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Abstract. Boogie is an intermediate verification language, designed to make the
prescription of verification conditions natural and convenient. It serves as a com-
mon intermediate representation for static program verifiers of various source
languages, and it abstracts over the interfaces to various theorem provers. Boogie
can also be used as a shared input and output format for techniques like abstract
interpretation and predicate abstraction. As a language, Boogie has both mathe-
matical and imperative components. The imperative components of Boogie spec-
ify sets of execution traces, the states of which are described and constrained
by the mathematical components. The language includes features like paramet-
ric polymorphism, partial orders, logical quantifications, nondeterminism, total
expressions, partial statements, and flexible control flow. The Boogie language
was previously known as BoogiePL. This paper is a reference manual for Boogie
version 2.

Hello, my name is Rustan Leino. I’m a computer scientist. I write a lot of
papers. That little IPL article on subscripts in technical presentations? That
was mine. In 1992, I went up to Palo Alto, California to a research lab called
the Systems Research Center. Don’t look for it; it’s not there anymore. But
that summer, I saw a tool that for me redefined the word “light-weight formal
methods”. I remember being knocked out by its. . . its potential, its raw power–
and its automation. That tool was Modula-3’s now-legendary Extended Static
Checker. Sixteen years and several verification tools later, theorem-prover based
software verification is still trying to reach that potential. And it’s earned a dis-
tinguished place in computer science history as one the trade’s most expertise-
demanding tools. So in the late fall of 2006, when I heard that the intermediate
verification language Boogie was releasing a new version called “Smell the
Polymorphism”, and was planning its first major publications in almost three
years to promote that version, well needless to say I jumped at the chance
to write the documentation—the, if you will, “rockumentation”—that you’re
about to read. I wanted to capture the. . . the uses, the sounds. . . the smells of a
hard-working verification language, on the road. And I got that; I got more. . . a
lot more. But hey, enough of my yakkin’. Whaddaya say? Let’s Boogie!

0 Introduction

A standard technique in program verification is to transform a given program into a
set of verification conditions, logical formulas whose validity implies that the program
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satisfies the correctness properties under consideration. The verification conditions are
then processed with the help of a theorem prover, where a successful proof attempt
shows the correctness of the program, and a failed proof attempt may give an indication
of a possible error in the program.

Experience with some automatic program verifiers [6, 4, 1] suggests that the com-
plex task of generating verification conditions for modern programming languages can
be managed by separating the task into two steps: a transformation of the program and
its proof obligations into an intermediate language (an intermediate representation that
is structured more like a program than a formula), and then a transformation of that
intermediate-language program into logical formulas. The first of these steps encodes
the semantics of the source program’s constructs in terms of primitive program con-
structs, records as assumptions properties that are guaranteed in any execution of the
source program, and prescribes what correctness means (that is, what conditions need
to hold where in order for the program to be considered correct).

This paper is a reference manual for Boogie, an intermediate language designed
to accommodate the encoding of verification conditions for imperative, object-oriented
programs. Previously known as BoogiePL, the Boogie language is currently used and
checked by the program verifier also called Boogie [1]. At the time of this writing,
translations into Boogie exist or are under way for several languages: Spec# [1], C [2,
10], Dafny, Java bytecode with BML, and Eiffel. The paper describes the syntax, type
checking, and semantics of Boogie, as well as a rationale for its design and examples
of how to encode proof obligations and assumptions in the language.

The next section gives an overview of Boogie 2. The bulk of the remaining sections
detail the language constructs, types, expressions, and statements. The last sections give
additional examples and related work.

1 Overview

At the top level, Boogie features seven kinds of declarations. The mathematical con-
structs introduce types, constants, functions, and axioms. The imperative constructs
introduce global variables, procedure declarations, and procedure implementations.

Type declarations introduce type constructors. For example,

type Wicket ;

declares a type (more precisely, a nullary type constructor) intended to represent wick-
ets. Symbolic constants are introduced by constant declarations, like

const w :Wicket ;

which says that w is some fixed (but unspecified) value of type Wicket . Function
declarations introduce mathematical functions. For example,

function age(Wicket) returns (int);

declares a function intended to return the age of wickets. Properties of constants and
functions are postulated by axiom declarations. For example,

axiom age(w) == 7;
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says that age returns 7 for w .
The program state is made up of mutable variables. Global variable declarations

introduce the state on which all procedure operate. For example,

var favorite:Wicket ;

introduces a variable for holding the current favorite wicket. A procedure declaration
gives a name to a set of execution traces, which are specified by pre- and postconditions.
For example,

procedure NewFavorite(n:Wicket);
modifies favorite;
ensures favorite == n;

Finally, an implementation declaration spells out a set of execution traces by giving a
body of code. The implementation is correct if and only if its set of traces is a subset of
the traces specified by the corresponding procedure. For example,

implementation NewFavorite(n:Wicket)
{
favorite := n;

}

gives a (correct) implementation of procedure NewFavorite .
The grammars shown in this paper use | to separate alternatives. The superscript ?

indicates that the preceding component is optional, the superscripts ∗ and + indicate
a repetition of 0-or-more and 1-or-more, respectively, components juxtaposed, and ,∗
and ,+ indicate 0-or-more and 1-or-more components separated by commas. Boldface
words indicate keywords, and non- | non-superscript symbols (like semi-colons and
parentheses) stand for themselves.

A Boogie program has the following form:

Program ::= Decl∗

Decl ::= TypeDecl | ConstantDecl | FunctionDecl | AxiomDecl
| VarDecl | ProcedureDecl | ImplementationDecl

The order of the declarations in a program is immaterial.
Identifiers, indicated by the grammar component Id , consist of characters drawn

from a large set. This set consists of letters (including non-English letters from the
Unicode alphabet), digits (but an identifier may not being with a digit), and

underscore
. dot
$ dollar sign
# hash sign
′ single quote (prime)
` back quote
∼ tilde
ˆ caret
\ backslash
? question mark
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The identifiers declared in a Boogie program fall into five independent name spaces:
types, functions, constants plus variables, procedures, and attributes. The name space
for types contains global type names (type constructors and type synonyms) and scoped
type variables (appearing in map types and in quantification expressions). The global
type names must be distinct from each other and the type variables in any scope must be
distinct from each other, but scoped type variables are allowed to shadow global type
names. Similarly, the name space for constants plus variables contains global names
(constants and global variables) and scoped names (formal parameters, local variables,
and quantified variables). The global names must be distinct from each other and the
scoped names in any scope must be distinct from each other, but scoped variables are
allowed to shadow global names.

2 Types

In addition to built-in types, Boogie allows user-defined type declarations:

TypeDecl ::= TypeConstructor | TypeSynonym

This section describes type constructors, then built-in types, and finally type synonyms.

2.0 Type constructors

Type constructors are declared according to the following grammar:

TypeConstructor ::= type Attribute∗ finite? Id Id∗ ;

Type declarations, along with all other top-level declarations and some other constructs,
can be decorated with a set of attributes; these are described in Section 11.

The declaration above defines a type constructor named by the first Id . The type
constructors in a program must have distinct names, and these names must also be
distinct from any type synonym. The number of remaining Id ’s specify the number of
type arguments that the type constructor takes, but the particular Id ’s used to indicate
the number of these arguments is not relevant. In particular, the type-argument Id ’s can
contain duplicates; for example, they may all be the identifier .

As an example,

type Barrel α;

declares a unary type constructor intended to represent barrels for some contents. For
example, Barrel int and Barrel Wicket are two instantiations of the Barrel type
constructor, representing barrels of integers and barrels of wickets, respectively.

Each instantiation of a type constructor gives rise to a type. The cardinality of each
type is non-zero; that is, each type represents a nonempty set of individuals. Unless
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the type constructor is declared with finite , the type has an infinite number of indi-
viduals. A type constructed by a finite type constructor may have a finite number of
individuals. For example, a closed enumeration can be declared as a finite type:

type finite RGBColor ;
const unique red :RGBColor ;
const unique green:RGBColor ;
const unique blue:RGBColor ;
axiom (∀ ce:RGBColor • ce == red ∨ ce == green ∨ ce == blue );

(0)

A subtle, but important, point in this example is that without the finite keyword,
RGBColor would have an infinite number of values, in which case the axiom would
be tantamount to false . Note that it is the declaration of the type constructor, not its
type arguments, that determines whether or not it yields finite types.

2.1 Built-in types

A type is either a primitive type, an instantiated type constructor or type synonym, or a
possibly polymorphic map type. In addition, universally quantified type identifiers can
denote types.

Type ::= TypeAtom |MapType
| Id TypeCtorArgs? type identifier, or type

constructor with type arguments
TypeAtom ::= bool | int primitive types

| bv0 | bv1 | bv2 | · · · bit-vector types
| ( Type )

MapType ::= TypeArgs? [ Type,+ ] Type
TypeArgs ::= 〈 Id ,+ 〉

| < Id ,+ > ASCII syntax for the same
TypeCtorArgs ::= TypeAtom TypeCtorArgs?

| Id TypeCtorArgs?

| MapType

The primitive type bool denotes the booleans and int denotes the mathematical inte-
gers. The various bv types represent bit vectors consisting of the indicated number of
bits. The semantics of types is that no individual belongs to more than one type; that is,
different types represent disjoint sets of individuals.

A (possibly polymorphic) map type denotes maps, aka update-able maps, aka non-
rigid functions, aka heterogeneous arrays. Syntactically, the domain types are listed
within square brackets, followed by the range type. For example, each individual of
[RGBColor ] int maps RGB-color individuals to integers, and each individual of the
type [int, int] bool is a two-dimensional array of booleans. Domain types need not
be finite; for example, [Wicket ]bool represents maps from all wickets to booleans and
[int]Wicket represents maps from all mathematical integers to wickets.

A map type also indicates a number of universally quantified type identifiers, syn-
tactically listed first within angle brackets. The order of the bound type identifiers is



6

not important, but they must all be distinct from each other and from all bound type
identifiers in enclosing types. If this list is empty, it is omitted and the map type is said
to be monomorphic. If the list is nonempty, the map type is said to be polymorphic. For
example, in the following, m maps wicket barrels to wickets whereas n maps any kind
of barrel to individuals of that barrel’s contents type:

const m: [Barrel Wicket ] Wicket ;
const n: 〈α〉[Barrel α] α;

So, if bi has type Barrel int , then the map-selection expression n[bi ] denotes an
integer, and if bw has type Barrel Wicket , then n[bw ] denotes a wicket. Boogie
supports Unicode input and allows ASCII synonyms, like < for 〈 and > for 〉 .

There is a restriction on polymorphic map types. Each bound type variable must be
mentioned somewhere in the map type’s domain types. For example, 〈α〉[int]α is not
allowed, because the domain type int does not mention α . Although it is not actually
necessary for defining type checking for expressions per se—one could let the enclosing
context further constrain the bound type variables, in the usual way—this restriction
means that every map-selection expression has a unique type, regardless of the context
where the map selection appears.

Modulo this restriction, Boogie’s type system thus supports higher-rank types, in
the sense that a map can take another map as a domain argument. In some languages,
universal types 〈α〉 . . . are considered for any types, but in Boogie they are only used
with map types, which is therefore reflected in the Boogie syntax.

Note that the parsing of type-constructor arguments and type-synonym arguments
is right associative (see grammar production TypeCtorArgs ). Stated differently, the
arguments of a type constructor (or type synonym) are parsed as long as possible or
until a map type is encountered. Parentheses can be used to override the precedence
levels, as usual. Here are several examples:

type C α β;
const a:C Wicket Wicket ;
const b:Barrel Barrel Wicket ; // error (here, the first Barrel is given

// two arguments instead of one)
const c:Barrel (Barrel Wicket);
const d :Barrel [int] Barrel Wicket ; // same as Barrel ([int] (Barrel Wicket))
const e:C Wicket Barrel int; // error (C expects 2 arguments, not 3)
const f :C Wicket (Barrel int);
const g :C Wicket [int]Barrel int; // same as C Wicket ([int] (Barrel int))
const h:C [int] int Wicket ; // parse error (extraneous Wicket)
const i :C [int]Wicket Wicket ; // error (first Wicket expects 0 arguments)
const j :C ([int]Wicket) Wicket ;

2.2 Type synonyms

Type synonyms are declared as follows:

TypeSynonym ::= type Attribute∗ Id Id∗ = Type ;
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This declaration introduces a type synonym whose name is the first Id , whose formal
type arguments are given by the remaining Id ’s, and whose definition is given by Type .
The type synonyms in a program must must have distinct names, and these names must
also be distinct from any type constructor. The type arguments must all be distinct. The
right-hand side Type can mention the type arguments (and other type synonyms and
type constructors) and must resolve to a properly formed type. For example, in:

type MySynonym α = int;
type ComplicatedInt = MySynonym (MySynonym bool);
type Bogus = MySynonym MySynonym; // error

the declaration of the unary type synonym MySynonym is legal (it is allowed to ignore
its argument, α , in the definition) and so is the declaration of ComplicatedInt , but the
declaration of Bogus is not legal, because the second occurrence of MySynonym is
used without an argument type.

A type synonym is simply an abbreviation for the given type; any use of it, which
syntactically looks like the use of a type constructor, is simply replaced by the right-
hand side Type in which:

– all bound type arguments are renamed to avoid name capture, and
– the type arguments to the type synonym are replaced by the types provided in the

use.

For example,

type MultiSet α = [α]int;

defines, for any type α , MultiSet α as a synonym for the type [α]int that repre-
sents maps from α to integers. Semantically, there is no difference between the use
of a type synonym (like MultiSet Wicket ) and the type to which it expands (here,
[Wicket ]int ).

As another example, given:

type S α β = 〈γ〉[β, γ]int;

(where the right-hand side is a polymorphic map type with bound type variable γ , as
introduced below), the use:

S bool (S Wicket 〈γ〉[γ]γ)

is semantically equivalent to:

〈ε〉[ 〈δ〉[ 〈γ〉[γ]γ , δ ] int , ε ] int

Note that the formal type argument α is not used, so bool and Wicket do not occur
in the expansion. Note also that the bound type variable γ in the definition of the type
synonym is renamed in order to avoid name capture.

Type synonyms are expanded before any restriction on the enclosing context is ap-
plied. For example, given the declaration of MySynonym above,

〈β〉[MySynonym β] int // error
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is not a legal type: MySynonym β is itself legal and is thus expanded to int according
to its definition above. After expansion, the enclosing context becomes 〈β〉[int]int ,
which is not legal, because β is not used in the domain type of the map type.

Definitions of type synonyms are not allowed to be recursive (or mutually recur-
sive). More precisely, consider the directed graph whose vertices are the type synonyms
in a program, and in which there is an edge from a type synonym S to each type syn-
onym mentioned in its definition. Then, this graph must be acyclic.

3 Constants and functions

Constant declarations have the following syntactic form:

ConstantDecl ::= const Attribute∗ unique? IdsType OrderSpec ;
IdsType ::= Id ,+ : Type

For each Id in the IdsType , the declaration introduces Id as a symbolic constant of
type Type . The constants in a program must have names that are distinct from other
constants and global variables. The attributes, unique designation, and OrderSpec
clause apply to each of the Id ’s introduced, as if each Id were introduced in a separate
const declaration.

Declaring a constant with unique makes manifest that the constant has a value
that is different from the values of other unique constants of the same type. By using
unique , one can avoid declaring axioms for the quadratically many distinctions. For
example, the use of unique in the declaration (0) of RGBColor constants implies the
condition expressed by the following axiom:

axiom red 6= green ∧ green 6= blue ∧ blue 6= red ;

The OrderSpec clause optionally specifies the relative position of the constant in
the partial order <: for type Type . Section 10 gives the details.

A function declaration has one of the following syntactic forms:

FunctionDecl ::= function Attribute∗ Id FSig ;
| function Attribute∗ Id FSig { Expr }

It introduces a function named Id . The functions in a program must have distinct
names. The function’s type signature has the form:

FSig ::= TypeArgs? ( FArg,∗ ) returns ( FArg )
FArg ::= FArgName? Type

FArgName ::= Id :

The signature includes any number of arguments and one result type.
A function can be polymorphic. Universally quantified type identifiers are intro-

duced in TypeArgs . They can then be used as types in the declaration of the function’s
arguments and result, as well as in the optional Expr . The identifiers introduced in
TypeArgs must not contain any duplicates. For example,

function volume〈α〉(Barrel α) returns (int);
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declares a function intended to return the volume of any kind of barrel.
There is a restriction that every type identifier introduced in TypeArgs must be used

(after the expansion of type synonyms) somewhere among the types of the function’s
arguments.

Optionally, the function arguments and result value can be named, for example to
document the purpose of each argument. For example, the use of argument names in

function cylinderVolume(radius: int, height : int) returns (int);

serves as a human aid in remember the order of the arguments. Among the argument
and result names supplied, no duplicates are allowed.

The second form of function defines a value for the function. The Expr is allowed
to refer to the Id ’s supplied as argument names. A declaration

function attrs F (args) returns (res) { E }

is equivalent to

function attrs F (args) returns (res);
axiom (∀ args ′ • F (argIds) == E );

where args ′ is args with any omitted argument names filled in by fresh identifiers and
argIds is the list of argument names in args ′ .

4 Expressions

Boogie expressions include constants, variables, equality and arithmetic relations, boolean
connectives, simple arithmetic operators, logical quantifiers, and an ordering operator.
They follow the grammar in Fig. 0. The operators come in both Unicode form and
ASCII form, as shown in Fig. 1.

Most of the expressions are standard and self-explanatory. Note that ∨ and ∧
have equal binding power but do not associate with each other; thus, an expression that
mentions both must necessarily use parentheses somewhere to disambiguate.

4.0 Division and modulo

Because division and modulo are defined differently in different source languages, Boo-
gie provides syntax for the operators / and % but gives them no meaning. Instead, the
meaning of these operators can be axiomatized according to their desired meaning. For
Modula-3 or Java, the following axioms can be used:

axiom (∀ x : int, y : int • {x % y} {x/y} x % y == x − x/y ∗ y );
axiom (∀ x : int, y : int • {x % y}

(0 < y ⇒ 0 6 x % y ∧ x % y < y) ∧
(y < 0 ⇒ y < x % y ∧ x % y 6 0) );
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Expr ::= E0
E0 ::= E1 | E1 EquivOp E0
E1 ::= E2 | E2 ImplOp E1
E2 ::= E3 | E3 EOr+ | E3 EAnd+

EOr ::= OrOp E3
EAnd ::= AndOp E3

E3 ::= E4 | E4 RelOp E4
E4 ::= E5 | E4 ConcatOp E5
E5 ::= E6 | E5 AddOp E6
E6 ::= E7 | E6 MulOp E7
E7 ::= UnOp∗E8
E8 ::= E9MapOp∗

MapOp ::= [ Expr ,+ MapUpdate? ]
| [ Number : Number ]

MapUpdate ::= := Expr
E9 ::= false | true | Number | BitVector

| Id FuncApplication?

| old ( Expr )

| ( QOp TypeArgs? IdsType,+ QSep TrigAttr∗ Expr )
| ( Expr )

FuncApplication ::= ( Expr ,∗ )
TrigAttr ::= Trigger | Attribute
Number ::= 0 | 1 | 2 | · · ·

BitVector ::= 0bv0
| 0bv1 | 1bv1
| 0bv2 | 1bv2 | 2bv2 | 3bv2
| 0bv3 | 1bv3 | 2bv3 | 3bv3 | 4bv3 | 5bv3 | 6bv3 | 7bv3
| · · ·

Fig. 0. Boogie’s expression grammar.
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EquivOp ::= ⇐⇒ | <==>
ImplOp ::= ⇒ | ==>
OrOp ::= ∨ | ||

AndOp ::= ∧ | &&
RelOp ::= ==

| 6= | !=
| < | >
| 6 | > | <= | >=
| <:

ConcatOp ::= ++
AddOp ::= + | −
MulOp ::= ∗ | / | %
UnOp ::= ¬ | !

| −
QOp ::= ∀ | ∃ | forall | exists
QSep ::= • | ::

Fig. 1. Expression operators, shown in both their Unicode (left column) and ASCII (right column)
forms.

whereas for C, C#, and Spec#, the following axioms can be used:

axiom (∀ x : int, y : int • {x % y} {x/y} x % y == x − x/y ∗ y );
axiom (∀ x : int, y : int • {x % y}

(0 6 x ∧ 0 < y ⇒ 0 6 x % y ∧ x % y < y) ∧
(0 6 x ∧ y < 0 ⇒ 0 6 x % y ∧ x % y < −y) ∧
(x 6 0 ∧ 0 < y ⇒ − y < x % y ∧ x % y 6 0) ∧
(x 6 0 ∧ y < 0 ⇒ y < x % y ∧ x % y 6 0) );

These axioms are not complete and may in some applications of Boogie need to be
extended with further axioms. For example, the following axioms may sometimes be
useful:

axiom (∀ x : int, y : int • {(x + y) % y}
0 6 x ∧ 0 < y ⇒ (x + y) % y == x % y );

axiom (∀ x : int, y : int • {(y + x ) % y}
0 6 x ∧ 0 < y ⇒ (y + x ) % y == x % y );

axiom (∀ x : int, y : int • {(x − y) % y}
0 6 x − y ∧ 0 < y ⇒ (x − y) % y == x % y );

axiom (∀ a: int, b: int, d : int • {a % d , b % d}
2 6 d ∧ a % d == b % d ∧ a < b ⇒ a + d 6 b );

4.1 Map selection and update

A map range value is selected by supplying values in the map’s domain, given in the
same order as the domain types are declared. For example, given the map

const a: [int,RGBColor ]Wicket ;
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the expression a[5, red ] denotes the wicket at 5, red . The map update expression a[5, red := w ]
returns a map, namely the map that is like a except possibly at 5, red , where it has
value w . Note that the map update expression does not change the value of the map a ;
it simply returns a map whose value is very much like that of a .

Maps do not necessarily satisfy extensionality—the property that maps are equal if
all their elements are equal. For example, extensionality would imply:

b[j := b[j ]] == b

but this property does not necessarily hold in Boogie.

4.2 Bit vectors

Bit-vector literals specify their own type. A literal XbvK is legal when X (which is a
number represented in decimal) is 0 or is expressible within K bits. Other than equality
and disequality ( 6= ), only two operations are defined on bit vectors: extraction and
concatenation.

For a bit vector b of type bvK and literals M and N , the extraction expression
b[N :M ] denotes the bit vector obtained by first dropping the M least significant bits
of b and then returning the next N −M least significant bits. In other words, b[N :M ]
denotes the N −M bits of b starting at bit M . The result has type bv(N − M) . The
extraction expression requires K > N > M > 0 .

For bit vectors b and c of types bvK and bvN , respectively, the concatenation
expression b ++ c denotes the bit vector of type bv(K + N) consisting of the bits from
b concatenated by the bits of c .

For example, (13bv6 ++ 4bv3)[5: 2] is 3bv3 , since (showing literals in non-Boogie
binary notation):

(0011012 ++ 1002)[5: 2]
= { concatenation }

0011011002[5: 2]
= { drop the 2 low-order bits }

00110112[3: 0]
= { select the 3 low-order bits }

0112

Note that an extraction expression b[N :M ] indicates a half-open interval of bits,
going from bit M to, but not including, bit N . The advantages of half-open intervals are
the familiar ones: subtracting the two bounds yields the number of bits in the result—
for example, b[24: 18] is a vector of 24 − 18 = 6 bits—and concatenation fuses its
arguments if the “middle” bound is repeated—for example,

b[24: 18] ++ b[18: 7] == b[24: 7]

since the “middle” bound 18 is repeated. The advantage of reversing the order of the
arguments M and N (that is, listing them in reverse numerical order) is that this gives
the familar representation of bit vectors as binary numbers, with the least-significant bit
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to the right. For example, 0bv10 ++ b[24: 18] zero-extends the 6-bit quantity b[24: 18]
to a 16-bit word. Pictorially, a familiar representation like:

b:
32 30 24 18 7 6 5 0

has the following subdivisions:

b[32: 30] ++ b[30: 24] ++ b[24: 18] ++ b[18: 7] ++ b[7: 6] ++ b[6: 5] ++ b[5: 0]

where b is of type bv32 .
A Boogie program can declare additional bit-vector operations as functions. The

properties of these functions can be defined by axioms. Alternatively, as explained in
Section 11, prover-specific attributes can be used to identify such functions with the
prover’s native support of bit vectors.

4.3 Old expressions

Postconditions and procedure implementations are two-state contexts. This means that
it is possible to refer to two different values of each variable. In a postcondition, the
two states are the pre- and post-states of the procedure’s invocations, and in a procedure
implementation, the two states are the pre-state of the procedure and the current state.
In both cases, the pre-state value of an expression is denoted by enclosing it as the
argument to old . For example, in the postcondition of a procedure, if x and y are
global variables, then old(x +y) refers to the value of x +y on entry to the procedure,
whereas x + y not enclosed inside any old expression denotes the value of x + y on
exit from the procedure.

Only global variables are affected by old expressions. For example, if a is a global
variable, b is a local variable, and c is an out-parameter, then the use of old(a+b+c)
in a procedure implementation is equivalent to old(a) + b + c . Stated differently, old
distributes to the leaves of expressions and is the identity for every leaf expression that
is not a global variable. Nested occurrences of old do not further change the meaning
of the expression; old(old(E )) is equivalent to just old(E ) . In other words, old is
idempotent.

4.4 Logical quantifiers

Boogie supports both universal and existential quantifiers. For example, the expression

(∀ t :Wicket • age(t) 6 20 )

says that no wicket is older than 20.
The bound variables among the IdsType ’s must be distinct and must be different

from local variables, parameters, and other bound variables in scope (but they may have
the same names as constants and global variables). The bound variables are in scope in
the body of the quantifier expression and in its TrigAttr components.



14

In addition to the IdsType bound variables, the quantifier can declare bound type
variables in TypeArgs . Such type variables must be distinct and must be different
from other type variables in scope. The type variables may be used in the types of the
IdsType bound variables, in the TrigAttr components, and in the body of the quan-
tifier. In fact, each type variable introduced must be mentioned somewhere within the
types of the IdsType ’s. For example,

(∀ 〈α〉 x : int, y :Barrel α • Q(x , y) )

and

(∀ x : int • (∀ 〈α〉 y :Barrel α • Q(x , y) ))

are legal whereas

(∀ 〈α〉 x : int • (∀ y :Barrel α • Q(x , y) )) // error

is not (because the type of the bound variable in the outer quantifier does not depend on
α ).

The bound type variables are universally or existentially quantified as indicated by
QOp . For example,

(∀ 〈α〉 b:Barrel α • P(b) )

says that P(b) holds for all types α and all values b:Barrel α . And:

(∀ 〈α〉 b:Barrel α • P(b) )

says that there exists a type α and a value b:Barrel α such that P(b) holds.
Note, an expression that quantifies over types is not the same as a universal (or

extential) type. Also, a quantified expression always has type bool , never a universal
(or existential) type. If this is a point of confusion, it may help to consider the higher-
order function ∀ , which takes a function, say f , as argument and returns true if and
only if f returns true on all of f ’s inputs. Then, a quantification (∀ x :T • E ) over
a bound variable x can be viewed as the higher-order function ∀ applied to the value
abstraction (λ x :T • E ) . And a quantification (∀ 〈α〉 x : · · · • E ) can be viewed as
the higher-order function ∀ applied to the type abstraction (Λα • (∀ x : · · · • E )) .

Like top-level declarations, quantifiers can be decorated with attributes. In addition,
quantifiers can include trigger expressions. Such attributes and triggers are described in
Section 11.

5 Type checking of expressions

On the whole, type checking in Boogie is humdrum. Only map operations and equality
are noteworthy. Map selection and update operate on polymorphic maps, which means
that the corresponding type rules consider the instantiation of generic types. Equality is
type checked rather liberally, allowing two expressions to be compared if there is some
instantiation of type parameters that makes the two operands have the same type. The
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semantic meaning of a == b is that the evaluation of expressions a and b lead not only
to the same value but also to values of the same type.

Well-typing is expressed by the judgment T ,V 
 a : T , which says that in a con-
text with type parameters T and identifier type bindings V (like x :T and f 〈α〉(T ) returns (U ) ),
expression a has type T .

T ,V 
 a : bool T ,V 
 b : bool ⊕ ∈ { ⇐⇒ , ⇒ , ∨ , ∧ }
T ,V 
 a ⊕ b : bool

T ,V 
 a : bool

T ,V 
 ¬a : bool

T ,V 
 a : int T ,V 
 b : int ⊕ ∈ {<,6,>, >}
T ,V 
 a ⊕ b : bool

T ,V 
 a : int T ,V 
 b : int ⊕ ∈ {+,−, ∗, /,%}
T ,V 
 a ⊕ b : int

T ,V 
 a : int

T ,V 
 −a : int

T ,V 
 a : bvK T ,V 
 b : bvN

T ,V 
 a ++ b : bv(K + N)

T ,V 
 a : bvK K > N > M > 0

T ,V 
 a[N :M ] : bv(N − M)

T ,V 
 a : T

T ,V 
 (a) : T

T ,V 
 a : T

T ,V 
 old(a) : T

T ,V 
 �
T ,V 
 false : bool

T ,V 
 �
T ,V 
 true : bool

T ,V 
 � N > 0

T ,V 
 N : int

T ,V 
 � K > 0 (N = 0) or (0 6 N < 2K )

T ,V 
 NbvK : bvK

T ,V 
 a : T T ,V 
 b : U Tσ == Uσ

T ,V 
 a == b : bool

T ,V 
 ¬(a == b) : bool

T ,V 
 a 6= b : bool

T ,V 
 a : T T ,V 
 b : T

T ,V 
 a <: b : bool

(T , α), (V, x :T ) 
 a : bool (T , α), (V, x :T ) 
attr t for all t ∈ t Æ ∈ {∀,∃}
T ,V 
 ( Æ 〈α〉 x :T • t a ) : bool

T ,V 
 a : 〈α〉[U ]V T ,V 
 b : Uσ for all (b,U ) ∈ (b,U ) dom(σ) = {α}
T ,V 
 a[b] : V σ
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T ,V 
 a : 〈α〉[U ]V dom(σ) = {α}
T ,V 
 e : V σ T ,V 
 b : Uσ for all (b,U ) ∈ (b,U )

T ,V 
 a[b := e] : 〈α〉[U ]V

T ,V 
 � x :T ∈ V
T ,V 
 x : T

T ,V 
 � f 〈α〉(U ) returns (V ) ∈ V dom(σ) = {α}
T ,V 
 a : Uσ for all (a,U ) ∈ (a,U )

T ,V 
 f (a) : V σ

We have now seen enough of Boogie’s type system and expressions to consider
some examples.

5.0 Example: Modeling memory

One of the first and most important decisions one makes when designing a translation
of a source language into Boogie is the representation of memory. In a type-safe source
language with object references and fields, one option is to split the memory (the heap)
up into one part corresponding to each field. For example, a program containing the
following class:

class C { i n t data ; C next ; }

would give rise to a Boogie program that includes the following declarations:

type Ref ;
var C .data: [Ref ]int;
var C .next : [Ref ]Ref ;

where Ref is a type intended to represent object references. Here, each field is a map
from object references to values. A field selection expression o.data in the source lan-
guage is then translated into the Boogie expression C .data[o] , which has type int (see
type rules above). In addition to the fields declared in the source program, it is typical
that a Boogie encoding would model a number of ghost fields. For example,

var alloc: [Ref ]bool;

keeps track of which object references have been allocated in the current state.
However, it is also possible to define the heap as one variable, mapping object ref-

erences and field names to values. Since the values are of different types, depending on
which field name is used, it is convenient to use a polymorphic map, here defined via a
type synonym:

type Field α;
type HeapType = 〈α〉[Ref ,Field α]α;
var Heap:HeapType;
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The fields in the source-program snippet above, and a ghost field for allocation, are now
translated into distinct constants:

const unique C .data:Field int;
const unique C .next :Field Ref ;
const unique alloc:Field bool;

The field selection expression o.data is now translated into the Boogie expression
Heap[o,C .data] , which has type int (in the type rule for map selection above, use σ
as the substitution of int for α ).

There are several advantages to encoding the heap in this way, instead of as one
individual variable per field. One advantage is conciseness, because functions that op-
erate on the heap need only take one argument. For example, a boolean model field m
in a class C can be modeled by a function:

function C .m(heap: 〈α〉[Ref ,Field α]α, this:Ref ) returns (bool);

Another important advantage is the ability to quantify over fields. For example, the
quantification can easily range over fields that are not in scope in the source-language
module translated into Boogie, which enables modular verification in a nice way.

Yet another option to model the heap as mapping each object reference to a map
from field names to values, in other words a currying of the heap representation we just
considered:

var ObjStore: [Ref ]〈α〉[Field α]α;

This representation may be advantageous if changes to entire objects (like ObjStore[o] := r )
occur more frequently than changes to individual fields (ObjStore[o][data] := 5 ),
or if it often is necessary to copy all fields of one object into the fields of another
(ObjStore[o] := ObjStore[template] ). It also gives a clean way to define a model-field
function that depends only on the field of the object itself:

function C .m(this:Ref , dataRecord : 〈α〉[Field α]α) returns (bool);

Unlike the C .m function we considered earlier, this function takes as arguments only
those parts of the heap that make up the fields of the object. For a model-field selec-
tion expression o.m , the translation using this function is C .m(ObjStore[o]) . Note,
however, that a model field is commonly defined over the fields of more than object, in
which case it is necessary to pass in larger parts of the heap, possibly the entire heap as
in the earlier definition of C .m .

5.1 Example: Frame conditions

In program verification, it is important to curb the effects that a procedure can have. In
Boogie, this is done by a combination of modifies and ensures clauses. Since Boogie’s
modifies clauses are coarse-grained, one uses a postcondition that gives more detail.
This particular postcondition is often referred to as the frame condition of the procedure.
Suppose a source-language method is allowed to modify the data field of a parameter
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p , and that it is also allowed to allocate new objects and modify their fields. The Boogie
modifies clause and frame condition for this can be written:

modifies Heap;
ensures (∀ 〈α〉 o:Ref , f :Field α •

Heap[o, f ] = old(Heap)[o, f ] ∨
(o = p ∧ f = C .data) ∨
¬old(Heap)[o, alloc] );

There are several interesting things to note about this frame condition. First, it contains a
quantification over all fields, f . Second, the type of f is supposed to be any field, which
is written Field α , where α denotes any type. Since α needs to be bound somewhere,
the universal quantification over type α is used. Third, it is necessary to be able to
compare f against the particular field name C .data , which is done by the equality
f = C .data . But f (of type Field α ) and C .data (of type Field int ) do not have
the same type; nevertheless, Boogie allows the equality comparison (see the type rules),
because there is some overlap in their types, given the fact that α is a type variable.

6 Axioms

An axiom declaration has the form

AxiomDecl ::= axiom Attribute∗ Expr ;

The given expression must be of type boolean. Global variables and old expressions
are not allowed in Expr . The axiom expresses some properties about the program’s
constants and functions. The effect of this is to restrict execution traces, as described
later.

Note that just like first-order logic makes it possible to write an antecedent that is
equivalent to false , trivially rendering the formula valid, it is possible to write incon-
sistent axioms in Boogie. For example, the inconsistent axiom

axiom false;

has the effect of eliminating all execution traces, which means that all implementations
in the Boogie program are trivially correct.

7 Mutable variables, states, and execution traces

The imperative parts of a Boogie program operate on a state space. The program state
space is the Cartesian product of variables, including a fictitious variable g old for every
global variable g . A state thus assigns a value to each variable. In the body of a pro-
cedure implementation, local variables, out-parameters, and those global variables ap-
pearing in any of the procedure’s modifies clauses are mutable variables, which means
they can changed by statements in the procedure’s implementation.

Global variables are in scope for all procedures and are declared as follows:

VarDecl ::= var Attribute∗ IdsTypeWhere,+ ;
IdsTypeWhere ::= IdsType WhereClause?
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For each IdsTypeWhere , the declaration introduces each Id as a global variable of
type Type . At times in an execution trace when the value of the variable is chosen ar-
bitrarily, the value is chosen to satisfy WhereClause , as explained in Sections 8 and 9.
The global variables in a program must have names that are distinct from constants and
other global variables. The Type and WhereClause of an IdsTypeWhere apply to
each of the Id ’s declared, as if each Id were introduced in a separate var declaration.
The attributes of the declaration apply to each of the Id ’s introduced.

The expression given by a WhereClause appearing among the global variables
must be of type boolean and can refer to any constant, function, and global variable.
Here and throughout, if an optional WhereClause is omitted, it defaults to “where true”.

An execution trace is a nonempty, possibly infinite sequence of states, optionally
followed by the special value  , where every state satisfies all axioms and order speci-
fications declared in the program.

A finite execution trace not ending with  is said to terminate, and it corresponds
to a well-behaved program execution that terminates after a finite number of steps.
An execution trace that ends with  is said to go wrong, and it corresponds to an ill-
behaved program exeuction, that is, a program execution that after a finite number of
steps crashes. So, a finite execution trace either terminates or goes wrong. An infinite
execution trace is said to diverge, and it corresponds to a well-behaved never-ending
program execution.

8 Procedures and implementations

A procedure defines two sets of execution traces, the caller traces and the callee traces.
These traces are determined by the procedure’s signature and specification. A procedure
implementation also defines a set of execution traces, the implementation traces. These
traces are determined by the implementation’s body, which is a statement. A procedure
can be invoked by the call statement, which gives rise to the traces defined by the pro-
cedure’s caller traces. An implementation is correct if and only if the implementation
traces form a subset of the procedure’s callee traces.

8.0 Syntax

A procedure declaration has one of two forms:

ProcedureDecl ::= procedure Attribute∗ Id PSig ; Spec∗

| procedure Attribute∗ Id PSig Spec∗ Body
PSig ::= TypeArgs? ( IdsTypeWhere,∗ )OutParameters?

OutParameters ::= returns ( IdsTypeWhere,∗ )

It introduces Id as the name of a procedure. The procedure is parameterized according
to the signature PSig , and it stands for the execution traces defined by the signature
and the Spec clauses. If OutParameters is omitted, it defaults to “returns ( )”. The
procedures in a program must have distinct names.

A procedure can be polymorphic. Universally quantified type identifiers are intro-
duced in TypeArgs . They can then be used as types in the declaration of the procedure’s
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in- and out-parameters, as well as in the specification and optional Body . The identi-
fiers introduced in TypeArgs must not contain any duplicates. There is a restriction that
every type identifier introduced in TypeArgs must be used (after the expansion of type
synonyms) somewhere among the types of the procedure’s in-parameters.

A signature declares some number of type arguments, in-parameters, and out-pa-
rameters. The Id ’s declared as type arguments must be distinct (from each other), and
the Id ’s declared as in- or out-parameters must also be distinct (from each other). The
type arguments may be used in types appearing in the procedure signature, specification,
and body. The expression given by a WhereClause appearing among the parameters
must be of type boolean and can refer to any constant, function, global variable, and
in- and out-parameter. The Type and WhereClause of an IdsTypeWhere apply to
each of the Id ’s declared, as if each Id were introduced in its own IdsTypeWhere
declaration.

A procedure specification consists of three kinds of clauses. A precondition (re-
quires clause) specifies a boolean condition that holds in the initial state of each ex-
ecution trace of the procedure. Generally, it is the caller’s responsibility to establish
the precondition at a call site, and the implementation gets to assume the precondition
to hold on entry. A postcondition (ensures clause) specifies a boolean condition that re-
lates the initial and final states of each finite execution trace of the procedure. Generally,
it is the implementation’s responsibility to establish the postcondition on exit, and the
caller gets to assume the postcondition to hold upon return. The modifies clauses of a
procedure specification list those global variables that are allowed to change during the
course of the procedure’s execution traces.

Syntactically, the specification consists of any number of preconditions (requires
clauses), modifies clauses, and postconditions (ensures clauses):

Spec ::= free? requires Attribute∗ Expr ;

| free? modifies Attribute∗ Id ,∗ ;

| free? ensures Attribute∗ Expr ;

A precondition can refer to global variables and in-parameters, but not to out-parameters.
A precondition is not allowed to use old expressions. A modifies clause is only allowed
to list global variables. A postcondition can refer to global variables and to in- and out-
parameters. It uses old expressions to refer to the values of global variables in the
initial state. A specification clause that uses the free keyword is called free; otherwise,
it is called checked.

A procedure implementation is declared as follows:

ImplementationDecl ::= implementation Attribute∗ Id ISig Body∗

ISig ::= TypeArgs? ( IdsType,∗ )OutParameters?

OutParameters ::= returns ( IdsType,∗ )

For every implementation P , the program must also contain a procedure declaration
for P . The implementation declaration must repeat the signature of the procedure, with
a few exceptions. First, the names and order of type arguments are not significant, so
the implementation is allowed to rename these, provided the rest of the signature still
uses the type arguments in the same way. More precisely, it must be possible in the
implementation to
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– reorder the type arguments and
– consistently rename the type arguments in the entire signature of the implementa-

tion declaration

such that the resulting type arguments and the types of in- and out-parameters are the
same as in the procedure declaration. Second, the names of the in- and out-parameters
are not significant, so the implementation is allowed to rename these parameters, pro-
vided the names provided are distinct (from each other in the implementation declara-
tion). The collection of multiple variables into a single IdsType declaration is also not
significant; for example,

x , y : int

and

x : int, y : int

are treated in the same way. Third, the implementation signature does not contain
where clauses; these are simply acquired from the procedure declaration (like the
procedure specification).

A program can contain any number (zero or more) of implementations per proce-
dure. The correctness of an implementation is considered separately from any other
implementations given. For convenience, one implementation can be declared as part
of the procedure declaration, as shown above in the second form of the procedure
declaration. That is,

procedure P〈α〉(ins) returns (outs) spec { body }

is a shorthand for

procedure P〈α〉(ins) returns (outs); spec
implementation P〈α〉(ins ′) returns (outs ′) { body }

where ins ′ and outs ′ are ins and outs but with any where clauses dropped.

8.1 Caller and callee traces: Motivation

Recall, caller traces are used to define procedure calls, whereas callee traces are used
to constrain implementations. It is well-known that one achieves sound modular verifi-
cation by verifying every assumption. For procedures, this means verifying that callers
establish every precondition assumed by the implementation, and verifying that the
implementation establishes every postcondition assumed by the callers [8]. This sound-
ness criterion suggests that caller traces and callee traces ought to be the same. Perhaps
unexpectedly, this is not the case in Boogie.

Boogie is a language for expressing verification conditions. When designing what
verification conditions to prescribe, the user of Boogie has the choice of relegating some
proof obligations to meta proofs that are carried out by other means. For example, in
a source-language that avoids dangling pointers, the heap maintains the property that
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allocated objects can only reach other allocated objects. This can be modeled in Boogie
by declaring a predicate like:

function WellFormed(heap:HeapType) returns (bool);

and giving a number of axioms that define WellFormed ’s properties of interest. The
correctness of these axioms—which, to establish, requires a detailed semantics of the
source-language operations and type system—can be argued once and for all, along
with the rest of the proof that the translation from the source language into Boogie
is correct. There is no need to include such a meta-level proof obligation in the ver-
ification conditions expressed in Boogie. Rather, one would simply like to assume
WellFormed(Heap) to hold during various points of the program execution. To pre-
scribe the property to hold on entry and exit of every procedure, it is possible to place an
assume statement (see Section 9.2) immediately inside every implementation and im-
mediately after each call. However, Boogie offers the cleaner and less unwieldy solution
of declaring WellFormed(Heap) as a free pre- and postcondition of every procedure.
A free precondition is assumed by the implementation, but not checked at call sites, and
a free postcondition is assumed upon return from calls, but is not checked on exit from
implementations, creating a distinction between caller traces and callee traces.

When parameters or pre/post-states are involved, the flexibility of caller/callee trace
sets becomes even more pronounced. For example, when modeling a source language
without explicit deallocation of storage, every procedure invocation satisfies a postcon-
dition like:

(∀ o:Ref • old(Heap)[o, alloc] ⇒ Heap[o, alloc] )

An effective use of Boogie would declare this postcondition to be free. The alterna-
tive of checking this postcondition of every implementation is unnecessary, because the
source language offers no way for a source-language program to violate the property.
And the alternative of using assume statements after each call is unwieldly, because
then one has to save the value of the heap before the call and then expression the as-
sumption after the call in terms of the saved heap and the current heap.

8.2 Caller and callee traces: Definitions

Consider any procedure P in a program. In the following, let σ and τ range over
states whose domains consist of the global variables of the program, the old versions
of those variables, and the in- and out-parameters of P . Let X range over any finite
and possibly empty sequence of states, and let Y range over any infinite sequence of
states. Furthermore, we restrict the ranges of σ , τ , X , and Y so that every state:

V0 maps variables to values that are consistent with the declared types of these vari-
ables, and

V1 is consistent with the declared axioms in the program.

Note, if the program’s axioms are inconsistent—for example, if they contain axiom false;—
then σ , τ , X , and Y have empty ranges, so the trace sets defined below will all be
empty.

A general recipe for defining traces from procedure P is the following:
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– All traces σX , σX , and σY where
A0 for some requires R in the specification of P , R(σ) is false, or
A1 for some where A among the in-parameters of P , A(σ) is false, or
A2 for some where B among the out-parameters of P , B(σ) is false, or
A3 for some where G among the global variables of the program, G(σ) is false.

– All traces σX τ where
B0 for every global variable g , g(σ) = g old(σ) , and
B1 for every requires R in the specification of P , R(σ) is true, and
B2 for every where A among the in-parameters of P , A(σ) is true, and
B3 for every where B among the out-parameters of P , B(σ) is true, and
B4 for every where G among the global variables, G(σ) is true, and
B5 for every ensures Q in the specification of P , Q(τ) is true, where, here

and throughout, any global variable g (whether or not it occurs in a modifies
clause) occurring in an old expression in Q has the value of the fictitious
variable g old in τ , and

B6 for every global variable g , g old(σ) = g old(τ) , and
B7 for every in-parameter a of P , a(σ) = a(τ) , and
B8 for every global variable g , either g appears in a modifies clause of P or

g(σ) = g(τ) , and
B9 for every where B among the out-parameters of P , B(τ) is true, and
B10 for every whereG among those global variables that appear in the modifies

clause, G(τ) is true.
– All traces σY where

C0 for every global variable g , g(σ) = g old(σ) , and
C1 for every requires R in the specification of P , R(σ) is true, and
C2 for every where A among the in-parameters of P , A(σ) is true, and
C3 for every where B among the out-parameters of P , B(σ) is true, and
C4 for every where G among the global variables, G(σ) is true.

From this general recipe, we know the caller traces and callee traces of P . The caller
traces of P are those traces prescribed by the following alteration of the general recipe:

– where clauses of in-parameters are ignored; that is, A1, B2, and C2 are dropped,
and

– where clauses of out-parameters are applied only in the post-state; that is, A2,
B3, and C3 are dropped (but B9 remains), and

– where clauses of global variables are applied only in the post-state; that is, A3,
B4, and C4 are dropped (but B10 remains), and

– free preconditions are ignored; that is, A0, B1, and C1 consider only checked pre-
conditions, and

– free modifies clauses are ignored; that is, B8 considers only checked modifies
clauses.

The callee traces of P are those traces prescribed by the following alteration of the
general recipe:

– where clauses are applied only in the pre-state; that is, B9 and B10 are ignored,
and
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– free postconditions are ignored; that is, B5 considers only checked postconditions.

Intuitively, these alterations say that callers are responsible only for establishing
checked (not free) preconditions and only need to be prepared to handle changes pre-
scribed by checked (not free) modifies claues. Dually, implementations do not need to
establish free postconditions. Similarly, where clauses are like free preconditions and
(for out-parameters and modified global variables only) free postconditions.

Note that if the Boogie program contains no where clauses and no free specifi-
cation clauses, then the caller traces of a procedure are trivially the same as its callee
traces.

8.3 Implementation traces

Each implementation of a procedure defines a set of implementation traces. These traces
stem from the execution traces defined by the implementation’s body, after an initial
renaming of the parameters.

Consider an implementation

implementation P〈α′〉(ins ′) returns (outs ′) body

where P is defined as follows:

procedure P〈α〉(ins) returns (outs); spec

The implementation traces of this implementation are all the traces σ τZ , where

– the domain of σ consists of the global variables of the program, a fictitious variable
g old for every global variable g , and the in- and out-parameters of the declaration
of P , and

– the domain of τ consists of the global variables, a fictitious variable g old for every
global variable g , the in- and out-parameters of the implementation of P , and the
local variables of the body of the implementation, and

– σ and τ agree on the values of global variables, agree on the values of the old
variables, and agree on the values of corresponding parameters, and

– Z denotes any (empty, finite, infinite) state sequence optionally followed by  , and
– τZ is an execution trace of body .

As we will see in the next section, the traces of the body are defined so that each of their
states satisfies V0 and V1 (see Section 8.2); consequently, because of the likeness of σ
and τ , state σ also satisfies V0 and V1.

As stated above, an implementation is correct if its implementation traces form a
subset of the procedure’s callee traces. Note that the definition of implementation traces
does not mention the procedure’s pre- and postconditions, for example. However, callee
traces that begin in a state where a precondition does not hold are subsequently uncon-
strained; thus, a correct implementation is allowed to proceed in any which way from
such pre-states. Also, finite callee traces that start in states satisfying all preconditions
have the property that their initial and final states are related by the postconditions; thus,
the terminating traces of a correct implementation are constrained similarly.

Modifies clauses are enforced syntactically: in the body of an implementation, only
those global variables appearing in the procedure’s (free and checked) modifies clauses
are allowed to be modified.
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Body ::= { LocalVarDecl∗ StmtList }
LocalVarDecl ::= var Attribute∗ IdsTypeWhere,+ ;

StmtList ::= LStmt∗ LEmpty?

LStmt ::= Stmt | Id : LStmt

LEmpty ::= Id : LEmpty?

Stmt ::= assert Attribute∗ Expr ;
| assume Attribute∗ Expr ;
| havoc Id ,+ ;
| Lhs,+ := Expr ,+ ;

| call CallLhs? Id ( Expr ,∗ ) ;
| call forall Id (WildcardExpr ,∗ ) ;
| IfStmt
| while (WildcardExpr ) LoopInv∗ BlockStmt

| break Id? ;
| return ;
| goto Id ,+ ;

Lhs ::= Id MapSelect∗

MapSelect ::= [ Expr ,+ ]
CallLhs ::= Id ,+ :=

WildcardExpr ::= Expr | ∗
BlockStmt ::= { StmtList }

IfStmt ::= if ( WildcardExpr ) BlockStmt Else?

Else ::= else BlockStmt | else IfStmt

LoopInv ::= free? invariant Attribute∗ Expr ;

Fig. 2. Boogie’s statement grammar.

9 Statements

Boogie statements are used in procedure implementations and provide a way to pre-
scribe execution traces. A procedure implementation is correct if and only if its finite
traces form a subset of the procedure’s callee traces. The statements include state muta-
tions, check and assume operations, conditional and blind (demonic) nondeterministic
control flow (possibly irreducible), iteration, and procedural abstraction. The statements
follow the grammar in Fig. 2.

Throughout this section, states implicitly range over those that satisfy V0 and V1
(see Section 8.2).

9.0 Implementation body

A body starts with a number of local-variable declarations. The names of the variables
declared must be distinct from each other and distinct from the implementation’s in-
and out-parameters. The expression given by a WhereClause appearing among the
local variables must be of type boolean and can refer to any constant, function, global
variable, in- and out-parameter, and local variable. The Type and WhereClause of an
IdsTypeWhere apply to each of the Id ’s declared, as if each Id were introduced in
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a separate var declaration. The attributes of the declaration apply to each of the Id ’s
introduced.

The execution traces of a body { locals stmts } consists of all traces σZ such that:

– the domain of σ consists of the global variables of the program, a fictitious variable
g old for every global variable g , the in- and out-parameters of the implementation
declaration, and the local variables declared in locals , and

– for every where L among the local variables, L(σ) is true, and
– Z denotes any (empty, finite, infinite) state sequence optionally followed by  , and
– σZ is an execution trace of the start label of

start : transform(∅)JstmtsK return;

where start is a fresh label symbol, ∅ denotes the empty map (see Section 9.5),
and transform is a function defined below; more precisely, σZ ∈ Traces(start) ,
where Traces is defined in Section 9.1 below.

The semantics of an implementation body’s statements is given by trace sets via
a basic-block transformation of the statement. The transform function rewrites state-
ments to form a sequence of basic blocks, each of which has the form

label :SimpleStmt∗ Goto

where SimpleStmt is a subset of the statements in Fig. 2 and Goto is either a goto
statement or a return statement. The SimpleStmt statements include assert, assume,
havoc, and call statements, as well as assignment statements whose left-hand side is a
list of simple variables.

Function transform is applied only in contexts where there is a preceding label
(without an intervening Goto ) and a succeeding Goto (without an intervening label);
from this condition and the definition of transform below, it follows that the result of
start : transform(∅)JstmtsK return; is indeed a sequence of basic blocks.

By the way, note that a sequence of basic blocks is a special case of StmtList in
the Boogie statement grammar.

9.1 Basic blocks

The definition of the semantics of basic blocks rests on the definition of several other
operators and functions.

The concatenation of two trace sets A and B , written A # B , is defined as follows:

A # B = {X 
 X ∈ A } ∪

{Y
 Y ∈ A } ∪

{XσZ
 Xσ ∈ A and σZ ∈ B }

where X ranges over possibly empty, finite state sequences, Y ranges over infinite
state sequences, and Z ranges over any (empty, finite, infinite) state sequence optionally
followed by  . Note that concatenation of traces fuses, as opposed to repeats, the last
state of one trace with the first state of the next.
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Function stmt concatenates the trace sets of a sequence of statements. For any
statement S and possibly empty sequence of statements stmts :

stmtJ K = {σσ
 σ is any state satisfying V0 and V1 }

stmtJstmts SK = stmtJstmtsK # tracesJSK

where tracesJSK denotes the trace set of S . Note that all traces returned by stmt have
length at least 2. This is important below, because it ensures that the execution traces of
infinite loops (like `: goto `; ) are infinite.

For any label ` among the basic blocks of a procedure’s transformed implemen-
tation, Traces(`) denotes the execution traces that result from basic block ` forward.
Function Traces is defined as the least fixpoint to the system of equations obtained as
follows for each label ` :

Traces(`) =

{
stmtJstmtsK for `: stmts return;
stmtJstmtsK #

⋃
£∈succs Traces(£) for `: stmts goto succs;

The remaining subsections consider the various statements, defining trace sets for
the simple statements and decomposing the other statements using the transform func-
tion.

9.2 Assertions and assumptions

The assert statement gives an expression that holds in every correct trace. The assume
statement gives an expression that holds in every feasible trace. The expressions given
by these statements must be boolean.

The assert statement is used to prescribe a check. For example, a source-language
assignment x = y / z; may be translated into the Boogie statements:

assert z 6= 0; x := y/z ;

As another example, the array assignment a[i ] := e; in a language with co-variant array
types (like in Java or C#) is modeled by prefixing the actual state update with assertions
like:

assert a 6= null ; // check receiver to be non-null
assert 0 6 i ; // check lower bound of index
assert i < ArrayLength(a); // check upper bound of index
assert type(e) <: elementType(type(a)); // check co-variance

where the source-language null is modeled by:

const null :Ref ;

In order to report a meaningful error message to the user of the source language, the
source-language verification tool needs to remember why each of these assertions was
generated in the translation to Boogie and then simply maps the failure of any of asserts
to a message reflecting that reason.

An assume statement is used to introduce an assumption in the program to be veri-
fied, with the effect of rendering infeasible those execution traces where the assumption
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would not hold. For example, the function WellFormed in Section 8.1 that expresses
the well-formedness of the heap in a program can be assumed after each update of the
heap. For example,

Heap[this,C .data] := 5; assume WellFormed(Heap);

Such use of WellFormed affords the possibility of axiomatizing only some of the
properties of WellFormed ; that is, using an implication in

axiom (∀ heap:HeapType • WellFormed(heap) ⇒ . . . );

instead of an if-and-only-if (since there would never be a need to prove WellFormed
in the program).

In important special case of the assume statement is assume false; , which has
the effect of not doing any further checking along that program path. This is useful,
for example, when debugging a Boogie program: to prevent the program verifier from
spending time trying to prove proof obligations beyond some particular program point,
simply insert an assume false; at that point, which has the effect of rendering infea-
sible those execution paths that would go through that point.

Other important uses of assume statements are explained in the subsections dealing
with if statements (Section 9.7) and the havoc statement (Section 9.4).

Formally, the trace sets of these statements are:

tracesJassert E ; K =
{σ
 E (σ) is true } ∪ {σ 

 E (σ) is false }
tracesJassume E ; K =

{σ
 E (σ) is true }

To understand how trace sets are built up, it is instructive to consider the effect of
composing the assert and assume statements with other statements. For example, the
trace set stmtJassert 0 6 x ; assume 0 6 y ; K consists of the traces σσ , where
x (σ) < 0 and the traces σσ where both 0 6 x (σ) and 0 6 y(σ) . However, the traces
σσ where 0 6 x (σ) and y(σ) < 0 are not included at all. Attempting an operational
description of a “run” of these two statements, one could say:

0. Evaluate 0 6 x . If it holds, continue the run; otherwise, go wrong.
1. Evaluate 0 6 y . If it holds, continue the run, which in the case of just these two

statements means terminate. If 0 6 y does not hold, then shrivel up the entire
execution trace, as if the run never happened.

From this step-by-step run point of view, this “shriveling up” business removes the steps
“already taken” if it arrives at an assume statement whose condition does not hold. This
may seem magical, but all it means is that this trace is not feasible; it’s just that the
infeasibility of it is discovered only after some other statements have already happened.

Note, however, that an assume statement cannot undo going wrong. For example,
stmtJassert x < 100; assume x == 0; K contains the execution traces σσ where
x (σ) = 0 , which correspond to those feasible traces where the assertion holds. But it
also contains the execution traces σσ where 100 6 x (σ) , which correspond to the
runs that go wrong and do not even make it to the assume statement.
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9.3 Assignments

An assignment changes the value of one or more mutable variables in parallel. The
number of Lhs ’s on the left-hand side must equal the number of Expr ’s on the right-
hand side. The type of an Lhs and the type of the corresponding Expr must be equal.
The Id in an Lhs must denote a mutable variable, and these Id ’s must all be distinct.
Note that in-parameters are not mutable variables, so they cannot be assigned to.

For example, the simple assignment statement:

x := x + 1;

increments the value of variable x by 1 . The assignment statement:

a[i ] := 12;

changes what map a maps i to, making the new value map i to 12 . The parallel
assignment statement:

x , y := y , x ;

swaps the values of variables x and y . The statement:

x , a[i ] := x + 1, x ;

increments x and sets a[i ] to the old value of x . The statement:

a[i ], a[j ] := a[j ], a[i ];

is not allowed, because the Id ’s in the left-hand side are not distinct.
The trace set of a simple assignment statement where all left-hand sides are Id ’s is

defined as follows:

tracesJx := E ; K =
{στ

 σ and τ have the same domains and agree on the values
of all variables except possible those in x , and for each
x in x and corresponding E in E , x (τ) = E (σ) }

If the left-hand side is not just Id ’s, then the semantics is defined in terms of the se-
mantics of simpler assignment statements. For any list x of Id ’s; any map variable
or map-selection expression A ; any lists J , X , and F of expressions; any list L of
Rhs ’s; and any expression E :

tracesJx ,A[J ],L := X ,E ,F ; K =
tracesJx ,A,L := X ,A[J := E ],F ; K

For example, the semantics of the statements:

a[j ] := E ;
b[i ][m,n] := F ;

is defined as having the same semantics as:

a := a[j := E ];
b := b[i := b[i ][m,n := F ]];
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Note that where clauses do not play a role for assignment statements. In particular,
an assignment statement can set a variable to a value that does not satisfy its where
clause. For example,

var volume: int where 0 6 volume ∧ volume 6 10;
x := 11;

sets volume to 11 , despite the fact that the where clause suggests volume is intended
to be between 0 and 10 . where clauses apply only in places where a variable gets
an arbitrary value; by not applying them at assignment statements, Boogie provides
the ability to use a sequence of statements that (perhaps temporarily) violates where
conditions.

To explicitly say that a condition holds after an assignment, use an assume state-
ment, as in:

Heap[this,C .data] := Heap[this,C .data] + 1;
assume WellFormed(Heap);

9.4 Havoc

The havoc statement assigns arbitrary (blindly chosen) values to a set of variables. Each
Id listed in the statement must denote a mutable variable. The values assigned are arbi-
trary, but within limits: the values are drawn from the types of the respective variables
(in accordance with V0), the values satisfy the program’s axioms (in accordance with
V1), and the values satisfy the where clauses of the variables.

For example, for variables x and y declared as:

var x : int where 0 6 x ;
var y : int where 0 6 y ∧ y < x ;

the statement havoc x , y ; sets x and y to non-negative integers where x is strictly
larger than y . Note how, in this example, one gets the same result with the sequence of
statements:

havoc x ; havoc y ;

Although the havoc x ; by itself may set x to 0 , there is no feasible trace that passes
the havoc y ; with such a value for x . The sequence:

havoc y ; havoc x ;

is different, because it first sets y to a value between 0 and less than x , and then sets
x to a non-negative integer without further regard for the value of y .

An important and frequently occuring idiom is to follow a havoc with an assume ,
which has the effect of taming the nondeterminism offered by the havoc . For example,

havoc a, b; assume 3 ∗ a + b == 25;

will have the effect of setting a and b to an arbitrary solution of the given equation.
Another example is:

havoc c; assume ¬Heap[c, alloc]; Heap[c, alloc] := true;
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which sets c to a unallocated reference (one whose alloc field is false ) and then
allocates it (by setting its alloc field to true ).

Some variables are intended always to satisfy some condition. An example in Sec-
tion 9.2 shows how the heap variable is intended to satisfy the predicate WellFormed .
Such conditions are often appropriate in where clauses. For example,

var Heap:HeapType where WellFormed(Heap);

makes sure that all arbitrary values chosen for Heap satisfy WellFormed . (As noted in
Section 9.3, assignment statements still need to be followed by an assume statement
if it is desirable to know this predicate to hold after an explicit update.)

The havoc statement works only on entire variables. To use an arbitrary value in an-
other context (for example, assigning a map element or passing a argument to function),
use a temporary variable. For example,

var tmp: int;
. . .
Heap[this,C .data] := tmp;

The trace set of havoc on a list of variables x is defined as:

tracesJhavoc x ; K =
{στ

 σ and τ have the same domains and agree on the values
of all variables except possible those in x , and for ev-
ery where P among the declarations of the variables
x , P(τ) }

Note that from some states σ , there may not be any τ that satisfies V0, V1, and the
where clauses of the havocked variable. For example, with x and y declared with the
where clauses above,

x := 0; havoc y ;

is tantamount to assume false; .

9.5 Label statements and jumps

A label statement is used to give a name to a program point. The label can be used
as a target in a goto statement and can be used in the break statement to indicate an
enclosing statement. Labels used within the same implementation body must be distinct.

Label statements occur in the LStmt and LEmpty non-terminals of the grammar
in Fig. 2, and together these define three kinds of label statements: those that label other
label statements, those that label non-label statements (that is, non-terminal Stmt ), and
those that label no statement at all.

A goto statement transfers control flow to any one of the specified labels. The
choice between the labels is done blindly. The labels listed in the goto statement must
all be defined, as label statements, somewhere within the same implementation body.

A break statement transfers control flow to the point immediately following a
designated enclosing statement. Any break statement that omits the label (that is, the
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Id in the grammar) must occur as a substatement of the body of a while statement;
control is transferred to the point immediately following the closest enclosing while
statement. Any break statement that specifies a label must occur as a substatement
of the LStmt that defines that label; control is transferred to the point immediately
following the so-labeled enclosing LStmt statement.

Note that the goto statement can give rise to any kind of control flow, including
loops and irreducible control flow. In contrast, the break statement only gives rise to
structured, forward jumps.

Here are some examples. The following while loop stops iterating if the value X is
found in the map:

i := 0;
while (i < N ) {

if (a[i ] == X ) { break; }
i := i + 1;

}

The break statement in this loop can be replaced by a goto :

i := 0;
while (i < N ) {

if (a[i ] == X ) { goto Done; }
i := i + 1;

}
Done:

The while statement itself can also be replaced by a label and a goto :

i := 0;
Head :
if (i < N ) {

if (a[i ] == X ) { goto Done; }
i := i + 1;
goto Head ;

}
Done:

Although less common, the break statement can also be used to break out of an if
statement; here is the same program again:

i := 0;
Head :
if (i < N ) {

if (a[i ] == X ) { break Head ; }
i := i + 1;
goto Head ;

}
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To break out of a while loop that is not the innermost while statement that encloses
the break , one can use a label, as in the following search of two-dimensional map:

i := 0;
Outer :
while (i < N ) {

j := 0;
while (j < i) {

if (m[i , j ] == X ) { break Outer ; }
j := j + 1;

}
i := i + 1;

}

Finally, the break in the following statement is a no-op:

L: break L;

and could just as well have been written as, for example:

L: assert true;

The semantics of labels and jumps is defined as part of the transformation into basic
blocks. The map argument to transform is used to keep of exit labels. In the following,
ls denotes an LStmt and le denotes an LEmpty (see grammar in Fig. 2), η denotes
any map, and Done and Unreachable denote fresh labels:

transform(η)J`: lsK =
goto `;
`: transform(η[` 7→ Done])JlsK goto Done;
Done:

transform(η)J`: leK =
goto `;
`: transform(η)JleK

transform(η)Jgoto L; K =
goto L; Unreachable:

transform(η)Jbreak L; K =
goto ηJLK; Unreachable:

transform(η)Jbreak; K =
goto ηJ?K; Unreachable:

The special value ? denotes the closest enclosing while loop and gets introduced into
the domain of the map η in Section 9.8. Note, the at-first-sight gratuitous labels and
goto’s in these definitions ensure that recursive calls to transform are applied in an
appropriate context, so that the implementation body is properly transformed into a
sequence of basic blocks (cf. Section 9.0).
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9.6 Return statements

A return statement terminates any execution trace that reaches it. As shown in Sec-
tion 9.0, there is also an implicit return statement at the end of an implementation
body. For any map η and with Unreachable denoting a fresh label,

transform(η)Jreturn; K =
return; Unreachable:

9.7 If statements

There are two kinds of if statements, those that use a boolean expression to choose
between their alternatives and those that blindly choose between the alternatives. The
former uses an expression as the WildcardExpr , and that expression must be boolean;
the latter uses a ∗ as the WildcardExpr .

The semantics of if statements is defined as follows:

transform(η)Jif (we) ThnK =
transform(η)Jif (we) Thn else { }K

transform(η)Jif (∗) Thn else ElsK =
goto L0,L1;
L0: transform(η)JThnK; goto Done;
L1: transform(η)JElsK; goto Done;
Done:

transform(η)Jif (E ) Thn else ElsK =
goto L0,L1;
L0: assume E ; transform(η)JThnK; goto Done;
L1: assume ¬E ; transform(η)JElsK; goto Done;
Done:

where η is any map and L0 , L1 , Done are fresh labels.
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9.8 While loops

Boogie supports the usual while loop as well as a while loop that exits after an arbitrary
number of iterations. Both kinds support loop invariants. For any list invs of invariant
declarations, the semantics of while loops is defined as follows:

transform(η)Jwhile (∗) invs SK =
goto Head ;
Head : loopinvJinvsK goto Body ,Done;
Body : transform(η[? 7→ Done])JSK; goto Head ;
Done:

transform(η)Jwhile (E ) invs SK =
goto Head ;
Head : loopinvJinvsK goto Body ,GuardedDone;
Body : assume E ; transform(η[? 7→ Done])JSK; goto Head ;
GuardedDone: assume ¬E ; goto Done;
Done:

loopinvJ K =
// nothing

loopinvJinvariant E ; invsK =
assert E ; loopinvJinvsK

loopinvJfree invariant E ; invsK =
assume E ; loopinvJinvsK

where η is any map and Head , Body , GuardedDone , and Done are fresh labels.
There is a subtle difference between the use of the free keyword in loop invariants

compared to the use of free in procedure specifications. To see the difference, think of
a procedure specification as a contract between two parties, the implementation and the
call site. A checked specification clause is assumed (as with an assume statement) by
one party and checked (as with an assert statement) for the other. A free specification
clause is assumed by one party and ignored by the other. For example, all preconditions
are assumed by the implementation, checked preconditions are checked at the call site,
and free preconditions are ignored by the call site.

Likewise, a loop invariant is a contract between two parties, the iterations of the
past and the iterations of the future. In standard Hoare logic, the “past” party consists
of the program point immediately before the loop and the program point at the very end
of the loop body; the “future” party consists of the program point at the very beginning
of the loop body and the program point immediately following the loop. A checked
loop invariant is checked for the “past” party and assumed by the “future” party. And
here is the difference with free procedure-specification clauses: a free loop invariant is
assumed by both parties. An example consequence of this subtle difference is that a
precondition

free requires false;

will cause the verification of the implementation to succeed trivially), but does not affect
callers. In contrast, listing

free invariant false;
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first among the invariants of a loop will cause the verification of both loop parties to
succeed trivially. This is because the free invariant is assumed just before the loop, and
just before the other loop invariants if this one is declared first.

9.9 Call statements

A call statement stands for the caller traces defined by the called procedure, suitably
parameterized for the actual in- and out-parameters. The Id mentioned in the call state-
ment must refer to a procedure declared in the program. The number of Expr ’s (the
actual in-parameters) must agree with the number of formal in-parameters of the proce-
dure, and the number of Id ’s in CallLhs (the actual out-parameters) must agree with
the number of formal out-parameters of the procedure. Each Id in the CallLhs must
denote a mutable variable, and these Id ’s must all be distinct. There must exist some
way to instantiate the procedure’s type arguments so that the types of the actual in- and
out-parameters are the same as the types of the formal in- and out-parameters (cf. the
type rule for function application in Section 5).

Consider a procedure P declared as follows:

procedure P〈α〉(ins) returns (outs); spec

Let CallerTraces denote the set of caller traces for P . For any states σ and τ , define
Ins(σ, τ) to hold when:

– the domains of σ and τ contain the same global variables and old variables, and
– for every global variable g , g(σ) = g(τ) , and
– for every global variable g , g old(τ) = g(τ) , and
– for every (a,E ) ∈ (ins,E ) , E (σ) = a(τ) .

Similarly, for any states σ and τ , define Out(τ, υ) to hold when:

– the domains of σ and τ contain the same global variables and old variables, and
– for every global variable g , g(σ) = g(τ) , and
– for every (b, x ) ∈ (outs, x ) , b(σ) = x (τ) .

Then, the call statement is defined to have the following trace set:

tracesJcall x := P(E )K =
{στX 

 Ins(σ, τ) and τX ∈ CallerTraces } ∪
{στY

 Ins(σ, τ) and τY ∈ CallerTraces } ∪
{στXυφ

 Ins(σ, τ) and τXυ ∈ CallerTraces and Out(υ, φ),
and σ and φ have the same domains, and for every
global variable g , g old(σ) = g old(φ) }

where X ranges over possibly empty, finite state sequences, and Y ranges over infinite
state sequences.
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9.10 Call-forall statements

The call-forall statement requires some motivation. In more advanced verifications, es-
pecially verifications authored by hand in Boogie, it is sometimes necessary to make use
of a lemma. The lemma might help the program verifier along, perhaps with a subtle hint
or perhaps with a deep property. For example, consider a piece of code A that estab-
lishes a property P(x , y) and that is followed by a piece of code B whose correctness
depends on starting with the property Q(x , y) . With the lemma P(x , y) ⇒ Q(x , y) ,
used at the program point between A and B , one can prove the correctness of the whole
code sequence.

One way to introduce a lemma in a Boogie program is to use an assert statement.
The program verifier gets the hint that the lemma is important (at the program point
where the assert is placed) and is also faced with the obligation to prove the lemma.
If the proof of the lemma is too difficult for the program verifier to tackle without further
hints, or if the same lemma is used many times and one would like the program verifier
to produce the proof just once, then one can also encode the lemma as a procedure. For
example, with the procedure:

procedure Lemma(x :X , y :Y );
ensures P(x , y) ⇒ Q(x , y);

any program point that wants to invoke the lemma simply calls the procedure:

call Lemma(x , y);

A procedure, like Lemma , that has no checked modifies clause and no out-parameters
is called a lemma procedure. A call to a lemma procedure does not change the program
state. Indeed, the effect of a call to Lemma is simply to assume the postcondition.

With a procedure that defines the lemma, the proof of the lemma now falls on the
implementation of the procedure. (If no implementation is supplied, the lemma remains
unproved, a conjectured lemma perhaps.)

Suppose the desired lemma has a form like:

(∀ x :X , y :Y • P(x , y) ⇒ Q(x , y) )

A lemma procedure that uses this property as its postcondition puts the burden on the
procedure implementation to prove the implication for all x and y . A standard way of
dealing with such a proof obligation is to start the proof with “Consider any arbitrary x
and y . . . ”, and it would be nice to let the implementation do the proof in this way. The
implementation of Lemma above comes tantalizingly close—it actually has to prove
the postcondition for any values of in-parameters x and y , but its postcondition only
gives the caller the ability to use the lemma for a particular x and y , namely whatever
x and y are supplied at the call site.

Call-forall statement to the rescue. With a call-forall statement, a call site can invoke
a lemma procedure for an arbitrary number of parameter values at the same time. This
is indicated by giving a wildcard ∗ instead of an Expr for any of in-parameters. For
example, the call:

call forall Lemma(∗, ∗);
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will have the same meaning as the statement:

assume (∀ x :X , y :Y • P(x , y) ⇒ Q(x , y) );

yet an implementation of Lemma still just needs to establish the postcondition for an
arbitrary value of the in-parameters.

When a lemma procedure is invoked in a call-forall statement, the precondition of
the procedure plays the role of an antecedent in the condition assumed. So the call-
forall statement above would still have the same effect if the declaration of Lemma
were changed to:

procedure Lemma(x :X , y :Y );
requires P(x , y);
ensures Q(x , y);

Note, however, that there is a difference between a call-forall that supplies values for
all in-parameters:

call forall Lemma(x , y);

and a regular call:

call Lemma(x , y);

because the regular call will enforce the precondition at the call site whereas the call-
forall will just assume the lemma-procedure’s postcondition if its precondition does. As
an extreme example, any call-forall invocation of the following lemma procedure:

procedure UselessLemma(x : int, y : int, z : int,n: int);
requires false;
ensures exp(x ,n) + exp(y ,n) 6= exp(z ,n);

is tantamount to assume true; , whereas a regular call to it is tantamount to assert false; .
Having given that motivation for call-forall statement, here are the rules for using it.

The Id mentioned in the call-forall statement must refer to a lemma procedure declared
in the program. The number of WildcardExpr ’s (the actual in-parameters) must agree
with the number of formal in-parameters of the procedure. There must exist some way to
instantiate the procedure’s type arguments so that the types of the actual in-parameters
are the same as the types of the formal in-parameters (cf. the type rule for function
application in Section 5), actual in-parameters given by the wildcard ∗ excluded.

Consider a lemma procedure P declared as follows:

procedure P〈α〉(ins); spec

and a call-forall statement:

call forall P(we);

Let insExpr be the subset of ins for which we supplies an corresponding Expr , and
let insWild be the rest of ins but with where clauses removed, that is, the subset
of ins (and dropping where clauses) for which we supplies the wildcard ∗ . Let β
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be the subset of α that is not mentioned among the types of insExpr . Let Pre be
the conjunction of checked preconditions in spec , with the formal in-parameters of
insExpr replaced by the corresponding Expr in we . Let Post be the conjunction of
checked and free postconditions in spec , also with the formal in-parameters of insExpr
replaced by the corresponding Expr in we . The trace set of the call-forall statement is
now defined as:

tracesJcall forall P(we); K =
tracesJassume (∀ 〈β〉 insWild • Pre ⇒ Post ); K

where “〈β〉” is dropped if β is empty, and where the entire assume is taken to be

assume Pre ⇒ Post ;

if insWild is empty.
Note that call-forall can be used with a mix of wildcards and in-parameter expres-

sions. For example, if type Y is int , then:

call forall Lemma(∗, 6);

has the same semantics as:

assume (∀ x :X • P(x , 6) ⇒ Q(x , 6) );

10 Orders

Boogie supplies one partial-order operator, written <: , for each built-in and user-defined
type. Being a partial order, <: is reflexive, transitive, and antisymmetric. Additional
properties of <: for a given type can be axiomatized. For example,

const unique puny :Wicket ;
axiom (∀w :Wicket • puny <: w );

defines puny to be the smallest of all wickets.
Certain kinds of order specifications occur frequently and receive special syntax

as part of const declarations. Not only do these declarations make order specifica-
tions more convenient, but they may also make it easier to take advantage of decision-
procedure support of partial orders when the Boogie program is analyzed. The grammar
is as follows:

OrderSpec ::= ParentInfo? complete?

ParentInfo ::= <: ParentEdge,∗
ParentEdge ::= unique? Id

A constant n with the order specification “<: ids ” says that the constants in ids
are the immediate parents of n in the ordering. If ParentInfo is supplied, it lists all
immediate parents. For example,

const unique a, b:Wicket ;
const unique c:Wicket <: a, b;
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is an economical way to say:

const unique a, b, c:Wicket ;
axiom (∀w :Wicket • c <: w ⇒ c == w ∨ a <: w ∨ b <: w );

The use of const unique in these declarations is usually desired, but order specifica-
tions can also be used with non-unique constants.

The ParentInfo of an order specification always determines the complete set of
immediate parents in the partial order. To say that a constant has no parents, leave
the ParentEdge list empty (but include the <: sign in the declaration, as required by
ParentInfo ). To omit a specification of immediate parents, omit the entire ParentInfo
clause.

Some children of a node are determined by other constant declarations. For exam-
ple, the fact that c is an immediate child of a is declared above as part of the declaration
of c , not the declaration of a . The order specifications give complete immediate-parent
information, but the set of immediate children of a node is in general open-ended. For
example, the declarations above says that c is an immediate child of a , but do not
preclude the possibility that there are other, possibly un-named (that is, not declared
as constants), immediate children of a . To specify that a Boogie program declares all
immediate children of a node n , include the keyword complete in the order specifi-
cation for that node n . For example, a program whose constant declarations are:

const unique a:Wicket <: complete;
const unique b:Wicket ;
const unique c:Wicket <: a, b complete;
const unique d :Wicket <: c;
const unique e:Wicket ;

says that

– a has no immediate parents and c is its only immediate child is c (since a is
declared with complete and c declares a as an immediate parent),

– b has immediate child c but may possibly also have other immediate children (e
for example, or some other wicket values for which the program does not contain
any const declaration),

– a is not an immediate parent of b (since a is declared complete and b does
not specify a as an immediate parent), and c is not an immediate parent of b
(since b and c are distinct by their unique declarations, c declares b as an
immediate parent, and the partial order has no cycles), but nothing else is said
about the immediate parents of b ,

– c has exactly two immediate parents, a and b , and exactly one immediate child,
d ,

– d has immediate parent c and may have any number of immediate children (but
not a , b , or c , since the partial order has no cycles).

Finally, the edge to each direct parent may optionally be marked with unique ,
which makes the edge a unique edge. Suppose m has a unique edge to parent p (that is,
suppose m is a constant declared with unique p as a parent) and n has a unique edge
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to parent q ; then this means: p = q ∧ m 6= n implies that the respective subgraphs
reachable from m and n are disjoint. For example, given the declarations

const unique r :Wicket ;
const unique s, t :Wicket <: unique r ;

the following property holds:

(∀ x :Wicket , y :Wicket • x <: s ∧ y <: t ⇒ x 6= y )

In words, if x is in the subgraph below s and y is in the subgraph below t , then the
facts that s and t are distinct (which follows from “const unique”) and that each
has a unique edge to r (by “<: unique r ”) entail that the subgraphs below s and t
are disjoint, and therefore one concludes x and y to be distinct.

10.0 Example: Class and interface hierarchy

Although the partial-order operator can be used for any purpose in Boogie, the order
specifications that are part of constant declarations have been tailored to support the
ordering among reference types found in object-oriented languages. These order speci-
fications can be complemented by supplying other axioms. Let us look at how the partial
order can be used.

To model the class and interface types in a language like Spec#, C#, Java, or Eiffel,
we declare a Boogie type for the names of these types:

type TName;

Every class declaration in the source language then gives rise to a particular TName
value, and we introduce that value with a declaration of a unique constant. For example,
the class object at the root of the class hierarchy in Spec# can be declared as follows:

const unique System.Object :TName;

If we use <: to express the subtyping relation on TName , we’ll want to introduce
some edges in the ordering according to the subclasses declared in the program. For
example, if C is declared to be a subclass of B , we may want to define C <: B .
The set of subtypes of a class is usually open-ended, allowing arbitrarily many and
arbitrarily refined subclasses; however, the set of supertypes of a class is, in common
object-oriented languages, known directly from the declaration of the class. For exam-
ple, the Spec# declaration:

class C : B
{

. . .
}

may be translated into the following Boogie declaration:

const unique C :TName <: B ;

which says that B is the only direct parent of C .
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In a single-inheritance language, all subtypes of a user-defined class are disjoint.
Stated differently, the user-defined classes form a tree. Thus, one may choose to trans-
late the Spec# class C above into:

const unique C :TName <: unique B ;

Note that the interface types in Spec#, C#, and Java do not have this tree-like property,
so the declarations:

in ter face J { . . . }
class D : B, J { . . . }

are translated into just:

const unique J :TName <: System.Object ;
const unique D :TName <: unique B , J ;

Note the absence of “unique” in the edges J <: System.Object and D <: J .
In some cases, the complete set of subtypes of a class may be known. Let’s consider

three cases.
Here is a simple case where the complete set of subtypes of a class is known: if the

class is declared to be sealed (in Spec# and C#) or final (in Java), then it has no proper
subtypes. For such a class:

sealed class S : B { . . . }

one can use the translation:

const unique S :TName <: unique B complete;

Since the Boogie translation will not include any other constants below S , the use of
complete here implies the property:

(∀T :TName • T <: S ⇒ T == S )

Another case where the complete set of subtypes of a class is known is the follow-
ing. Declarations in Spec# and C# are compiled into so-called assemblies, and a class
is available to other assemblies only if it is declared as public. Thus, if the program
verifier that translates the source program into Boogie reads an entire assembly, then it
can discover all subclasses of a non-public class. The translation of an assembly that
contains only the following declarations:

in te rna l class W { . . . }
in te rna l class X : W { . . . }
in te rna l class Y : W { . . . }

where internal explicitly declares the class not to be accessible outside the assembly,
can use the following Boogie declarations:

const unique W :TName <: unique System.Object complete;
const unique X :TName <: unique W complete;
const unique Y :TName <: unique W complete;



43

which, for example, implies the following property about values below W :

(∀T :TName • T <: W ⇒ T == W ∨ T <: X ∨ T <: Y )

A third case where the complete set of subtypes of a class is known arises in Spec#
and C# if the constructors of the class are not available outside the assembly. For exam-
ple, an assembly that contains only the declarations:

public abstract class Expr {
in te rna l Expr ( . . . ) { . . . }
. . . / / but no other cons t ruc to rs

}
public class IdExpr : Expr { . . . }
public class BinExpr : Expr { . . . }

makes all three classes Expr, IdExpr, and BinExpr publicly available, but does not admit
Expr subclasses beyond the two given here. This can be encoded in Boogie as follows:

const unique Expr :TName <: unique System.Object complete;
const unique IdExpr :TName <: unique Expr ;
const unique BinExpr :TName <: unique Expr ;

Note that IdExpr and BinExpr do not use the complete modifier; but the fact that
the parent Expr does implies that a TName is strictly below Expr if and only if it is
below IdExpr or BinExpr .

As a final aspect of this example, let’s consider a use of TName in the translation.
The dynamic type (that is, the allocated type) of an object can be modeled as a function
from object references to TName :

function dtype(Ref ) returns (TName);

This function and the ordering on TName can be used to encode static type informa-
tion. For example, consider a method:

class MyClass {
public void M( InputStream s ) { . . . }
. . .

}

It may be translated into a Boogie procedure along the following lines:

procedure MyClass.M (this:Ref , s:Ref );
free requires this 6= null ∧ dtype(this) <: MyClass;
free requires s == null ∨ dtype(s) <: InputStream;
. . .

Note that all reference types in the source language are translated into Boogie’s type
Ref and that the distinction between different source-level object types is made through
the dtype function and the <: ordering on TName . The condition dtype(s) <: InputStream
states the well-known programming-language property “the dynamic type of the refer-
ence stored in a variable is a subtype of the static type of that variable”, which is guar-
anteed by the static type system of the source language (which makes it appropriate for
these preconditions to be declared with free ).
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If MyClass and InputStream are direct subclasses of object, then the corresponding
constant declarations in the Boogie translation might be:

const unique System.Object :TName;
const unique MyClass:TName <: unique System.Object ;
const unique InputStream:TName <: unique System.Object ;

The unique modifiers in these declarations imply MyClass 6= InputStream . How-
ever, note that that does not by itself imply this 6= s for MyClass.M , because the
uniqueness of the type names does not rule out the possibility that:

s 6= null ∧ dtype(this) = dtype(s) ∧
dtype(this) <: MyClass ∧
dtype(this) <: InputStream

But the use of unique parent edges to System.Object in the declarations of MyClass
and InputStream rules out this possibility, and thus this 6= s follows from the precon-
ditions of procedure MyClass.M .

Interfaces and abstract classes have no instances, yet the names of such interfaces
and classes are included as values of TName . The fact that such types have no instances
is modeled as a property of dtype . For example, for interface J and abstract class Expr
above, one may include the following axioms:

axiom (∀ r :Ref • dtype(r) 6= Expr );
axiom (∀ r :Ref • dtype(r) 6= J );

11 Tool directives

Every top-level declaration, local-variable declaration, assert and assume statement,
procedure specification clause, loop invariant, and quantifier can be annotated with a
number of attributes. Attributes record meta data that can be used by tools that pro-
cess Boogie programs. The meta data can act as directives to such tools, but the Boogie
language does not assign any formal meaning to the attributes.

In addition, quantifiers can be annotated with triggers, which have a form simi-
lar to attributes. A trigger is a directive that tells a theorem prover how to instantiate
quantifiers. Triggers can be crucial to get good performance from provers.

The grammars for attributes and triggers are:

Attribute ::= { : Id AttrArg,∗ }
AttrArg ::= Expr | StringLiteral
Trigger ::= { Expr ,+ }

where StringLiteral denotes a terminal that begins with a double-quote character
and ends at the subsequent double-quote character (with no intervening line-breaking
whitespace). Note that string literals are not used anywhere else in Boogie.

The arguments to attributes and triggers must themselves type check:

(e is string literal) or (T ,V 
 e : T ) for all (e,T ) ∈ (e,T )

T ,V 
attr {: id e}



45

T ,V 
 e : T for all (e,T ) ∈ (e,T )

T ,V 
attr {e}

A tool that uses a directive can therefore rely on the given expression arguments to
be well-formed Boogie expressions. There are additional restrictions on triggers, as
described below.

11.0 Examples: Using attributes

Consider a tool that reads a Boogie program, infers some loop invariants, and writes
out the Boogie program where the inferred invariants are recorded as assumptions in
loop heads. (If the invariants are recorded as assume statements, the inference tool
takes responsibility for the correctness of the invariants. If the inference engine is not
sound or is itself being debugged, then one can instead produce assert statements of
the inferred purported invariants, which means they can be checked by other tools, like
a theorem prover.)

It may be that one wants the inference engine to infer invariants only for some of
the program variables. For example, perhaps one does not want any inference for some
variables that are introduced in the translation from the source language to Boogie. Such
a variable x can be marked an attribute, like:

var { :noInference } x : int;

or perhaps:

var { :inference false } x : int;

The inference tool would then pay attention to the noInference or inference attribute
and act accordingly. Since Boogie only provides type checking of each given attribute
argument, any tool that looks for a particular attribute needs must first inspect the num-
ber of types of arguments provided.

There is only one name space for all attributes, so a tool may want to design its
attributes in such a way they not easily accidentally confused with attributes supported
by other tools. For example, an inference engine called Clousot may choose to support
an attribute like:

var { :ClousotInference false } x : int;

or maybe even:

var { :inference ”Clousot”, false } x : int;

As another example, a verifier for Boogie programs may have a mode where it does
not verify each procedure implementation separately, but where it instead performs a
symbolic execution of the program from its entry points. Attributes can be used to
specify the entry points, for example:

procedure { :public }MyClass..ctor(this:Ref ) . . .
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As a final small example, a tool that attempts to verify the correctness of a program
may output the assertions, preconditions, postconditions, and loop invariants that could
not be proved. While returning the identity of the internal AST nodes for these various
assertions would produce the most accurate results for a frontend that wants to map back
these proof failures into error messages pertinent to the source language, some other
frontends may rely on using a Boogie tool via a textual interface. In these cases, the tool
might output the line and column information for the failing assertions. Alternatively, a
tool can make use of attributes, specifying what message to output in the event that an
assertion cannot be proved. For example, a source line:

218 x = p . f ;

can be translated into the following snippet of Boogie code:

assert
{ :errorMessage ”possible null dereference on line 218, column 10” }
p 6= null ;

x := Heap[p,C .f ];

11.1 Example: Bit-vector operations

The Boogie language includes types for bit vectors, but the only built-in support for
bit-vector operations are literals, bit extraction, concatenation, and equality. Further
operations, like modulo arithmetic, can be defined by functions and axioms. However,
some theorem provers may have direct support for bit-vector operations. When such a
theorem prover is to be used, one would like to direct the prover in two ways. First, the
prover needs to be directed to connect the functions used in the Boogie program with
the syntax or function names used by the theorem prover. Second, the Boogie program
may include axioms about these functions, so that theorem provers without built-in
support still can give some interpretation to the functions. A prover with built-in bit-
vector support needs to be directed to ignore such axioms.

Here is an example of how one can express these two directives:

function { :bvBuiltin ”bvadd8” } ByteAdd(bv8,bv8) returns (bv8);
axiom { :bvIgnore } (∀ a: bv8, b: bv8 • . . .ByteAdd(a, b) . . . );

11.2 Triggers

Some theorem provers in the style of the SMT solver Simplify use triggers (aka match-
ing patterns) that determine how to instantiate universal quantifiers [3]. Default triggers
are inferred by the SMT solver from the body of the quantifier; user-specified triggers
override the defaults. Use of appropriate triggers is crucial to getting good performance
and desirable results from the SMT solver. Therefore, Boogie provides a convenient
built-in syntax for them.

A quantifier (∀ x :T • . . . x . . . ) says that its body holds for every value x of
type T . Thus, it is mathematically sound to instantiate it with any T value. However,
most T values are likely not to get closer to the proof goal. A trigger limits the possible
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instantiations by describing terms that must already be present in the proof context at
the time of instantiation and describing how the instantiations are picked from those
terms. For example,

(∀ x :T • {f (x )} g(f (x )) < 100 )

directs the prover to choose the instantiations of this quantifier to be those x ’s that occur
as terms f (x ) in the current proof context.

There are some restrictions on the use of triggers. The list of terms in a trigger
must mention all bound variables of the quantifier (this restriction ensures that some
discrimination is applied to all bound variables). Furthermore, a term listed in a trigger
must not be a bound variable by itself (this restriction ensures that the term contributes
to the discrimination). Finally, a trigger must not include logical operators or quantifiers.

For more information about triggers, see the Simplify paper [3]. To learn more about
using triggers effectively in the axiomatization of a problem, see the formalization of
summation-like comprehensions in Spec# [5].

11.3 Example: Exists unique

[To-do: can use exists unique as an example in this section]
[To-do: As further examples, discuss some specific attributes that are supported by

the Boogie tool.]
[To-do: Talk about the intention of where clauses and free specifications and use

these to motivate why the inline directive ignores them.]

12 Examples

TBW

13 Related work

TBW

14 Conclusions

TBW
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A Grammar

The grammar of the language has been presented throughout the document. For conve-
nience, here it is repeated in one place.

The reserved keywords are:

assert , assume , axiom , bool , break , bv0 , bv1 , bv2 , . . . , call , complete ,
const , else , ensures , exists , false , finite , forall , free , function ,
goto , havoc , if , implementation , int , invariant , modifies , old ,
procedure , requires , return , returns , true , type , unique , var ,
where , while .

The grammar is:

Program ::= Decl∗

Decl ::= TypeDecl | ConstantDecl | FunctionDecl | AxiomDecl
| VarDecl | ProcedureDecl | ImplementationDecl

TypeDecl ::= TypeConstructor | TypeSynonym
TypeConstructor ::= type Attribute∗ finite? Id Id∗ ;

TypeSynonym ::= type Attribute∗ Id Id∗ = Type ;
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Type ::= TypeAtom |MapType
| Id TypeCtorArgs?

TypeAtom ::= bool | int
| bv0 | bv1 | bv2 | · · ·
| ( Type )

MapType ::= TypeArgs? [ Type,+ ] Type
TypeArgs ::= 〈 Id ,+ 〉

| < Id ,+ >
TypeCtorArgs ::= TypeAtom TypeCtorArgs?

| Id TypeCtorArgs?

| MapType

ConstantDecl ::= const Attribute∗ unique? IdsType OrderSpec ;
IdsType ::= Id ,+ : Type

FunctionDecl ::= function Attribute∗ Id FSig ;
| function Attribute∗ Id FSig { Expr }

FSig ::= TypeArgs? ( FArg,∗ ) returns ( FArg )
FArg ::= FArgName? Type

FArgName ::= Id :
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Expr ::= E0
E0 ::= E1 | E1 EquivOp E0
E1 ::= E2 | E2 ImplOp E1
E2 ::= E3 | E3 EOr+ | E3 EAnd+

EOr ::= OrOp E3
EAnd ::= AndOp E3

E3 ::= E4 | E4 RelOp E4
E4 ::= E5 | E4 ConcatOp E5
E5 ::= E6 | E5 AddOp E6
E6 ::= E7 | E6 MulOp E7
E7 ::= UnOp∗E8
E8 ::= E9 MapOp∗

MapOp ::= [ Expr ,+ MapUpdate? ]
| [ Number : Number ]

MapUpdate ::= := Expr
E9 ::= false | true | Number | BitVector

| Id FuncApplication?

| old ( Expr )
| ( QOp TypeArgs? IdsType,+ QSep TrigAttr∗ Expr )
| ( Expr )

FuncApplication ::= ( Expr ,∗ )
TrigAttr ::= Trigger | Attribute
Number ::= 0 | 1 | 2 | · · ·

BitVector ::= 0bv0
| 0bv1 | 1bv1
| 0bv2 | 1bv2 | 2bv2 | 3bv2
| 0bv3 | 1bv3 | 2bv3 | 3bv3 | 4bv3 | 5bv3 | 6bv3 | 7bv3
| · · ·

EquivOp ::= ⇐⇒ | <==>
ImplOp ::= ⇒ | ==>
OrOp ::= ∨ | ||

AndOp ::= ∧ | &&
RelOp ::= ==

| 6= | !=
| < | >
| 6 | > | <= | >=
| <:

ConcatOp ::= ++
AddOp ::= + | −
MulOp ::= ∗ | / | %
UnOp ::= ¬ | !

| −
QOp ::= ∀ | ∃ | forall | exists
QSep ::= • | ::

AxiomDecl ::= axiom Attribute∗ Expr ;
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VarDecl ::= var Attribute∗ IdsTypeWhere,+ ;
IdsTypeWhere ::= IdsType WhereClause?

ProcedureDecl ::= procedure Attribute∗ Id PSig ; Spec∗

| procedure Attribute∗ Id PSig Spec∗ Body
PSig ::= TypeArgs? ( IdsTypeWhere,∗ )OutParameters?

OutParameters ::= returns ( IdsTypeWhere,∗ )

Spec ::= free? requires Expr ;

| free? modifies Id ,∗ ;

| free? ensures Expr ;

ImplementationDecl ::= implementation Attribute∗ Id ISig Body∗

ISig ::= TypeArgs? ( IdsType,∗ )OutParameters?

OutParameters ::= returns ( IdsType,∗ )

Body ::= { LocalVarDecl∗ StmtList }
LocalVarDecl ::= var Attribute∗ IdsTypeWhere,+ ;

StmtList ::= LStmt∗ LEmpty?

LStmt ::= Stmt | Id : LStmt
LEmpty ::= Id : LEmpty?

Stmt ::= assert Expr ;
| assume Expr ;
| havoc Id ,+ ;
| Lhs,+ := Expr ,+ ;
| call CallLhs? Id ( Expr ,∗ ) ;
| call forall Id ( WildcardExpr ,∗ ) ;
| IfStmt
| while ( WildcardExpr ) LoopInv∗ BlockStmt
| break Id? ;
| return ;
| goto Id ,+ ;

Lhs ::= Id MapSelect∗

MapSelect ::= [ Expr ,+ ]
CallLhs ::= Id ,+ :=

WildcardExpr ::= Expr | ∗
BlockStmt ::= { StmtList }

IfStmt ::= if ( WildcardExpr ) BlockStmt Else?

Else ::= else BlockStmt | else IfStmt

LoopInv ::= free? invariant Expr ;

OrderSpec ::= ParentInfo? complete?

ParentInfo ::= <: ParentEdge,∗
ParentEdge ::= unique? Id

Attribute ::= { : Id AttrArg,∗ }
AttrArg ::= Expr | StringLiteral
Trigger ::= { Expr ,+ }
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