Specification and Verification of
Object-Oriented Software

K. Rustan M. LEINO

Microsoft Research, Redmond, WA, USA
leino@microsoft.com

Abstract. The specification of object-oriented and other pointer-based programs
must be able to describe the structure of the program’s dynamically allocated data
as well as some abstract view of what the code implements. The verification of
such programs can be done by generating logical verification conditions from the
program and its specifications and then analyzing the verification conditions by a
mechanical theorem prover.

In these lecture notes, I present an object-based language, Dafny, whose specifi-
cations use the style of dynamic frames. I show how to write and specify programs
in Dafny. Most of the material is devoted to how to build a first-order automatic
program verifier for Dafny programs, generating the verification conditions as input
to an automatic satisfiability-modulo-theories solver.

Keywords. Automatic program verification, program specification, information
hiding and abstraction, objects and dynamic allocation, dynamic frames, Dafny

0. Introduction

A system for specifying, writing, and verifying programs has many components. One
component is the programming language itself and the specification constructs it con-
tains. In some cases, specifications are not part of the program, but are provided sep-
arately. Another component is the compiler, which generates executable code from the
program. Yet another component is the program verifier, which itself can include a sub-
component that formalizes the semantics and proof obligations of the program, a sub-
component that generates logical formulas, called verification conditions, from the for-
malization, and a subcomponent, called the theorem prover, that analyzes the verification
conditions and searches for proofs or counterexamples. In these lecture notes, I describe
a system with the components mentioned here, but I omit a description of the compiler
and theorem prover. After following these lecture notes, you should be able to build your
own basic program verifier for your own language.

In each component and subcomponent, the system designer makes many choices.
In order to cover a whole system, I will make a particular set of design choices in these
lecture notes. There are many other choices already in existence, and future research is
likely to invent and explore new choices.

The choice I make for the programming language is to include some basic fea-
tures found in imperative languages that allow references (pointers) to dynamically al-
located data. The language, which I call Dafny, is type safe and centers around simple

2 K.R.M. Leino / Specification and Verification of OO Software

classes. I omit higher-order features like lambda terms (closures) and map-reduce oper-
ations. Other facilities, like additional statements, exceptional control flow, immutable
data structures, generic types, subclassing, unsafe memory operations, and various con-
currency features can be designed as variations of what I present. Figure 0 shows a Dafny
program that implements a linked list.

The choice I make for specifications is based on dynamic frames [28]. Dynamic
frames provide a flexible style of describing classes built in layers, where one object
is implemented in terms of other, more primitive objects. The effect of using dynamic
frames on the specification features required in the language is modest. Although they
can be a little verbose, specifications tend to be highly stylized. Experience with the
dynamic-frames style will reveal common specification idioms for which one can invent
terser syntax (e.g., [57]), possibly at the loss of flexibility.

The choice I make for formalizing the semantics and proof obligations of the lan-
guage is to translate the language into an intermediate verification language. The inter-
mediate language is called Boogie [36,4], of which I will describe the features we need.
Just like compiler writers have found it desirable to separate concerns in the compila-
tion process by using an intermediate representation (sometimes more than one) (cf. [1]),
builders of automatic program verifiers have also found that an intermediate language
separates concerns in the process and lends itself to a componentized design of the pro-
gram verifier [42,4,21].

The choice I make for generating verification conditions from the intermediate pro-
gram is weakest preconditions [17,48]. In a practical system, there are several important
optimizations to make in this subcomponent of the system [23,35,6,37], but the unop-
timized version I will cover is still adequate for verifying many programs. I use weak-
est preconditions that let us prove that programs avoid irrecoverable errors, but I ignore
issues of program termination.

My presentation stops at the level of verification conditions, and I will not describe
the theorem provers that analyze these formulas. There are several good satisfiability-
modulo-theories (SMT) solvers that can be used by automatic program verifiers ((e.g.,
[15,9,14]), and such provers can be used as off-the-shelf components. In fact, the step
of generating verification conditions from the intermediate language can also be done by
existing tools (like the Boogie tool [4] and the Why tool [19]), which further justifies
spending fewer words on that part in these lecture notes.

In these lecture notes, I start in Fig. 1 by presenting some example programs written
in Dafny, which gives a flavor of the kinds of programs we aim to write a verifier for. The
example programs show the dynamic-frames style of specifications in Dafny. Starting
in Section 2, I turn to the definition of the verifier itself, starting bottom up: Sections 2
and 3 introduce the intermediate language Boogie and its weakest preconditions, and
Section 4 presents the source language Dafny in more detail and defines its semantics as
a translation of its classes, fields, methods, and functions into Boogie.

The general ideas and many details of the translation apply to a variety of object-
based languages. The streamlined support of dynamic-frame specifications in Dafny
comes from its modifies and reads clauses, which frame the modifications of meth-
ods and dependencies of functions; from the well-definedness checks imposed on func-
tions, which build on the frames; and from the stylized use of set-valued (ghost) fields in
specifications.

K.R.M. Leino / Specification and Verification of OO Software

class Data { }

class Node {
var list: seq<Data>;
var footprint: set<Node>;

var data: Data;
var next: Node;

function Valid(): bool
reads this, footprint;
{
this € footprint A =(null € footprint) A
(next = null = list = [data]) A
(next # null =
next € footprint A next.footprint C footprint A
—(this € next.footprint) A
list = [data] + next.list A
next. Valid ())
}

method Init(d: Data)
modifies this;
ensures Valid () A fresh(footprint — {this});
ensures list = [d];

data

list
}

method SkipHead () returns (r: Node)
requires Valid ();

d; next := null;
[d]; footprint := {this};

ensures r = null = |list| = 1;
ensures r # null = r.Valid() A r.footprint C footprint;
ensures r # null = r.list = list[1..];
{
r := next;
}

method Prepend(d: Data) returns (r: Node)
requires Valid ();
ensures r.Valid() A fresh(r.footprint — old(footprint));
ensures r.list = [d] + list;

{
r := new Node;
r.data := d; r.next := this;
r.footprint := {r} U footprint;
r.list := [r.data] + list;

}

// ReverselnPlace shown in next figure

Figure 0. An example linked-list program written in Dafny.

4 K.R.M. Leino / Specification and Verification of OO Software

method ReverselnPlace () returns (reverse: Node)
requires Valid ();
modifies footprint;
ensures reverse # null A reverse.Valid();
ensures fresh(reverse.footprint — old(footprint));

ensures |reverse.list| = |old(list)];
ensures (V i: int ¢ 0 < i A i < |old(list)| =
old(list)[i] = reverse.list[|old(list)—-1—i]);

{

var current: Node;

current := next;

reverse := this;

reverse.next := null;

reverse.footprint := {reverse};

reverse. list := [data];

while (current # null)
invariant reverse # null A reverse.Valid ();
invariant reverse.footprint C old(footprint);
invariant current = null = |old(list)| = |reverse.list|;
invariant current # null =
current.Valid () A
current € old(footprint) A current.footprint C old(footprint) A
current.footprint } reverse.footprint A
lold(list)| = |reverse.list| + |current.list| A
(Vi: int ¢ 0< i A i < |current.list| =
current.list[i] = old(list)[|reverse.list|+i]);

invariant (Vv i: int ¢ 0 < i A i < |reverse.list| =
old(list)[i] = reverse.list[|reverse.list|—-1—i]);

{

var nx: Node;

nx := current.next;

assert nx # null =

(Vi: int ¢ 0< i A i < |nx.list] =
current. list[1+i] = nx.list[i]);

// The state looks like: ..., reverse, current, nx,

assert current.data = current.list[0];

current.next := reverse;

current.footprint := {current} U reverse.footprint;

current.list := [current.data] + reverse.list;

reverse := current;

current := nx;
}

Figure 1. The Node.ReverselnPlace method, which performs an in situ list reversal.

Likely, the best way to master the material in these lecture notes is to implement
your own verifier for a language like Dafny. I recommend it. But you are also welcome
to try out my Dafny verifier, which is available as part of the Spec# download [60]. In
my implementation, I also support break and return statements, generic types, and type
inference.

K.R.M. Leino / Specification and Verification of OO Software 5
1. Dynamic Frames in Dafny
In this section, I describe three example Dafny programs.
1.0. Linked List with Reverse Method

The Dafny linked-list implementation in Figs. 0 and 1 exhibits idiomatic specifications
in the style of dynamic frames [28]. The term frame refers to a set of memory locations,
and an expression denoting a frame is dynamic in the sense that as the program executes,
the set of locations denoted by the frame can change. For simplicity, frames in Dafny are
at the granularity of (all fields of) objects, not individual object fields. A dynamic frame
is thus denoted by a set-valued expression (in particular, a set of object references), and
this set is idiomatically stored in a field. Figure O shows that field as footprint. I shall call
footprint a ghost field, because it is introduced for the purpose of writing specifications
and it need not be included in a compiled program; however, Dafny has no special dec-
laration for ghost fields, so the distinction between regular fields and ghost fields is just
part of our mental model.

Class Node declares four fields. The fields data and next are the usual fields in a
linked-list data structure. The other two are ghost fields: list is the sequence of data val-
ues stored in a node and its successors, and footprint is a set consisting of the node and
its successors. Part of Dafny’s simplicity—as well as the fact that Dafny’s verification
conditions seem to be handled swiftly by a modern SMT solver, even for programs with
recursive data structures and recursive predicates—comes from the explicit representa-
tion of abstract entities like list and footprint as ghost fields (cf. [39]). The price to pay
for this simplicity of the language is that the fields have to be explicitly updated in the
program, as we shall soon see.

Idiomatically, Node also declares a function Valid, which has the return value true
if the node and, recursively, its successors satisfy the intended steady-state invariant for
these objects. Functions in Dafny have to declare the frames they read; Valid says it may
read the state of any object in the set

{this} U this.footprint

where this denotes the receiver object of the method. (Here and elsewhere, the receiver
object can be implicit, as is customary in object-oriented languages. So, this.footprint can
be written simply as footprint.) This reads set is used in two ways (see Section 4.5): first,
it induces a well-founded order among function applications, which is used in checking
that the definitions of given functions are logically consistent; second, it gives rise to an
axiom that is needed in this and other programs to show that certain state changes have
no effect on the value returned by a function application.

The definition of Valid spells out the expected invariants about the node’s abstract
value, like the subexpression

n.list = [n.data] + n.next.list

It also spells out properties of footprint. The interplay between Valid (which defines the in-
tended contents of footprint) and footprint (which defines what Valid is allowed to read) is
handled by carefully revealing that an object is a member of footprint before it is derefer-

6 K.R.M. Leino / Specification and Verification of OO Software

enced. For example, the reading of next.footprint is preceded by next & footprint. We shall
see this left-to-right ordering reflected in the definedness checks on functions (funcdf)
in Section 4.5.

To keep the language simple, Dafny separates allocation, which is done by a built-in
statement, from initialization, which is defined by an ordinary method. That is, there are
no constructors like those built into Java-like languages. To construct a singleton Node
object, a client writes:

s := new Node; call s.Init(d);

(which is similar to how it is done in Modula-3 [49]).

Methods in Dafny have to declare the frames they write. In the case of method Init,
the frame is the state of the objects in the (singleton) set {this}. The postcondition of Init
says about the receiver object that Valid holds and that list is the singleton sequence [d].

It is also important that the postcondition say something about the new value of
this.footprint, since that is a field that the method declares that it may modify. The body
of Init sets footprint to the singleton set {this}, but the general case is that a method may
grow the footprint of objects. If a footprint grows as the result of a method call, then
a caller needs to know how the new footprint may overlap with other footprints in the
caller’s purview. The postcondition

fresh(footprint — {this})

says that the objects in footprint, with the exception of this, are freshly allocated during
the execution of the method. This means that the overlap of the final value of footprint
with footprints previously known to the caller is at most {this}. For non-Init methods that
mutate an object’s state, the specification idiom is

modifies footprint;
ensures fresh(footprint — old(footprint));

which says that the possible growth of footprint does not introduce any overlap with
footprints previously known to the caller. This postcondition expresses what is known as
the swinging pivots restriction [40,28,57].

As a final remark about Init, note that the ghost fields list and footprint are updated
explicitly in the method body.

Methods SkipHead (the familiar cdr) and Prepend (the familiar cons) operate on an
initialized object, as reflected by the precondition Valid. The methods do not modify any
previously allocated state, so their modifies clauses are empty (and thus omitted). Note
in both cases how the footprint of the result is described in the postcondition. This lets the
caller know that there may be overlap between this.footprint and r.footprint after a call,
which means that modifying something in the footprint of either of these objects may
affect the validity of the other. A different design, leading to different implementations
of these methods, would be to instead us the postcondition

ensures footprint) r.footprint;

which says that the footprints of this and r are disjoint.

K.R.M. Leino / Specification and Verification of OO Software 7

Method ReverselnPlace, shown in Fig. 1, performs an in situ reversal of the list,
which is to say that it reuses the storage cells used by the original list. Its specification
says that this.footprint, on which this.Valid depends, may change, but says nothing about
the value of this.Valid after the call, which in effect prevents the caller from continuing
to use this as a valid list. The last two postconditions say that the returned list really does
represent the reverse of the initial list.

In the body of method ReverselnPlace, the loop not only updates the link next be-
tween nodes, but also adjusts the ghost fields accordingly. The loop invariant is big, de-
scribing the intermediate states of the reversal process. The condition

current.footprint }f reverse.footprint

says that the sets current.footprint and reverse.footprint do not overlap, a condition that
separation logic specializes in expressing (with the separating-conjunction operator)
[55].

Finally, it is interesting to note that the specifications in this example program do not
make use of any reachability predicate [47]. This is good news for automatic checking,
because trying to find a practical encoding of the reachability predicate in trigger-based
SMT solvers has proved to be difficult [27,30].

In my implementation of Dafny, which is built on Boogie [4], this program yields
the following output when using Z3 [14] as the underlying SMT solver:

Dafny program verifier version 0.90, Copyright (c) 2003-2008, Microsoft.
Parsing ListContents.dfy

Running abstract interpretation...
[0.063 s]

Verifying CheckWellformed$$Node.Valid ...
[0.199 s] wverified

Verifying Node.Init ...
[0.013 s] wverified

Verifying Node.SkipHead ...
[0.01 s] wverified

Verifying Node.Prepend ...
[0.014 s] wverified

Verifying Node.ReverseInPlace ...
[1.07 s] wverified

Dafny program verifier finished with 5 verified, 0 errors

The output shows the verification times in seconds on my 2.4 GHz desktop machine.
1.1. A Common Specification Idiom

Dynamic-frame specifications are often idiomatic. Figure 2 shows a code skeleton that
uses a recurring pattern of specification in Dafny.

The class Coo declares a ghost field footprint for storing the set of objects used to
represent a Coo object, and the function Valid returns true when the object satisfies its
invariant. The reads clause of function Valid says that the fields of all objects in footprint
are allowed to be read by Valid. As defined by its body, function Valid returns true only if
this efootprint, but in order to bootstrap the reading process, the reads clause of Valid
also mentions {this}—this gives the body permission to mention this.footprint in the first
place.

8 K.R.M. Leino / Specification and Verification of OO Software

class Coo {
var footprint: set<object>;
// other fields go here...
function Valid(): bool
reads this, footprint;

{

this € footprint // something more substantial goes here...

}
method Init ()

modifies this;

ensures Valid () A fresh(footprint — {this});
{

footprint := {this};

// more initialization goes here...

1
method Mutate ()
requires Valid ();
modifies footprint;
ensures Valid () A fresh(footprint — old(footprint));

{

}
}

// mutations of the object go here...

Figure 2. A code skeleton that illustrates a common specification idiom in Dafny.

An initialization method, like Init in class Coo, modifies the fields of the receiver
object, and it establishes validity of the object. The effect on the footprint is as in the
Node class in Section 1.0.

The mutating method in Fig. 2 both requires and ensures validity of the receiver. It
declares that it may modify any field of any object in footprint, and it promises to extend
footprint only by newly allocated objects. When verifying that the body of the method
satisfies its modifies clause, it is necessary to have information about which objects are
in footprint, and that information comes from the definition of function Valid and the fact
that the method requires Valid as a precondition.

Let me extend the example by showing the skeleton of a class that is implemented
on top of Coo, see Fig. 3. Class Bill includes an integer field and a reference to a Coo
object. By the definition of Bill.Valid, the validity of a Bill object b implies the validity of
its underlying Coo object b.c and the inclusion of the footprint of b.c in the footprint of
b. In fact, b.c.footprint will be a proper subset of b.footprint, because b is excluded from
b.c.footprint. Methods Init and Mutate have the same specifications as in class Coo.

It is instructive to consider the proof of method Bill.Mutate. In the initial state of the
method, Valid() holds, which implies —(this €c.footprint). This tells us two important
things. First, it tells us that changes to fields of this do not affect the state of the objects in
c.footprint, and so by the reads clause of c.Valid, changes to x and footprint have no effect
on the value of c.Valid(). Second, it tells us that the call to c.Mutate, whose modifies
clause is c.footprint, has no effect on the fields of this. Now, then: The update of this.x
is allowed because the precondition Valid() implies this €footprint. The precondition of
the call is met, because Valid() implies c.Valid(). The mutations performed by the call are
allowed, because c.footprint is a subset of footprint. The last assignment adds to footprint
any objects added to c.footprint by the call. Finally, Valid() holds in the final state, because

K.R.M. Leino / Specification and Verification of OO Software 9

class Bill {
var x: int;
var c: Coo;

var footprint: set<object>;

function Valid(): bool
reads this, footprint;
{
this € footprint A
¢ # null A ¢c € footprint A
—(this € c.footprint) A c.footprint C footprint A
0 < x A c.Valid()
}

method Init ()
modifies this;
ensures Valid () A fresh(footprint — {this});

var coo := new Coo;
call coo.Init();

X := 0;

C := CO00;

footprint := {this} U c.footprint;
}

method Mutate ()
requires Valid ();
modifies footprint;
ensures Valid () A fresh(footprint — old(footprint));

{

X (= X + 1;
call c.Mutate ();
footprint := footprint U c.footprint;

Figure 3. A code skeleton that illustrates how one class (Bill) is built on top of another (C0O0 in Fig. 2).

x was only incremented and the call maintained validity of ¢ and added only newly
allocated objects to c.footprint (which also implies that this, which was allocated before
the call, was not added to c.footprint).

The previous paragraph includes many subtle points. Luckily, checking them does
not require hard mathematics, but only an obsessive attention to detail. This makes the
task well suited for an automatic theorem prover.

1.2. Queue

As a final example before we go into the details of a verifier for Dafny, let us consider the
implementation of a queue. The queue is implemented as a linked list of nodes, with a
pointer to both the first and last nodes of the list, see Fig. 4. To simplify the code, the list
is always nonempty, keeping a sentinel object at the head of the list. Enqueue operations
are done at the tail, dequeue operations at the head.

10 K.R.M. Leino / Specification and Verification of OO Software

‘Queue

tail

f—’ Node | ,(Node | , :Node)

Figure 4. A pictorial view of the Queue implementation. The head field of a queue object points to the
head of a linked list and the tail field points to the tail of that list. The first node in the list is a sentinel node.

The start of the class declaration for Queue is given in Fig. 5. In addition to the head
and tail fields, the class declares three ghost fields: contents represents the sequence of
data elements stored by the queue, footprint is the usual dynamic-frame field, and spine
is the subset of footprint that contains just the Node objects along the linked list.

The invariant of a Queue object, as reflected in the definition of Valid, is more com-
plicated than in the previous examples. In particular, it quantifies over all nodes in the
spine, saying that each such node is valid with a footprint that is contained in the queue’s
footprint. The quantification also says that only one node in the spine has a next field
of null, and that is the tail node. The second quantification says that the spine is closed
under next.

Note that the validity condition does not say that all nodes along the spine are reach-
able from head. In fact, this under-specification lets spine contain additional nodes whose
next fields eventually lead to one of the linked-list nodes of interest; it would even permit
cycles of nodes. Still, the under-specification is good enough to verify the methods of
the class, and this style of specification avoids talking about reachability, which can be
difficult to reason about with SMT solvers.

Class Node is declared in Fig. 7. Its validity condition says that the footprint contains
the footprint of the successor node. It also declares the intention to maintain tailContents
as the data fields of all successor nodes. In this implementation of Queue, which puts the
sentinel object at the head, it is convenient not to include the value of a node’s data field
in the node’s own tailContents field.

The initialization methods of Queue (Fig. 5) and Node (Fig. 7) offer no surprises.
They mainly use the idiomatic specification for Init methods as shown in the Bill and Coo
examples, with the addition of postconditions that are specific to Queue and Node.

Similarly, the implementations of Front and Dequeue (Fig. 6) offer no surprises.
Other than the idiomatic specification for mutating methods shown in the Bill and Coo
examples, the specification of Dequeue is just:

requires 0 < |contents|;
ensures contents = old(contents)[1..];

Note that Front has an empty (that is, omitted) modifies clause, since it does not change
the state, and note that Dequeue explicitly updates the ghost field contents in accordance

K.R.M. Leino / Specification and Verification of OO Software 11

class Data { }

class Queue {
var head: Node;
var tail: Node;

var contents: seq<Data>;
var footprint: set<object>;
var spine: set<Node>;

function Valid(): bool
reads this, footprint;
{

this € footprint A spine C footprint A
head # null A head € spine A
tail # null A tail € spine A
tail .next = null A
(V n e n € spine =

n # null A n.Valid() A

n.footprint C footprint A

(n.next = null = n = tail)) A
(Y n e n € spine =

n.next # null = n.next € spine) A
contents = head. tailContents

}

method Init ()
modifies this;
ensures Valid () A fresh(footprint — {this});

ensures |contents| = 0;
{
var n := new Node;
call n.Init();
head := n; tail := n;
contents := n.tailContents;
footprint := {this} U n.footprint;
spine := {n};

}

// other methods shown in next figure

Figure 5. The declaration of the fields of the Queue, their validity condition, and initializer.

with the validity condition. Because of the under-specification in Valid, no change is
needed for footprint and spine.

The implementation of Enqueue is more interesting. As expected, it allocates a node
Node, which it initializes and adds to the tail of the linked list. But it also needs to
update the ghost fields. Since the footprint of each node contains the the footprint of the
successor node, and the tailContents of a node is defined in terms of the tailContents of
the successor node, it is necessary to update the footprint and tailContents fields of all the
nodes. This is conveniently performed by the foreach statement, which simultaneously
sets a field of many objects. Note that the append and union operations on these two fields
maintain the invariants (stated in Queue.Valid and Node.Valid) about all Node objects,

12 K.R.M. Leino / Specification and Verification of OO Software

method Front() returns (d: Data)
requires Valid ();
requires 0 < |contents|;
ensures d = contents[0];

{

d := head.next.data;

}

method Dequeue ()
requires Valid ();
requires 0 < |contents|;
modifies footprint;
ensures Valid () A fresh(footprint — old(footprint));
ensures contents = old(contents)[1..];

var n := head.next;
head := n;
contents := n.tailContents;

}

method Enqueue(d: Data)
requires Valid ();
modifies footprint;
ensures Valid () A fresh(footprint — old(footprint));
ensures contents = old(contents) + [d];

{

var n := new Node;
call n.Init(); n.data := d;
tail.next := n;
tail := n;
foreach (m € spine) {
m. tailContents := m.tailContents + [d];
1
contents := head.tailContents;

foreach (m € spine) {

m. footprint := m.footprint U n.footprint;
}
footprint := footprint U n.footprint;
spine := spine U {n};

Figure 6. The familiar methods of a queue abstraction. Methods Front and Dequeue operate on the head
of the linked-list representation, whereas Enqueue, which adds a node at the tail, operates on the ghost fields
of all linked-list nodes.

even in light of the under-specification that allows spine to contain nodes outside the
linked-list nodes of interest.

Although one can imagine compiling and executing such a foreach statement, the
Queue class uses the statement only to update ghost fields, so a compiler could easily
ignore the statement when generating executable code.

Finally, let us look at an example use of the Queue class, shown in Fig. 8. Method
Main allocates and initializes two queues, g0 and g1. It enqueues x and y into q0 and z

K.R.M. Leino / Specification and Verification of OO Software 13

class Node {
var data: Data;
var next: Node;

var tailContents: seq<Data>;
var footprint: set<object>;

function Valid(): bool
reads this, footprint;
{
this € footprint A
(next # null = next € footprint A next.footprint C footprint) A
(next = null = tailContents = []) A
(next # null — tailContents = [next.data] + next.tailContents)

}

method Init ()
modifies this;
ensures Valid () A fresh(footprint — {this});
ensures next = null;

next := null;
tailContents := [];
footprint := {this};

Figure 7. The Node class that is part of the QuUeue implementation.

into g1, after which it asserts the length of q0 to be 2. It then inspects the elements at
the front of g0, with an intervening dequeue operation, after which it checks that both
queues have length 1.

The correctness of the Main method relies on q0 and q1 to operate independently of
each other. This is achieved by the idiomatic specifications. The allocation of g1 yields
a previously unallocated object, which implies that g1 is not a member of q0.footprint,
all of whose objects are allocated (as guaranteed by the Dafny language and the encod-
ing we shall see in later sections). The call to g1.Init may change fields of q1, which
includes q1.footprint, but it promises to enlarge the footprint only by newly allocated ob-
jects. Thus, after the two queues have been initialized, their footprints can be proved to
be disjoint. The remaining operations also enlarge footprints only by newly allocated ob-
jects, so the disjointness is maintained. Since q1.Valid reads only the fields of the objects
in q1.footprint, methods that operate on the fields of the objects in q0.footprint have no
effect on g1.Valid.

2. Intermediate Language

In this section, I give a first introduction to the Boogie language, as I use it in subsequent
sections to encode the semantics and proof obligations of Dafny. I will present some
other parts of Boogie when needed. A full definition of the language is found in the
Boogie 2 language reference manual [36].

14 K.R.M. Leino / Specification and Verification of OO Software

method Main(x: Data, y: Data, z: Data)
{

var q0 := new Queue;
call g0.Init ();
var g1 := new Queue;

call g1.1nit ();

call g0.Enqueue(x);
call q0.Enqueue(y);

call g1.Enqueue(z);
assert |g0.contents| = 2;
var w;

call w := q0.Front();
assert w = x;

call q0.Dequeue();

call w := g0.Front();
assert w =1y,

assert |g0.contents| =
assert |ql.contents| =

_

Figure 8. An example method that uses the Queue class. The Dafny verifier verifies the correctness of this
method automatically, including the assert statements.

Boogie consists of a mathematical part and an imperative part. The mathematical
part has declarations of (uninterpreted) types, constants, and first-order functions, as well
as axioms, which are used to state properties about these types, constants, and functions.
The imperative part has declarations of variables and procedures.

Mathematical declarations Here is a small example that shows Boogie’s mathematical
declarations:

type Keyboard;

const Yamaha_DX7: Keyboard;
function keys(Keyboard) returns (int);
axiom (Vk: Keyboard o 0 < keys(k));
axiom keys(Yamaha_DX'7) = 61;

These declarations introduce a type to represent musical keyboards, a constant to repre-
sent the classic DX7 synthesizer, and a function that returns the number of keys a given
instrument has. The first axiom postulates that a keyboard cannot have a negative number
of keys, and the second axiom says that the DX7 has 61 keys.

Expressions The expression language of Boogie includes usual boolean and integer
operators. All expressions in Boogie are total; for example, even division by zero results
in some value that is a (fixed but unknown) function of its arguments. The language
includes map types and two operations on maps: the expression m[j] accesses the value
of map m at domain element j (in other words, it applies map m to argument j and

K.R.M. Leino / Specification and Verification of OO Software 15

returns the result), and the expression m[j:= z| returns a map that is like m except
that it maps j to z. Maps can also take multiple arguments, in which case j is a list
of domain elements. Finally, the expression language includes universal and existential
quantifications.

Procedures A procedure is declared as follows:
procedure P(ins) returns (outs); Spec

where P is the name of the procedure, ins is the list of formal in-parameters, outs is
the list of formal out-parameters, and Spec is the procedure’s specification. If outs is
empty, then the entire returns clause can be dropped. The procedure specification Spec
consists of clauses of the forms

requires Fxpr;

which declares a precondition (a condition that is to hold on every invocation of the
procedure), and

modifies zs;

which declares a modifies clause (which says which global variables the procedure is
allowed to change), and

ensures Fzpr;

which declares a postcondition (a condition that is to hold on exit from the procedure im-
plementation). Multiple requires clauses are equivalent to one requires clause that
conjoins the conditions, and similar for multiple ensures clauses. Multiple modifies
clauses are equivalent to one modifies clause that gives all the variables in one list. A
postcondition, and also any expression inside an implementation body, can use the ex-
pression old(E), which stands for the value of expression E on entry to the procedure.

Statements Procedures can have any number of in- and out-parameters. A procedure
implementation consists of the declaration of a number of local variables followed by a
list of statements that follow this grammar:

Stmt = xs:= Fxprs;

| z[Exprs]:= Expr;

| havoc zs;

| if (Expr) { Stmis } else { Stmts }
| while (Ezpr) Invs { Stmts }
| assert Ezpr;
| assume Ezpr;
|

call zs:= P(Ezprs);

where z is an identifier, xs is a list of distinct identifiers, P is the name of a declared
procedure, Expr is an expression, Ezprs is a list of expressions, Stmts is a list of
statements, and Inws is a list of loop-invariant declarations each of which has the form:

invariant Ezpr;

16 K.R.M. Leino / Specification and Verification of OO Software

Multiple invariant declarations are equivalent to one invariant declaration that con-
joins the conditions (and no invariant declaration is equivalent to invariant true).
Some common (and “obvious”) restrictions apply; for example, the number of left-hand
variables in the assignment statement must equal the number of right-hand expressions,
and the types of the guard expressions in the if and while statements must be boolean.

For any list of variables zs, xs:= EFE; is the usual parallel assignment statement,
which first evaluates all the right-hand expressions and then assigns these values to the
respective left-hand variables. The map-update statement m[jj] := E; changes map vari-
able m so that it maps jj to E. Stated differently, it assigns to m the value m[jj := F].
The havoc statement takes a list of variables and sets each one of them to an arbitrary
(blindly chosen, demonically chosen) value. The variables assigned in these statements,
and also the variables used as actual out-parameters of call statements, must be global
variables, out-parameters, or local variables; in-parameters are immutable.

The if statement is the usual conditional statement. The while statement is the
usual loop statement that iteratively executes Stmts while the guard Ezpr is true. At
the top of each loop iteration (in other words, immediately before each evaluation of the
guard expression; or, stated differently, immediately before the loop and also immedi-
ately after each execution of Stmts), each of the declared invariants must hold, or else
the loop execution results in an irrecoverable error.

The assert statement records a proof obligation. If the given condition holds, the
statement acts like a no-op. If the condition does not hold, the execution (stops and) re-
sults in an irrecoverable error. So, the assert statement can be used to express a condition
that, in order for the source program to be correct, must hold at the given program point.
A statement is said to go wrong if it results in an irrecoverable error.

The assume statement restricts the set of feasible executions defined by the Boogie
program. If the given condition holds, the statement acts like a no-op. An execution is
considered infeasible if it would have led to an assume statement where the expression
would evaluate to false. So, the assume statement can be used to express that only cer-
tain (namely, the feasible) executions are to be considered by the program verifier. For
example, an instance of a common idiomatic use of havoc and assume is:

havoc z; assume 0 < z;

which (“first”) picks any value for x but (“then”) considers the execution feasible only
if x is non-negative. In other words, this use of the important havoc-assume idiom ex-
presses “‘set x to an arbitrary value that satisfies 0 < z”.

Finally, the call statement call zs:= P(EE); invokes procedure P, where EE is
the list of actual in-parameters and zs is the list of actual out-parameters.

3. Verification Conditions

A Boogie program is correct if all procedure implementations satisfy their specifications.
To check that a procedure implementation satisfies its specification, Boogie performs a
syntactic check (for modifies clauses) and generates a verification condition to be dis-
charged by a theorem prover. The proof obligations encoded by the verification condition
arise from the postcondition of the procedure being verified, the preconditions of called
procedures, and the conditions in assert statements.

K.R.M. Leino / Specification and Verification of OO Software 17

The meaning of simple statements The semantics of statements is given by the weakest-
precondition transformer wp [17,48]. I use the following definition: For any statement
S and condition) on the post-state of S, the weakest precondition of S with respect to
@, denoted wp[S, @], is the condition that characterizes those pre-states from which
every feasible execution of S does not go wrong and, if it terminates, terminates in a
state satisfying @. In short, the formula wp[S, @] tells us what must hold in the pre-
state of S in order for S to correctly establish (). Weakest preconditions are defined
inductively on the structure of basic statements:

wp[zs:= EE;, Q] = Q[EE [Jzs]
wp[havoc zs;, Q] = (Vazse Q)
wp[assert E;, Q] = EAQ
wp[assume F;, Q] = E = Q

Wp[[S T7 Qﬂ = Wp[[S7 Wp[[T7Q]H]
wp[if (E) { S }else{ T}, Q] =

(B = wp[$, Q) A (=B = wp[T, Q])

where Q[EEFE [Jzs] denotes the simultaneous capture-avoiding substitution of the expres-
sions FE for the variables zs in (). As a notational convention, I use double brackets,
as in wp[[-,-] and -[- /-], for transformations that produce formulas or other program
snippets.

To better understand the more complicated statements below, it can be helpful to
read out the semantics defined by these simpler equations. The first three say the follow-
ing. Statement zs:= EF; correctly establishes () if what () says about zs holds for
EFE in the pre-state. Statement havoc zs; correctly establishes @) if ¢ holds in the pre-
state for all values of zs—since the havoc statement may set zs to any value, correct-
ness is guaranteed by making sure () holds for all zs. Statement assert E; correctly
establishes) if £ holds in the pre-state—otherwise, the statement goes wrong—and
(@ already holds—since the statement does not change the program state.

The meaning of map updates The map-update statement m|jj] := E; is simply a short-
hand for the assignment statement m:= mljj := E]. Thus, its weakest precondition
is:

wp[mljj]:= E;, @] = Q[ml[jj:= E]/Jm]

The meaning of loops Operationally, a loop keeps iterating while its guard evaluates to
true. To generate a verification condition that closely mimics this operational behavior
involves computing a fix-point. Fortunately, we can abstract from the iterations of the
loop and instead define the semantics of the loop in terms of a given loop invariant. In
essence, this replaces the problem of finding a fix-point with the easier problem of veri-
fying a supposed fix-point. Such a loop invariant typically comes from a combination of
(i0) properties that always hold in the source language, (il) rules enforced by an accom-
panying programming discipline, (i2) invariants inferred by some inference engine, and
(i3) loop invariants declared in the source language by the programmer. In Section 4.4, I
will use (i0), (i1), and (i3) in the translation from Dafny into Boogie. For the important
study of (i2), see for example the rich literature on abstract interpretation [12].

Let me first define the syntactic assignment targets of a statement. A statement S
assigns to a variable z if z occurs in the left-hand side of an assignment statement in

18 K.R.M. Leino / Specification and Verification of OO Software

S, z is the map in a map-update statement in S, z occurs in a havoc statement in S,
x is an actual out-parameter of a call statement in .S, or z is mentioned in the modifies
clause of a procedure called by S'. The syntactic assignment targets of a statement S is
the set of variables to which S assigns.

Consider a loop

while (F) invariant J; { S }

and let xs denote the syntactic assignment targets of S. I encode the meaning of this
while statement as:

assert J;
havoc zs; assume J;
if (E){ S assert J; assume false; } else { }

Intuitively, the first assert statement checks that the declared loop invariant holds on entry
to the loop. The effect of the havoc-assume idiom is to “fast forward” the execution of
the loop to the top of an arbitrary loop iteration—at the top of an arbitrary loop iteration,
the syntactic loop targets can have any values that satisfy the declared loop invariant. If
the loop guard does not hold in that state, the loop terminates and execution continues
after the loop. If the loop guard holds, the encoding checks that the loop body maintains
the declared loop invariant, that is, that the loop invariant holds after an arbitrary iteration
of the loop body.

The role of the final “assume false;” in the encoding of the loop strikes many
as mysterious, but understanding and making use of such encodings is key to defining
semantics effectively in the present style. The idea is to include all executions that start
in an arbitrary loop state and go wrong, and to ignore executions through the loop body
that do not go wrong. The final “assume false;” treats any execution that correctly gets
past the “S assert J;” as infeasible, thus having the effect of being ignored.

Another way to understand the loop semantics is to calculate the weakest precon-
dition of the encoding and try to understand the resulting formula. For any predicate

Q.

wp[while (F) invariant J; { S }, Q]
= (semantic encoding of while)
wp[assert J; havoc zs; assume J;
if (F) { S assert J; assume false; }else { }, Q]
= (wp of if)
wp[assert J; havoc xs; assume J;,
(E = wp[S assert J; assume false;, Q) A (-F = Q)]
= (wp of assume)
wp[assert J; havoc zs; assume J;,
(E = wp[S assert J;, false = Q]) A (-F = Q)]
= (boolean simplification, and wp of assert)
wp[assert J; havoc xs; assume J;,
(E = wp[S, J Atrue]) A (E = Q)]
= (boolean simplification, and wp of assume)
wp[assert J; havoczs;, J = (E = wp[S, J]) A (-E = Q)]
= (wp of havoc)

K.R.M. Leino / Specification and Verification of OO Software 19

wp[assert J;, (Vzs e J = (E = wp[S, J]) A (-E = Q))]
= (wp of assert)

JAN(Vzse J = (E = wp[S, J]) A(—E = Q))
= (distributionof ¥V, = ,and A)

JAN (Vzseo JANE = wp[S, J]) A (Vase JA-E = Q)

This formula, which often is given as the way to compute the wp of a loop, lends itself
to the following reading: the while statement correctly establishes @) if, in the initial
state of the loop:

e the loop invariant .J holds,

e for any values of the loop targets zs, if the loop invariant and guard hold, then
the loop body S maintains the invariant, and

e for any values of the loop targets xs, if the loop invariant and negation of the
guard hold, then so does Q.

The meaning of calls Somewhat akin to the way loops are defined via their invariants,
procedure calls are defined via their specifications. So, one reasons about a call in terms
of the procedure’s specification, not its implementation. In addition to avoiding issues
of fix-points, this approach has the advantage that it permits information hiding (callers
cannot, and do not need to, depend on the details of a particular implementation) and
lends itself to modular verification [52].

Consider any procedure:

procedure P(ins) returns (outs);
requires Pre;
modifies gs;
ensures Post;

and a call to this procedure:
call zs:= P(EE);

I encode the meaning of this call statement as follows. First, introduce in the calling
context fresh variables ins’, out’, and gs’, one for each variable in ins, outs, and gs,
respectively. Then, let Pre’ be Pre in which each variable from ins is replaced by the
corresponding variable from ins’. Let Post’ be Post in which each variable from ins
is replaced by the corresponding variable from ins’, each variable from outs is replaced
by the corresponding variable from outs’, and each occurrence of a variable from gs
inside an old expression is replaced by the corresponding variable from gs’, after which
every old(F) is replaced by just E. The meaning of the call is:

ins' := EE; // evaluate in-parameters

assert Pre'; /I check precondition

gs' = gs; /I remember old values of variables in modifies clause

havoc g¢s, outs’; /I set out-parameters and modified global variables to
/I arbitrary values

assume Post’; /I ...such that the postcondition holds

xs := outs’; /I set actual out-parameters from formal out-parameters

The wp of the call is computed from these statements.

20 K.R.M. Leino / Specification and Verification of OO Software

Verifying procedure implementations Every procedure implementation is checked to
satisfy its specification. The modifies clause is checked syntactically, the rest of the spec-
ification is checked semantically.

The modifies clause of a procedure frames the global variables on which the pro-
cedure is allowed to have an effect. This is enforced by a (strict and) simple syntactic
check: all global variables among the syntactic assignment targets of the implementation
body must be listed in the modifies clause. As I mentioned earlier, the syntactic assign-
ment targets are also allowed to contain local variables and the out-parameters of the
procedure, but not the in-parameters, which are immutable in the procedure body.

The pre- and postconditions of the procedure, as well as other proof obligations in
the procedure body itself, are checked semantically, that is, by generating a verification
condition that is to be discharged by the theorem prover.

The implementation may assume the procedure’s preconditions to hold on entry—in
other words, it is as if the implementation began with an assume statement for each
precondition. The postcondition is checked on exit from the procedure—in other words,
it is as if the implementation body ended with an assert statement for each postcondi-
tion.

More formally, consider any procedure:

procedure P(ins) returns (outs);
requires Pre;
modifies gs;
ensures Post;

with an implementation
var locals; stmts

Let gs’ denote a list of fresh variables, one for each variable in gs, and let stmts’ denote
stmts in which map-update statements, while statements, and call statements have
been expanded according to their semantic encodings given above. Let Impl denote

assume Pre; gs':= gs; stmts”; assert Post’;

where stmts” and Post’ are stmts’ and Post, respectively, in which each occurrence
of a variable from gs inside an old expression is replaced by the corresponding variable
from gs’, after which every old(FE) is replaced by just E. Let Axs denote the conjunc-
tion of axioms declared in the program. The verification condition for this implementa-
tion of P is given by:

Azs = wp[Impl, true]

This formula says that, under the given axioms, the implementation executes correctly.

This concludes the introduction to Boogie and the definition of its semantics. We are
now ready to look at the Dafny language in more detail and define, by a Boogie program,
its semantics and associated proof obligations.

K.R.M. Leino / Specification and Verification of OO Software 21

4. Dafny

A Dafny program consists of a set of named classes:

Program ::= Classes
Class == class Id { Members }
Member ::= Field | Method | Function

A class declares fields, methods, and functions. In this section, I explain these member
declarations, expressions, and statements, and show how to model them by translation
into Boogie. The language uses conventional scope and type checking rules; I omit the
formal detail thereof and simply assume that the program to be translated has already
been properly type checked.

The Boogie translation consists of a prelude of declarations, which encodes some
properties of all Dafny programs, and the Boogie declarations decl[d] for every Dafny
class declaration d.

4.0. Classes

The most interesting part of the translation of a class stems from the members of the
class. Each class as a whole merely contributes into the Boogie program a constant that
represents the class name. So, the prelude declares a type

type ClassName;

and each class declaration is translated as follows:

decl[class C' { mm}] =
const unique class.C: ClassName;
decl*[mm]

Some explanation is in order. First, identifiers in Boogie can include several non-
alphanumeric characters, including “.”, so the name of the constant introduced is
“class.C”. Second, the Boogie modifier unique declares that the constant has a value
that is different from the values of other unique constants. Third, I write decl™[mm |
to denote the application of decl to every member in mm, and similarly for other trans-

lation functions.
4.1. Fields

A field, also known as an instance variable, is declared to be of some given type:

Field := varId: Type;
Type := bool|int| Id | object | set< Type> | seq< Type>

Types include booleans and integers, references to instances of a class, denoted by the
name of the class, and references to instances of any class, denoted object. In addition,
types include sets and sequences of a given type.

To model types, the Dafny-to-Boogie translation introduces into the target Boogie
program a nullary type constructor Ref to model references and two unary type con-
structors Set and Seq to model sets and sequences:

22 K.R.M. Leino / Specification and Verification of OO Software

type Ref;
type Set «;
type Seq «;

The translation into Boogie needs to include appropriately defined operations on sets
and sequences, but I omit the details. The set operations are defined in terms of set
membership, which in these notes I typeset as the standard “€”. The translation also
introduces a constant that stands for Dafny’s null reference:

const null: Ref;
The translation of Dafny types into Boogie goes as follows:

type[bool] = bool

type[int] = int

type[Id] = Ref

type[object] = Ref
type[set<T>] = Set type[T']
type[seq<T>] = Seq type[T']

Note that the types in the Boogie translation are more coarsely grained than in the
Dafny program. In particular, all Dafny class types are modeled by the Boogie type Ref .
To distinguish between references of different Dafny types, the translation includes a
function that maps each reference to its allocated type:

function dtype(Ref) returns (ClassName);

When modeling the semantics of a source language, one of the most important con-
siderations is the decision of how to model memory. Dafny includes dynamically al-
located objects and references to these. Different possibilities exist for how to model
such a memory. For a discussion of these, see [36]; for some specific choices, see
[32,53,54,42,4,20,11]. Here, I choose to model memory as a map from object references
and field names to values. Updates of the memory are then modeled as updates of this
map. The declarations introduced by the translation into Boogie are:

type Field a;
type Heap Type = (a)[Ref, Field o] ;
var H: Heap Type;

Global variable H represents the memory, the heap. Its type is a polymorphic map that
for any type a maps each (Ref, Field «) pair to an «.

Each field in the Dafny program gives rise to a distinct value of the appropriate
Field type. For any field f in aclass C':

decl[var f:T;] =
const unique C.f: Field type[T'] ;

[T3RL)

Conveniently, Boogie’s admission of non-alphanumeric characters like “.” in identifiers
makes it easy to produce readable, fully qualified names.

Since map types in Boogie are total, the heap maps all possible references and fields
to values. It even maps reference-field pairs to values when such a reference-field pair

K.R.M. Leino / Specification and Verification of OO Software 23

would be ill-typed in Dafny, but the target Boogie program never makes use of the values
at such reference-field pairs. Also, the domain of the map includes allocated as well as
unallocated references. To distinguish between these two, I add a ghost field alloc that I
arrange to set to true when an object is allocated:

const unique alloc: Field bool,

The heap of a Dafny program has properties that not every polymorphic map has.
To distinguish Dafny heaps from other maps, the translation introduces a predicate

function GoodHeap(HeapType) returns (bool);

Various axioms state properties that hold of all heaps. For example, if the Dafny program
includes a class C with a field f of a reference type D, then the following axiom is
included to say that C'.f yields a value of the appropriate type and that C.f is closed
under allocation, that is, that an allocated object only reaches allocated objects:

axiom (V h: HeapType, o: Ref
GoodHeap(h) A o # null A hfo, alloc]
= GoodRef[hlo, C.f], D, h]);

Translation function GoodRef is defined as follows:

GoodRef[¢, T, h] =
t = null V (hlt, alloc] A dtype(t) = class.T) if T is a class name
t = null V ht, alloc] if T is object

Note that the type object gives no information about the allocated type of an object.
If the type of the field f is a set of D references, then the following axiom is
introduced:

axiom (V h: HeapType, o: Ref, t: Ref o
GoodHeap(h) A o # null A hlo, alloc] A t € hlo, C.f]
= GoodRef[t,D,h]);

This axiom is what allows the verifier to prove that new objects are not in any footprint
(see the discussion about the correctness of Main at the end of Section 1.2). If the type of
the field f is a sequence of D references, then the axiom introduced is:

axiom (V h: Heap Type, o: Ref, i: Ref o
GoodHeap(h) A o # null A hlo, alloc] A
0 <1 A i< SeqLength(hlo, C.f])
= GoodRef[SeqIndex(hlo, C.f],4), D, h]);

The translation also includes similar axioms for fields of more complex types, like sets
of sets of references and sets of sequences of references.

4.2. Expressions

Dafny expressions include common boolean, integer, set, and sequence operators. Their
semantics is defined by two translation functions: df[E'] generates a Boogie predicate

24 K.R.M. Leino / Specification and Verification of OO Software

that says whether or not E is well defined in Dafny, and tr[E'| generates an expression
that for any well-defined E evaluates to £. Most of these definitions are straightforward;
the following examples illustrate the idea:

dff -] tr] -]

T true T
this true this
E+F | df[E] ANdf[F] tr[E]+tr[F]

E/F fIE)ANAI[F]Aw[F]#0 | tr[E] /tr[F]
EAF | df[E] A (tr[E] = df[F]) [[E]]/\tr[[F]]
E.f fIE] Atr[E] # null H[tr[E], C.f]

In the last line above, C' denotes the class that defines field f. Note that in Dafny, the “.”
in the expression E.f denotes member selection, whereas in Boogie, the “.” in C'.f is
just another character in the identifier’s name. Also, note the encoding of Dafny’s short-
circuit boolean operators: the definedness of F' matters only if £ evaluates to true, and
in this left-to-right fashion, one can assume E to hold when verifying the definedness
of F'. I alluded to this left-to-right rule when discussing the interplay between Valid and
footprint in Section 1.0.

Like Boogie, Dafny supports two-state expressions, that is, expressions that refer not
only to the current state but also to the initial state of the method. Two-state expressions
are allowed in postconditions and in method bodies. One two-state expression is old(Z),
which stands for the value of E on entry to the enclosing method. Another two-state
expression is fresh(Z'), where I is a set of object references. It says that each of the
references is either null or was not allocated in the method’s pre-state. Finally, if £ is of
a reference type, then the two-state expression fresh(Z') is a shorthand for fresh({£'}).
Formally:

| df[-] [tr[-]
old(E) | old(df[E]) | old[E])
fresh(E) | df[E] (Vo:Ref @ 0 €tr[E] =
o = null V —old(H)[o, alloc])

The translations of set and sequence constructors, like { }, {a, b}, [],and [z, ¥, 2],
are also interesting, but I omit the details, which depend on the axiomatization of sets
and sequences. I will present the translation of calls to user-defined Dafny functions in
Section 4.5.

4.3. Methods

A method is a class-bound procedure that can change the program state. It is declared
with a specification and an implementation.

Method ::= method Id(Params) returns (Params) Specs { Stmts }
Param = Id: Type
Spec ::= requires Ezpr ; | modifies Exprs ; | ensures Expr ;

The returns clause can be dropped if there are no out-parameters. As in Boogie, the
requires and ensures clauses declare pre- and postconditions, and multiple specifica-

K.R.M. Leino / Specification and Verification of OO Software 25

decl[method M (ins) returns (outs)
requires Pre;
modifies mts;
ensures Post;
{ stmits }]

procedure C.M (this: Ref, decl*[ins]) returns (decl*[outs])
free requires GoodHeap(H) N CanAssumeFunctionDefs;
free requires this # null A GoodRef[this, C', H];
free requires isAllocated™[ins |;
free requires df[Pre [;
requires tr[Pre |;
modifies H;
free ensures GoodHeap(H);
free ensures boilerplate,,,,, [old(H) [;
free ensures isAllocated™[outs [;
free ensures df[Post [;
ensures tr[Post |;
{ var locals*[stmts]; stmts,, [stmis] }

procedure C.M.WellDefined ... (see text)

decl[z: T] = z: type[T']
GoodRef[z, T, H] if T is a reference type

isAllocated[z: T'] = {true otherwise

boilerplate,,;, [prevHeap]| =
(V{(a) o: Ref, f: Field o ®
Hlo, f] = prevHeap|o, f] V CanWriteis[0]) A
(V o: Ref o prevHeap|o, alloc] = H]|o, alloc])
CanWritepis[o] =
o € old(tr[mts]) vV —old(H)|o, alloc]

Figure 9. The translation into a Boogie procedure of a Dafny method M declared in a class C'.

tion clauses of the same kind can be combined. Unlike in Boogie, the Dafny modifies
clause takes a list of expressions. The type of each such expression must be a reference
type or a set of references; an expression F of a reference type is simply a shorthand
for the singleton {F'}. The modifies clause says that the method may modify the state
of any object referenced in the set. In addition, the method is allowed to allocate new
objects and modify their state.

The specification is used when reasoning about a call to the method. The given
method implementation is checked to satisfy the specification.

A method is translated into a procedure in Boogie, making the implicit receiver
parameter this explicit, see Fig. 9. As I am about to describe, the specification of the
procedure comes not only from the method’s specification, but also from the types of the
parameters, properties that hold of all Dafny programs, and details of the encoding.

In the procedure specification in Fig. 9, some of the specification clauses are marked
with free, which in Boogie means that they are assumed but not checked [36]. Some

26 K.R.M. Leino / Specification and Verification of OO Software

properties needed in the verification, like this # null A H[this, alloc], hold in every
execution of the source language. There is no reason to spend time proving these with
every program verification. Rather, such properties can be justified by a meta-argument
(which can be formalized and proved once and for all, perhaps using a mechanical proof
assistant) and are then conveniently introduced in the Boogie translation with free con-
ditions.

I will now describe the specification clauses shown in Fig. 9, but in different order
than they appear in the figure.

First, the Dafny method pre- and postconditions Pre and Post are translated into
corresponding pre- and postconditions for the procedure:

free requires df[Pre|;
requires tr Pre;
free ensures df| Post |;
ensures tr[Post [;

The definedness conditions for Pre and Post are marked as free, because they are
checked separately by the following procedure:

procedure C.M.WellDefined(this: Ref , decl™[ins]) returns (decl”[outs])
free requires GoodHeap(H) A CanAssumeFunctionDefs;
free requires this # null A GoodRef[this, C', H ;
free requires isAllocated™ [ins [;
modifies H;

assert df[Pre;

assume tr[Pre |;

havoc H;

assume GoodHeap(H) A boilerplate,,, [old(H) |;
assume isAllocated™ [outs [;

assert df Post];

}

An alternative to generating procedure C.M . WellDefined would be to include Pre and
Post in procedure C'. M (Fig. 9) simply as:

requires df[Pre] A tr[Pre];
ensures df[Post] A tr[Post];

Although slightly simpler, this alternative has the drawback of having to verify the de-
finedness of Pre at every call site.

Second, as we shall see in Section 4.4, modifies clauses in Dafny are enforced
at every statement. Therefore, a method’s effect on the heap shows up in the encoding
as a free condition [29,57], and it also shows up in the syntactically enforced Boogie
modifies clause that allows H to be an assignment target in the procedure body:

modifies H;
free ensures boilerplate,, ;. [old(H) |;

The first conjunct of boilerplate (defined in Fig. 9) says that a heap location (o, f) can
have changed only if o is an object reference included in the set denoted by the modifies

K.R.M. Leino / Specification and Verification of OO Software 27

clause mts, which is interpreted in the method’s pre-state, or if o is a newly allocated
object reference. The second conjunct mentions the possible ways that the alloc field
can change, namely that allocated objects remain allocated, which is a property of the
Dafny language. Note that boilerplate mentions three heaps: the current heap H, the
heap old(H) at the beginning of the method, and the heap parameter prevHeap . Here,
prevHeap is instantiated with old(7H), but for loops (Section 4.4), it is instantiated with
the pre-loop heap.

Third, the values passed as in- and out-parameters in Dafny are members of the
respective parameter types and, for reference types, are allocated. This is encoded in the
specifications:

requires this # null A GoodRef|[this, C, H |;
requires isAllocated” [ins [;
ensures isAllocated” [outs |;

where GoodRef is defined in Section 4.1 and isAllocated is defined in Fig. 9.
Fourth, the heap on entry to and exit from the method is a map that satisfies our
axiomatized heap properties. Therefore, the procedure encoding includes:

free requires GoodHeap(H);
free ensures GoodHeap(H);

Fifth, functions declared in Dafny give rise to axioms that can be used only in certain
places. As I describe in Section 4.5, those axioms mention a constant

const CanAssumeFunctionDefs: bool,

in their antecedent. Since the axioms are allowed to be used when reasoning about
method bodies, the encoding of the method includes the precondition

free requires CanAssumeFunctionDefs;

The assumptions about GoodHeap and isAllocated that I have shown here also need
to be done on loop boundaries and for local variables. Boogie provides where clauses
that automatically insert such assumptions. I refer to the Boogie 2 language reference
manual for details [36].

4.4. Statements

Statements follow the grammar in Fig. 10. The else branch can be dropped if its second
Stmts is empty, and the “ :=" is dropped if the list of actual out-parameters zs in the
call statement is empty. The two identifiers (z) in the foreach statement must be the
same.

In Dafny, local variables can be declared among the statements, whereas Boogie lists
all local variables up front in the procedure body. Translation function locals, defined
in Fig. 11, returns the set of Boogie local variables that the translation of each Dafny
statement gives rise to. The translation function locals is used in the procedure body
shown in Fig. 9.

Dafny statements are translated into Boogie as shown in Fig. 12. I give the following
explanations.

28 K.R.M. Leino / Specification and Verification of OO Software
Stmt = varz: Type ;

| z:= Expr;

| Eaxpr.f := Ezpr;

| z:=newT;

| assert Expr ;

| if (Bxpr) { Stmts } else { Stmts }

| while (Expr) Invs { Stmts }

| foreach (z € Expr){z.f:= Expr;)}

| call zs:= Expr . Id(Exprs) ;

Inv invariant Ezpr ;

Figure 10. Grammar of Dafny statements, where = denotes any variable identifier, zs denotes any list of
distinct variables, f denotes any field, and 7" denotes any class.

locals[var z: T;] = =z : type[T']

locals[z:= E;] = // empty

locals[E.f := E;] = // empty

locals[z := new T';] = // empty

locals[assert E;] = // empty

locals[if (E){ SO}else {S1}] = locals[SO0], locals[S1]
locals[while (E) invs { S}] = prevHeap, locals[S|
locals[foreach (x € R){z.f := F;}] = prevHeap
locals[call zs:= E.M(EE);] = // empty

Figure 11. A translation function that collects the Boogie local variables used by the translation. I assume
the local variables in Dafny have first been suitably renamed to avoid name clashes. For each while and
foreach statement, prevHeap denotes a fresh variable introduced for the translation of that statement.

After a Dafny local-variable declaration has been moved to the beginning of the
Boogie procedure, what remains in the translation of var x:T; is havoc z;, which en-
sures that the variable starts off with an arbitrary value, even if it occurs inside a loop.

The assignment to a local variable translates into an assignment in Boogie, preceded
by a check that the right-hand side is defined.

A field update x.f : =E; turns into a heap update, roughly like H|[z, f]:= FE;, pre-
ceded by various checks. The checks enforce that all expressions involved are defined,
that null is not dereferenced, and that the enclosing method’s modifies clause permits
the update. Like all statements that directly update the heap, the translation of the field-
update statement ends by saying the resulting heap satisfies the GoodHeap predicate.

Using the havoc-assume idiom, the allocation statement sets its left-hand side to an
arbitrary non-null, unallocated object reference of the appropriate type. It then marks that
object reference as being allocated.

Dafny’s assert statement first checks that the given expression is defined and then
checks that it evaluates to true.

Similarly, Dafny’s if statement translates into Boogie’s if statement, preceded by a
check that the guard is defined.

For every while statement (and also every foreach statement), the translation intro-
duces a new local variable prevHeap. The encoding starts by recording into prevHeap

K.R.M. Leino / Specification and Verification of OO Software 29

stmts[var x: T;] =
havoc z;
stmtys[z:= E;] =
assert df[E'];
z:=tr[E];
stmts[E0.f := E1;] =
assert df[EO] A df[E1] A tr[E'] # null;
assert CanWrite,,+s[tr[EO]];
H[tr[EO], C.f]:=tr[E1];
assume GoodHeap(H);
stmtys[2:=new T;] =
havoc z; assume z # null A —H|z, alloc] A dtype(z) = class. T}
Hlz, alloc] := true;
assume GoodHeap(H);
stmt, ;[assert E;] =
assert df[E [;
assert tr[E'[;
stmts [if (E) { SO} else { S1}] =
assert df[E [;
if (tr[E']) { stmt},,,[SO] } else { stmt .. [S1] }
stmt, ;[while (E) invariant J;{ S }] =
prevHeap := H;
while (tr[E'])
invariant df[J] A tr[J];
invariant df[E [;
free invariant boilerplate,,, [prevHeap |;
{stmt},, [S]}
stmt,;s[foreach (z € R) { z.f := E;}] =
assert df[R |;
assert (Vz:Ref ¢ z €tr[R] = z # null Ndf[E]);
assert (Vz: Ref o z € tr[R] = CanWrite,us[2]);
prevHeap := H;
havoc H;
assume (V(a) o: Ref, g: Field o o
Hlo, g] = prevHeaplo,g] V (o € tr[R] A g = C.f));
assume (Vz: Ref o H[z, C.f] = tr[E |[prevHeap [JH]);
assume GoodHeap(H);
stmt,s[call zs:= E.M(EE);] =
assert df[E] A df*[EE] A tr[E] # null;
assert (Vo: Ref ® o € trl] MT[EE [Jargs]] = CanWriteis[o]);
call zs:= C.M(tr[E],tr*[EE]);

Figure 12. Translation of Dafny statements into Boogie statements. C' is used to denote the class that declares
field f and method M . Inthe While and foreach statements, prevHeap denotes the variable introduced
by the translation for this statement; this is the same variable as is returned by the translation function locals
(Fig. 11). The capture-avoiding substitution tr[E][prevHeap /H] in the foreach statement leaves old
expressions unchanged. For the call, MT denotes the modifies clause of the method that is called and
args denotes its formal in-parameters.

30 K.R.M. Leino / Specification and Verification of OO Software

the value of the heap on entry to the loop. The target loop invariant checks, at the top
of each loop iteration, that the loop invariant is defined, that the loop invariant holds,
and that the loop guard is defined. The encoding also records the free condition that
the current heap stands in relation to the pre-loop heap according the enclosing method’s
modifies clause, because that modifies clause is enforced in the translation of the loop
body.

When discussing the meaning of Boogie loops in Section 3, I mentioned four con-
tributors to loop invariants. The second conjunct of the boilerplate predicate is an (i0)
contributor, a property that always holds in the source language. The first conjunct of
boilerplate is an (il) contributor, because Dafny’s programming discipline enforces the
rule of checking modifies clauses at each update. And the checking of the loop invariant
itself is an (i3) contributor.

The foreach statement checks that all expressions involved are defined and that
the enclosing method is allowed to update the field z.f for every x in R. Using the
havoc-assume idiom, it then changes the heap at the affected fields (and only those—as
prescribed by the first quantification) to set these to the right-hand £ (as prescribed by
the second quantification). Note that the syntax of the foreach statement, which forces
the left-hand side of the assignment to be a field of an object reference drawn from a set,
guarantees that the fields to be updated are distinct; hence, the order of the assignments
is immaterial.

Finally, a method call in Dafny is translated into a call to the corresponding proce-
dure in Boogie, after checking the definedness of all expressions involved and checking
that the caller is allowed to update the memory locations that the callee may update.

4.5. Functions

So far, we have the basic verification machinery in place, but there is no abstraction in the
language to allow us to specify programs modularly. Functions provide that abstraction.

Function ::= function Id(Params): Type FSpecs { Expr}
Param == Id: Type
FSpec := requires Ezpr ; | reads Exprs ;

Multiple requires clauses are equivalent to one requires clause that conjoins the con-
ditions, and multiple reads clauses are equivalent to one reads clause that gives all the
expressions.

In the rest of this subsection, I consider what to do for a function F' declared as
follows in a class C':

function F'(ins): T requires R; reads rd; { body }

A Dafny function is modeled by a Boogie function, so decl[function F'. ..] pro-
duces:

function C.F(h: Heap Type, this: Ref, decl*[ins]) returns (type[T']);

It also produces a procedure and two axioms, as [will describe shortly.
A function can be used in expressions. It is defined wherever its precondition holds:

K.R.M. Leino / Specification and Verification of OO Software 31

df[E.F(EE)] =
df[E] A dFF[EE] A te[E] # null A
df[R[EE [Jins]] A tr[R[EE [lins]]
trf[E.F(EE)] =
C.F(H, tr[E], tr*[EE])

To reason about a function C.F', the translation into Boogie introduces a couple of
axioms about C.F'.

The first axiom uses the precondition and body of the function, and it gives a precise
definition of the value returned by the function:

axiom CanAssumeFunctionDefs =
(V'H: Heap Type, this: Ref, decl*[ins] o
GoodHeap(H) A this # null AN df[R] A tr[R]
= C.F(H, this,ins) = tr[Body])

Generating an axiom to define a possibly-recursive function is dicey, because the def-
inition may be inconsistent (cf. [13,0,56]). If the axiom generated is inconsistent, one
can prove anything, including any proof obligation intended to check the function defi-
nition to be consistent! For that reason, the translation uses CanAssumeFunctionDefs
as an antecedent of the axioms produced. Since the verification of methods is al-
lowed to use the function axioms, the procedures to which methods translate include
CanAssumeFunctionDefs as a free precondition. The justification for making this
precondition free is that the obligation to prove the function axioms consistent rests
with special function well-definedness checks, described next.

To check that the function is well defined, the translation generates a proof obligation
that all calls go to functions with a strictly smaller reads clause. The proof obligation is
formulated as a Boogie procedure; discharging the proof obligation thus comes down to
verifying the correctness of the procedure’s implementation:

procedure C.F.WellDefined(this: Ref, decl*[ins])
free requires GoodHeap(H);
free requires this # null A GoodRef[this, C', H];
free requires isAllocated™[ins |;

{
assume df[R] A tr[R];
assert funcdf 4] body |;

}

Translation function funcdf is like df, except for field selection expressions and function
calls, which check that the heap is read in accordance with a given reads set r:

funcdf, . [E.f] =
funcdf, [E] Atr[E] # null Atr[E] € tr[7]
funcdf, [E.G(EE)] =
funcdf,.[E] A funcdf [EE] A tr[E] # null A
funcdf,.[Q[EE [Jargs]] A tr[Q[EE [Jargs]] A
tr[s] S tr[r]

where G is a function declared with in-parameters args, precondition (), and reads
clause s. (We can be a little bit more permissive for boolean functions: if the definition

32 K.R.M. Leino / Specification and Verification of OO Software

of a boolean function calls another boolean function in a positive position, then it suffices
to check that the callee’s reads clause is no larger than the caller’s [61,34,50,57].)

Note that, unlike the procedures generated from methods, procedure C.F.WellDe-
fined does not have any precondition that mentions CanAssumeFunctionDefs. There-
fore, it is not possible to use the function axioms when doing the proof of well-
definedness for a function.

It seems that having the definition of the function trumps any other axiom about
it. However, if the definition is recursive, it becomes difficult to prove that a change
of the heap does not affect the value of the function. In particular, doing such a proof
typically requires an induction principle, which is not automatically supported by SMT
solvers. Also, there are times when one might want to hide the actual definition in parts
of the program (cf. [57,32,45]). Then, it is useful to have the following frame axiom,
which builds on the function’s reads clauses and says what parts of memory the function
depends on:

axiom CanAssumeFunctionDefs =
(V'H: Heap Type, K: Heap Type, this: Ref, decl*[ins] o
GoodHeap(H) A GoodHeap(K) A
(V{a) o: Ref, f: Field v ® 0 # null A o € tr[rd] = Hlo, f] = Klo, f])
= C.F(H,this, ins) = C.F(K, this,ins))

The consistency of this axiom follows from the fact that the function’s body adheres to
the function’s declared reads clauses, which in turn follows from the proof obligation
C.F.WellDefined above. The proof of class Node in Section 1.0, whose function Valid
is recursive, needs this frame axiom.

5. Related Reading

Dynamic frames were introduced by Kassios [28] and were first implemented in an au-
tomatic program verifier by Smans et al. [59,58,57].

A prevalent architecture of such verifiers first translates the source language to a
primitive intermediate verification language, and then generates theorem-prover input
from the intermediate language. ESC/Modula-3 [16] and ESC/Java [22] used early forms
of this architecture, which is now further developed in Boogie [4,36] and Why [19]. A
pedagogical development of the architecture for a core object-oriented language with
subclassing and invariants is given in previous Marktoberdorf lecture notes [43].

The style of dynamic-frames specifications bears some resemblance to the valid/-
state specification idiom in ESC/Modula-3 [16,40], to data groups [33,41], and to sepa-
ration logic [55] with predicates [51,50]. Alternatives are explored in JML [31], which
uses universe types [46], and Spec# [7], which uses the Boogie methodology [5,38,8,44].

Separation logic [55] provides a reasoning logic that hides the explicit representa-
tion of dynamic frames. Recently, some promising checkers based on separation logic
have sprung up [10,18,26]. These operate in a way that is more similar to Floyd/Hoare
logic [24,25] for enumerated straight-line paths of a program than to verification-
condition generation via weakest preconditions. Region logic [3] uses Floyd/Hoare style
reasoning with regions that explicitly let the logic talk about dynamic frames. Region
logic has also been encoded as a translation to Boogie [2].

K.R.M. Leino / Specification and Verification of OO Software 33

Acknowledgments

I thank Jan Smans for various discussions on this topic, and for useful comments on a
draft of these lecture notes. Michat Moskal and Wolfram Schulte helped write a previous
version of the Queue example in Boogie, developing the use of the “bulk update” (in
Dafny, the foreach statement) as a way to update all relevant ghost fields of the linked
list. I also thank the curious students and other participants at the Summer School on
Logic and Theorem-Proving in Programming Languages in Eugene, OR (July 2008) and
the International Summer School Marktoberdorf, Germany (August 2008), as well as the
organizers of those summer schools.

References

[0]

(1]

(2]

(3]

[4]

[5]

(6]

(71

(8]

[91

[10]

Adém Darvas and K. Rustan M. Leino. Practical reasoning about invocations and implementations of
pure methods. In Matthew B. Dwyer and Anténia Lopes, editors, Fundamental Approaches to Software
Engineering, 10th International Conference, FASE 2007, volume 4422 of Lecture Notes in Computer
Science, pages 336-351. Springer, March—April 2007.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1986.

Anindya Banerjee, Mike Barnett, and David A. Naumann. Boogie meets regions: A verification expe-
rience report. In Natarajan Shankar and Jim Woodcock, editors, Verified Software: Theories, Tools, Ex-
periments, Second International Conference, VSTTE 2008, volume 5295 of Lecture Notes in Computer
Science, pages 177-191. Springer, October 2008.

Anindya Banerjee, David A. Naumann, and Stan Rosenberg. Regional logic for local reasoning about
global invariants. In Jan Vitek, editor, ECOOP 2008 — Object-Oriented Programming, 22nd European
Conference, volume 5142 of Lecture Notes in Computer Science, pages 387-411. Springer, July 2008.
Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino. Boogie: A
modular reusable verifier for object-oriented programs. In Frank S. de Boer, Marcello M. Bonsangue,
Susanne Graf, and Willem-Paul de Roever, editors, Formal Methods for Components and Objects: 4th
International Symposium, FMCO 2005, volume 4111 of Lecture Notes in Computer Science, pages
364-387. Springer, September 2006.

Mike Barnett, Robert DeLine, Manuel Fahndrich, K. Rustan M. Leino, and Wolfram Schulte. Verifica-
tion of object-oriented programs with invariants. Journal of Object Technology, 3(6):27-56, 2004.
Mike Barnett and K. Rustan M. Leino. Weakest-precondition of unstructured programs. In Michael D.
Ernst and Thomas P. Jensen, editors, Proceedings of the 2005 ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis For Software Tools and Engineering, PASTE 05, pages 82-87. ACM, September
2005.

Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming system: An overview.
In Gilles Barthe, Lilian Burdy, Marieke Huisman, Jean-Louis Lanet, and Traian Muntean, editors, CAS-
SIS 2004, Construction and Analysis of Safe, Secure and Interoperable Smart devices, volume 3362 of
Lecture Notes in Computer Science, pages 49—69. Springer, 2005.

Mike Barnett and David A. Naumann. Friends need a bit more: Maintaining invariants over shared state.
In Dexter Kozen and Carron Shankland, editors, Seventh International Conference on Mathematics of
Program Construction (MPC 2004), volume 3125 of Lecture Notes in Computer Science, pages 54—84.
Springer, July 2004.

Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm and Holger Hermanns, editors, Proceedings
of the 19th International Conference on Computer Aided Verification (CAV "07), volume 4590 of Lecture
Notes in Computer Science, pages 298-302. Springer, July 2007.

Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot: Modular automatic assertion
checking with separation logic. In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and
Willem P. de Roever, editors, Formal Methods for Components and Objects, 4th International Sym-
posium, FMCO 2005, volume 4111 of Lecture Notes in Computer Science, pages 115-137. Springer,
September 2006.

34

[11]

[12]

[13]

[14]

[15]
[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]
[26]

[27]

[28]

[31]

[32]

K.R.M. Leino / Specification and Verification of OO Software

Jeremy Condit, Brian Hackett, Shuvendu Lahiri, and Shaz Qadeer. Unifying type checking and property
checking for low-level code. In Proceedings of POPL 2009. ACM, January 2009. To appear.

Patrick Cousot and Rhadia Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In Conference Record of the Fourth Annual
ACM Symposium on Principles of Programming Languages, pages 238-252. ACM, January 1977.
Adém Darvas and Peter Miiller. Reasoning about method calls in interface specifications. Journal of
Object Technology, 5(5):59-85, June 2006.

Leonardo de Moura and Nikolaj Bjgrner. Z3: An efficient SMT solver. In Tools and Algorithms for
the Construction and Analysis of Systems, 14th International Conference, TACAS 2008, volume 4963 of
Lecture Notes in Computer Science, pages 337-340. Springer, March—April 2008.

David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for program checking.
Journal of the ACM, 52(3):365-473, May 2005.

David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Extended static checking.
Research Report 159, Compaq Systems Research Center, December 1998.

Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, Englewood Cliffs, NJ, 1976.

Dino Distefano and Matthew J. Parkinson. jStar: Towards practical verification for Java. In Gail E. Har-
ris, editor, Proceedings of the 23rd Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 2008, pages 213-226. ACM, October 2008.
Jean-Christophe Fillidtre. Why: a multi-language multi-prover verification tool. Research Report 1366,
LRI, Université Paris Sud, March 2003.

Jean-Christophe Fillidtre and Claude Marché. Multi-prover verification of C programs. In Sixth In-
ternational Conference on Formal Engineering Methods (ICFEM), volume 3308 of Lecture Notes in
Computer Science, pages 15-29. Springer, November 2004.

Jean-Christophe Fillidtre and Claude Marché. The Why/Krakatoa/Caduceus platform for deductive
program verification. In Werner Damm and Holger Hermanns, editors, Computer Aided Verification,
19th International Conference, CAV 2007, volume 4590 of Lecture Notes in Computer Science, pages
173-177. Springer, July 2007.

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and Raymie
Stata. Extended static checking for Java. In Proceedings of the 2002 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), volume 37, number 5 in SIGPLAN
Notices, pages 234-245. ACM, May 2002.

Cormac Flanagan and James B. Saxe. Avoiding exponential explosion: Generating compact verification
conditions. In Conference Record of the 28th Annual ACM Symposium on Principles of Programming
Languages, pages 193-205. ACM, January 2001.

R. W. Floyd. Assigning meaning to programs. In Mathematical Aspects of Computer Science, pages
19-32. XIX American Mathematical Society, 1967.

C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM,
12(10):576-580,583, October 1969.

Bart Jacobs and Frank Piessens. The VeriFast program verifier. Technical Report CW-520, Department
of Computer Science, Katholieke Universiteit Leuven, Belgium, August 2008.

Rajeev Joshi. Extended static checking of programs with cyclic dependencies. In James Mason, editor,
1997 SRC Summer Intern Projects, Technical Note 1997-028. Digital Equipment Corporation Systems
Research Center, 1997.

Toannis T. Kassios. Dynamic frames: Support for framing, dependencies and sharing without restric-
tions. In Jayadev Misra, Tobias Nipkow, and Emil Sekerinski, editors, FM 2006: Formal Methods,
14th International Symposium on Formal Methods, volume 4085 of Lecture Notes in Computer Science,
pages 268-283. Springer, August 2006.

Viktor Kuncak and K. Rustan M. Leino. In-place refinement for effect checking. In Second International
Workshop on Automated Verification of Infinite-State Systems (AVIS’03), April 2003.

Shuvendu K. Lahiri and Shaz Qadeer. Verifying properties of well-founded linked lists. In Greg Mor-
risett and Simon Peyton Jones, editors, Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2006, pages 115-126. ACM, January 2006.

Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A notation for detailed design. In Haim Kilov,
Bernhard Rumpe, and Ian Simmonds, editors, Behavioral Specifications of Businesses and Systems,
pages 175-188. Kluwer Academic Publishers, 1999.

K. Rustan M. Leino. Toward Reliable Modular Programs. PhD thesis, California Institute of Technol-

[33]

[34]

[35]
[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]
[46]
[47]
[48]
[49]
[50]

[51]

[52]
[53]

[54]

K.R.M. Leino / Specification and Verification of OO Software 35

ogy, 1995. Technical Report Caltech-CS-TR-95-03.

K. Rustan M. Leino. Data groups: Specifying the modification of extended state. In Proceedings of
the 1998 ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Ap-
plications (OOPSLA ’98), volume 33, number 10 in SIGPLAN Notices, pages 144—153. ACM, October
1998.

K. Rustan M. Leino. A SAT characterization of boolean-program correctness. In Thomas Ball and
Sriram K. Rajamani, editors, Model Checking Software (SPIN 2003), volume 2648 of Lecture Notes in
Computer Science, pages 104—120. Springer, May 2003.

K. Rustan M. Leino. Efficient weakest preconditions. Information Processing Letters, 93(6):281-288,
March 2005.

K. Rustan M. Leino. This is Boogie 2. Manuscript KRML 178, 2008. Available at http://-
research.microsoft.com/ leino/papers.html.

K. Rustan M. Leino, Michat Moscal, and Wolfram Schulte. Verification condition splitting. Submitted
manuscript, September 2008.

K. Rustan M. Leino and Peter Miiller. Object invariants in dynamic contexts. In Martin Odersky, editor,
European Conference on Object-Oriented Programming (ECOOP), volume 3086 of Lecture Notes in
Computer Science, pages 491-516. Springer-Verlag, June 2004.

K. Rustan M. Leino and Peter Miiller. A verification methodology for model fields. In Peter Sestoft,
editor, Programming Languages and Systems, 15th European Symposium on Programming, ESOP 2006,
volume 3924 of Lecture Notes in Computer Science, pages 115-130. Springer, March 2006.

K. Rustan M. Leino and Greg Nelson. Data abstraction and information hiding. ACM Transactions on
Programming Languages and Systems, 24(5):491-553, September 2002.

K. Rustan M. Leino, Arnd Poetzsch-Heffter, and Yunhong Zhou. Using data groups to specify and check
side effects. In Proceedings of the 2002 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), volume 37, number 5 in SIGPLAN Notices, pages 246-257. ACM, May
2002.

K. Rustan M. Leino, James B. Saxe, and Raymie Stata. Checking Java programs via guarded commands.
In Bart Jacobs, Gary T. Leavens, Peter Miiller, and Arnd Poetzsch-Heffter, editors, Formal Techniques
for Java Programs, Technical Report 251. Fernuniversitit Hagen, May 1999.

K. Rustan M. Leino and Wolfram Schulte. A verifying compiler for a multi-threaded object-oriented
language. In 2006 Marktoberdorf Summer School on Programming Methodology, NATO ASI Series.
Springer, 2007.

K. Rustan M. Leino and Angela Wallenburg. Class-local object invariants. In First India Software
Engineering Conference (ISEC 2008). ACM, February 2008.

Peter Miiller. Modular Specification and Verification of Object-Oriented Programs, volume 2262 of
Lecture Notes in Computer Science. Springer-Verlag, 2002. PhD thesis, FernUniversitidt Hagen.

Peter Miiller, Arnd Poetzsch-Heffter, and Gary T. Leavens. Modular invariants for layered object struc-
tures. Science of Computer Programming, 62:253-286, 2006.

Greg Nelson. Verifying reachability invariants of linked structures. In Conference Record of the Tenth
Annual ACM Symposium on Principles of Programming Languages, pages 38—47. ACM, January 1983.
Greg Nelson. A generalization of Dijkstra’s calculus. ACM Transactions on Programming Languages
and Systems, 11(4):517-561, 1989.

Greg Nelson, editor. Systems Programming with Modula-3. Series in Innovative Technology. Prentice-
Hall, Englewood Cliffs, NJ, 1991.

Matthew J. Parkinson. Local Reasoning for Java. PhD thesis, Computer Laboratory, University of
Cambridge, 2005. UCAM-CL-TR-654.

Matthew J. Parkinson and Gavin M. Bierman. Separation logic and abstraction. In Jens Palsberg and
Martin Abadi, editors, Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2005, pages 247-258. ACM, January 2005.

D. L. Parnas. A technique for software module specification with examples. Communications of the
ACM, 15(5):330-336, May 1972.

Arnd Poetzsch-Heffter. Specification and verification of object-oriented programs. Habilitationsschrift,
Technische Universitit Miinchen, 1997.

Arnd Poetzsch-Heffter and Peter Miiller. Logical foundations for typed object-oriented languages. In
David Gries and Willem-Paul de Roever, editors, Programming Concepts and Methods, PROCOMET
’98, pages 404-423. Chapman & Hall, 1998.

36

[55]

[56]

[57]

[58]

[59]

[60]
[61]

K.R.M. Leino / Specification and Verification of OO Software

John C. Reynolds. Separation logic: A logic for shared mutable data structures. In 17th IEEE Symposium
on Logic in Computer Science (LICS 2002), pages 55-74. IEEE Computer Society, 2002.

Arsenii Rudich, Addam Darvas, and Peter Miiller. Checking well-formedness of pure-method specifica-
tions. In Jorge Cuellar, Tom Maibaum, and Kaisa Sere, editors, FM 2008: Formal Methods, 15th In-
ternational Symposium on Formal Methods, volume 5014 of Lecture Notes in Computer Science, pages
68-83. Springer, May 2008.

Jan Smans, Bart Jacobs, and Frank Piessens. Implicit dynamic frames. In Marieke Huisman, editor,
Formal Techniques for Java-like Programs (FTfJP 2008), pages 1-12, July 2008. Proceedings appear
as Technical Report ICIS-R08013, Radboud University Nijmegen.

Jan Smans, Bart Jacobs, and Frank Piessens. VeriCool: An automatic verifier for a concurrent object-
oriented language. In Gilles Barthe and Frank S. de Boer, editors, Formal Methods for Open Object-
Based Distributed Systems, 10th IFIP WG 6.1 International Conference, FMOODS 2008, volume 5051
of Lecture Notes in Computer Science, pages 220-239. Springer, June 2008.

Jan Smans, Bart Jacobs, Frank Piessens, and Wolfram Schulte. An automatic verifier for Java-like pro-
grams based on dynamic frames. In José Luiz Fiadeiro and Paola Inverardi, editors, Fundamental Ap-
proaches to Software Engineering, 11th International Conference, FASE 2008, volume 4961 of Lecture
Notes in Computer Science, pages 261-275. Springer, March—April 2008.

Spec# home page. http://research.microsoft.com/specsharp/, 2008.

Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics,
5:285-309, 1955.

