body of method Inc may write the field c.x,
since it has full access to n, which, by virtue of the coupling invariant, warrants full
access to c.x.

Let’s go back to the CCounter example. As written in Fig. 5, the refinement of M fails
to verify since assignment r := c has insufficient permissions to read c. Now imagine
that we add the precondition acc(n) to M in class Counter (we cannot add acc(c)
directly, since c is declared in the refinement). We should also add the postcondition
acc(n) or, otherwise, the client is not able to inspect n after making a call to M:

method M() returns (r: Cell)
requires acc(n);
ensures acc(n) ∧ acc(r.x);

However, even with these permissions in place, the refinement M fails to verify since
both acc(n) and acc(r.x) individually imply full access to c.x. Since the postcondi-
tion is never satisfiable, our tool reports that CCounter does not refine Counter.

3 Surface Syntax

In this section, we present our extensions to the syntax of Chalice [38] to support pro-
gram refinement. These extensions include class and method refinement declarations,
coupling invariants, and program structure skeletons.

3.0 Class refinement

We extended the syntax of Chalice with a declaration for class refinement:

class B refines A { . . . }
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This declaration introduces class B as a refinement of class A. We refer to B as a
concrete class and to A as an abstract class in the context of this refinement (A may in
turn be a refinement as well). For B to be a valid refinement of A, it must satisfy the
following three conditions:

0. Every declared member of A is present in B. B may refine a subset of methods of
A but the rest are carried over to B. Similarly, fields of A are also fields of B. B
may add methods which are not present in A and may superimpose fields.

1. B may declare a class-wide coupling invariant I to simultaneously replace fields
fi of A:

replaces f1, . . . , fk by I

The access predicates inside I are split evenly between fi. The coupling invari-
ant grants an activation record with write access to a field fi, a k-th fraction of
permissions to the concrete representation.

2. B may declare a method m to be a refinement of a method m in A using either
refines or transforms keywords instead of the method keyword.

It is often the case that individual methods of a concrete class require only a small
number of changes to select statements of the corresponding method of the abstract
class. The programmer’s insight to deriving such a concrete, refined implementation can
often be expressed as a set of transformation rules that introduce new statements and
substitute parts of the abstract program. The example in Fig. 6 demonstrates one such
scenario: the real insight behind this refinement is the mathematical identity

∑n
i=0 i

3 =

(
∑n

i=0 i)
2 that lets one compute a sum of cubes with a single multiplication. To verify

this optimization, a programmer needs to introduce a new local variable t and estab-
lish coupling with the variable s using a loop invariant. This transformation can be
succinctly expressed in Chalice as a skeleton in Fig. 6b.

Skeleton methods such as the one in Fig. 6 are declared using keyword transforms.
Fig. 1 shows another way to declare a refined method. The refines keyword is used to
mark a method that substitutes the entire code in the abstract method by concrete code
supplied by the declaration.

3.1 Skeletons

Skeletons are transformation rules that are composed of code navigation and rewrite
operations. Given an abstract program, a skeleton serves as a template that is filled in
by statements taken from the abstract program. It does so by pattern matching control
flow of the abstract program against a set of pre-defined primitive substitutions.

Abstractly, a skeleton is a partial function from an abstract syntax tree (AST) of an
abstract program to an AST of the concrete program. Since a skeleton maintains the
original control flow structure, it helps us to think of each statement of the resulting
program as being one of:

– a normal statement
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method compute(n)
requires n > 0;

{
var i := 0;
var s := 0;
while (i < n)
invariant i 6 n;

{
i := i + 1;
s := s + i*i*i;

}
}

(a) A program that
computes

∑n
i=0 i

3

transforms compute(n)
{
_
var t := 0;
while
invariant s == t*t;
invariant 2*t == i*(i+1);

{
_
t := t + i;

}
}

(b) A skeleton that trans-
forms the original program
in Fig. 6a into the program
in Fig. 6c

method compute(n)
requires n > 0;

{
var i := 0;
var s := 0;

var t := 0;

while (i < n)
invariant i 6 n;

invariant s == t*t;

invariant 2*t == i*(i+1);

{
i := i + 1;
s := s + i*i*i;

t := t + i;

}
}

(c) A program that es-
tablishes the identity∑n

i=0 i
3 =

(∑n
i=0 i

)2 as
a loop invariant

Fig. 6: Refinement of a program that computes the sum of cubes. The highlighted lines
show the new code in the program in Fig. 6c.

– a refinement block R[A,B], which replaces a sequence A of abstract statements by
a sequence B of concrete statements

– a loop refinement L[I, P ], which adds a loop invariant I to an existing loop and
replaces its body by P

In a well-formed refinement block R[A,B], B declares all the local variables declared
in A. Our checking algorithm benefits from the localized verifications arising from
the fine structural mapping between the abstract and concrete code embodied in these
refinement blocks and loop refinements.

A skeleton S is defined inductively from a set of primitive wild-card skeletons and
sequential composition:

– A skeleton _ is a block pattern that matches any sequence of non-conditional non-
iterative deterministic statements and acts as an identity transformation.

– A skeleton * matches any sequence of statements and acts as an identity transfor-
mation.

– A skeleton replaces * by { B } matches any sequence of statementsA and pro-
duces R[A,B].

– A skeleton if { S0 } matches a single if statement and produces an if statement
with S0 applied to its branch; a skeleton if { S0 } else { S1 } is analogous.

– A skeleton while invariant I { S0 } matches a single while loop and produces
a while loop with an additional loop invariant I and the body P that is obtained by
applying a skeleton S0 to the body of the original loop. We use the notation L[I, P ]
for such a loop refinement.

– A skeleton replaces v by { B } matches any statement A that affects variables
in list v. The resulting refinement block is R[A,B]. This pattern is used to provide
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witnesses to nondeterministic specifications or call statements and to rewrite as-
signment statements. Our checking algorithm resolves angelic non-determinism as
described in Sec. 4.

– A skeleton B consisting of Chalice statements matches only the empty program
and produces R[∅, B].

– A sequential skeleton S0;S1 matches S0 greedily (i.e. consuming as many state-
ments as possible) and then matches S1 against the rest of the program. It produces
a sequential composition of the results of S0 and S1.

Skeletons are partial functions, so that a change in the abstract program could po-
tentially make them inapplicable. In this sense, they are fragile. However, they save
the programmer the work of copying code and offer an effective mechanism of doc-
umenting critical design decisions in code. Even though our matching mechanism is
deterministic, Chalice also lets the programmer inspect the final concrete code after
applying all the skeletons by a command-line switch.

Skeletons are by no means the only way to communicate structural similarity be-
tween concrete and abstract code to our verification algorithm. One could imagine us-
ing statement labels to explicitly map statements or basic support from an integrated
development environment (IDE) that would permit writing refinement blocks visually
as nested code blocks.

4 Checking Algorithm

Our system leverages the power of an automatic reasoning engine, like the collection
of first-order decision procedures available in modern satisfiability-modulo-theories
(SMT) solvers (e.g., [21]), to reason about program refinements. How to produce in-
put for such a reasoning engine is well known (see, e.g., [11]): essentially, one produces
a formula of the form

P ⇒ wp[[B,Q]] (2)

where P andQ are the declared pre- and postconditions of a procedure,B is the body of
that procedure, and wp[[B,Q]] is the weakest precondition of B with respect to Q [23].
If expressions are first-order terms and loops and calls are handled via specifications
(as usual), then (2) will be a first-order formula. However, to verify that a program B
refines a program A, one needs to check that B can be substituted for A in any context,
which is expressed in terms of the weakest preconditions as

(∀Q • wp[[A,Q]] ⇒ wp[[B,Q]] ) (3)

where the quantification ofQ ranges over all predicates [6]. Since this is a second-order
formula, it is not directly suitable as input to an SMT solver.

To express formula (3) in a first-order setting, we apply two techniques. First, mono-
tonicity of the refinement relation with respect to the sequential composition permits
us to prove it locally for isolated statements and blocks of code. A block in the ab-
stract program is matched against its refinement block in the concrete program. Second,
non-deterministic abstract statements are refined separately by refinement blocks that
produce witnesses to such statements.
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method m(b: bool) {

var x;

if (b) {

spec x [0 6 x];

} else {

x := 1;

}

}

(a) Abstract program

transforms m(b: bool) {

_

if {

replaces * by {x := 1;}

} else {

*
}

}

(b) First refinement

refines m(b: bool) {

var x := 1;

}

(c) Second refinement

Fig. 7: Refinement of a non-deterministic program in two steps. To establish refinement
of the program in Fig. 7a by the program in Fig. 7c, Chalice requires the intermediate
program in Fig. 7b, which solely refines the specification statement.

The refinement condition (3) is expressible in a different form that avoids predicate
quantification using a coupling invariant I [27]:

wp[[A,>]] ∧ I ⇒ wp[[B,¬wp[[A,¬I]]]] (4)

In other words, for any execution of B (starting from an initial state satisfying I
and on which A is defined), there is a possible angelic execution of A such that I is
reestablished in the final states of B and A. If A is deterministic, then any execution is
angelic and we can cancel the double negation in formula (4), and simplify it to:

wp[[A,>]] ⇒ wp[[assume I;B;A; assert I,>]] (5)

Here,A andB operate in disjoint state spaces, but their initial and final states are paired
using I . We have already mentioned how I is declared for the superimposed heap lo-
cations using the replaces keyword. The local variables of A are bound to the local
variables of B via logical equality. The superimposed local variables in program B are
left unconstrained by I .

If the program A is non-deterministic, then formula (5) is a sound but not com-
plete characterization of refinement. Chalice provides two ways to introduce (demonic)
non-determinism into a program: specification statements and call statements. Both are
specified using declarative pre- and postconditions. Verifying refinement of a single
non-deterministic statement A by a program B amounts to extracting witnesses from
B that satisfy the postcondition of A. To provide such witnesses, the program B must
assign to the abstract variables that are constrained by the postcondition of A within
the refinement block, in which case it suffices to check that the assigned values (which
might be demonically non-deterministic) satisfy this postcondition at the end of the
block. We have imposed a restriction that non-deterministic statements must be refined
individually since Chalice uses automated first-order logic provers. A consequence of
this restriction is that refinement of non-deterministic constructions might require mul-
tiple steps, as demonstrated in figure Fig. 7.

In Chalice, programs are structured into classes and methods. To verify that a method
m in a class A is refined in a class B, we check that:
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0. B.m has the same precondition but possibly a stronger postcondition.
1. B.m accepts the same number of inputs as A.m and returns as many outputs plus

possibly more.
2. The body of B.m is a refinement of the body of A.m.

The surface syntax (see Sec. 3) allows us to compute the correspondence between
abstract statements of A.m and concrete statements of B.m. Once code substitutions are
localized to the disjoint refinement blocks R[P,Q] and loop refinements L[I, P ], Chal-
ice generates a Boogie program C [11, 40] that encodes the refinement condition. Here,
P is a block of code within the body of A.m, Q is the replacement block of code in the
refinement B.m, and I are new loop invariants in B.m. Program C takes the same inputs
as A.m and produces the same outputs as B.m. The superimposed fields of class B and
new local variables in B.m are declared in C. Translation then proceeds by inserting
refinement checks into the refinement blocks.

Sequential refinement block R[P,Q] A sequence of statements P in A.m that is a part
of a refinement block is transformed into the following sequence of instructions in the
Boogie intermediate language:

0. Duplicate the state (the heap, the permission mask, and the local variable environ-
ment).

1. Permissions to access the superimposed fields are derived from the permissions of
the replaced fields by splitting the fractional access permissions inside the invariant
evenly among the replaced fields (see the general rule for the replaced fields in
Sec. 3).
The coupling invariant is then scaled by the amount of permissions to the replaced
field held in the primary copy times its share of the invariant, and inhaled into
the secondary copy. The inhale operation in Chalice transfers permissions to the
callee and assumes the truth of the logical condition similar to assume-guarantee
reasoning in the sequential verification [37, 30]. Permissions to access the replaced
fields are analogously exhaled from the secondary copy.

2. Execute Q from B normally using the secondary copy of the state.
3. Execute P from A angelically using the primary copy of the state. Here Chalice

faces a limitation as it is only capable of expressing in Boogie angelic execution
of deterministic programs, call statements, and specification statements. If P is a
single non-deterministic statement, then Chalice replaces P with

Q; assert post[P ]

where post[P ] is the postcondition of P .
4. Check the coupling between the two copies of the state. For the local variables from

A.m, assert the logical equality.
The coupling invariant is scaled again by the amount of permissions to the replaced
field held at the end of P times it share, and exhaled from the secondary copy. The
exhale operation checks that the copy holds sufficient amount of permissions and
asserts the truth of the logical condition.
If there are multiple refinement blocks in B.m, the values of the superimposed fields
and local variables are carried over to the subsequent refinement blocks.
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i := 0; s := 0;
// refinement block
t := 0; . . . // frame
// while
assume i ≤ n; // assert
assert s = (t * t);
assert (2 * t) = (i * (i + 1));
havoc t; havoc s; havoc i;
if (*) {
. . . // check definedness
assume false;

} else {
if (*) {

assume i ≤ n;
assume s = (t * t);
assume (2 * t) = (i * (i + 1));
assume i < n; // loop condition
i := i + 1;
s := s + ((i * i) * i);
// refinement block
t := t + i; . . .
assume i ≤ n; // assert
assert s = (t * t);
assert (2 * t) = (i * (i + 1));
assume false;

} else {
. . . // assume invariants
assume ¬(i < n); // loop condition

}
}

}

Fig. 8: Refinement condition in Boogie of a program for computing the sum of cubes
from Fig. 6.

Loop refinement L[I, P ] Chalice adds assertions to establish the new loop invariant I
at the entrance of the loop and to show that the body P maintains it. The body of the
loop itself might contain refinement blocks and loop refinements.

Figure 8 shows a simplified encoding into Boogie of the refinement of the program
for computing the sum of cubes from Fig. 6. The two additional loop invariants are
assumed at the beginning of the loop body and asserted at the end. The Boogie program
is fed through the Boogie tool’s pipeline and into the automated theorem prover Z3 [21].

Modular refinement Chalice can optionally assume correctness of the abstract program
to prove refinement of the concrete program. All pre-existing assertions of A are elimi-
nated fromC by turning them into assumptions. For example, the loop invariant i 6 n
from the abstract version of the program in Fig. 6 is assumed throughout the encoding
in Fig. 8.

The technique effectively modularizes the verification of the program into refine-
ment steps. We hope that by structuring specifications and code into refinements, we
can also better tackle the verification of programs that without the refinement extension
are challenging to Chalice.
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5 Related Work

Refinement has a rich literature, see for example the references we mentioned in the in-
troduction, and can be described in a beautiful lattice-theoretic framework [9] (and see
also [46]). The idea of reasoning about data structures abstractly and hiding their con-
crete manifestations was used extensively in, for example, SIMULA [20] and CLU [41].
Hoare [31] suggested the use of a coupling invariant (aka representation invariant) to
describe the connection between the abstract and concrete views.

Hoare’s treatment and most subsequent treatments of data refinement (e.g., [33, 45])
do not consider refinements into new objects of previously defined classes. For example,
Mikhajlova et al. [44, 7] consider data refinement in an object-oriented language, but
their coupling invariants only relate the fields in a class and a subclass, not any other
objects in the heap accessible via those fields. Similarly, Grandy et al. use the KIV tool
to do refinement for Java programs, but the concrete programs contain all new classes,
not instances of previously defined classes [26].

As far as we know, only Filipović et al. have spelled out and tackled the general
problem of data refinements into dynamic storage before [25]. We have reached the
same conclusions as they, that a client is not allowed to update a heap location just
because it is able to reach that heap location. That is, just because a client is able
to compute an address in the heap (even if the programming language can guarantee
something about the type of the value stored in that heap location, which is the case
for cell.x in Fig. 4) does not mean the client is allowed to access that heap location.
When no pointers are involved, it is reasonable to restrict the concrete representation
used in a data refinement to variables or fields introduced as part of the refinement. But
to let the concrete representation include instances of previously declared classes, it is
necessary to generalize the notion of “variables used by the concrete representation”
to “heap locations used by the concrete representation”. Both Filipović et al. and we
achieve this.

The biggest difference between the work of Filipović et al. and ours lies in how
the coupling relation is provided. In particular, we make the coupling invariant part of
the concrete program text, and we make it explicit which abstract variables are being
replaced. Also, our work includes an implementation in a tool.

Jones’s work on πoβλ includes data refinement and does allow the concrete pro-
gram to allocate and make use of new objects of previously defined classes [32]. How-
ever, this is achieved by the draconian rule that an object reference is not allowed to
passed “over” another, meaning that methods cannot take object references as in- or
out-parameters.

Several tools are available for refinement. The Rodin tool set [5] includes an im-
pressive assortment of development and testing facilities. At its core is the Event-B
formalism [3], which in turn draws from action systems [8]. The executable part of an
Event-B program consists of a set of guarded multi-assignment statements. This makes
refinement checking much simpler than if the events had a more complex structure. De-
signed to handle concurrency, sequential control flow has to be encoded manually by
introducing state variables. In contrast, our language uses common programming con-
structs like sequential composition, if and while statements, and method calls. While
pointers and fields can be encoded in Event-B (e.g., [1]), it does not facilitate refine-
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ments that introduce new objects of previously defined classes. Rodin provides a slick
IDE in Eclipse. Its proof assistant is mostly automatic, but frequently requires some
manual interaction with the proof assistant.

Atelier B [18] is a refinement tool set that supports both the Event-B and B for-
malisms [0]. In B, programs are sequential and hierarchically structured, like in Ada.
Indeed, once programs have been refined into sufficient detail, the system can produce
executable Ada or C code. Atelier B and its support tools have been put to impressive
use [2]. As in Rodin, it does not facilitate refinements that introduce new objects of
previously defined classes, and conducting proofs requires manual interaction with the
proof assistant.

Perfect Developer is a refinement-based language and IDE for developing object-
oriented programs [24]. Its strength lies in inlining objects (i.e., treating classes as
records), where the well-studied rules for data refinement apply. One can also use a
mode where objects are instead accessed via pointers (as usual in object-oriented pro-
grams), but then its custom-built prover, which is automatic and does not permit manual
intervention, can easily get stuck [16]. In this mode, the support for and soundness of
refinement into new objects is not clear to us.

While research on refinement has not focused on how object references are intro-
duced and used, a lot of verification research, especially in the last decade, has. The
central problem occurs when two objects are abstractly aliased [39], meaning that one
is used as part of the internal representation of the other. In such cases, a modification
of one object can affect the other, and a verification system must be able to detect or
prevent such possibilities.

For this purpose, there are specification and verification techniques like owner-
ship (e.g., [17]), dynamic frames [34], separation logic [48], and implicit dynamic
frames [49]; for a comparison of these techniques, see [29]. The condition that describes
the consistent states of an object’s data representation is called a class invariant [43]. In
verification, it becomes necessary to keep track of whether or not a class invariant holds,
which, due to the possibility of reentrancy, is not necessarily just the boundaries of pub-
lic methods [12]. The frame of a method describes which parts of the program state the
method may modify. In verification, it is also necessary to know the frames of methods,
because the frame of an object is not necessarily entirely hidden from clients. Class
invariants and framing complicate the specifications one has to write to do verification.

For refinement, there is hope that these specifications can be made simpler. The
reason is that in the abstract view of a program, the representation of an object is not
yet conceived, and therefore there is no abstract aliasing, class invariants do not relate
the fields of multiple objects, and frames are just subsets of the abstract variables.

In recent work, Tafat et al. [50] consider data refinement in an object-oriented lan-
guage. Building on a specification methodology that uses ownership, they treat the ab-
stract state as model fields [36] and propose a syntax for specifying abstract witnesses
when a non-deterministic coupling invariant is used. They limit refinements to one step,
between an abstract level given as a pre- and postcondition specification and a concrete
level given as code. The up-side of this limitation is that it makes it easier to generate
first-order verification conditions, since a formula like P ⇒ wp[[S,Q]] can be used. In
their setting, it is necessary to include preconditions that say whether or not class in-
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variants hold, so the hope that specifications may become simpler than for verification
is not fully realized. They do not provide an extensive treatment of framing.

Finally, we mention that Event-B also has a syntactic construct for specifying a
witness when an event is refined [4].

6 Conclusions

We have presented a refinement system that allows objects to be refined into aggregate
objects and whose reasoning engine is built on a powerful SMT solver. The language
uses features common in object-oriented languages, coupling invariants can mention
multiple objects, it is possible to supply abstract witnesses for non-deterministic cou-
pling invariants, and refinement steps can be prescribed using a duplication-saving syn-
tax of code skeletons.

We have implemented a prototype checker by incorporating the refinement features
in Chalice. In the future, we would like to gain more experience with this prototype.

Our work also suggests some other research to be done. It would be interesting
to explore the possibility of including language features like instantiable classes in a
well-developed refinement tool like Rodin. The language and specifications in Chalice
were designed to support concurrency, so we imagine that it would be interesting to
combine those features with refinement. Finally, we expressed a hope that refinement
specifications could work out to be simpler than the specifications one needs for more
traditional verification; we would love to see that issue resolved in the future.
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