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Abstract

A new motion �eld representation based on the boundary-control vector (BCV) scheme for
video coding is examined in this work. With this scheme, the motion �eld is characterized by
a set of control vectors and boundary functions. The control vectors are associated with the
center points of blocks to control the overall motion behavior. We use the boundary functions
to specify the continuity of the motion �eld across adjacent blocks. For BCV-based motion �eld
estimation, an optimization framework based on the Markov random �eld model and maximum
a posterior (MAP) criterion is used. The new scheme e�ectively represents complex motions
such as translation, rotation, zooming and deformation and does not require complex scene
analysis. Compared with MPEG of similar decoded SNR (signal-to-noise ratio) quality, 15-65%
bit rate saving can be achieved in the proposed scheme with a more pleasant visual quality.

Keywords: motion estimation, motion representation, video coding, boundary-control vector

(BCV), Markov random �eld.

1 Introduction

In image sequence coding, image frames are often encoded by two parts, i.e. the motion �eld

which represents the change in the sequence and the displacement frame di�erence (DFD) which

represents the residual error after motion compensation. Since both the motion �eld and DFD

have to be transmitted to the receiver, a well designed video coder should balance the bits used in

these two parts. Other factors of consideration in video coder design include computational cost,

hardware complexity and the domain of applicability.
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We can roughly classify existing motion �eld representations into block-based, pel-based and

model-based three categories. The block-based representation has been widely used and adopted by

several standards such as H.261 [16] and MPEG [6]. It divides an image frame into nonoverlapping

blocks, and represents the motion �eld in each block with a translation vector. This representation is

generally applicable and concise. A di�erential coding can be used to further reduce the redundancy

between motion vectors by exploiting their spatial correlation. The block-based motion �eld can be

estimated by using a straightforward block matching algorithm (BMA) or its variants. However,

the block-based scheme has some limitations. It does not well represent complicated motion types

such as rotation, zooming and deformation, neither does it give any considerations to the motion

boundaries of moving objects. The block e�ect caused by motion discontinuity between two adjacent

blocks is subjectively annoying. The poor quality of the motion compensated image calls for

more bits to encode the DFD so that the total bit rate increases. Research has been performed

to overcome the above shortcomings. Orchard [17] incorporated motion discontinuity into the

block-based motion representation to obtain substantial quality improvement along moving object

boundaries. The discontinuity between the motion vectors in adjacent blocks however still exists.

Bergeron [1], Fuh [4], Papadopoulos [18] and Seferidis [20], [21] used more complex functions such

as a�ne, perspective, bilinear, 2nd-order polynomial transformations to represent the motion �eld

inside each block. The schemes require more bits in the coding of motion �eld. As an example,

an a�ne representation requires 3 vectors, instead of the conventional 1 vector, to represent the

motion �eld in a block.

For the pel-based representation, each pixel has its own motion vector. An arbitrary motion �eld

can be easily represented by this scheme. The tradeo� is that it requires a lot of bits in representing

such a dense motion �eld. To avoid the transmission of the bits for the dense motion �eld, one

approach [15] is to derive the motion �eld of the current frame from that of the previous one in the

encoder as well as the decoder. Since the decoder contains a complicated motion estimation unit,

its cost and decoding time become issues. Furthermore, since not all motion in a video sequence

can be well predicted and noise in the scenery can greatly in
uence the result of the estimation

algorithm, the predicted gain is usually low. Due to these reasons, the pel-based motion estimation

approach is not widely used now.

The model-based approach [2, 7, 14, 25] has received a lot of attention recently. Scenery is

segmented into objects and the background by using image analysis tools in encoding. The shape,

texture and motion information of objects are then transmitted. Image scenery is regenerated from

the transmitted shape, texture and motion information with the computer graphic technique at

2



the decoder. The model-based coding scheme has two major advantages, i.e. high compression

e�ciency and visually insensitive distortion. Since the shape and texture of objects are relatively

steady across multiple frames, we only have to transmit a small amount of motion information so

that the compression e�ciency can be high. When the error occurs in estimation or representation,

the distortion leads to small changes in the shape (geometrical deformation), texture and position

of the object, which is less sensitive to human eyes in comparison with the block e�ect. The

main shortcoming of the model-based scheme is that it requires complex scene analysis which is

very expensive to implement. Coding scenery is usually restricted (e.g. the head-and-shoulder

video sequence) so that the image analysis can be simpli�ed. The restriction greatly limits the

applicability of the model-based approach.

In this research, we develop a novel motion �eld representation scheme in which the motion

�eld is characterized by boundaries and control vectors on a prede�ned grid points. In contrast

with the block-based motion representation, the control vector does not represent the motion �eld

for every pixel within the block but only for the control point. The motion vector at points other

than control points are obtained via interpolation. The boundary function in the BCV-scheme

speci�es the discontinuity of the motion �eld so that the unrealistic global smooth constraint can

be removed. The new boundary-control vector (BCV) scheme can describe many di�erent complex

motions such as translation, rotation, zooming and deformation and is applicable to a wide variety

of scenes with a very concise representation. Compared with the model-based scheme, the BCV

scheme does not require complicated scenery analysis. For more details on the BCV motion �eld

representation and the comparison of this new scheme with other traditional representations, we

refer to the discussion in Sections 2.2 and 2.3.

This paper is organized as follows. The boundary-control vector (BCV) motion �eld representa-

tion is introduced in Section 2. A framework is proposed to estimate the BCV motion �eld based on

the Markov random �eld model. The coding of predicted error after BCV motion compensaton is

discussed in Section 4. Experimental results are given in Section 5 to demonstrate the performance

of our proposed method. Concluding remarks are presented in Section 6.
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2 Boundary-Control Vector (BCV) Motion Field Representa-
tion

2.1 Control Vectors and Boundaries

Consider an image of size N �N which can be divided into B � B nonoverlopping blocks of size

K � K (i.e. N = B � K). We choose the center of each block as the control point so that the

position of each control point can be expressed as

	(a; b) = (aK +
K + 1

2
; bK +

K + 1

2
); 0 � a; b � B � 1; (2.1)

where, without loss of generality, K is assumed to be an even number. These control points are

�xed throughout the entire image sequence. We use 	 to denote the set of all control points. The

motion vector at control point 	(a; b) at time t is denoted by D(a; b; t). It is simply called the

control vector. We use Dt to denote the set of all control vectors at time t. Along the lower and

right boundaries of the block centered at 	(a; b), we de�ne, respectively, binary functions Eh(a; b; t)

and Ev(a; b; t) whose value is 1 if there is a discontinuity in the motion �eld along the corresponding

boundary. Otherwise, it is 0. We denote the location of the boundary as �h(a; b) and �v(a; b).

For convenience, we say a boundary exists if its value is 1. We use the vector notation E(a; b; t)

to denote the boundary pair (Eh(a; b; t); Ev(a; b; t)) and Et is the set of all boundary functions at

time t. Correspondingly, We use � to denote the set of all boundaries. An illustration of control

points and boundaries is given in Fig. 1.

2.2 BCV Motion Field

In BCV motion �eld representation, the control vectorD(a; b; t) does not represent the motion �eld

for the whole block centered at (a; b) but only for the control point 	(a; b). The motion vector at

points other than control points are obtained via interpolation. It was however observed [22] that

most of the motion compensated errors occur around the boundaries of moving objects with the

block-based method, the DFD around moving object boundaries and the DFD inside the object

can behave quite di�erently. In this research, we introduce the motion �eld boundary, so that we

can locate motion discontinuity and treat the two kinds of DFD separately. The unrealistic global

smooth constraint of the motion �eld can therefore be removed to improve the overall video coding

e�ciency.

In BCV scheme, the individual motion vector of each pixel is interpolated from the control

vector and the motion boundary. The interpolation process is classi�ed into 4 di�erent modes,
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Figure 1: Illustration of control points and boundaries with K = 4, where the empty circle denotes
the pixel position.

which are summarized in Fig. 2. When no boundary exists among four neighboring control points,

a bilinear interpolation is applied. It is called the basic mode. When boundaries exist, some

motion �eld discontinuity is present and the four neighboring control points can be divided into

2-2 or 3-1 pairs as shown in Fig. 2. The 2-2 pair case is called mode B, and a linear interpolation

is performed at the pixel of interest by using the two control vectors associated with the region.

The 3-1 pair case can be further classi�ed into modes A1, A2 and C. If there is only one control

vector associated with the region, the case is called mode C, in which all pixels inside take the

same constant value. If the pixel is surronded by three adjacent control vectors, the case is called

mode A1, in which linear interpolation is performed by using the three associated control vectors.

Finally, if the pixel is associated by three control vectors, but it is outside the triangle formed by

the three control vectors, the case is called mode A2, in which we adopt a simple linear weighting

scheme. In developing the above interpolation rules, we want to keep them as simple as possible so

that the motion vector of each pixel can be computed e�ectively and, in the mean time, we ensure

that the discontinuity of the motion �eld only occurs at motion boundary.

An example of the interpolated motion �eld is shown in Fig. 3. We denote the interpolation
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Figure 2: Summary of interpolation rules for BCV motion �eld representation, where A, B, C and
D denote four control points, DA, DB, DC and DD are the associated control vectors, and a solid
line indicates the presence of boundary discontinuity.
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Figure 3: An example of BCV motion �eld interpolation where di�erent colors represent di�erent
interpolation modes.

process of the dense motion �eld by

d(x; y; t) = genfDt;Etg; (2.2)

A motion �eld is uniquely speci�ed by the sets Dt and Et through (2.2).

2.3 Comparison of Motion Field Representations

It is worthwhile to comment on the unique features of the proposed BCV-scheme in comparison

with the three other motion �eld representations, i.e. pel-based, block-based and model-based

representations.

With respect to the pel-based motion representation, the motion boundary of the BCV scheme

is relatively coarse, i.e. only represented in block accuracy. This is a tradeo� between the predicted

gain that can be achieved and the bits required to transmit the boundary information. For exam-

ple, with pel-accurate boundaries, we still cannot describe all interframe changes, say, the exposure

region. The estimation from the pel-based approach can be easily a�ected by noise, and the esti-

mation error in the object boundary can cause degradation in the displacement frame. Eventhough

the distortion is restricted to a very small region, it is visually annoying. Pieces of background

may move with the object, and pieces of the object may remain on the background. In the BCV
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scheme, we compromise the bits between DFD coding and the boundary representation. We use the

coarse-level boundaries and admit that there may exist some signi�cant DFD around boundaries

in the displacement frame. Although more bits are required to encode the DFD, the bits used to

encode the motion information can be greatly saved.

The motion �eld in the block-based representation is constant over each block and in general not

continuous along the block boundary. In contrast, the BCV-based motion �eld is continuous if there

is no boundary between neighboring control points. The continuity of the motion �eld removes the

visually annoying block e�ect in the displacement frame. Although the bilinear interpolation only

provides an approximation of a complex motion �eld and the control vectors may have errors, the

derivative object in the displacement frame only deforms slightly. Human eyes are less sensitive to

these smooth errors. Along the object boundary, since only coarse boundary is used in BCV, the

block e�ect remains and the DFD in these regions is large. However, boundary regions contstitute

only a small portion of the whole scenery so that the coding e�ciency of the BCV scheme is still

higher. More importantly, the BCV-based motion �eld can represent a large class of complicated

motions more accurately. The translation and rotation of objects formed by 3-D planar surfaces can

be well described by BCV. For the more complicated object movement, the bilinear interpolation

scheme used by BCV serves as a good �rst order approximation of the true motion �eld. The BCV-

based motion �eld can be stored or transmitted almost as e�ciently as the block-based motion �eld.

In addition to control vectors, only a small number of bits are required to encode the boundary

information. To illustrate the visual di�erence by using the BCV and block-based methods, we

show two coded displacement frames for the TREVOR image sequence in Fig. 4. Even though the

the displacement frames only di�er by 1.77 dB in Fig. 4, the subjective quality of the BCV-based

displacement frame is much better. There is a very visible block e�ect in the block-based method,

e.g. the region of the right hand and �ngers. In contrast, the BCV-based displacement frame is

smoother with no visible block e�ect.

The BCV motion �eld representation is quite di�erent from the object or model-based coding

scheme, in which objects in the scene have to be analyzed �rst. No complex image analysis is

required by BCV, and no a prior knowledge about the image scenery is needed. The BCV scheme

is applicable to a wide variety of scenes. A related video coding scheme known as the active mesh

[24] uses a deformable mesh structure to describe the motion �eld, where complex image analysis is

required to track the change of the structure, say, the merge and creation of the mesh. With a set

of position invariant control vectors in BCV, the motion estimation task can be greatly simpli�ed.
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Figure 4(a)

9



(b)

Figure 4: Comparison of displacement frames with (a) block-based scheme (0.0186bpp, 29.80dB)
and (b) BCV scheme (0.0159bpp, 31.57dB).
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3 Estimation of Control Vectors and Boundary Functions

3.1 Problem Formulation

In this section, we focus on the estimation problem for the BCV represenation scheme presented in

the previous section. The parameters to be estimated include the control vectors and the boundary

functions. We use

ft = ff(x; y; t) j 0 � x < N; 0 � y < N; x; y 2 Ig (3.1)

to denote the image of size N � N at time instance t. Let �t be the time interval between two

successive frames. Then, the estimation problem can be stated mathematically as: given ft and

ft��t, we want to determine the set Dt of control vectors and the set Et of boundary functions.

Once Dt and Et are speci�ed, the motion vector at every pixel can be uniquely determined via

interpolation.

To calculate the BCV-based motion �eld, the following maximum a posterior (MAP) criterion

[19] is considered:

P (E�
t;D

�
t j ft; ft��t) � max

Et;Dt

P (Et;Dt j ft; ft��t): (3.2)

By applying the Bayes rule [11], we have

P (Et;Dt j ft; ft��t) =
P (ft��t j Et;Dt; ft)P (Et;Dt j ft)

P (ft��t j ft)
: (3.3)

The denomenator term P (ft��t j ft) is independent of Et and Dt and can be ingored in the

optimization procedure. Thus, the above MAP problem is equivalent to the maximization of the

numerator

P (ft��t j Et;Dt; ft)P (Et;Dt j ft): (3.4)

The P (ft��t j Et;Dt; ft) and P (Et;Dt j ft) are related, respectively, to the displacement frame

di�erence and a prior distribution of the control vector set Dt and the motion boundary set Et as

detailed below.

Let us �rst focus on the term P (ft��t j Et;Dt; ft). When the motion �eld is generated via

d(x; y; t) = genfEt;Dtg; (3.5)

the displacement frame at time t is obtained by translating the image at t ��t, i.e.

DF (x; y; t) = f(x� dx(x; y; t); y� dy(x; y; t); t��t); (3.6)
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and the di�erence between the frame ft and the displacement frame is called the displacement

frame di�erence and denoted by

DFD(x; y; t) = f(x; y; t)�DF (x; y; t): (3.7)

The vector forms of the displacement frame and displacement frame di�erence are given by DFt

and DFDt, respectively. It is straightforward to derive that

P (ft��t j Et;Dt; ft) = P (DFt j Et;Dt; ft)

= P (ft �DFDt j Et;Dt; ft)

= P (�DFDt j Et;Dt; ft): (3.8)

Empirically speaking, the displacement frame di�erence DFDt is independent of Et, Dt and ft

and can be modeled as a white Gaussian function

P (DFDt) = (2��2)�
N2

2 exp

8<
:� 1

2�2

X
(x;y)

DFD2(x; y; t)

9=
; ; (3.9)

where the deviation � can be predicted via

� =

vuut 1

N2

X
(x;y)

DFD2(x; y; t��t): (3.10)

Based on (3.8) and (3.9), we conclude that

P (ft��t j Et;Dt; ft) = (2��2)�
N2

2 exp

8<
:� 1

2�2

X
(x;y)

DFD2(x; y; t)

9=
; : (3.11)

We use the Markov random �eld (MRF) model to determine a prior probability distribution

P (Et;Dt j ft), which is detailed below.

3.2 Markov Random Field Model

The Markov random �eld (MRF) model has been successfully used in image restoration [5], motion

detection [23], and motion estimation [3, 10]. In this work, it is used for BCV-based motion �eld

estimation. In this subsection, we give a brief description of the MRF model.

De�nition 1 Let S = fs1; s2; � � � ; sNg be a set of sites and G(s) the set of neighbors of s 2 S. We

call G(S) = fG(s) j s 2 Sg a neighborhood system if the following three conditions are satis�ed:

1. G(s) � S,
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(a) (b)

Figure 5: The neighborhood system for the BCV scheme: (a) neighborhood system G(	(a; b)) of
control point 	(a; b) and (b) neighborhood system G(�(a; b)) of boundary �(a; b).

2. s 62G(s),

3. s 2G(r)() r 2 G(s).

The pair fS;G(S)g is called a graph.

We assume that every control vector D(a; b; t) and boundary element E(a; b; t) only correlates

with others in a small neighborhood for the BCV scheme. A �rst-order neighborhood system G(S)

is illustrated in Fig. 5, which consists of two parts: the neighborhood system of control point

G(	(a; b)) and the neighborhood system of boundary G(�(a; b)). Thus, the control vector set Dt

and the boundary set Et can be treated as a coupled MRF with joint sites S:

S = 	[�: (3.12)

De�nition 2 A subset C � S is a clique, if C satis�es

8r; s 2 C; r 6= s =) s 2 G(r): (3.13)

All cliques for the BCV scheme are depicted in Fig. 6. We use C(S) to denote the set of all

cliques in S.
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Figure 6: All possilbe cliques for the BCV scheme.
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De�nition 3 Let X = fx(s) j s 2 Sg denote a family of random variables indexed by S, 
k =

f!(sk) j sk 2 Sg the con�guration space of x(sk) and 
 = f! = (!(s1); !(s2); � � � ; !(sN))g the

con�guration space of the random variable set X. Then, X is a markov random �eld (MRF) with

respect to G(S), if

1. P (X = !) > 0 8! 2 
,

2. P (x(s) = !(s) j x(r) = !(r); r 6= s) = P (x(s) = !(s) j x(r) = !(r); r 2 G(s)),

or the probability distribution of random variable x(s) is only relevant to its neighborhood G(s).

There is an important theorem regarding the probability distribution of the MRF.

Theorem 1 The random variable set X is a MRF with respect to G(S) if and only if

P (X = !) =
1

A
exp

8<
:�

X
C2C(S)

VC(!)

9=
; ; (3.14)

where each VC(!) is a potential function depends only on those x(s) for which s 2 C, and A is a

normalizing constant so that Z
!2


P (X = !)d! = 1: (3.15)

The proof of the theorem can be found in [8].

In the application of MRF, we are often required to determine the probability distribution of

X. By using Theorem 1, we can de�ne the probability distribution P (X = !) by designating the

potential function VC(!) for each clique C 2 C(S) given in Fig. 6. Although there are altogether

sixteen clique forms in �gure 1, some of them can be merged or eliminated. For example, with the

observation that the value of control vector D(a; b; t) may only correlate with its neighbor vector,

it is irrelevant to the surrounding boundary elements, the potential of clique (p) is just the sum

of potential (e) and (a), so (p) can be eliminated, and so do the clique (f),(j),(m),(o). For the

remaining cliques, some are subsets of others, we can optionally merge them based on whether they

have an independent physical sense. As an example, let us consider clique (n), which is a subset

of clique (e). The potential description of clique (n) can be included in the potential description

of clique(e), and they are both shape descriptions for the boundary element, so that clique (n) can

be merged into clique (e). With the same reason, clique (l) can be merged into clique (e), cliques

(h),(i),(k) can be merged into clique (d), and clique (g) can be merged into clique (c). On the

other hand, although clique (b) is a subset of clique (c), they have independent physical sense.
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That is, clique (b) can be interpreted as the correlation of boundary element with the intensity

edges, clique (c) can be interpreded as the correlation between neighbor control vectors. Therefore,

we decide to keep them seperate. After carefully merging and eliminating the unnecessary clique

forms, we chose �ve clique forms (a)-(e) for representing the rior distribution of the motion �eld

P (Et;Dt j ft), with each carry its own independent physical sense:

A. Ca = f	(a; b)g: the probability distribution of the single control vector D(a; b; t)

The potential of clique (a) is determined by the a prior distribution of the single control vector

D(a; b; t). If we assume D(a; b; t) to be conformed to gaussian distribution, the potential of clique

(a) will be:

VCa(Et;Dt; ft) = VCa(Dt) = �a � kD(a; b; t)k
2 (3.16)

If we assume D(a; b; t) to be conformed to laplacian distribution, the potential of clique (a) will be:

VCa(Et;Dt; ft) = VCa(Dt) = �a � kD(a; b; t)k (3.17)

If we assume D(a; b; t) to be conformed to uniform distribution, the potential of clique (a) will be:

VCa(Et;Dt; ft) = VCa(Dt) = 0 (3.18)

In the paper, we chose the uniform distribution model (3.18).

B. Cb = f�(a; b)g: the correlation of the boundary element E(a; b; t) with the intensity edges

We de�ne the potential of clique (b) to be inverse propotional to the intensity edge factor:

VCb(Et;Dt; ft) = VCb(E(a; b; t); ft) =

8>><
>>:

Eh(a;b;t)
edgeh(a;b;ft)

Ev(a;b;t)
edgev(a;b;ft)

(3.19)

edgeh(a; b; ft) or edgev(a; b; ft) measures the degree of discontinuity in the intensity image, it is

formularized as:

edgeh(a; b; ft) =

������
X

(x;y)2B(a;b)[B(a;b�1)

Q[f(x; y; t); f(x; y+ 1; t)]

������ (3.20)

Q(a; b) is the number of large positive or negative transition between pixel a and b:

Q(a; b) =

8>><
>>:

j
b�a
b+a � Te

k
b > a

�
j
a�b
b+a � Te

k
b < a

(3.21)
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where bxc is the maximum integer value that is not greater than x.

C. Cc = f	(a; b);�h(a; b);	(a; b� 1)g or f	(a; b);�v(a; b);	(a� 1; b)g: the correlation between

neighbor control vectors.

Note that the boundary element E(a; b; t) between two neighbor control vectors has substantial

in
uence to the correlation of the control vectors. If there is a boundary between the two neighbor

control vectors, the two vectors will belong to di�erent interpolation object Oi. They will have no

correlation. Otherwise the two vectors will belong to the same object, and therefore have strong

correlations. We de�ne the potential of clique (c) as:

VCc(Et;Dt; ft) = VCc(Et;Dt)

=

(
j D(a; b; t)�D(a; b� 1; t) j Eh(a; b; t) = 0
j 0 Eh(a; b; t) = 1

�h(a; b) 2 Cc (3.22)

D. Cd = f�h(a; b);�h(a � 1; b);�v(a; b);�v(a; b � 1)g and Ce = f�h(a; b);�v(a; b);�h(a; b +

1);�v(a+ 1; b)g: the a prior knowledge of the boundary set Et

We de�ne the potential of clique (d) and (e) according to a prior distribution of the boundary

set Et.

VCd(Et;Dt; ft) = VCd(Et) and VCe(Et;Dt; ft) = VCe(Et): (3.23)

The considerations in the de�nition of the potential include the suppression of boundaries to reduce

the number of interpolation regions and the smoothness and closeness of the boundary set Et to

form a reasonable object. We de�ne the potential for cliques Cd and Ce in Figs. 7 and 8.

By using Theorem 1 and the potentials of cliques (a)-(e) de�ned above, we can obtain a prior

distribution of the boundary set Et and the control vector set Dt as:

P (Et;Dt j ft) =
1

A1
expf�U1(Et;Dt; ft)g; (3.24)

where A1 is a normalization factor and

U1(Et;Dt; ft) =
X

C2C(S)

VC(Et;Dt; ft)

= �b �
X
C
b

VCb(Et; ft) + �c �
X
Cc

VCc(Dt;Et) + �d �
X
C
d

VCd(Et)

+�d �
X
Ce

VCe(Et); (3.25)

and where �b, �c, �d are the weighting factors for di�erent cliques. The value of �b relates to the

degree of correlation between the motion boundary and the intensity edge, the value of �c relates
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Figure 8: Potential VCe (For rotational aliases, only one is listed in the �gure)
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to the degree of correlation between neighbor control vectors, and the value of �d relates to a prior

restriction of the boundary set Et. By substituting (3.8), (3.24), (3.25) in (3.4), we obtain

P (ft��t j Et;Dt; ft)P (Et;Dt j ft) =
1

A
expf�U(Et;Dt; ft; ft��t)g; (3.26)

where A is a normalization factor and

U(Et;Dt; ft; ft��t) =
1

2�2

X
(x;y)2I

DFD2(x; y; t) + �b �
X
C
b

VCb(Et; ft)

+ �c �
X
Cc

VCc(Et;Dt) + �d � [
X
C
d

VCd(Et) +
X
Ce

VCe(Et)]: (3.27)

The four terms in (3.27) are called, respectively, the displacement frame di�erence, the correla-

tion between the motion boundary (motion discontinuity) and the intensity edges, the correlation

between neighbor control vectors, and the a prior restriction of the boundary set Et.

3.3 Estimation via Optimization

By using the analysis given above, the problem of �nding the MAP estimation of the motion �eld

d�(x; y; t) = genfE�
t
;D�

t
g is converted to the determination of the minimum point of the potential

U(Et;Dt; ft; ft��t), i.e.

U(E�
t;D

�
t; ft; ft��t) = min

E
t
2Et;Dt

2Dt

U(Et;Dt; ft; ft��t); (3.28)

where the potential U(Et;Dt; ft; ft��t) is given by (3.27). To obtain the global minimum of the

potential function U(Et;Dt; ft; ft��t) is not an easy task. On one hand, since the con�guration

space fEt;Dtg of the BCV motion �eld is extremely large, it is impactical that we search the whole

space for the minimum point. On the other hand, since the potential U(Et;Dt; ft; ft��t) is a

highly nonconvex function with many local extrema and the boundary element E(d; a; b; t) takes a

binary value, we cannot adopt a gradient based algorithm to �nd the minimum point. Since the

problem formulation involves the MRF, a standard simulated annealing [9] process is used to solve

this problem. We update the control vector D(a; b; t) and the boundary element E(a; b; t) once at

a time, and a decreasing temperature sequence Tk is used to control the update along the process.

For each update, the change in the potential U is evaluated together with the temperature Tk to

determine whether the update is accepted or not. In the beginning, the temperature Tk is high

so that the update is very random to allow the algorithm to select a good starting point to avoid

being trapped into a local minimum. As time proceeds, the temperature Tk is decreasing and the
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update tends to accept lower potential and the system is gradually running towards the global

minimum. The original simulated annealing is very slow. In this paper, several novel techniques

are used to accelerate the annealing procedure. They include the selection of a good initial motion

�eld by using a multiresolution tree (MRT) based algorithm [13], the logarithmic rate temperature

reduction, the stochastic relaxation of the control vector set Dt and a fast control vector search,

etc. We refer to [12] for more details. By using all the acceleration techniques, we can get a BCV

motion estimation algorithm which requires about twice of the computational cost of the exhaustive

block search.

4 Coding of Displacement Frame Di�erence

As discussed in Section 2, the BCV-based displacement frame di�erence (DFD) is di�erent from that

of the conventional block based scheme. Inside each object, there is no block e�ect and the main

distortion is geometrical deformation which is less sensitive subjectively. Around the boundaries

of an object, the distortion is similar to that of the block based scheme. It is desirable to �nd a

distortion measure that helps to select the DFD for encoding to enhance the overall performance

of the encoder. We develop a criterion called the pixel threshold (PT) criterion which evaluates

the DFD of each block by two factors: the position factor p(a; b) and the error factor e(a; b).

When the block is located at an object boundary, its position factor p(a; b) takes value one;

otherwise, it is zero. Thus, p(a; b) = 1 (or 0) means that block B(a; b) is a boundary (or internal)

block. The value e(a; b) is the sum of the absolute value of DFD above a certain threshold Q within

a given block. Mathematically, it can written as

e(a; b) =
X

(x;y)2B(a;b)

�
jDFD(x; y; t)j

Q

�
; (4.29)

where Q is a threshold and bxc means the largest integer value that is not greater than x. The PT

decision is: 8><
>:

p(a; b) = 0 and e(a; b) > T0 to be encoded
p(a; b) = 1 and e(a; b) > T1 to be encoded
other cases not to be encoded

(4.30)

Note that in above T0 and T1 denote two di�erent thresholds for internal and boundary blocks,

respectively. It is often to choose T0 � T1, since the distortion of the internal block in the BCV

scheme is mainly geometrical deformation which allows a larger value of error tolerance.
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5 Experimental Results

Experiments are performed to compare the BCV scheme with the traditional block-based method

used in the MPEG standard. The test video data include CLAIRE, MISSA, TREVOR, SALES,

FOOTBALL and FLOWER sequences. The CLAIRE, MISSA, TREVOR and SALES sequences

have a spatial resolution of 352 � 288 pixels and a frame rate of 10 frames per second. The

FOOTBALL and FLOWER sequences have a spatial resolution of 352 � 240 pixels and a frame

rate of 30 frames per second. We apply the exhaustive search to determine the motion vector for

each block in the block-based method and use full-pel accuracy motion estimation for both the

MPEG and BCV simulation. We do not implement the rate control for the video coder, instead,

we set a constant MQUANT of 16. For the proposed BCV scheme, the control vectors and the

displacement frame di�erences (DFD) are encoded by using the MPEG-I bit stream. Each boundary

element is encoded by a predictive arithmetic coding scheme similar to the one in JBIG standard.

We set the threshold for internal block quantization T0 to be 3, the threshold for boundary block

quantization T1 to be 16. We split the DFD into macroblock and encode them according to the

pixel threshold criterion as detailed in Section 4. It is worthwhile to point out that although the bit

stream of BCV video coder is similar to that of the MPEG standard, they are essentially di�erent

in the motion �eld representation. Due to the incorporation of the boundary element, the BCV

video coder/decoder is not compatible with the MPEG standard. However, it can be implemented

by slightly modifying the MPEG code.

We show in Table 1 the average number of bits required to encode the motion �eld. Since the

motion �eld in the BCV scheme consists of two components | the set Et of boundary element

functions and the set Dt of control vectors, we list the individual rate in the third and fourth

rows in Table 1. The predictive gain listed in Table 1 is calculated as the average of the following

instantaneous gain

Gain(t) = 10 log
2552P

DFD2(x; y; t)
; (5.1)

where the summation is over all pixels. We see from Table 1, the predictive gain of the BCV

motion �eld is higher than the traditional full block matching method from 0.4 to 1.8 dB. This

demonstrates that the BCV motion representation is superior to the block-based representation.

Experiments have also been performed to compare the BCV-based video coding scheme with

the MPEG-I algorithm [6]. The results are shown in Table 2, where the rate is the average number

of coding bits per pixel and the peak signal-to-noise ratio (PSNR) is calculated as the average of
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Item CLAIRE MISSA SALES TREVOR FOOTBALL FLOWER

Rate in bpp (full block match) 0.0075 0.0108 0.0136 0.0186 0.0488 0.0320

Rate in bpp (BCV) 0.0063 0.0114 0.0101 0.0159 0.0418 0.0290

Rate in bpp (BCV { Et) 0.0002 0.0003 0.0003 0.0005 0.0003 0.0003

Rate in bpp (BCV { Dt) 0.0061 0.0111 0.0098 0.0154 0.0415 0.0287

Gain in dB (full block match) 34.46 33.83 28.11 29.80 25.19 22.33

Gain in dB (BCV) 35.68 34.37 28.57 31.57 25.55 23.83

Table 1: Bit rates and gains for the coding of the motion �eld.

Item CLAIRE MISSA SALES TREVOR FOOTBALL FLOWER

Rate in bpp (MPEG-I) 0.0237 0.0251 0.0886 0.0819 0.2652 0.6028

PSNR in dB (MPEG-I) 35.31 34.49 28.77 31.04 29.67 26.15

Rate in bpp (BCP) 0.0080 0.0138 0.0679 0.0481 0.2196 0.4497

PSNR in dB (BCP) 35.81 34.62 28.86 31.77 29.92 26.84

Table 2: Bit rates and PSNR values for video sequence coding.

the instantaneous PSNR:

PSNR(t) = 10 log
2552Ph

f(x; y; t)� f̂(x; y; t)
i2 ; (5.2)

where the summation is over all pixels in an image. One can clearly see from Table 2 that, compared

with MPEG-I, BCV video coding achieves a saving of 15-65% in the bit rate with nearly the same

PSNR value. To further compare the performance of the MPEG-I and BCV, we plot the bit rate

and the PSNR value as a function of the frame number for the CLAIRE and TREVOR test video

sequences in Figs. 9 and 10, respectively.

Compared with the MPEG-I coded video, the BCV coded sequence appears to be smoother

and clearer with less noisy patterns.

6 Conclusion and Extension

A new motion �eld representation and estimation framework based on the boundary-control vector

(BCV) scheme and the Markov random �eld model was presented. The BCV motion �eld is

generally continuous with discontinuity only at the object boundaries. It was demonstrated to be a

promising method for video coding for the good rate-distortion performance. At present, the major
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disadvantage of the BCV scheme is its high computational complexity for motion �led estimation.

We feel that the computational cost can be reduced by using a multiresolution approach, and

a multiresolution BCV motion representation and estimation scheme is under our current study.

Another interesting topic is to further improve the quality of the coded video images. We observe

that even though the block e�ect in the DFD can be greatly reduced by using the BCV scheme, the

subsequent DCT-based coding of the DFD still introduces the block e�ect. A better performance

may be achieved by using a wavelet approach to encode the DFD.
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