
LaSEWeb: Automating Search Strategies over
Semi-structured Web Data

Oleksandr Polozov
∗

University of Washington
polozov@cs.washington.edu

Sumit Gulwani
Microsoft Research

sumitg@microsoft.com

ABSTRACT
We show how to programmatically model processes that hu-
mans use when extracting answers to queries (e.g., “Who
invented typewriter?”, “List of Washington national parks”)
from semi-structured Web pages returned by a search en-
gine. This modeling enables various applications including
automating repetitive search tasks, and helping search en-
gine developers design micro-segments of factoid questions.

We describe the design and implementation of a domain-
specific language that enables extracting data from a web-
page based on its structure, visual layout, and linguistic
patterns. We also describe an algorithm to rank multiple
answers extracted from multiple webpages.

On 100,000+ queries (across 7 micro-segments) obtained
from Bing logs, our system LaSEWeb answered queries with
an average recall of 71%. Also, the desired answer(s) were
present in top-3 suggestions for 95%+ cases.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages—query lan-
guages; H.3.3 [Information Storage and Retrieval]: In-
formation Search and Retrieval—clustering, search process,
information filtering

Keywords
Semi-structured data; domain-specific languages; structure
extraction; Web programming; question answering.

1. INTRODUCTION
The creation of search engines changed the way people

locate information on the Web. 91% of online adults cur-
rently use search engines to find information on the Web,
59% of them daily [21]. 84% of research undertaken by col-
lege students begins with a search engine query [3], and

∗Work done during an internship at Microsoft Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’14, August 24–27, 2014, New York, NY, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2956-9/14/08. . . $15.00.
http://dx.doi.org/10.1145/2623330.2623761 .

the same trend is observed for faculty and professional re-
searchers [11]. Search engines dictate our habits of knowl-
edge discovery on the Web.

Even though many of the queries submitted to search en-
gines represent one-off tasks, a significant percent of them
are repetitive. First, end-users often have to process batch
data that requires making a series of similar queries to a
search engine. A typical example is finding a similar piece of
information about every item in a given list, e.g. acquiring
contact information about a list of people, getting BibTeX
entries for a list of articles, etc.

Second, so called factoid questions (“Who invented ra-
dio?”, “What is the population of Germany?”, etc.) still con-
stitute a significant portion of all user queries in search en-
gine logs [23]. Search engines have recognized the importance
of factoid questions, and introduced a notion of a micro-
segment of queries – a specific category of questions, for
which the search engine shows the instant answer under-
neath the search bar, along with the list of search results.
The source of data for answering micro-segment questions
is typically a structured knowledge database, such as Free-
Base. This implies that (a) the information presented in an
answer is limited to the content of the database; (b) an-
swer extraction code is hard-coded for every micro-segment;
(c) time-sensitive information is not tracked consistently. In
constrast, any desired knowledge is usually present in the
free-text Web data, but it is usually unstructured or semi-
structured (i.e., partially labeled to be accessible and recog-
nizable by humans, but not by data collection algorithms).

Even when a search engine provides instant response, it
may not be exactly what the end-user wants. According
to [24], people prefer to locate their target in iterations, by
observing the context of an answer and refining the query
as necessary. They mostly look at multiple pages related to
their desired answer, although seldom at more than ten [13].
Moreover, there may be multiple possible “answers” to a
user’s query, and the user is often interested in exploring the
context related to each of them. For this, end-users like to ex-
plore the list of search results manually, since the task of ex-
tracting and ranking multiple answer candidates along with
their context lies beyond the capabilities of current micro-
segment search. This is the problem addressed in this paper.

All mentioned repeatable search tasks share the same ge-
neric features. A repeatable search task is a parameterized
Web query that takes a tuple of string arguments, and re-
turns a set of string answers. Essentially, a parameterized
Web query is a function over the Web data, which is defined
once, and later executed multiple times for various specific

arguments. Currently, the only automated component in the
execution of such a function is a search engine. The rest of
the execution is defined by end-users’ search strategies over
the search engine results, and is entirely manual.

We observe that for any repeatable search task people fol-
low similar strategies in extracting knowledge from the Web.
They compose a search query aimed to bring a list of results
with high recall, but not necessarily high precision (i.e. the
desired knowledge is present among the suggested links, but
it may not be ranked high enough by the search engine).
People then navigate to the suggested links, and explore the
content of webpages to build a list of answer candidates and
associated context. In order to locate an answer candidate
on a webpage, they use a set of patterns that form a basis
of their search strategy. These patterns include:

• Linguistic patterns: sentence structure, semantic infor-
mation, textual content of the webpage.

• Structural patterns: any relational or otherwise semi-
structured information on the webpage, tables, lists.

• Visual patterns: layout and styling of the webpage, pre-
sentational attributes of its elements, emphasis.

These patterns serve as a way to create structure and add
semantics on top of the semi-structured content of the Web.

In this paper, we present LaSEWeb1 – a system for au-
tomating repetitive search tasks from end-users’ descriptions
of their search strategies involving the above-mentioned pat-
terns. LaSEWeb consists of a novel domain-specific lan-
guage (DSL) for programming search strategies, and an in-
terpreter for it, built on top of the search engine Bing. A
LaSEWeb program takes a tuple of user query arguments,
and returns a set of answer strings from the Web, ranked
by their confidence scores, along with their corresponding
source URLs. It does so by (a) exploring the list of search
results returned by Bing for our seed query, (b) executing a
LaSEWeb query on each webpage in the list to extract mul-
tiple answer string representations from it, and (c) clustering
these representations using an application-specific similarity
function. The language of LaSEWeb queries includes tex-
tual, structural, and visual search patterns that we collected
from our observations of typical search strategies. The inter-
preter for this language makes use of semi-structured con-
tent of a webpage and CSS attributes of HTML nodes along
with state-of-the-art natural language processing (NLP) al-
gorithms and programming by example (PBE) algorithms.
We intend LaSEWeb to be used by both end-users and
micro-segment developers.
We evaluated LaSEWeb on two different applications

of Web programming: (a) 7 factoid micro-segments, repre-
sented by 100,000+ user queries from Bing logs, and (b) 5 re-
peatable academic search tasks, related to PLDI-2014 com-
mittee. The system achieved 95%+ precision in all micro-
segments, and 73% precision in repeatable search, with an
average recall of 71%.
This paper makes the following contributions:
• We define and motivate the problem of Web program-

ming with two different applications (§2).
• We introduce LaSEWeb, our DSL for writing Web

programs that incorporate humans’ search strategies
in a declarative format (§3).

• We provide an efficient interpreter for our DSL (§4).
Besides other things, it makes use of novel logical ta-

1 Language for Structure Extraction.

ble parsing techniques that utilize textual, structural,
and visual features of a webpage to extract structural
information from semi-structured data (§4.1.2).

• We evaluate LaSEWeb on two applications of Web
programming: 7 factoid micro-segments and 5 batch
search tasks (§5).

2. MOTIVATION

2.1 Examples
We begin with two scenarios that illustrate the problem

of Web programming. These scenarios are: factoid micro-
segments in search engines, and repetitive Web searches.

Scenario 1. Alice is a software developer in a search en-
gine department. She is responsible for a “micro-segment”
search: providing instant answers to simple factoid questions
underneath the search bar, along with a list of usual search
results. She wants to implement a new micro-segment that
can answer questions about inventors/creators of various
products or discoveries. A fraction of this information exists
in FreeBase and similar databases, but they lack data about
(a) less fundamental inventions, like “paper clip”, and (b)
ambiguous attributions, like “radio” (N. Tesla vs. G. Mar-
coni vs. A. Popov, etc.) Such information is available on the
Web, in the list of provided search results. However, in or-
der to discover any contextual information, a user has to
navigate to every webpage in the list manually.

Instead of hard-coding FreeBase information, Alice might
want to implement the following pseudocode, which repre-
sents her own search strategy in locating inventor infomation
on the Web. This pseudocode describes a set of linguistic
patterns that match sentences about inventors on webpages,
returned by a search engine.

w ← product name
q ← w ◦ “inventor”
U ← search results for q
for all urls uj ∈ U do
Q1 ← pattern “Entity(Person) ␣ ∗ ␣Syn(invented) ␣ ∗ ␣w”
S ←{strings s within the content of uj | s is an

Entity(Person) component in a match of Q1 }
Q2 ← pattern“Entity(Person) ␣ ∗ ␣Syn(creator) ␣POS(Prep) ␣w”
S ← S ∪ {strings s within the content of uj | s is a

Entity(Person) component in a match of Q2 }. . .
Assume more confidence in the more frequent results in S

return all collected results with confidence scores and URLs

In this pseudocode Syn(s) matches any word that is syn-
onymic to s, ∗ matches any number of words, POS(Prep)
matches a preposition, Entity(Person) matches several words
that constitute a person name (such as “John Atanasoff”).
◦ denotes string concatenation.

When executed against a user query w = “computer”, this
program produces a set of results, similar to the following:
Answer Confidence Sources

John Atanasoff 14.5% http://www.computerhope.com
http://www.ehow.com
http://inventors.about.com

Charles Babbage 10.2% http://www.buzzle.com
http://www.ask.com

.

We note that with this approach, every micro-segment
turns into a “repetitive search”: a parameterized search task
that is defined once by a search engine developer, and exe-
cuted multiple times with different arguments by end-users.
The input of this search task are micro-segment arguments –

http://www.computerhope.com
http://www.ehow.com
http://inventors.about.com
http://www.buzzle.com
http://www.ask.com

Figure 1: Screenshot of the personal webpage of Dr. Shaz
Qadeer2 (retrieved in October 2013).

for example, for “inventor” micro-segment this is the prod-
uct name. The output of the task are answers to the factoid
question of the micro-segment, ranked by confidence scores,
along with their source URLs for additional context.

Scenario 2. Sofus has a table of KDD 2014 committee
member names, which he wants to fill in with their corre-
sponding phone numbers. Phone numbers can be extracted
from their personal webpages automatically via regular ex-
pressions, but there are two challenges: (a) these webpages
have to be identified first; (b) regular expressions may have
false positives. Consider a webpage in Fig. 1. A simple reg-
ular expression for phone numbers will match both “Phone”
and“Fax” lines on the page. Moreover, on different webpages
it might also match a secretary’s phone number, lab num-
bers, university numbers, etc. Also, retrieval of all personal
webpages is still manual and tedious.

Without any automation, a human typically looks for a
phone number on a personal webpage using visual and lin-
guistic cues: proximity to header, words like “Phone” or
“Fax”, string pattern (regular expressions), table-like struc-
ture “⟨field name⟩ : ⟨value⟩”. The following pseudocode de-
scribes this manual search strategy:

wi ← ith committee member’s name
qi ← wi ◦ “phone number”
U ← search results for qi
for all urls uj ∈ U do

S ←{strings s within the content of uj | s appears close to
wi or a picture ∧ wi is emphasized (bold/colored) ∧s
is a value in a table-like structure where key is similar
to “Phone”/“Voice” ∧ s matches a phone number }

Assume more confidence in the more frequent results in S

return all collected results with confidence scores and URLs

We note that the information on a webpage could be pre-
sented in an entirely different format: as a series of lines
with a separator other than a colon, as an HTML table,
with different layout, etc. However, people interpret any of
these formats as a generic “table-like” structure, and locate
information in them in a similar manner.

In this scenario, the repetitive search task lies in collecting
similar knowledge for each item in the list. The input is a
person’s name, and the output is the set of found phone
numbers. There may be multiple “correct” answers (e.g.,
home/cell phone number).

2.2 Observations
Examples in §2.1 show two different applications of pa-

rameterized Web queries, and expose several features that

2
http://research.microsoft.com/en-us/people/qadeer/

most people share in their search strategies. We summa-
rize the list of our observations about these features below.
They form the foundation for the definition of the problem
of Web programming (which we tackle in this paper), and
the LaSEWeb system (which is our approach to solving it).

2.2.1 Problem definition
Repetitive search tasks are parameterized. People

often need to use the same strategy for a series of simi-
lar Web search tasks with different parameters. Scenario 2
showed a case of an end-user dealing with a single problem
of finding a phone number, applied to multiple people. In
Scenario 1 the task is defined by a micro-segment developer,
and later used multiple times by different end-users.

Search tasks have multiple answers. Depending on
the nature of the search task, there may be multiple pieces
of information that should be extracted from the Web as
possible “answers”. A user is often interested in (a) exploring
different answers ranked by some measure of their respective
confidence/relevance, and (b) exploring some context related
to the various answers.

These observations motivate our problem definition:

Definition 1. A Web program is a process that takes a
tuple of user query arguments, and returns a set of answer
strings, ranked by their confidence, along with corresponding
source URLs for every answer string.

A Web program is essentially defined as a function from
strings to sets of strings. The execution of such a function
happens over data on the Web. The definition of such a
function consists of various typical patterns that constitute
humans’ search strategy. Both definition and execution of
Web programs are currently entirely manual, with the search
engine being the only automatic bridge between the user’s
goal and the Web data; our LaSEWeb system automates
the execution of such Web programs.

2.2.2 Our approach
We propose LaSEWeb, our approach to Web program-

ming. It implements a Web program by automating a typi-
cal human’s search strategy for it. The automation is based
on our observations about common features of such search
strategies, summarized below.

Exploring multiple webpages. When there are multi-
ple “correct” answers to the question, people explore mul-
tiple webpages in order to adjust their confidence in some
of these answers. In order to retrieve a list of relevant web-
pages to explore, an end-user typically starts with a query
to a search engine. This initial query is expected to yield a
set of results with high recall but possibly low precision. A
simple combination of arguments does not necessarily con-
stitute a good initial query for a search engine: based on the
application, the user might want to use additional keywords
or some features of a search engine front-end in the query.

In our approach, every LaSEWeb program contains a seed
query builder – a function that composes the initial query
to a search engine (§3.1).
Answers have multiple representations. A single an-

swer can be found on the Web in multiple string represen-
tations. For example, a person’s name can be written with
or without middle initial, with given name or family name
first, with or without proper capitalization, etc. The nature
of such multiple representations depends on the application.

http://research.microsoft.com/en-us/people/qadeer/

We cluster multiple representations of the same answer to-
gether using a similarity function that defines an application-
specific logic of answer similarity (§3.1). We then rank the
resulting clusters by our measure of answer confidence, and
choose a representative answer for every cluster (§4.2).

People look for patterns. When looking for an answer
on a particular webpage, people use a set of patterns that lo-
cate relevant information within the content of the webpage.
These patterns can be categorized as follows:

1. Linguistic patterns, as in Scenario 1, use syntax
and semantic characteristics of text to find appropriate
matches within the content of a webpage. The required
answer of a LaSEWeb query typically exists at this
lowest level surrounded by text that we can fuzzily de-
scribe using linguistic patterns. End-users usually do
not build such patterns consciously, but domain ex-
perts can easily extrapolate their search strategy into
simple linguistic patterns, as was shown in Scenario 1.

2. Structural patterns, as in Scenario 2, use structured
or semi-structured content of the webpage to extract
required information according to the implicit schema.
The majority of text content on the Web is not struc-
tured, but rather semi-structured: tables are not nor-
malized, and often not even marked as a table. How-
ever, people identify any of the following as a “table”:

• HTML <table>, , or .
• plain text with separators (e.g. colon).
• block elements, spatially aligned in a table-like

structure.
3. Visual patterns, as in Scenario 2, use spatial lay-

out of the webpage, colors, proximity and other stylis-
tic features to locate relevant information. The exact
instantiation of these patterns (i.e., specific colors or
layout) differs among webpages, but human brain is
capable of checking them in a generic manner.

We present an appropriate query language that includes lin-
guistic, structural, and visual patterns of search strategies
(§3.2). This language is the main component of LaSEWeb.

3. LASEWEB LANGUAGE
In this section, we present the language of LaSEWeb.

§3.1 introduces LaSEWeb programs – our representation of
parameterized queries, described and motivated before in §2.
We describe the syntax and semantics of LaSEWeb queries,
the main component of LaSEWeb programs, in §3.2. The
implementation of our interpreter for LaSEWeb programs
is discussed in §4.

3.1 LaSEWeb programs
Every LaSEWeb program P represents a single param-

eterized query that takes a tuple of user query arguments
v⃗ and returns a set of answer strings, annotated with their
confidence scores along with their source URLs. The exe-
cution of a LaSEWeb program P on a tuple of user query
arguments v⃗ is defined as P : v⃗ →→ {⟨ai, βi, Ui⟩}, where ai is
the ith answer string, βi is its confidence score, and Ui is the
set of its source URLs. Higher confidence scores correspond
to more relevant answers.
The syntax and semantics of LaSEWeb programs is based

on our observations, summarized in §2.2. A LaSEWeb pro-
gram P first constructs a seed query for Bing, executes a
LaSEWeb query on each of the returned search results, ex-
tracts the desired answer strings from the matches of the

LaSEWeb query, and clusters these answer strings together,
according to the similarity function.

Definition 2. A LaSEWeb program P is parameterized
by v⃗ that is replaced by a tuple of user-provided arguments
at runtime for every specific search invocation. It is defined
as a tuple ⟨q, σ,Q, ℓa⟩, where:

• q is a seed query builder function, which builds an ini-
tial query for Bing from v⃗. This query should be likely
to produce a set of relevant links with high recall.

• σ is a similarity function, which compares two answer
strings from the Web, and determines whether they
describe the same “answer” in the application logic.

• Q is a LaSEWeb query, which describes a set of pat-
terns that humans use to find this kind of information
on the Web. As a result of its execution, Q matches
none or many answer strings on a single webpage.

• ℓa is a label in Q that specifies what subexpression of
the match is extracted as an “answer” (this is similar
to named capturing groups in regular expressions).

Example 1. In Scenario 1 the “inventor” micro-segment
is described with LaSEWeb program P = ⟨q, σ,Q, ℓa⟩, where:

• q(w) = w ◦ “inventor”
• σ(w1, w2) = true iff w1 and w2 describe the same per-

son name (e.g., “Charles Babbage” and “C. Babbage”).
• Q is the LaSEWeb query equivalent to Q1 ∨ Q2 in

Scenario 1. We show this query in Example 4.
• ℓa is a label of the subexpression Entity(Person) in Q.

Specific search invocations of P apply it on specific user pa-
rameters, such as v⃗ = (“computer”), or v⃗ = (“paper clip”).

The rest of this section focuses on the syntax and seman-
tics of the main component of a LaSEWeb program – a
LaSEWeb query Q. Our interpreter for LaSEWeb pro-
grams, which makes use of the other components as well
(q, σ, and ℓa), is described in §4.

3.2 LaSEWeb queries
A LaSEWeb query Q is executed against a webpage. A

webpage is a tree of HTML nodes N . For each HTML node
N we define two auxiliary functions BBox(N) and Text(N),
which are used by LaSEWeb to determine the result of the
execution. BBox(N) returns a rectangle b that is the smallest
bounding box of node N on the page, when rendered by a
browser (assuming a fixed resolution). Text(N) is a string
that is a displayed textual content of N , with all HTML
tags stripped off. The result of executing a LaSEWeb query
Q against such a webpage is a multi-set of possible answer
strings, each labeled with some label ℓ – the subexpression
of Q that matched this answer string. A subset of this multi-
set that is labeled with the“answer label” ℓa in the definition
of P, is selected for the final answer set.
Fig. 2 shows the syntax of LaSEWeb. A LaSEWeb query

Q unites three types of expressions: visual expressions B,
structural expressions S, and linguistic expressions L. They
are aligned in a hierarchical structure of three layers that
match separate webpage elements:

• The topmost layer of visual expressions describes web-
page elements with particular stylistic propeties. They
make use of presentational attributes of an HTML
node, its CSS, position, and bounding box. A visual
expression B is executed against a bounding box b.

(a)

Linguistic expression L := Ling(E,Φ) | L1 ∨ L2

Linguistic pattern E := E+ | E∗ | E? | E1 E2 | ℓ : E | Word

| ConstWord(s) | ConstPhrase(s1, . . . , sk)
| Syn(s) | POS(p) | Entity(e) | NP | . . .

Linguistic constraint Φ := SameSentence(ℓ1, ℓ2) | Regex(ℓ, s) | . . .

| Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | ¬Φ | true | false
String s := w | vk

ID labels ℓ, η := w

Part of speech p ∈{Noun,Verb,Prep . . . }
Entity type e ∈{Person,Org,Place . . . }

LaSEWeb query Q := FW(B,Ψ) | Q1 ∨ Q2

Visual expression B := S | Union(B1,B2) | η : B
Visual constraint Ψ := Nearby(η1, η2) | Emphasized(η) | Layout(η1, η2, d) | . . .

| Ψ1 ∧ Ψ2 | Ψ1 ∨ Ψ2 | ¬Ψ | true | false
Structural expression S := Leaf(L) | VLOOKUP(L1,L2,L3) | AttrLookup(L1,L2)

Direction d ∈{Up,Down, Left,Right}

(b)

Ling(E, true) ≡ E FW(B, true) ≡ B ℓ : Word ≡ ℓ Word∗ ≡ ∗
ConstWord(s) ≡ “s” ConstPhrase(s1, . . . , sk) ≡ “s1 ␣ . . . ␣ sk”

Figure 2: (a) LaSEWeb query language syntax. vk denotes the kth argument in a tuple of user query arguments v⃗, k denotes
an integer constant, and w denotes a string constant. (b) Common shorthands in LaSEWeb, used for brevity.

• The middle layer of structural expressions describes
a structural pattern of information within any logical
tables in a webpage. A structural expresion S is exe-
cuted against an HTML node. S is the simplest form
of a visual expression: it matches a bounding box b if
S matches a node N , encompassed by b.

• The bottom layer of linguistic expressions L describes
a string pattern using syntactic and semantic matching
constructors. L is the simplest form of a structural ex-
presion. It is executed against an input string t, which
is the content Text(N) of some HTML node N .

Together these three expression types cover the entire range
of typical patterns of search strategies, defined in §2.2.
A LaSEWeb query Q is parameterized with a tuple of

parameters v⃗, which are replaced by user-provided query
arguments vk (before its execution on a webpage). Thus, in
Fig. 2 every string (which is not a label name) can be either
a constant string literal w, or a user query argument vk.
We begin with an explanation of linguistic expressions in

§3.2.1, and proceed with structural expression in §3.2.2, and
visual expressions in §3.2.3. Examples 4 and 5 give examples
of full LaSEWeb queries on applications from §2.

3.2.1 Linguistic expressions
A linguistic expression L consists of a linguistic pattern E

and a linguistic constraint Φ. Here linguistic patterns, when
executed against an input string t, collect multiple matches
M , and linguistic constraints filter out matches with unde-
sired properties.
A linguistic pattern E is executed against an input string t.

In our system, we consider strings as lists of tokens. A token
is a natural language primitive (word, punctuation, etc.).
The result of the execution of E on t is a set W of linguis-

tic matches M . Every linguistic match M is a mapping from
ID labels ℓ of E ’s subexpressions to matched substrings of t.
Intuitively, E acts similarly to a regular expression: when E
finds a succesful match within t, every subexpression of E
corresponds to some substring t′ of t. Some of these subex-
pressions ℓ : E are explicitly marked with labels ℓ; this is
similar to named capturing groups in regular expressions.
Linguistic patterns are similar to regular expressions in a

sense of their composition methods. They are divided into
three kinds as described below.
Primitive. A linguistic pattern Word matches any sin-

gle token. We usually denote ℓ : Word simply as ℓ, since la-
bel ℓ is essentially a variable that captures a word match
in the mapping M . Linguistic patterns ConstWord(s) and
ConstPhrase(s1, . . . , sk) match a fixed token s or a fixed se-
quence of tokens “s1 ␣ . . . ␣ sk”, respectively, in t.

Composite. Operators +, ?, and ∗ (Kleene star) borrow
their semantics from regular expressions. Each of them has a
single linguistic pattern as a subexpression, and their result-
ing mappings M are composed from the matches found in
subexpressions. For + and ∗, whose subexpression matches
multiple times in the substring, we put all the found map-
pings in the final linguistic match M . Thus, the same label ℓ
may occur multiple times in the linguistic match M .
Linguistic predicates. Most of the forms of linguistic

patterns are predicates, which match a token or a sequence
of tokens only if it satisfies some linguistic property. We
show several representatives of linguistic predicates in Fig. 2;
more can be implemented, assuming the existence of corre-
sponding NLP algorithms. In this paper we use the following
representative predicates:

• POS(p): matches a token if its part of speech is p.
• Entity(e): matches a sequence of tokens, classified as a

named entity of type e (person name, place, etc.).
• NP: matches a sequence of tokens if it constitutes a

noun phrase in the parse tree of the sentence.
• Syn(s): matches a single token if it is synonymic to s.

We assume the existence of corresponding functions IsNP(s),
PosValue(s), AreSynonyms(s1, s2), EntityValue(s), which im-
plement required NLP algorithms on strings. §4 discusses
our implementation of these functions.

Linguistic constraints. Every match M , returned by a
linguistic pattern E , is filtered through a linguistic constraint
Φ. The final set of matches W , returned by a linguistic ex-
pression L, consists only of those matches M that haven’t
been filtered out by Φ.

We present two representatives of linguistic constraints:
• SameSentence(ℓ1, ℓ2) returns true iff matches captured

by ℓ1 and ℓ2 belong to the same sentence within t.
• Regex(ℓ, s) returns true iff the match captured by ℓ

satisfies the regular expression s.

Example 2. The“inventor”micro-segment in Scenario 1
can be described with the following linguistic expression:
L = Ling(E1,Φ) ∨ Ling(E2,Φ) where:

E1 = (ℓans : Entity(Person)) ␣ ∗ ␣Syn(“invent”) ␣ ∗ ␣ (ℓq : v1)
E2 = (ℓq : v1) ␣Syn(“created”) ␣POS(Prep) ␣ ∗ ␣ (ℓans : Entity(Person))
Φ = SameSentence(ℓans, ℓq)

Suppose the specific search invocation looks for the inventor
of typewriters. We set v⃗ = (“typewriter”) and apply the re-
sulting query to strings found on the pages returned by Bing.
One of these strings is t = “In 1714, a patent to something
like a typewriter was granted to a man named Henry Mill
in England, but no example of Mills’ invention survives.
Finally, in 1867, a Milwaukee, Wisconsin printer-publisher-

politician named Christopher Latham Sholes, with assis-
tance from Carlos Glidden and Samuel Soule, patented
what was to be the first useful typewriter.”3

E2 will capture no matches. E1, however, will capture 4
matches. In each of them ℓq will capture the word “type-
writer”, and ℓans will capture named entities “Henry Mill”,
“Christopher Latham Sholes”,“Carlos Glidden”,“Samuel
Soule”, respectively. All of them are possible matches of E1,
because there is a word “patented”, the synonym of “in-
vent”, between them and the last occurence of “typewriter”
in t. However, the first match will be eliminated by Φ, be-
cause captures of ℓans and ℓq occur in different sentences.
The final result of L is a multi-set W of three matches.
Out of them, all three can be considered “inventors” of the
typewriter, although one (Christopher Latham Sholes) is ar-
guably more relevant than two others.

We note several features of LaSEWeb in this example:
• The optimal structure of E can be easily deduced from

a single look at an example of a desired answer on the
Web, and refined later in 1-2 iterations, based on the
execution results.

• Most of the features of the desired answer strings can
be generally described with just 2-3 linguistic predi-
cates in LaSEWeb.

• Multiple ways to extract an intended answer can be
expressed as a disjunction of linguistic patterns.

• Linguistic constraints Φ and linguistic predicates within
E filter out false positives. Without them, more erro-
neous matches would be found by L on the webpage.

• Not all strings in the resulting answer set are equally
likely to serve as “the answer” to the question. There-
fore, our interpreter for LaSEWeb programs, described
in §4, assigns confidence scores to answer strings based
on their relative frequency on the Web.

3.2.2 Structural expressions
A structural expression S is executed against an HTML

node N and returns an answer set W . Two representative
constructors of structural expressions, AttrLookup(L1,L2)
and VLOOKUP(L1,L2,L3), describe two structural patterns
that arise in the real-word webpages. A structural pattern is
a particular alignment of structured information on a web-
page, such as a relational table or a list of attributes. For
such structured forms we can use any relational techniques
(of which VLOOKUP and AttrLookup are two examples) to
select the required information from the structure.
In real-world webpages, the information is seldom present

in a clean tabular format. However, the information is of-
ten semi-structured : it follows a recognizable pattern, from
which the implicit tabular structure can be recovered. For
example, consider a list of “⟨attribute⟩ : ⟨value⟩” lines, each
presenting an attribute and its value, separated by a colon.
Such a list can be interpreted as a 2-column table of at-
tributes along with their corresponding values. We call such
implicit tables logical tables and assume the existence of a
Tables(N) function that returns a set of logical tables present
in the HTML node N . Each table T is indexed from 1
through the number of rows/columns. Each cell T [j, k] is the
textual content of the corresponding logical cell (e.g. the con-
tent of a <td> node, or a substring of an“⟨attribute⟩ : ⟨value⟩”
line in a paragraph, etc.). We discuss our implementation of
Tables(N) in §4.
3
http://ideafinder.com/history/inventions/typrwriter.htm

Figure 3: Textual attribute table about the typewriter in-
ventor. Two separate HTML <table>s are highlighted.

Constructor VLOOKUP(L1,L2,L3) represents a Microsoft
Excel VLOOKUP operation. Its arguments are the key expres-
sion L1, the header expression L2, and the content expres-
sion L3. Given a logical table T , if L1 matches a cell T [j, k′]
in jth row, and L2 matches a header cell T [1, k] in kth column
of the first row, LaSEWeb executes the content expression
L3 on the intersection cell T [j, k], and returns the result.
Constructor AttrLookup(L1,L2) represents a two-column

attribute lookup operation. Its arguments are the attribute
expression L1 and the content expression L2. Given a logical
table T of ≥ 2 columns where L1 matches any cell T [j, 1] in
the jth row of the first column (attribute name), LaSEWeb
executes the content expression L2 on the neighboring cell
T [j, 2], and returns the result.

Example 3. Fig. 3 shows an example of a logical table
about the inventor of a typewriter, taken from the Web. This
table is not a 2-column <table> tag, as it might appear to
the viewer. Instead, it is represented as two <table> tags
(highlighted in green), with pieces of plain text information
within. Nevertheless, if N is a <div> containing both <ta-

ble>s, our function Tables(N) extracts a single 2-column
attribute table from it.

The following structural expression is used to extract in-
formation from such logical table:

S = AttrLookup(Syn(“inventor”), Entity(Person))

This expression is not parameterized with any user argu-
ments, it extracts the attribute value for any “inventor” row.
In order to bind S to the particular invention (“typewriter”),
we introduce additional constraints on it in Example 4.

3.2.3 Visual expressions
A visual expression B is executed against a bounding box

b. We use bounding boxes instead of HTML nodes here,
because not every visually distinguishable webpage element
is represented by a single HTML node. We made LaSEWeb
accessible to end-users, according to our observations of their
search strategies. As §2.2 shows, they often make use of the
stylistic properties of the webpage, as seen by end-users.

The result of the execution of B is a tuple of a linguistic
answer set W , matched by the lower subexpressions, and a
visual match V . A visual match is a mapping of ID labels of
visual expressions η to bounding boxes b.

Constructor Union(B1,B2) matches a union of two bound-
ing boxes unite(b1, b2) if its subexpressions B1 and B2 match
b1 and b2, respectively. The union of two bounding boxes is
the smallest rectangle that contains both b1 and b2.

Visual constraints. The top-level LaSEWeb query Q
consists of a visual expression B with a visual constraint Ψ.
Similarly to linguistic constraints, visual constraints filter

http://ideafinder.com/history/inventions/typrwriter.htm

out false positive matches V , returned by the execution of B.
We present three representatives of visual constraints here:

• Constraint Nearby(η1, η2) checks the bounding boxes
V [η1] and V [η2] for proximity. It compares the dis-
tance between them with a predefined relative proxim-
ity threshold δ.

• Constraint Layout(η1, η2, d) checks whether bounding
boxes b1 = V [η1] and b2 = V [η2] are aligned according
to the layout d. In other words, b1 should lie within a
sector defined by the center of b2 and the two corners
of b2 in the direction d.

• Constraint Emphasized(η) checks whether the content
of the bounding box V [η] is emphasized with respect
to its surrounding elements. This includes colors, fonts,
font sizes, headers (<h1> through <h6>), etc.

Example 4. The complete LaSEWeb query for the “in-
ventor” micro-segment is shown below:
Q = FW(Union(ηv : Leaf(Syn(v1)), ηt : S), Nearby(ηv , ηt)) ∨ Leaf(L)
where L is the linguistic expression from Example 2

S is the structural expression from Example 3

Example 5. Scenario 2 shows a repetitive task of collect-
ing phone numbers from multiple personal contact pages of
researchers, similar to the one shown in Fig. 1. The follow-
ing LaSEWeb query collects the desired phone number(s)
from such a webpage:
Q = FW(Union(ηt : Leaf(v1), ηb : Sb), Ψ)

Ψ = Layout(ηt, ηb,Down) ∧ Nearby(ηt, ηb) ∧ Emphasized(ηt)

Sb = AttrLookup(Syn(“phone”), La)
La = Ling(ℓ, Regex(ℓ, “\(?\d+\)?\W\d+\W\d+”))

When Q is executed with the arguments v⃗ = (“Shaz Qadeer”),
it matches any phone number in a logical attribute table such
that “Shaz Qadeer” can be found above the table within the
proximity threshold, and is somehow emphasized.

4. IMPLEMENTATION
In this section, we discuss our implementation of the inter-

preter for LaSEWeb programs. It consists of two important
components: the interpreter for LaSEWeb queries Q, and
the execution engine for the entire LaSEWeb program P.
We discuss important aspects of the LaSEWeb query inter-
preter implementation in §4.1, and present our LaSEWeb
program execution algorithm in §4.2.

4.1 Query interpreter

4.1.1 Linguistic expressions
The key ideas in our interpretation of linguistic expres-

sions are: (a) usage of state-of-the-art NLP algorithms, and
(b) our refinement of the semantics of E for better perfor-
mance on large webpages, called anchoring.

NLP algorithms. To support interpretation of linguis-
tic predicates, our implementation requires algorithms for
the functions IsNP(s), PosValue(s), EntityValue(s). They are
implemented using state-of-the-art algorithms in NLP: Stan-
ford CoreNLP [7, 15, 26] and MSR SPLAT [22] for named
entity recognition, syntactic parsing, and part-of-speech tag-
ging. To implement the AreSynonyms(s1, s2) function, we
used S. W.-t. Yih’s PILSA word synonymy library [27].
Anchoring. A näıve implementation of matching a lin-

guistic expression E against a string t would try to find a
linguistic match for every possible starting token in t. This

(a)

(b)

Figure 4: (a) A logical table on the Amazon website, built
with a grid of <div> elements (shown in green). (b) A logical
table, built in plain text with commas as column separators.

is extremely inefficient, especially when dealing with Kleene
star operator ∗. Instead, we anchor our matching procedure,
identifying a set of constant strings (anchors), if any, that
must match as particular subexpressions of E . If anchors
are given, we start the matching with a linear search for an-
chor occurences in text, and proceed with matching other
subexpressions of E around every occurence. If no anchors
are given, the algorithm resorts to näıve matching.

4.1.2 Structural expressions
The key idea in our interpretation of structural expres-

sions is the Tables(N) function, which implements logical
table detection. Its goal is to extract any information from
the HTML node N that is likely to be perceived as a ta-
ble by an end-user. We implement three basic strategies for
detecting logical tables within an HTML node:

HTML tables. A <table> tag defines a logical table un-
less it is used for webpage layout (i.e. has multiple non-
primitive pieces of content within it, possibly nested tables).

Visual tables. Any grid of <div>s or similar block ele-
ments constitutes a logical table if its bounding boxes are
precisely aligned in a grid structure. Fig. 4a shows an ex-
ample of a logical table built with <div> elements. We de-
tect such tables by collecting a tree of bounding boxes of
all HTML nodes within N , and then building grids of those
bounding boxes that are aligned next to each other.

Plain text tables. Often the information is presented as
a table by marking it with punctuation signs and separators
in plain text, instead of HTML tags. Fig. 1 and Fig. 3 show
examples of such plain text tables, with colon being a sepa-
rator between two columns. Fig. 4b shows another example,
where the intended table is relational, and the separator be-
tween the columns is comma.

The simplest approach for detecting plain text tables would
be to maintain a set of common separators (i.e. a colon,
a comma, a space, etc.), and attempt to split entire para-
graphs of text by them, picking the one that gives most
results. However, even if the separator is “correct” (i.e., it
actually splits the logical columns in the paragraph), it can
also be present within some of the logical cells. For exam-
ple, if Fig. 4b used whitespace instead of comma for column

function Search(P = ⟨q, σ,Q, ℓa⟩, v⃗)
1: U ← the results of Bing on q(v⃗)
2: Substitute vk in Q with values from v⃗
3: C ← ∅ // set of clusters, Ci = {⟨sk, {uj}nik

j=1⟩}
mi
k=1

4: for all URLs uj ∈ U do
5: N ← the <body> node of uj

6: Sj ←{M [ℓa] |M is the result of executing Q on N}
7: for all answer strings sk ∈ Sj do
8: Cj ← {⟨sk, {uj}⟩}
9: for all C ∈ C such that ∃s′ ∈ C : σ(sk, s

′) do
10: Merge Cj with C

11: C ← C ∪ {Cj}
12: for all final clusters Ci ∈ C do
13: ai ← the most frequent string representation sk ∈ Ci

14: βi← 1
|U|

|U|
j=1


s∈Ci

c(s,uj)

|Sj |
where:

c(s, uj) = # of times s was found at URL uj

15: Ui ← union of all source URLs for all sk ∈ Ci

16: yield return ⟨ai, βi, Ui⟩
Figure 5: LaSEWeb program execution algorithm. It takes a
LaSEWeb program P and tuple of user query arguments v⃗,
and returns a set of triples ⟨ai, βi, Ui⟩ where ai is an answer,
βi is its confidence score, Ui is a set of its source URLs.

separation, this näıve algorithm would detect four columns
instead of three for “Fort Worth” and “Grand Prairie” rows.

However, there exists an approach to figure out correct
splits automatically. Fix a candidate separator from the com-
mon list. For this separator and a fixed HTML node N , we
first build a list of lines in Text(N) that have consistent split-
ting with respect to this separator (i.e. the same number of
columns > 1). The rest of the lines are passed to the PBE
system FlashFill [9], which automatically figures out likely
syntactic string transformations from few examples by using
sophisticated ranking schemes. We use their publicly avail-
able implementation from the Microsoft Excel spreadsheet
system. The list of consistent lines is used as a list of positive
examples for FlashFill. The output of FlashFill is the list of
correct outputs (splits) for the rest of the lines, or a failure
signal. Our LaSEWeb program interpreter automatically
checks the correctness of this output later, by comparing it
with other answer candidates during clustering.

4.1.3 Visual expressions
The key idea in interpretation of visual expressions is us-

age of runtime presentational attributes of HTML nodes N .
Specifically, we ask a browser to render each webpage in
memory, on a virtual canvas of 1920×1080 pixels. After ren-
dering, we collect the information about the bounding box
of each HTML node N , and use it as a value of BBox(N).
Similarly, we collect the run-time values of CSS attributes,
and use them for evaluating visual constraints Ψ.

4.2 Program execution
Fig. 5 shows the algorithm of LaSEWeb program execu-

tion. It takes a LaSEWeb program P and a tuple of user
query arguments v⃗, and returns a set of answer strings, aug-
mented with their confidence scores and source URLs.

The execution algorithm is shown as Search(P, v⃗) func-
tion. It starts with querying the search engine for URLs
with a seed query (line 1) and filling in user arguments in
the LaSEWeb query Q (line 2). After that it proceeds with
matching the query Q with every URL in the obtained list
of search results U .

During matching, the algorithm maintains a set of clus-
ters C. Every cluster Ci ∈ C represents a single logical an-
swer. A cluster is a multi-set of string representations sk,
augmented with sets of their source URLs. A cluster can
contain multiple occurences of the same answer string sk,
and the same answer string may occur multiple times on a
single webpage (URL). Every time the algorithm finds a new
answer string sk on some webpage uj , it constructs a new
singleton cluster {⟨sk, {uj}⟩} and merges it with all existing
clusters in C that contain strings similar to sk, according to
the similarity function σ (lines 7-11).

After matching, the algorithm extracts logical answers and
their confidence scores from the collected set of clusters C
(lines 12-16). For each cluster Ci ∈ C, it considers the most
frequent answer string in it as a representative answer of this
cluster. Its confidence score is calculated with Bayes Law:

βi =
1

|U |

|U|
j=1

p(Ci | uj) p(Ci | uj) =

s∈Ci

c(s, uj)

|Sj |
where |Sj | is the number of answer strings extracted from uj ,
and c(s, uj) is the number of times s was found in uj .

5. EVALUATION
We implemented LaSEWeb in C# programming language

in approximately 5000 lines of code. In this section, we present
the results of its evaluation over two applications of para-
metrized Web programming, shown in §2. It aims to verify
the following usability requirements of LaSEWeb:

1. Low number of iterations (refinements) during LaSEWeb
program development.

2. High total number of correctly answered real-life queries.
For the first goal, we observed that in all experiments,

the number of iterations required to compose and evaluate
every program on our own search strategies was at most 5.
We present the detailed results of evaluating the second goal
below for every application.

Micro-segments. We extracted 100,000+ user queries
across 7 micro-segments from the logs of a popular search
engine over the 12 month period. These micro-segments were
chosen by our Bing partners as possible targets because of a
substantial query traffic. Since LaSEWeb does not have an
NLP front-end, we used regular expressions to extract user
queries that belonged to certain factoid micro-segments.

Fig. 6a reports the results of micro-segment evaluation.
For each micro-segment we show the recall (fraction of an-
swered user queries), and comparison with the existing Bing
question answering module. Given the absence of ground
truth data for real-life user queries, we evaluated LaSEWeb
precision by manually sampling 30-50 queries for each micro-
segment at random. On average, the top 3 results contained
“correct” answers to the query in 95% of cases.

As Fig. 6a shows, LaSEWeb handles a much greater frac-
tion of user queries than Bing question answering module.
Bing module gives definite answers from structured databases,
thus achieving 100% precision, but low recall. Additionally,
LaSEWeb found alternative answer options for many ques-
tions, providing additional context, whereas Bing provided
only a single answer from the database. Low recall of“ASCII”
and “Lyrics” micro-segments can be improved by additional
refinement of our LaSEWeb programs.

We refrained from comparison of LaSEWeb with state-
of-the-art Web question answering engines for two reasons.
First, question answering engines mostly operate on a lin-

(a)

Micro-segment # queries Recall Bing recall

ASCII code of a symbol 1,551 32.88% 0%
Calories in a food 9,207 71.80% 0%
Inventor of a product 8,994 75.91% 16.01%
Lyrics of a song 48,995 24.36% 0%
Phone number of a company 6,881 95.49% 0%
Population of a place 18,151 92.53% 57.58%
Release date of a product 12,339 97.24% 12.60%

(b)

Search task Recall Precision

Phone # 29/37 21/29
Affiliation 34/37 22/34
PhD institution 21/37 13/21
General chair 21/28 17/21
Invited talks 13/28 11/13

Average 71% 73%

Figure 6: (a) Evaluation results of factoid micro-segments. For each micro-segment: number of queries, fraction of queries
answered by LaSEWeb (recall), fraction of queries, answered by Bing. LaSEWeb examined 50 top Bing results. (b) Evaluation
results of repeatable search tasks. For each task: fraction of answered (recall), and correctly answered queries (precision).
Precision was evaluated manually. LaSEWeb examined 30 top Bing results. In both applications, the running time is linearly
proportional to the number of examined webpages, and a single webpage took from 0.1 to 20 sec to process.

guistic level, taking a query in natural language, and con-
verting it into a logical representation. LaSEWeb solves an
orthogonal problem: it takes a query in a logical represen-
tation, and searches for answers on the Web. Second, prior
question answering approaches were evaluated on a narrow
set of unique factoid questions (e.g. TREC corpus). In con-
trast, LaSEWeb focuses on large micro-segments of simi-
lar questions. Both of these aspects make direct comparison
of approaches infeasible: LaSEWeb does not focus on user
query analysis, and spending time on writing LaSEWeb
programs for 500 different TREC questions was not mean-
ingful. We note that any state-of-the-art user query analysis
module can be used as a LaSEWeb front-end that converts
a query into a logical representation, as discussed in §6.

The running time of LaSEWeb on a single webpage ranges
from 0.1 to 20 seconds, and the time to interpret a single
query is linearly proportional to the number of webpage ex-
amined. Since this performance is not sufficient for answer-
ing user queries in real-time, our engine can be used to gen-
erate answers to logged queries offline, and the results can
be stored in a database to answer future queries in real-time.

Repeatable search tasks. We chose 5 categories of re-
peatable academic search tasks, and used them for LaSEWeb
evaluation. The test data for 3 people-related tasks is a list
of PLDI 2014 committee members (37 people), and the data
for 2 conference-related tasks is a list of 21st century POPL
and PLDI conferences (28 items). We evaluated precision
and recall of all results manually.

Fig. 6b shows the results of the evaluation. Most of the
desired information was easily extracted from the Web. The
average precision is 73%, which is lower than that of a micro-
segment search due to (a) inconsistensies in named entity
recognition for organizations, and (b) name collisions for
some of committee members. The recall in influenced by the
recall of Bing results (for this application it is much lower
that that of a factoid questions). In some of the cases we
couldn’t find the correct answers ourselves (e.g., for some
invited talks). Also, LaSEWeb currently does not handle
non-HTML formats: for example, a researcher’s PhD insti-
tution is often listed in the CV, in PDF format, and Bing
couldn’t find any alternative sources of information.

6. RELATED WORK
Question answering. The problem of answering factoid

questions in natural language has been studied for several
decades. The most notable examples include Watson [12],
KnowItAll [6], START [14], AskMSR [4], etc.

Most of these systems focus on understanding user intent,
expressed as a question in natural language, and assume the

existence of structured knowledge databases. In contrast,
LaSEWeb extracts data from semi-structured sources on
the Web, by restructuring this data according to the guid-
ance, provided by an end-user in a form of a program in our
language. These two efforts are orthogonal and can be inte-
grated to provide a natural language front-end for extracting
arguments for programs in our query language.

Some of the question answering systems [4, 6] use an auto-
matic approach to extract answers from theWeb. LaSEWeb
is semi-automatic: it does not generalize the patterns au-
tomatically, mostly because it allows for specifying struc-
tural/visual patterns in addition to linguistic patterns, used
by question answering systems. This allows for higher re-
call of LaSEWeb, but requires an end-user to construct a
program manually, by exploring several examples. The in-
tegration of NLP technologies for user intent understanding
will eliminate the need for manual program construction.

Repeatable search. A concept similar to our definition
of repeatable search tasks are Web mashups, which are web-
sites that combine information from public APIs into a single
visualization. Ennals and Gay [5] proposed MashMaker, a
GUI and a language for creating mashup websites. However,
mashups use only structured information from public APIs
as their data sources. In contrast, LaSEWeb allows to auto-
mate arbitrary repeatable search task over semi-structured
Web data. Unlike MashMaker, LaSEWeb doesn’t provide a
GUI for constructing programs in our language, but we in-
tend to explore automated synthesis of such programs from
examples or natural language [10]. A similar work has been
done on mashups: Vegemite [19] generates mashup expres-
sions using programming by demonstration.

CoScripter [18] is a system that automates repetition of
Web-based tasks using demonstration. It records scripts of
actions on a webpages into a central public repository, from
which they are later available for execution. CoScripter fo-
cuses on multiple Web-based tasks, not necessarily search-
related. However, it is limited in a way in which scripts can
process information on a webpage. LaSEWeb includes a
wide range of webpage features, generalized from our obser-
vations of typical search strategies, which allow for a more
precise capturing of the end-user’s search intent.

SXPath. SXPath [20] is the language that extends pop-
ular XML query language XPath [2] towards queries upon
visual layout of XML elements. It is built on the system of
visual axes and bouding boxes in addition to XPath concepts.
LaSEWeb includes visual expressions as part of its query

language, because they often appear in patterns that end-
users use to extract information from the Web. In contrast
to SXPath, LaSEWeb also includes linguistic and structural

expressions, which allow for querying a HTML document on
the levels, semantically different from XML.

Table detection. An important portion of LaSEWeb
is its logical table detection algorithm, that lies in the core
of structural expression matching. Table detection has been
studied in the past. Tengli et al. [25] develop an algorithm
that extracts information from semi-structured HTML and
plaintext tables using examples – marked row/column la-
bels. Krüpl et al. [16] and, similarly, Gatterbauer et al. [8]
propose techniques for using visual cues (bounding boxes)
for automatic table extraction. Cafarella et al. [1] perform
table extraction from linguistic cues.

LaSEWeb integrates all table extraction approaches (tex-
tual, visual and structural) in a single automatic function.
Our implementation also uses a state-of-the-art PBE sys-
tem [9] in a novel manner for parsing plain text tables with
inconsistent separators. However, any off-the-shelf table ex-
traction technique (e.g., [1, 16, 17, 25]) can be used to com-
plement the logical table extraction module for LaSEWeb.

7. CONCLUSION
This paper investigated the problem of Web program-

ming – a novel programming model, where functions are de-
fined as repeatable search procedures, operating over semi-
structured content of webpages returned by a search engine.
These functions can be used multiple times with different
user query arguments. We explored two of the many possi-
ble applications of Web programming, namely factoid micro-
segments in search engines, and repeatable batch queries.

We present a DSL that allows end-users and software de-
velopers to express semantic patterns of their search strate-
gies, eliminating the need for manual exploration of search
engine results. Our implementation of the DSL leverages
cross-disciplinary technologies: browser rendering APIs, state-
of-the-art NLP tools, and programming by example tech-
nologies. Our system LaSEWeb achieves good precision and
recall in practice, and is an important step towards automa-
tion of knowledge discovery on the Web.
LaSEWeb can be seen as bridging the gap between PL

technologies for processing structured data formats, and nu-
merous semi-structured data on the Web. Our programming
model is a natural evolution of the prior effort on integrating
structured Web queries into programming environments.

8. ACKNOWLEDGMENTS
We thank Saurabh Tiwary and the Bing team for provid-

ing us access to the valuable user search query data.

References
[1] M. J. Cafarella, C. Re, D. Suciu, O. Etzioni, and

M. Banko. Structured querying of Web text.
CIDR’07.

[2] J. Clark, S. DeRose, et al. XML path language
(XPath), 1999.

[3] C. De Rosa, B. Gauder, D. Cellentani, T. Dalrymple,
and L. J. Olszewski. Perceptions of Libraries, 2010:
Context and Community: a Report to the OCLC
Membership. OCLC, 2011.

[4] S. Dumais, M. Banko, E. Brill, J. Lin, and A. Ng. Web
question answering: Is more always better? SIGIR’02.

[5] R. Ennals and D. Gay. User-friendly functional
programming for web mashups. In ICFP, 2007.

[6] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A.-M.
Popescu, T. Shaked, S. Soderland, D. S. Weld, and
A. Yates. Web-scale information extraction in
KnowItAll. In WWW, 2004.

[7] J. R. Finkel, T. Grenager, and C. Manning.
Incorporating non-local information into information
extraction systems by Gibbs sampling. In ACL, 2005.

[8] W. Gatterbauer and P. Bohunsky. Table extraction
using spatial reasoning on the CSS2 visual box model.
In AAAI, 2006.

[9] S. Gulwani. Automating string processing in
spreadsheets using input-output examples. POPL’11.

[10] S. Gulwani. Synthesis from examples: Interaction
models and algorithms. In SYNASC, 2012.

[11] R. Housewright, R. C. Schonfeld, and K. Wulfson.
Ithaka S+ R US Faculty Survey 2012. April, 8, 2013.

[12] A. Ittycheriah, M. Franz, W.-J. Zhu, A. Ratnaparkhi,
and R. J. Mammone. IBM’s statistical question
answering system. In TREC, 2000.

[13] B. J. Jansen and A. Spink. How are we searching the
World Wide Web? A comparison of nine search engine
transaction logs. IPM, 42(1), 2006.

[14] B. Katz, G. Marton, G. C. Borchardt, A. Brownell,
S. Felshin, D. Loreto, J. Louis-Rosenberg, B. Lu,
F. Mora, S. Stiller, et al. External knowledge sources
for question answering. In TREC, 2005.

[15] D. Klein and C. D. Manning. Accurate unlexicalized
parsing. In ACL, 2003.

[16] B. Krüpl, M. Herzog, and W. Gatterbauer. Using
visual cues for extraction of tabular data from
arbitrary HTML documents. In WWW, 2005.

[17] V. Le and S. Gulwani. FlashExtract: a framework for
data extraction by examples. In PLDI, 2014.

[18] G. Leshed, E. M. Haber, T. Matthews, and T. Lau.
Coscripter: automating & sharing how-to knowledge in
the enterprise. In CHI, 2008.

[19] J. Lin, J. Wong, J. Nichols, A. Cypher, and T. A. Lau.
End-user programming of mashups with vegemite. In
IUI, 2009.

[20] E. Oro, M. Ruffolo, and S. Staab. SXPath: extending
XPath towards spatial querying on web documents.
VLDB, 4(2), 2010.

[21] K. Purcell, J. Brenner, and L. Rainie. Search engine
use 2012. Pew Internet & American Life Project, 2012.

[22] C. Quirk, P. Choudhury, J. Gao, H. Suzuki,
K. Toutanova, M. Gamon, W.-t. Yih, L. Vanderwende,
and C. Cherry. MSR SPLAT, a language analysis
toolkit. In ACL, 2012.

[23] A. Spink, H. C. Ozmutlu, E. Aversa, and C. Manley.
What do people ask for on the web and how do they
ask it: Ask Jeeves query analysis. 2001.

[24] J. Teevan, C. Alvarado, M. S. Ackerman, and D. R.
Karger. The perfect search engine is not enough: a
study of orienteering behavior in directed search. In
CHI, 2004.

[25] A. Tengli, Y. Yang, and N. L. Ma. Learning table
extraction from examples. In ACL, 2004.

[26] K. Toutanova, D. Klein, C. D. Manning, and
Y. Singer. Feature-rich part-of-speech tagging with a
cyclic dependency network. In HLT-NAACL, 2003.

[27] W.-t. Yih, G. Zweig, and J. C. Platt. Polarity
inducing latent semantic analysis. In ACL, 2012.

	Introduction
	Motivation
	Examples
	Observations
	Problem definition
	Our approach

	LaSEWeb Language
	LaSEWeb programs
	LaSEWeb queries
	Linguistic expressions
	Structural expressions
	Visual expressions

	Implementation
	Query interpreter
	Linguistic expressions
	Structural expressions
	Visual expressions

	Program execution

	Evaluation
	Related work
	Conclusion
	Acknowledgments

