
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

KelpFusion:
a Hybrid Set Visualization Technique

Wouter Meulemans, Nathalie Henry Riche, Bettina Speckmann, Basak Alper, and Tim Dwyer

Abstract—We present KelpFusion: a method for depicting set membership of items on a map or other visualization using
continuous boundaries. KelpFusion is a hybrid representation that bridges hull techniques such as Bubble Sets and Euler
Diagrams and line- and graph-based techniques such as LineSets and Kelp Diagrams. We describe an algorithm based on
shortest-path graphs to compute KelpFusion visualizations. Based on a single parameter, the shortest-path graph varies from
the minimal spanning tree to the convex hull of a point set. Shortest-path graphs aim to capture the shape of a point set
and smoothly adapt to sets of varying densities. KelpFusion fills enclosed faces based on a set of simple legibility rules. We
present the results of a controlled experiment comparing KelpFusion to Bubble Sets and LineSets. We conclude that KelpFusion
outperforms Bubble Sets both in accuracy and completion time, and outperforms LineSets in completion time.

Index Terms—Information visualization, visualization techniques and methodologies.

Teaser Figure: KelpFusion applied to restaurants in Boston (left) and to cities in Europe (right).
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1 INTRODUCTION

E XPLORING large information spaces often requires
understanding the grouping of elements by their prop-

erties. For example, social scientists tackle the analysis
of large social networks by grouping individual people
into communities and then studying how these groups
interact. Similar analysis of groups or sets is a key task in
many domains, from identifying related words in linguistics
to studying relations between geographic places. Visually
representing sets and their elements can lead analysts to
effectively identify properties of an element and its rela-
tionships to those around it.

There are many ways to represent sets and their elements.
Among the oldest representations—and probably most fa-
miliar for many people—are Venn diagrams [9] and their
generalization, Euler Diagrams. Such visual representations
naturally and effectively convey how a small number of sets
intersect through simple overlapping regions. When dealing
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with a larger number of sets and more intricate intersec-
tions, using simple shapes such as ellipses is no-longer
possible. Common solutions propose to use more complex
shape boundaries to enclose set elements, for example, Bub-
ble Sets [7]. However, when representing set membership of
places marked on a map, or other visualization where there
is no freedom to rearrange the elements, such techniques
generate a lot of occlusion. Recent solutions have proposed
more minimal enclosing geometries. LineSets [1] reduce
the geometry to a single continuous line. Kelp Diagrams [8]
use a sparse spanning graph, essentially a minimal spanning
tree with some carefully chosen additional edges. Both
LineSets and Kelp Diagrams attempt to reduce visual clutter
and clarify intersecting regions in different ways. However,
when a set contains elements that are spatially close, it may
become more effective to generate an enclosing geometry
to better convey a sense of grouping.

In this paper we attempt to bridge the two ends of the
spectrum, providing a hybrid technique named KelpFusion
that uses a mix of hulls and lines and generates fitted
boundaries for groups of elements in a given arrangement.
Such a hybrid technique is interesting to explore since it
falls between two desirable extremes: a minimal spanning
tree guarantees to use minimal “ink” (after Tufte’s rule [17])
to show a connected boundary for the set, while the convex
hull best displays cohesive grouping according to Gestalt
theory [19].

While Kelp Diagrams and KelpFusion are both based
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(d) KelpFusion (dense)(a) Bubble Sets

(b) Kelp Diagrams

(f) KelpFusion (sparse)

(e) KelpFusion (medium)

(c) LineSets

Figure 1. Visualizations using the various methods discussed in this paper. (a) Image generated using the implementation generously
provided by the authors of Bubble Sets [7]. (b) Image courtesy of Kasper Dinkla. (c) Image generated using the LineSets implementation
described in [1]. (d-f) Images generated by our KelpFusion implementation.

on a spanning graph, KelpFusion introduces the use of a
proximity graph, a so-called shortest-path graph. In the
context of Geographic Information Science, shortest-path
graphs have been used to delineate imprecise regions, re-
constructing a boundary of a region based on points that are
likely inside the intended region [2]. Shortest-path graphs
adapt to point sets of varying density and aim to capture the
shape and clusters of a point set. In other words, the use of
shortest-path graphs allows KelpFusion to fill faces when
points are spatially close. Furthermore, we show that the
shortest-path graph and its corresponding boundary can be
computed efficiently, enabling interactive manipulation of
the visualization. Figure 1 illustrates three existing methods,
Bubble Sets, LineSets, and Kelp Diagrams, in comparison
with our new hybrid technique, KelpFusion.

To understand the advantages and drawbacks of our
technique, we performed a controlled experiment with 13

participants, comparing KelpFusion to Bubble Sets [7] and
LineSets [1]. We discovered that KelpFusion improved on
Bubble Sets, outperforming the technique in accuracy and
completion time. We also found that KelpFusion was on
par with LineSets in terms of accuracy but yielded faster
response times. User preferences and comments also indi-
cated that KelpFusion provides a good sense of grouping
and is aesthetically more pleasing than the other methods.

2 RELATED WORK
Venn or Euler diagrams are popular ways to visually
represent set intersections. In these diagrams, closed curves
correspond to sets and overlaps between the curves indicate
intersections. Several papers have explored the problem of
automatically drawing Euler diagrams to convey abstract
set topology, for example, Simonetto and Auber [14] and
Stapleton et al. [16]. Other approaches investigated the
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possibility of adding labels or glyphs to Euler diagrams to
represent individual set members, i.e. data items contained
in the set. As discussed by Simonetto et al. [15], this
requires ensuring that the set regions—and the areas of in-
tersection between them—are large enough to enclose such
labels. Readability of highly overlapped regions quickly
becomes a concern. In a controlled study Henry Riche and
Dwyer [10] found that it is beneficial to show intersections
using simple set regions and strict containment, enabled by
duplication or splitting of sets.

The methods above all assume that set regions and their
members can be freely placed anywhere in the plane. An
important variation is the problem of overlaying a given
arrangement of points or labels representing data elements
with indicators of their set membership. Collins et al. [7]
presented Bubble Sets, a method based on isocontours to
overlay such an arrangement with enclosing set regions. A
similar approach was suggested by Byelas and Telea [6].
Again, readability of regions in these methods suffers when
they are highly overlapping.

A recent technique called LineSets [1] attempts to im-
prove the readability of complex set intersections and to
minimize the overall visual clutter by reducing set regions
to simple curved lines drawn through set elements. Using a
single continuous line induces a sequential order in which
to browse elements of a set, conveying a different concept
of grouping. In a method that falls stylistically somewhere
between lines [1] and the strict nested containment of [10],
Dinkla et al. [8] introduced so-called Kelp Diagrams. Kelp
Diagrams incorporate classical graph-drawing “bubble and
stick” style graph or tree spanners over the member points
in a set. When multiple sets are shown simultaneously, over-
lapping regions are drawn with strictly nested containment.

These set visualization techniques focus on representing
sets of elements with fixed locations, as does the KelpFu-
sion technique we present in this paper. While preserving
the spatial context of the data is essential in many analysis
scenarios, it also significantly limits the scalability of these
methods. As the number of sets and the complexity of
their intersections increases, one should consider design-
ing a dedicated set representation that relaxes the spatial
constraint on their elements. One possibility is permutation
matrices [13].

Sets defined over points in the plane can be interpreted
as an embedding of a hypergraph where the points are
vertices and each set is a hyperedge connecting an arbitrary
number of vertices. Then a Kelp Diagram is a realiza-
tion of a hypergraph support, as discussed by Kaufmann
et al. [12], Buchin et al. [5], and Brandes et al. [3]. Though
the concepts explored in these papers consider structures
similar to Kelp Diagrams and LineSets, they are more
concerned with their graph theoretical properties, such as
existence theorems for various classes of supports, than
with application to practical visualization.

3 KELPFUSION
In the design study performed by Alper et al. [1], sketch
results drawn by participants hinted at a hybrid method,

(e) (f) (g)

(a) (b) (c) (d)

Figure 2. Difference in evolution from spanning tree to convex hull.
We consider shortest-path graphs to be more appropriate for captur-
ing shape and filling faces. (a-d) KelpFusion. (e-g) Kelp Diagrams.

combining edges with filled faces to visualize sets. Kelp-
Fusion offers exactly such a hybrid approach by supporting
a user-controlled trade-off between minimizing ink in the
diagram (a minimal spanning tree) and maximizing the
coherence of group boundaries (the convex hull). It builds
on the visual appearance of Kelp Diagrams [8], but with
some significant diffe rences. The first difference is the
addition of filled faces. Filled faces provide a stronger
sense of grouping for spatially close elements. To avoid
misleading visualizations we use a few simple legibility
rules to decide which faces to fill.

The second difference is the graph that defines the edges.
Whereas Kelp Diagrams use a detour factor to decide
whether an additional edge should be inserted, KelpFusion
uses a shortest-path graph. While both methods have a
convex hull and a minimal spanning tree as extremes, the
intermediate stages of a shortest-path graph identify clusters
much more readily and allow us to fill many small faces. In
contrast, the detour factor used for Kelp Diagrams mostly
adds long edges, creating large faces. Figure 2 illustrates
this difference. Our implementation of KelpFusion allows
us to interactively vary the sparsity of the visualization.

Preliminaries. We assume the input is given as a set N of
nodes corresponding to points in R2. We wish to visualize
a number of sets, S1, . . . ,Sk, where each set is a non-
empty subset of N. The numbering of the sets indicates the
front-to-back ordering. Every node v is assigned a unique
allocation area. This allocation area is used to draw a
characteristic nested Kelp “bubble” around v, one for each
set that contains v. The allocation area is defined as the
intersection of the Voronoi cell of v and a disk centered on
v with radius r (a parameter). We link the allocation areas
of the nodes with edges. A parameter w controls the width
of a rendered edge.

Set order. The sets S1, . . . ,Sk are specified in their front-
to-back ordering. This order affects the quality of the
visualization. Since we typically have a small number
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of sets, it would be possible to try all orderings. For
automated selection, we would need a quality criterion to
find the best drawing (e.g. the number of intersections).
However, reordering the sets would require recomputing
the visualization since the geometry is affected by the order.
We find that ordering the sets by increasing size tends to
produce the most readable results. That is, the largest sets
are in the back, the smallest in front. We apply this heuristic
order to all our results.

Algorithm overview. After computing the allocation areas,
each set is processed in three phases. In the first phase,
the shortest-path graph is computed to define the edges
that connect the nodes. In the second phase, the shortest-
path graph is analyzed to determine the faces of the graph
that can be filled. In the third phase, the actual visual
representation is computed from the shortest-path graph and
its fillable faces. Algorithm 1 summarizes this process. Note
that the sets are processed in a back-to-front order. Figure 3
illustrates the effect of each phase.

The first and second phase both introduce one parameter

Algorithm 1 KelpFusion(N,S1, . . . ,Sk)

Input: N is a node set and S1, . . . ,Sk are subsets of N
Output: a KelpFusion visualization for S1, . . . ,Sk

1: Compute allocation area for each node in N
2: for Si = Sk to S1 do
3: Compute shortest-path graph
4: Determine fillable faces
5: Construct visualization Vi
6: return visualizations V1, . . . ,Vk

(a) (b) (c)

Figure 3. The three phases in KelpFusion. (a) Shortest-path graphs
avoiding allocation areas. (b) A face is filled. (c) Final visualization.

Figure 4. Different parameter settings in one visualization. Back-
most set (red) uses a convex hull, filling all possible faces. The left
set (blue) also uses a convex hull, but does not fill all possible faces.
The right set (orange) uses a spanning tree.

(t and A), to control the density of the shortest-path
graph and the size of the fillable faces respectively. These
parameters may have different values for different sets, as is
illustrated in Figure 4. To compute the fillable faces (phase
2), only the shortest-path graphs of the lower sets need to
be known. Therefore, it is also possible to compute the
visualizations on a phase-by-phase basis, rather than set-
by-set. This opens up possibilities for parallel processing.
In the remainder of this section, we discuss each of the
phases and some design considerations.

3.1 Phase 1: Shortest-path graph
In the first phase, a shortest-path graph is computed for
each set Si, to determine the edges that visually link the
nodes. It is computed as follows.

First, we compute the reachability graph G, a superset
of the shortest-path graph. G contains an edge for each
pair of nodes (u,v) in Si. This edge is defined as the
shortest Euclidean route between u and v, constrained to
avoid any allocation area with a minimum clearance of 1

2 w,
except those of u and v. Hence, when an edge is drawn
with width w, its drawing does not intersect any allocation
area. Note that (with r > 0 or w > 0) such a path need
not exist and G may in fact be disconnected, implying a
disconnected shortest-path graph. However, for most real-
world datasets, G is connected. The edges of G can be
computed using a visibility tangent graph [18]. For Kelp
Diagrams, edges are selected from the reachability graph G
based on a detour factor (called benefit [8]), which measures
how much an additional edge improves the connectivity of
the drawing. All edges that improve by at least a user-
controlled factor are added. In contrast, for KelpFusion we
compute a shortest-path graph of the reachability graph G.
Shortest-path graphs. A shortest-path graph aims to cap-
ture the shape of a point set with a graph and naturally
adapts to varying point density [2]. Using a single param-
eter, this graph varies from a minimal spanning tree to
the convex hull. In the context of Geographic Information
Science, shortest-path graphs have been used to delineate
imprecise regions, reconstructing a boundary of a region
based on a set of points that are likely inside the intended
region [2]. For KelpFusion, the shortest-path graph defines
the edges to connect the nodes in a set, capturing the local
shape of clusters of nodes.

The shortest-path graph defines a subgraph of the reach-
ability graph G, based on a single parameter t ≥ 1. If G
is connected, the shortest-path graph is a spanning graph
of Si. Let SPG(Si, t) denote the shortest-path graph for (the
reachability graph of) Si for a parameter value t. An edge
e = (u,v) is included in SPG(Si, t) if and only if e is a
shortest path between u and v in G, where the weight of
an edge is defined as its length raised to the power t. The
method to compute SPG(Si, t) is given in Algorithm 2. The
execution time of this algorithm is O(n · (|Si| log |Si|+n)),
where n is the number of edges in G. Since n is quadratic
in |Si|, the execution time is O(|Si|4).

We now briefly discuss the geometric structure of
shortest-path graphs. To this end, we consider the case r = 0
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(a) t = 4.5 (b) t = 3 (c) t = 2.5 (d) t = 2.1 (e) t = 1.8

(f) t = 1.5 (g) t = 1.35 (h) t = 1.18 (i) t = 1.14 (j) t = 1

Figure 5. The outline of the shortest-path graph for varying t-values. The outline ranges from the minimal spanning tree to the convex hull.

Algorithm 2 ShortestPathGraph(Si,G, t)
Input: Si is a node set, G is the reachability graph of Si,

and t ≥ 1
Output: the shortest-path graph of Si for parameter t

1: Let e1, . . . ,en denote the edges of G in increasing order
of length

2: Let SPG be a graph with nodes Si and no edges
3: for e = e1 to en do
4: Let p be the shortest path in SPG between the

endpoints of e
5: if p does not exist or weight(p)≥ |e|t then
6: Add e to SPG with weight |e|t
7: return SPG

and w = 0. Hence, every edge in the reachability graph is a
straight line. Due to the triangle inequality, SPG(Si,1) is the
complete graph on Si, its outline being the convex hull of Si.
In contrast, SPG(Si,∞) is the Euclidean minimal spanning
tree of Si. The graph SPG(Si, t) is a subset of SPG(Si, t ′)
for t > t ′ and thus varying the value of t allows (the outline
of) the graph to range from a spanning tree to the convex
hull. This is illustrated in Figure 5. For t ≥ 2 (and r = 0 and
w= 0), SPG(Si, t) is a subset of the Delaunay triangulation.
Hence, for this special case, we can restrict the reachability
graph G to contain only edges between the pairs of nodes
that are neighbors in the Delaunay triangulation.

For t < 2, r > 0, or w > 0, the monotonicity prop-
erty (SPG(Si, t) ⊆ SPG(Si, t ′) for t > t ′) still holds and
SPG(Si,∞) is still a spanning tree. However, the shortest-
path graph is no longer necessarily a subset of the Delaunay
triangulation. But, if we simply restrict the reachability
graph G to the edges of the Delaunay triangulation, our
algorithm still works well and the computation time is
decreased significantly: since n is now linear in |Si|, the
computation time is O(|Si|2 log |Si|).
Insertion order. When decreasing t from infinity down to
1, the shortest-path graph grows from the minimal spanning

(a) (b) (c)

Figure 6. (a) The Euclidean minimal spanning tree (t = ∞) on a
synthetic point set with three small clusters. (b) Inter-cluster edge
is the first to appear for t < ∞. (c) Insertion order has changed, extra
inter-cluster edge appears after reaching convex hull for each cluster.

tree to the complete reachability graph G. Each edge e of
G has an associated t-value at which it is added to the
shortest-path graph, that is, the largest value of t such that e
is in SPG(Si, t). These t-values naturally induce an insertion
order of the edges. Computing exact t-values is difficult, but
they can be approximated sufficiently well. The t-values
give us the actual insertion order, allowing for interactivity.
(Note that for certain point configurations the t-value of
an edge can be less than 1 and hence such an edge never
appears in shortest-path graph. However, such edges are
always redundant and can safely be omitted.)

The shortest-path graph is by definition scale indepen-
dent. However, in the case of set visualizations, we may
prefer to add short edges early, to converge to a (local)
convex hull for clusters more quickly. To modify the inser-
tion order, we need to modify only the weight definition for
the shortest-path graph: instead of |e|t , we use (|e|+C)t ,
where |e| is the length of an edge and C is a non-negative
parameter. With this change, shorter edges are preferred
over longer edges. Moreover, this change does not affect
the “extreme” cases of t = 1 and t = ∞. Figure 6 illustrates
the effect of changing the insertion order.

Penalties to improve readability. Kelp Diagrams can
include additional weights (penalties) to alter the route of
edges and improve the legibility of the visualization. In
particular, crossing edges and angular change can induce
penalties. We can use the same ideas for KelpFusion.



6 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

However, it is very costly to compute the route of edges
with additional penalties, making it impossible to interac-
tively vary parameters. Moreover, in most cases, it seems
unnecessary to include penalties since the visual quality of
the drawings is already high.

3.2 Phase 2: Fillable faces
Since KelpFusion is based on shortest-path graphs it nat-
urally identifies dense clusters of nodes in a set. To
strengthen this effect and convey an additional sense of
grouping, we fill enclosed faces of the shortest-path graph,
making KelpFusion a hybrid method that combines linear
and areal features. However, filling all faces results in
visualizations with false memberships, ambiguity, and areas
that are too visually dominant. Therefore, we use four
simple legibility rules to decide whether a given face may
be filled.

The first rule avoids large filled faces. Large faces
obscure much of a background map, are too visually
dominant, and may suggest a higher density. The second
rule avoids false memberships. If a face f formed by nodes
of a set Si is filled but f contains a node ν that is not
in Si, then the visualization incorrectly implies that ν is
actually part of Si or, alternatively, it may hide the other
set memberships of ν . This is illustrated in Figure 7 (a-b).

The third rule maintains the visual continuity of sets
below Si by preventing a face from hiding edges of a lower
set (Figure 7 (c-e)). Finally, the fourth rule also maintains
visual continuity and prevents false memberships. If the
boundary of a face f shares one or more edges with a lower
set, then filling f may incorrectly imply that the other nodes
on f are also part of the lower set (Figure 8).

More formally, let f denote a face in the shortest-path
graph of Si. Let | f | denote the area of f , nodes( f ) the nodes
in Si on its boundary, and |nodes( f )| the number of nodes
on its boundary. Face f is filled if and only if all of the
following conditions are met:

1) | f |
1+|nodes( f )| < A, where A denotes a parameter;

2) f does not contain a node in N\Si;
3) the interior of f does not overlap an edge of a lower

set S j ( j > i);
4) if the boundary of f is shared with an edge of a lower

set S j ( j > i), then nodes( f ) is a subset of S j.

3.3 Phase 3: Visualization
After computing the shortest-path graph and fillable faces,
we construct the final visualization. To this end, we com-
pute a polygon, potentially containing holes. This polygon
is the union of the characteristic Kelp “bubbles” at each
node, the thickened edges in the shortest-path graph, and
the fillable faces. To this polygon, we apply similar visual
postprocessing to that used in Kelp Diagrams. That is, we
smooth the polygon boundary for visual continuity, assign a
unique color, and give it a thin gray outline for better visual
separation between the sets. To avoid false memberships as
a result of smoothing, we subtract the allocation area of

(a) (b) Not allowed

(c) (d) Not allowed (e) Allowed

Figure 7. (a-b) Regardless of order, face cannot be filled according
to Condition 2. (c-e) Depending on order, face may or may not be
filled according to Condition 3.

(a) Allowed (b) Not allowed (c) Allowed

(d) Allowed (e) (f) Not allowed

Figure 8. Illustrations for Condition 4. (a) Face can be filled, since
no edge is shared. (b) Face cannot be filled, since an edge is shared
with lower set. (c) Face can be filled, since shared edge is in a higher
set. (d) Right face can be filled since lower set contains all vertices of
the face, but left face cannot be filled as it would hide the edge of the
lower set. (e-f) Filling the faces of the top set may incorrectly imply
that central point is also in bottom set.

each node that is not in the set from the smoothed shape.
In addition, we use a slight transparency (20%), kept low to
avoid color-blending. In visually dense areas, transparency
can help to determine set memberships and to track the
shapes. In visually sparse areas, it causes the underlying
map to be slightly more readable.

3.4 Implementation
Our implementation of the KelpFusion algorithm allows
us to vary the t-values and A-values (the parameters of
the first and second phase) interactively and independently.
We achieve this by omitting crossing and angular change
penalties and by restricting the reachability graphs to the
Delaunay triangulation, limiting its size (and thus the
length of the insertion order) to O(|Si|) for each set Si.
Omitting penalties makes the reachability graph and the
corresponding insertion order for the shortest-path graph
of a set independent of the other sets. Hence, we can
precompute the insertion order for each set. To vary the
t-value of a set, we simply use this precomputed insertion
order. Varying the A-values at interactive rates is supported
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by storing with each face in the shortest-path graph the
overlapped edges in the reachability graph of lower sets. To
decide whether a face can be filled or not, we have to check
only if the stored edges are in fact drawn (i.e. checking the
t-value of the overlapped edges to the value of t configured
for the lower set). We used our implementation to generate
all KelpFusion figures throughout the paper.
Illustrations. Here we briefly showcase the range of vi-
sualizations possible with KelpFusion. Figure 9 zooms in
on a cluster in a dataset of Boston restaurants. Despite the
densely clustered data points KelpFusion is still able to
clearly distinguish between different sets. In Figure 10 we
are using a convex hull for the lowest (red) set and spanning
trees for all others. This emphasizes the interaction of the
red set with the other sets, in particular, it clearly indicates
the nodes that are not in the red set. Figure 11 shows how
KelpFusion deals with a dataset frequently used in [8].

(a) Bubble Sets (b) LineSets

(c) KelpFusion

Figure 9. Area of high density visualized with three different tech-
niques.

Figure 10. Using a convex hull for the lowest (red) set and spanning
trees for the others emphasizes which nodes are not in the red set.

3.5 Other design considerations
Here we briefly discuss some design considerations for
KelpFusion.
Allocation area. KelpFusion, like Kelp Diagrams, uses a
fixed allocation area for each node, scaling the represen-
tations of sets to fit within the allocation area. We scale

Figure 11. A KelpFusion visualization for a Europe dataset, as used
in Figure 12 in [8]. Dataset courtesy of Kasper Dinkla.

such that the full allocation area is used and every set has
approximately the same visible area. LineSets handle node
area differently. They simply add a ring around a node for
each set the node is contained in. Hence a node contained
in many sets uses more area than a node contained in only a
few (see Figure 12). This draws additional attention to high-
degree nodes. KelpFusion might also benefit from having
degree-dependent allocation areas. Since large allocation
areas can easily disconnect the shortest-path graph, smaller
allocation areas for low-degree nodes may benefit connec-
tivity in some cases. Another user study would be advisable
to confirm or refute the actual benefit of allocation areas of
varying sizes.

(b)(a)

Figure 12. (a) Constant allocation area used by KelpFusion. (b)
Allocation area depending on number of sets, similar to LineSets.

Thinning areal features. When a face has long edges, it
may draw too much attention. Instead of not filling such a
face, we can simply reduce its area by thinning its outline,
similar to tapering edges (see Figure 13). Doing so may
reduce clutter, but it is unclear if the legibility and the
performance of KelpFusion would actually improve.

(a) (b)

Figure 13. Thinning areal features. (a) Filled triangular feature in
KelpFusion. (b) Sketch of thinned version.
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(a) (b)

Figure 14. Right-angle crossings may improve legibility. (a) Shallow
crossing in KelpFusion. (b) Sketch of right-angle crossing.

Right-angle crossings. Edge-crossings are often unavoid-
able, even when penalties are imposed. To make crossings
as clear as possible, edges should intersect at a large angle,
ideally forming a right-angle crossing (see Figure 14). This
minimizes the area of overlap between the two edges and
thus also minimizes the interruption of the visual continuity
of the lower set. One could consider using force-directed
methods in a postprocessing step to encourage right-angle
crossings. Such an approach, however, necessarily adds
visual complexity (inflection points) and uses extra ink.

4 USER STUDY

4.1 Method

We designed a controlled experiment to assess the read-
ability of our KelpFusion technique compared to state-of-
the-art set visualization techniques. We had two goals: (1)
to evaluate how the graphs of KelpFusion compare to the
single continuous path as generated by LineSets; (2) to
evaluate how the mixed use of hulls and links compares to a
single concave hull as generated by Bubble Sets. Therefore,
we compared KelpFusion to these two techniques. We
present an example of each in Figure 15. We conducted
a controlled experiment with a within-subject design: 3
Visualization Techniques × 4 Tasks × 2 Difficulty Levels
× 3 Repetitions. We recruited 13 participants who answered
72 questions each in a multiple-choice format.

Note that we make no comparison to Kelp Diagrams as
KelpFusion achieves a superset of Kelp Diagrams. While
assessing the performance of different settings for Kelp-
Fusion (spanning from Kelp Diagrams-like representations
to Bubble Sets-like ones) would certainly prove interesting,
we felt that introducing more conditions in the present study
would lead to an unreasonable experiment time and cause
participants’ fatigue.

Datasets. We used real data of restaurant locations in
the Boston area gathered from Bing Maps. We grouped
cuisine, price qualification, and rating of restaurants to
form sets. We filtered the data to vary the difficulty levels
of different set arrangements. We estimated the difficulty
of set arrangements as explained in [10], controlling the
number of 2-set, 3-set and 4-set intersections. Statistics are
presented in Table 1. We controlled the number of elements
in each set to ensure that size comparison questions were
not too simple or too ambiguous to answer, and questions
on counting elements were not too tedious. The spatial
arrangement of the sets was not controlled as we used
real geographic data. Figure 15 shows example pictures
used in the experiment. Colors for the sets were based on
ColorBrewer [4].

Table 1. Dataset statistics.
# sets # elements # 2-set # 3-set # 4-set

Medium 1 4 15 to 39 22 3 0
Medium 2 4 17 to 49 17 3 0
Hard 1 5 12 to 29 17 4 2
Hard 2 5 14 to 29 16 5 2

Tasks. We identified four readability tasks focusing on
browsing elements contained in a set, determining which
sets an element belongs to, and identifying set intersec-
tions. We opted for multiple-choice answers to encourage
participants to rely on their visual perception of the sets
rather than carefully counting items and spending time
verifying their answers. Providing multiple answers also
allowed us to reduce the completion time required for
each question, enabling the within-subject comparison of
all three techniques with multiple task repetitions. The task
types and an example for each are given below:

SizeOverview Are there more Thai
or more French restaurants?

SizeCount How many restaurants
serve Italian food?

SetIntersection How many Thai restaurants
are rated 5?

SetMembership What is the highlighted restaurant?

Highlighting for the SetMembership task was done
by coloring the node yellow. We felt an embedding of
restaurants on a map would be a familiar visualization
to our non-technical study participants. Further, using a

Figure 15. Example of images used in the experiment. From left to right: Bubble Sets, LineSets, and KelpFusion. An area of high density is
highlighted. Note that the images in the actual study did not feature such a highlight or any other method of interaction.
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geographic embedding avoids questions of layout, which
may be chosen to better suit one technique over another,
or some data-based embedding which would then need to
be explained to the participant. When working with a map
it is tempting to include tasks based on geography, such as
way-finding. However, we deliberately avoided such tasks
to preserve external validity (transferability of the results
to other tasks).
Participants and apparatus. We recruited 13 participants
(7 males and 6 females). The age of our participants
ranged between 27 and 47 years, with a mean age of
about 28 years. The participant pool was balanced for
age and gender and was screened to include people with
general computer experience, but not programmers. All
participants had normal or corrected-to-normal vision, none
being color-blind. The experimenter ran 1.5 hour sessions
with two participants at a time. Each participant completed
the experiment on an individual PC, using a 24” widescreen
monitor with a resolution of 1900 by 1200.
Procedure. Before the controlled study, participants re-
ceived training for each visualization technique. They were
instructed which strategies to utilize for a particular task
with each visualization technique.

We counterbalanced the order of visualization techniques
across users. We kept the order of tasks fixed throughout the
study, advancing from easier to harder tasks. We fixed the
order of the datasets from low to high difficulties. For the
repetitions, we created isomorphic questions using the same
data, but flipped the set arrangements both horizontally and
vertically and modified labels to avoid memorization.

The experiment software displayed questions in the de-
scribed order and recorded accuracy and time taken for each
answer. The software first displayed the question without
any visualization. When users understood the text and were
ready to answer the question, they clicked a button to
view the corresponding visual. Time was measured only
when the visualization was visible. To keep the study at a
reasonable length, we limited each question to a maximum
of 40 seconds.

Finally, after the experiment, we collected user pref-
erences and comments using a questionnaire. The study
lasted approximately 60 minutes including training and
post-experimental questionnaire.

4.2 Hypotheses
For accuracy and completion time, we hypothesized the
following:

(H1) KelpFusion and LineSets reduce the visual clutter
caused by overlapping set regions compared to
Bubble Sets. Hence, both techniques will have
better completion time and accuracy performance
than Bubble Sets;

(H2) KelpFusion provides a better overview of the set
size than LineSets as it creates a more effective
signature image emphasizing density with the use
of closed faces. Hence, KelpFusion will outper-
form LineSets for SizeOverview tasks;

(H3) The closed faces generated by KelpFusion sim-
plify the set shapes for dense regions as opposed
to the zigzagging paths of the LineSets technique,
thus KelpFusion will have a better performance
for SetIntersection tasks;

(H4) Compared to the sequential nature of LineSets
paths, the branching geometry of KelpFusion may
decrease the performance when users need to
browse all elements in a set as in the case of
SizeCount tasks;

(H5) KelpFusion will outperform LineSets for Set-
Membership tasks when many sets intersect (that
is, for difficult datasets), as the concentric circles
around points used by LineSets may overlap in
dense regions, thus decreasing its legibility.

For the participants’ preferences, we hypothesized the fol-
lowing:

(H6) KelpFusion and Bubble Sets better convey the
concept of groups since LineSets imply a sequen-
tial order;

(H7) KelpFusion is more aesthetically pleasing than
LineSets (which has zigzagging lines) and less
cluttered than Bubble Sets (which occlude much
of the map).

4.3 Results

We used a repeated-measure analysis of variance (RM-
ANOVA) to analyze accuracy and time performance results.
We performed the RM-ANOVA on the logarithm of the task
times to normalize the skewed distribution, as is standard
practice with reaction time data. Analysis of the time
performance is reported for correct answers only.

Accuracy. The accuracy results are summarized in Table 2
and Figure 16 (left). We found a significant effect of ac-
curacy for Visualization Technique (F(2,24) = 64.96, p <
0.0001). We verified (H1) as, overall, participants had
significantly more accuracy with LineSets and KelpFusion
than with Bubble Sets.

Table 2. Accuracy results. Means are expressed in percentages,
standard deviation is indicated in parentheses. Significant differ-
ences are indicated by *. Most accurate results are indicated in bold.

Bubble Sets LineSets KelpFusion
All tasks* 54.5 (2.4) 84.3 (4.5) 86.5 (3.9)
SizeOverview 85.9 (3.7) 80.8 (5.6) 84.6 (4.8)
SizeCount* 41.0 (8.6) 82.1 (7.7) 84.6 (7.4)
SetIntersection* 37.2 (4.3) 84.6 (4.0) 82.1 (4.4)
SetMembership* 53.8 (5.0) 89.7 (5.4) 94.9 (2.9)

RM-ANOVA also revealed a significant effect of Task
(F(3,36) = 5.25, p < 0.01) and of the interaction Visu-
alization x Task (F(6,72) = 8.68, p < 0.0001). Pairwise
comparisons revealed a significant difference in accuracy
between visualizations for three of the tasks: SizeCount,
SetIntersection and SetMembership. For all three tasks,
KelpFusion and LineSets both performed about 50% more
accurately than Bubble Sets, validating our first hypothesis
(H1). No significant differences were found between Kelp-
Fusion and LineSets.
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Figure 16. (left) Mean accuracy (in percentage) of each technique for tasks. (right) Mean time (in seconds) of each technique for tasks.
Errors bars represent 2 standard errors. Significant differences are indicated by *.

We also found a significant effect of Difficulty
(F(1,12) = 11.26, p < 0.01) and Visualization × Difficulty
(F(2,24) = 13.88, p < 0.0001). Surprisingly, we found that
overall, participants committed about 10% more errors with
the datasets of low difficulty. Investigating this surpris-
ing finding further, we found that while KelpFusion and
LineSets tend to remain constant in accuracy across tasks
and difficulties, Bubble Sets had significant increases in
accuracy for high difficulty datasets for SetIntersection and
SetMembership tasks. We believe this may be due to the
fact that in complex set arrangements, participants gave
up using the set boundaries, as the Bubble Sets diagram
was extremely cluttered, and relied only on the glyphs
attributed to set elements, which prove to be a somewhat
more accurate way to find the answer. It is important to note
however, that, despite this increase, Bubble Sets remained
20% to 40% less accurate than the other techniques.

Time. For completion time, we analyzed only the correct
answers using a mixed linear model capable of handling
missing data cases. For KelpFusion and LineSets, we
excluded about about 10% incorrect cases (312 total cases
per technique). For Bubble Sets, we excluded about 17%
of incorrect cases.

The completion-time results are summarized in Table 3
and Figure 16 (right). We found a significant effect of time
for Visualization (F(2,24) = 44.69, p < 0.0001). Pairwise
comparisons showed that KelpFusion is about 12% faster
than LineSets and 27% faster than Bubble Sets. The results
also revealed that LineSets is about 17% faster than Bubble
Sets.

We also found a significant effect of Task (F(3,36) =
141.62, p < 0.0001) and of the interaction Visualization ×

Table 3. Time results. Means are expressed in seconds, standard
deviation is indicated in parentheses. Significant differences in time
are indicated by *. Faster times are indicated in bold.

Bubble Sets LineSets KelpFusion
All tasks* 17.17 (0.4) 14.19 (0.3) 12.41 (0.3)
SizeOverview* 10.40 (0.5) 10.50 (0.6) 8.74 (0.5)
SizeCount* 18.49 (0.8) 16.70 (0.6) 11.95 (0.5)
SetIntersection 22.58 (1.1) 19.45 (0.8) 19.35 (0.9)
SetMembership* 17.19 (0.6) 10.10 (0.4) 9.60 (0.4)

Task (F(6,72) = 10.46, p < 0.0001). Pairwise comparison
revealed significant differences in time between visualiza-
tions for three of the tasks: SizeOverview, SizeCount and
SetMembership. For SizeOverview, we found that KelpFu-
sion was about 17% faster than the two other techniques, as
predicted in (H2). For SizeCount, we found that KelpFusion
performs 35% faster than Bubble Sets. For this task, we
were surprised to find that KelpFusion is also 28% faster
than LineSets, as we originally thought the opposite, that is,
the sequential nature of LineSets would be more effective
for browsing elements of a set (H4). For SetMembership,
we found that KelpFusion and LineSets are both about
40% faster than Bubble Sets, but did not observe any
significant differences between KelpFusion and LineSets as
we hypothesized (H5).

Contrary to our hypothesis (H3), we did not find any
significant differences neither in accuracy nor completion
time between LineSets and KelpFusion for the SetIntersec-
tion task.
User preference. At the end of the experiment we asked
the participants to rate how confident they were answering
each type of question, how cluttered and how aesthetically
pleasing the visualization was, and finally whether the visu-
alization provided a strong sense of grouping. Participants
ranked each technique separately using a Likert scale from
1 (worse) to 5 (best). Figure 17 summarizes these subjective
user ratings.

Participants were significantly more confident using
LineSets and KelpFusion compared to Bubble Sets (both
p < 0.001) for all tasks. There were no significant dif-
ferences between KelpFusion and LineSets techniques in
terms of confidence in the answers. Only for the SizeCount
task, users indicated more confidence using LineSets (about
40%), however, only 3 out of 13 participants commented
that the linear design helped them browsing elements (H4).
On the contrary, 7 out of 13 commented on the fact that the
lines were “wiggly and visually distracting when counting
the elements”, “intersecting in a confusing way” and “hard
to tell apart”. A few participants also commented that they
would get lost following the lines and had to start counting
again from the beginning. We believe that these comments
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Figure 17. Subjective user ratings for each technique. Errors bars
represent 2 standard errors. Significant differences are observed in
all rankings.

explain why KelpFusion outperformed LineSets in terms of
completion time for this task.

Users rankings and comments indicate that participants
found LineSets less cluttered than the other two techniques
(both p < 0.01). This outcome is expected due to the linear
representation of LineSets, minimizing the occlusion of the
background map. However, as we originally hypothesized
(H6), LineSets convey less of a sense of grouping compared
to KelpFusion as the linear design of LineSets implies a
sequential order which is not present in the data (p< 0.03).
To our surprise, participants rated Bubble Sets as the least
effective method for conveying the notion of grouping
compared to both KelpFusion (p < 0.001) and LineSets
(p < 0.03). Although Bubble Sets relies on the common
visual metaphor of enclosing geometries, we believe that
this ranking is due to the high occlusion produced by over-
lapping regions in Bubble Sets, making the overall drawings
difficult to read. For example, participants commented that
“the overlapping color blobs made it near impossible to
figure out how many were overlapping”, “creating visual
chaos” and a few participants commented that they “could
not find a thing in there”.

Finally, (H7) was partially validated as participants found
KelpFusion aesthetically more pleasing than Bubble Sets
(p < 0.001) and, while the questionnaire results were not
significant between KelpFusion and LineSets, 8 out of
13 participants commented that KelpFusion was the most
aesthetically pleasing representation overall.

4.4 Summary and limitations

Hypotheses summary. We confirmed that KelpFusion and
LineSets outperform Bubble Sets both in accuracy and
time for all tasks (H1), which seems to indicate that
both techniques improve the readability of overlapping set
regions. We also found that KelpFusion provides a better
overview of the set size than LineSets (H2), as it facilitated
faster results.

However, we originally hypothesized that the filled faces
generated by KelpFusion would simplify the set shapes
for dense regions as opposed to the zigzagging paths of
LineSets, thus providing a better performance for Set-
Intersection task (H3) as well as the SetMembership task

(H5). Contradictory to our hypothesis, we did not find any
significant differences between the two techniques. This
may point to a limitation of our study. As we opted to
use real data and restrict the number of elements to a small
number to limit the experiment duration, the datasets we
used contained relatively few clusters of points. It may be
possible that, with larger and denser clusters, KelpFusion
would improve performances compared to LineSets. How-
ever, it is interesting to note that while KelpFusion was on
par with LineSets for these two tasks, it did improve on the
Bubble Sets technique.

We were surprised to find that KelpFusion performed
faster than LineSets for counting elements of a set (H4),
as we originally hypothesized the opposite. We propose an
explanation later in this section.

Finally, our hypotheses on participants’ preferences were
partially validated. Participants found that KelpFusion con-
veys the concept of groups better than LineSets (H6) but,
as we did not expect, KelpFusion was also ranked higher
than Bubble Sets. Participants commented that KelpFusion
was the more aesthetically pleasing representation overall,
and the ranking indicates that it is found less cluttered than
Bubble Sets (H7).

Key findings. Overall, results of this study indicate that:

(1) Using a graph holds up well compared to a single
continuous path technique. We originally hypothesized that
representing a set by a single continuous line would have
advantages over a branching graph geometry. In particular,
we hypothesized that browsing elements of a set (captured
by the SizeCount task) would be facilitated by the sequen-
tial nature of a line. Therefore, we were surprised that
KelpFusion performed faster than LineSets for this task.
Several participants commented that single continuous lines
were tortuous and difficult to follow when intersecting with
others. They commented that when they got lost, they went
back to the beginning of the line and resumed the counting,
which may partly explain the decrease of performance using
LineSets. Reflecting more on this issue, we also believe that
KelpFusion may take advantage of the capacity humans
have for subitizing [11], that is, for performing accurate
and rapid judgments on small numbers of items grouped
together. With this hypothesis, faster completion times
could be explained by the fact that participants estimated
the number of elements by subitizing, summing estimated
numbers of elements in short branches and filled faces in
KelpFusion instead of counting individual elements. Further
experiments would be required to validate this hypothesis.

(2) Using a mix of hulls and links has benefits over a
single concave hull technique. Results of the experiment
confirmed that KelpFusion had strong benefits over using
a single concave hull technique such as Bubble Sets.
Results indicate that KelpFusion improved accuracy and
performance time but that participants also found it to
decrease clutter on the map, provide more aesthetically
pleasing drawings and increase the sense of groupings.
While it is hard to capture high-level impressions and
memorability of a representation, we also believe that
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the filled faces generated by KelpFusion provide a good
association between set elements and their spatial locations,
e.g. “where most elements of a given set are located”.
However, further experiments would be required to validate
this hypothesis.

Limitations. Our study has some limitations that need to
be taken into consideration. As with all controlled experi-
ments, the results we found apply to a very limited number
of datasets and a few low-level tasks. While they indicate a
trend, one needs to be careful in generalizing these results.
For example, Bubble Sets were originally developed for
non-overlapping sets. We did not include non-overlapping
datasets in this experiment as our primary goal was to
understand how KelpFusion improves the readability of set
intersections. Thus, Bubble Sets may remain a good choice
when representing simpler set arrangements, in which sets
rarely overlap.

The KelpFusion technique is composed of a mix of hulls
and lines, in which hulls (filled faces) highly depend on the
spatial arrangements of elements. However, as we opted to
use real data, we did not control the spatial arrangements
of the elements. Moreover, we had to restrict the number of
displayed elements to limit the experiment to a reasonable
duration. These two choices may have impacted the results
we obtained. However, we believe that the comparison to
other techniques was not biased. Increasing the number
of elements and ensuring stronger spatial groupings of
elements is likely to confirm the benefits of KelpFusion
over the other techniques.

5 CONCLUSION AND FUTURE WORK

We introduced a hybrid set visualization technique, called
KelpFusion. Building on the visual representation of Kelp
Diagrams, KelpFusion is composed of both linear and areal
features. This bridges the gap between hull methods, such
as Bubble Sets and Euler Diagrams, and linear methods,
such as LineSets and Kelp Diagrams. KelpFusion uses
shortest-path graphs to define the linear features of the vi-
sualization, controlling the sparsity with a single parameter.
Since these shortest-path graphs naturally capture clusters
and shape, this opened the possibility of filling faces in the
graph to obtain areal features. The maximal size of areal
features is again controlled by only a single parameter. This
combination of linear and areal features makes KelpFusion
the first hybrid visualization technique, covering a whole
spectrum of possible set visualizations, from sparse trees
to dense hulls.

We performed a controlled experiment to compare the
performance, in both accuracy and time, of the new Kelp-
Fusion method with existing methods (Bubble Sets and
LineSets). These experiments showed that KelpFusion is
never outperformed by any of the other methods.In terms of
accuracy, it performs significantly better than Bubble Sets
and is on par with LineSets. In terms of completion time, it
performs significantly better than both other methods. We
conclude that the combination of (branching) linear features
and areal features of KelpFusion is a good way to visualize

sets. The preferences of the participants also indicate that
KelpFusion is aesthetically more pleasing and provides
a better sense of grouping. While LineSets outperformed
KelpFusion in terms of being less cluttered, we do note that
the parameterization of KelpFusion allows for far sparser
representations as well, even up to a minimal spanning tree.
In such a case, KelpFusion would be less cluttered. A user
study experimenting with the various settings of KelpFusion
and assessing the readability of hybrid diagrams spanning
from Kelp Diagrams-like set representations to Bubble
Sets-like representations is an interesting future direction.

In addition, as mentioned earlier, scalability in the num-
ber of sets and the complexity of their intersection (see
Figure 9) is an issue for KelpFusion as it is for any
set visualization technique that attempts to preserve the
spatial location of elements. To handle a large number
of sets and “untangle” complicated intersection areas, one
may consider relaxing the spatial constraint on the set
elements, e.g. Euler Diagrams [10]; or adopt a dedicated
set representation, e.g. permutation matrices [13]. Another
direction that would enable scalability to larger datasets is
through interactive filtering and aggregation. To support this
KelpFusion would need to be modified to achieve visual
stability of set boundaries as elements and sets are added
or removed from the visualization.
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