A Practical Framework for Constructing Structured
Drawings

Salman Cheema!, Sarah Buchanan', Sumit Gulwani2, Joseph J. LaViola Jr.!
"University of Central Florida, Orlando, FL , 2Microsoft Research, Redmond, WA
!{salmanc,sarahb,jjl} @cs.ucf.edu, ?sumitg @microsoft.com

ABSTRACT

We describe a novel theoretical framework for modeling
structured drawings which contain one or more patterns of
repetition in their constituent elements. We then present
PatternSketch, a sketch-based drawing tool built using our
framework to allow quick construction of structured draw-
ings. PatternSketch can recognize and beautify drawings con-
taining line segments, polylines, arcs, and circles. Users can
employ a series of gestures to identify repetitive elements and
create new elements based on automatically inferred patterns.
PatternSketch leverages the programming-by-example (PBE)
paradigm, enabling it to infer non-trivial patterns from a few
examples. We show that PatternSketch, with its sketch-based
user interface and a unique pattern inference algorithm, en-
ables efficient and natural construction of structured draw-
ings.

Author Keywords
Sketch-based Interfaces, Programming by Example, Pattern
Inference, Structured Drawing

ACM Classification Keywords
H.5.2. User Interfaces: Interaction Styles

General Terms
Algorithms, Human Factors

INTRODUCTION

Images and drawings containing structured repetition are
common in real-life (e.g., brick patterns, tiling patterns, and
architectural drawings). We define ’Structured Drawings’ as
drawings that can be drawn using a CAD tool: either re-
quiring a user to write a script using CAD APIs or perform
repetitive Copy-Paste operations with some underlying math-
ematical logic. Figure 1 shows examples of structured draw-
ings. Making structured drawings is hard and time consuming
without software support. Although no software tools exist
solely for constructing structured drawings, some commer-
cial applications such as Microsoft PowerPoint, Ink Scape,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

1UI’ 14, February 24 - 27 2014, Haifa, Israel

Copyright 2014 ACM 978-1-4503-2184-6/14/02$15.00.
http://dx.doi.org/10.1145/2557500.2557522

(b) Railroad Tracks

(a) Cog

Figure 1: Examples of structured drawings (Source: Google
Images)

Adobe Illustrator and AutoDesk Inventor can be adapted for
this purpose. These tools let users specify rudimentary pat-
terns via a WIMP interface but rely mostly on variations of
Copy-Paste (translation and scaling) to replicate repetitive el-
ements.

In this paper, we describe a novel framework for modeling
structure and repetition in drawings. Our framework uses
a small set of abstract constructions, while giving an appli-
cation developer the freedom to support different types of
drawing elements and interaction methods. We leverage ideas
from the domain of programming by example (PBE) [5, 9,
17] and set-theoretic constructions to create a novel algorithm
that can infer patterns from a few examples highlighted by
the user, and use them to complete structured drawings. We
also describe PatternSketch, a sketch-based drawing tool built
using our framework, that can recognize and beautify hand-
drawn sketches, which users can manipulate with a series of
gestures to identify and extend repetitive elements.

RELATED WORK

Programming by example (PBE) [5, 9, 17] is a popular
paradigm for automating end-user programming tasks and
has been used in a wide variety of domains including text-
editing programs [16], spreadsheet data manipulation [10]
and algebra problem generation [19]. We leverage ideas from
PBE to construct a framework for modeling structured draw-
ings, where the user provides a few examples of repetitive
drawing elements, and our tool predicts the next elements in
the sequence. The key technical contributions include a novel
framework for representing sequences of drawing elements
as well as a synthesis algorithm that infers example elements
in the intended sequence from a collection of selected objects
using a majority voting scheme.

We have chosen a sketch-based interface for PatternSketch
so that it mimics the natural input method of pen and pa-
per. Early work in sketch recognition focused on incorporat-
ing gesture recognition with direct manipulation [15] and on
user guided recognition and beautification [2, 13]. Paulson et
al. [18] have developed techniques for recognition and beau-
tification of low-level sketch primitives. Interactive beauti-
fication [11, 22] and guided beautification [7, 8] of hand-
drawn sketches have been explored in different application
settings. More recently, beautification of sketched drawings
involving line segments and circles by using inferred geomet-
ric constraints has been examined by [4]. PatternSketch em-
ploys a small set of drawing elements (line segments, poly-
lines, arcs, and circles), in order to minimize interface con-
fusion and to lower the likelihood of recognition errors. We
adapted our recognition and beautification techniques from
QuickDraw [4] and extended them to incorporate polylines
and arcs. QuickDraw [4] was chosen as the beautification en-
gine because it incorporates a rich set of constraints to ensure
robustness.

Sketch-based interfaces have also been applied to several
modeling tasks such as 3D Modeling [3, 12, 21], 3D curve
sketching [1] and for animation tools for novice users [6].
Recently, Kazi et al. [14] have developed Vignette that uti-
lizes texture synthesis and preserves individual style during
sketching to generate artistic sketches. Vignette and PatternS-
ketch both require users to specify initial examples and guide
the predicted drawing but both tools differ in important ways.
In Vignette, users generate texture patterns from a few ex-
amples, repeating this process a number of times for each
drawing. This behavior can be modeled using our proposed
framework (with its abstract representation of drawing ele-
ments and patterns) but is not entirely supported by our cur-
rent prototype (PatternSketch), which instead focuses on en-
suring precision. Comparing the two is difficult as both tools
can probably demonstrate superior performance in different
contexts, depending on whether an artistic look or precision
is required. PatternSketch does not preserve individual style
but uses constraint-based beautification and pattern genera-
tion to ensure precision in generated drawings.

THEORETICAL FRAMEWORK

Structured drawings contain one or more repetitive patterns
in their constituent elements. Some patterns are simple and
can be abstracted as linear Copy-Paste (i.e., a single element
replicated many times by applying a translation and/or scal-
ing). More often, repetition lies beyond the capability of lin-
ear Copy-Paste. Figure 1b shows a picture of railroad tracks
where the planks on the inside of the rail tracks form a pat-
tern incorporating both translation and scaling. However, the
translation relating the copied planks is not constant. Addi-
tionally, an alignment operation is necessary to ensure that
new planks always maintain the geometric relationship with
the track lines. Figure 1b also demonstrates that repetition
may not always occur in a straight line, thus requiring either
clever inference or user intervention. Linear Copy-Paste can
only extend patterns in a single direction.

We consider repetition as a generative operation starting from

an initial sequence of drawing elements sketched by a user.
From a theoretical perspective, the choice of how to define
the generative operation is inconsequential and we leave this
choice open to application developers. It can either be de-
fined explicitly by the user or it may be inferred from a suffi-
cient number of examples by using programming-by-example
techniques. Additionally, the operation encodes information
about how new elements are to be aligned with respect to ex-
isting elements. It can also be manipulated by a user to create
new elements in one or more directions. We now define a few
key ideas related to structured drawings:

Drawing Element (e) is a basic component of a sketched
drawing. Examples are points, line segments, circles and
composite shapes.

Collection (F) is a set of drawing elements. A single draw-
ing may contain zero or more collections.

Filter An operation used to select a subset of a collection’s
elements in a particular order.

Pattern (¢) is a spatial relationship inherent in an ordered se-
quence of drawing elements. A pattern is a generative oper-
ation that can extend the sequence by creating new drawing
elements. The relationship can either be inferred from the
entire initial sequence, a filtered subset, or can be explicitly
defined by the user.

Frame of Reference A geometrical construct that serves as
a frame of reference for a pattern within a structured draw-
ing. It can potentially be used to denote boundaries within
which a pattern can be extended. Additionally, new draw-
ing elements generated by a pattern may have to be aligned
or positioned relative to the frame of reference.

Copy-Paste (¢..p,) A special generative operation that cre-
ates a copy of a selected drawing element at a specified
location. Any required alignment must be performed man-
ually by the user.

These abstract entities enable us to model complicated struc-
tured drawings. From our perspective, the choice of which
drawing elements and patterns to support, as well as inter-
action metaphors for creating collections, performing filter-
ing, and extending patterns are implementation details that
can vary from system to system, depending on context. Our
framework permits the use of any type of drawing element.
Potentially, even collections of elements can act as building
blocks in a larger pattern. Similarly, we place no restrictions
on interaction metaphors for creating collections, performing
filtering, inferring/defining, or extending patterns. User in-
teraction may be enabled via WIMP interfaces, sketch-based
interaction, 3D gestures or even voice input. The notion of a
frame-of-reference is also abstract. It can either be a drawing
element or a path drawn by a user or even some virtual geo-
metrical construct. Our framework also supports Copy-Paste
functionality in its traditional form. The notion of collections
that combine a sequence of drawing elements with a genera-
tive operation is very powerful and affords users the freedom
to extend the pattern as they see fit or till some condition is
met. Collections combined into hierarchical relationships can
be used to create chains of generative patterns which can en-
able interesting effects.

PATTERNSKETCH: AN OVERVIEW

PatternSketch can recognize and beautify sketched drawings
containing line segments, polylines, arcs and circles. A se-
ries of gestures can be used to interact with the drawing. The
‘Lasso’ gesture is used to group drawing elements into a col-
lection. It can also be used to select existing collections. Once
a collection is selected, the user can filter it by selecting a
subset of its elements and assigning them an explicit order-
ing. For inferring patterns, users can either have the system
consider the filtered collection or all possible ordered subsets.
Once a pattern is inferred, the ‘Drag’ gesture can be used to
generate new drawing elements.

Recognition and Beautification

Recognition is triggered by hitting the ‘Recognize’ button,
after which the sketched drawing is parsed into its component
elements (line segments, polylines, arcs, and circles). We use
the IStraw [20] cusp finding algorithm to enumerate cusps
in each ink stroke within the sketch, followed by a series of
heuristics to classify each ink stroke as either a line segment,
a circle, an arc, or a polyline. Our recognition heuristics and
beautification system are based on ideas presented in [4], but
have been extended to include polylines and arcs.

Constraints used for Beautification
Applicable To | Constraint
Vertical line segment
Horizontal line segment
Parallel line segments
Perpendicular line segments
Touching line segments
Line segments with same length
Circles with same radius
Concentric circles

Line Segments

Circles Circles touching at their circumference
Circle passing through the center of another
circle
Similar structure (interior angles)

PolyLines Regular convex polygon

Polygon

Line segment tangent to circle

Line segment passing through center of circle
Line segment touching circumference with an
endpoint

Line segment touching circle center with an
endpoint

PolyLine point touching a line segment
PolyLine point touching a circle

Circles, Line
Segments &
PolyLines

Table 1: List of constraints that are inferred for beautifying
drawings

After a drawing is recognized, our beautification subsystem
infers geometric constraints between its recognized elements,
which are used to beautify the drawing. In comparison to [4],
we utilize a smaller set of constraints relating line segments
and circles and have incorporated new constraints relating
polylines with line segments and circles (See Table 1). After
beautification, ink strokes are replaced by beautified drawing
elements on the screen. For details of the beautification algo-
rithm, please refer to [4].

Collections

Users can enable a special mode called ‘Lasso’ via the sys-
tem menu. In ‘Lasso’ mode, a user can create a collection,
select a element/collection, do Copy-Paste, or filter a subse-
quence from a collection for pattern inference. The user ini-
tially draws an ink stroke that encloses one or more drawing
elements. If the encircled elements are part of an existing col-
lection, the collection is selected. If selected elements belong
to different collections, a new collection is created. Newly
created collections are automatically selected (Selected col-
lections are displayed with a colored bounding box). If a sin-
gle element is lassoed, it is considered only for Copy-Paste.
After selection, the user can either trigger pattern inference
via the ‘Infer’ button on the menu or use the ‘Tap’ gesture to
paste the selection at a new location. New elements created
by Copy-Paste can be manually aligned by selecting *Edit’
mode via the menu and manipulating the element. PatternS-
ketch allows the construction of the following collections of
drawing elements:

Collection of Line Segments Homogeneous collection con-
taining only line segments

Collection of Circles Homogeneous collection containing
only circles

Collection of Polylines Homogeneous collection containing
only polylines

Super Collection A collection containing other collections

Mixed Collection A collection containing several different
types of drawing elements

With a selected collection, users can draw a line from the
boundary of one element to the boundary of another element
within the collection to assign an explicit ordering to the two
elements thus creating a sequence within a collection. Se-
quences of drawing elements thus created can be extended
by drawing another line from one of the elements within the
sequence to another element outside the sequence but within
the same collection. User defined orderings are rendered as
dotted arrows. In this manner, PatternSketch merges the two
steps (selection and ordering) of the filter operation into a sin-
gle step which is intuitive and makes it easy for the user to in-
dicate the intended ordering of elements within a collection.

Pattern Inference

Pattern inference is triggered by hitting the ‘Infer’ button
from the menu. If the selected collection is filtered, the infer-
ence system tries to infer a pattern from the filtered elements.
For an unfiltered collection, our inference system considers
all possible ordered subsets of its elements. Within each sub-
set, our inference algorithm considers ordered pairs (form-
ing an input-output example) of drawing elements in isolation
and uses a simple voting mechanism to determine the domi-
nant pattern (See Algorithm 1).

We define the fundamental unit of each pattern as a ‘PointSet’
(¢), which is a sequence of points that encodes one of the
following relationships:

PointSet on Circle ((¢) Sequence of points along a circle’s
circumference separated by a constant non-zero arc length.

PointSet on Line Segment ((;) Sequence of points along a
line segment separated by a constant non-zero translation.

PointSet on Polyline ((») Sequence of points along a poly-
line separated by a constant non-zero distance.

PointSets form the basis for the following high-level patterns
in PatternSketch:

1. Concentric Circles: A sequence of circles with a constant
difference in radii whose centers are the same point.

2. Moving Lines: A sequence of line segments whose respec-
tive endpoints either form a PointSet or are the same point.

3. Moving Polylines: A sequence of polylines whose respec-
tive endpoints either form a PointSet or are the same point.

4. Moving Circles: A sequence of circles whose centers form
a PointSet.

5. Moving Collections: A sequence of composite drawing el-
ements or collections whose centroids form a PointSet.

PointSets are extremely useful because they capture low-level
relationships between drawing elements and also encapsulate
a frame of reference, as described in our theoretical frame-
work. They enables us to model patterns as sets of low-level
geometric transformations that are easy to visualize and can
have one or more frames of reference.

Figure 2: Example of a pattern of line segments that has
two different frames of reference encoded by two different
PointSets.

With patterns that leverage PointSets, we can enable power-
ful construction mechanisms. Figure 2 depicts a collection
of line segments whose endpoints form PointSets along two
different surfaces with different increments. As each of these
PointSets encodes the relevant surface as a frame of refer-
ence, alignment is an implicit part of the repetition. It is also
possible to use the frame of reference itself as a way to repli-
cate a given pattern. For example, a collection of circles that
form a pattern along the circumference of a larger circle can
be selected for replication via the system menu. By selecting
a target circle or even a collection of circles, the entire pattern
can be duplicated onto the target. This is a non-trivial context-
sensitive replication operation whose rules are encoded in our
patterns and PointSets, enabling a very modular and powerful
architecture.

Algorithm 1 gives the outline of our inference algorithm,
which looks at each ordered pair (an input-output example
pair) of elements and tries to determine the geometric rela-
tionship between them. The In fer RelationShip procedure

Algorithm 1 Algorithm to infer a pattern from an unordered
set of drawing elements

> E are ordered drawing elements
> @ is the list of inferred patterns

1: function INFER(E)
2 D=0 -
3 fori=1— ||E| do

4: for j =1 — ||E| do

5: ¢; < InferRelationShip(e;, e;)
6.

7

8

>i %
if ® Contains ¢; then
Get ¢, from ¢ > ¢y 1s similar to ¢;
: ¢k + Merge(ox, ¢i)

9: Score(¢r) +=1
10: else
11: Score(¢;) =1
12: b — DdUP,;
13: end if
14: end for

15: end for

16: Select ¢pest € © with highest score
17: return ¢pq;

18: end function

looks at the ordered pair (e;, e;), and determines if they con-
stitute an example for one of the five patterns supported by
the system. This is tested by applying the following rules:

e If ¢; and e; are circles and have the same center, they are
considered an example of ‘Concentric Circles’.

e If ¢; and e; are circles and their centers lie on the same line
segment, polyline or circle, they are considered an example
of ‘Moving Circles’.

e if ¢; and e; are line segments, they are considered an exam-
ple of ‘Moving Lines’, if two PointSets ((¢, (1, or (p) can
be formulated involving both endpoints of both segments.

e if ¢; and e; are polylines, they are considered an exam-
ple of ‘Moving Polylines’, if two PointSets (¢, (1., or (p)
can be formulated involving the first and last points of both
polylines.

e if e; and e; are collections, they are considered an example
of ‘Moving Collections’, if we can formulate a PointSet
(¢r, only with a virtual line as frame of reference) involving
the centroids of both collections.

If the newly inferred pattern ¢; is similar to an existing pat-
tern ¢, then the score of ¢y, is incremented and ¢; is merged
with ¢y, along with its example (e;,e;). If ¢; is not simi-
lar to any existing pattern, it is added to the set of possible
patterns @ with a score of one. Determining if two example
pairs are part of the same pattern is difficult because users
may not draw the elements with perfect spacing. Hence we
introduce a similarity metric to infer patterns from noisy user
input. We leverage PointSets and their unifying structure for
this purpose. A pattern (¢;) in our system contains one or
more PointSets (¢1(¢;) - .. (. (¢;)) and a list of numeric val-
ues 0(¢;) (to denote pattern-specific information such as scal-
ing coefficients, rotation values, alignment hints, etc). Each
PointSet (1 (¢;) also has a list of interesting numerical val-
ues such as distances, arc length, vector offset, etc. Conse-
quently, each pattern in our system can be represented as an

(a) Create Collection (b) Infer Pattern

(c) Extend along Poly-
line

(e) Select Target Collec-

(d) Copy Pattern tion

(f) Replicate

Figure 3: Example scenario showing how mathematical art can be created using PatternSketch. The user draws three hexagons
and creates a collection of circles on the surface of one of them. The ‘Lasso’ and ‘Drag’ gestures are used to extend the circles
along the entire hexagon. Afterwards, the user can quickly replicate this pattern onto the other hexagons.

n-dimensional numeric vector:

(#i) = [C1(Ps) - - - CalPi), 6(s)]

Testing similarity among patterns simply constitutes compar-
ing their vector representations using context-specific thresh-
old values:

Similarity(¢1, ¢2) = (d1) — (P2) < (1, P2)

Where £(¢1, ¢2) is a function to determine context-specific
threshold values for comparing ¢; and ¢s. Context-specific
information can include things like touch constraints, dis-
tance thresholds, etc. Once all ordered pairs have been ex-
amined, the highest ranked pattern ¢pes; is picked as the
most-likely candidate. It should be noted that, ideally, with
programming-by-example, three examples are needed to de-
termine if a set of drawing elements forms a pattern. As our
system only considers pairs of elements in isolation, it can
yield false positives, e.g., if two interesting points in a selec-
tion lie on a drawing element, they will always be considered
a PointSet ({¢, (1, or (p). Such erroneous cases are miti-
gated automatically because our algorithm picks the highest
voted pattern. Erroneous PointSets will get few votes and be
automatically suppressed. Also, as our algorithm only con-
siders pairs of points, it will never consider a set of points in
unison, rendering it unable to infer movement along a virtual
circle. The workaround for this is to draw the virtual circle
initially and erase it after creating the pattern. Virtual lines
are deducible because each equidistant set of points on a vir-
tual line will contribute higher votes to the same translation
offset, making it a candidate for highest ranked pattern ¢pes;.

After a candidate pattern ¢y, is chosen, the system first uses
it to align the initial sequence. This involves aligning the ele-
ments with respect to the inferred frame(s) of reference. After
alignment, our system uses the inferred pattern ¢y, to pre-
dict the next element in the sequence and renders it on the
screen with a dotted blue line. The ‘Drag’ gesture can then
be used to extend the pattern. The user can drag the stylus to
intersect the predicted item, causing the system to add it to the
currently selected collection and predict a new item. This lets
a user extend a collection as needed. Figure 3 shows a sce-
nario where a sequence of circles is being extended along the
edge of a polyline by continually dragging the stylus across
the predicted elements.

Interactive Editing

Our beautification engine can make mistakes due to incor-
rectly inferred constraints, which can be corrected by entering
‘Edit” mode, and manipulating the positions/sizes of beauti-
fied elements. For a circle, moving its center changes its po-
sition and moving its circumference changes its radius. For a
line segment, moving the segment itself changes its position
while moving either endpoint changes its length. For poly-
lines, users can change the positions of its points by moving
them as needed. Moving the boundary of a polyline moves
the entire polyline to a new position. For severe beautifica-
tion errors, the user can erase and redraw part or all of the
drawing. We support the ‘Scribble-Erase’ gesture for erasing
elements from the drawing. We also provide an intelligent
‘Erase’ mode which lets users delete parts of drawing ele-
ments. In intelligent ‘Erase’ mode, a user draws a region and
any portions of recognized line segments falling within the
region are clipped. PatternSketch also provides a method to
break all groupings of drawing elements within a sketch by
hitting the ‘Ungroup Collections’ button from the menu.

DISCUSSION AND CONCLUSION

Figure 4 shows a variety of structured drawings constructed
with PatternSketch. Our framework provides a general way
to describe structured drawings with a small set of abstract
entities yet it leaves several important questions unanswered
from an application developer’s perspective. These questions
include:

e What set of drawing elements should be supported?

e What types of patterns to support?

e What is a good method to instantiate supported drawing
elements?

e What interaction metaphors are suitable for creating col-
lections and filtering them?

e What is a good interaction metaphor for describing repeti-
tive patterns explicitly?

e What algorithms may be used to infer patterns automati-
cally?

e How can a user be empowered to extend and manipulate
patterns?

We have addressed these practical questions with our proto-
type system, PatternSketch. It should be noted that PatternS-
ketch is the first step toward the realization of our theoretical

(b) Concentric cir-
cles and radial line (c) Lines moving on a

Li . :
(a) Linear pattern patterns. circle pattern.

terns.

(d) Concentric circles (e) Polylines mov- (f) Drawing of a build- (g) Skyscraper Draw-
and radial circle pat- ing on circle pattern. ing. Collections mov- ing. Collections mov-

ing on a line pattern. ing on a line pattern.

Figure 4: Examples of drawings created using PatternSketch

framework and does not use the framework to its full poten-
tial. Our prototype system highlights the expressive power of
our framework for modeling structured drawings. However,
design trade-offs such as the use of sketch-based interaction
can introduce errors in input (due to recognition and beautifi-
cation), which can degrade drawing performance by requiring
editing and redrawing. These errors can also cause problems
with our pattern inference algorithm. Additionally, our choice
of supporting a small set of drawing elements limits our sys-
tem’s capability to support all possible structured drawings
that can be modeled using our framework.

PatternSketch uses a sketch-based interaction method to en-
able users to draw drawing elements in a natural manner. It
supports four different types of drawing elements, and also
enables composite elements by using collections. For creat-
ing and selecting collections, users can use the ‘Lasso’ ges-
ture and can draw lines between drawing elements to perform
filtering. PatternSketch supports five different types of pat-
terns to cater to supported drawing elements. The patterns
are built using the notion of PointSets that describe each pat-
tern as a collection of low-level geometric transformations
and implicitly encapsulate the notion of frame(s) of refer-
ence. We also provide the details of a novel inference al-
gorithm that leverages concepts from the programming-by-
example paradigm and exploits geometric constraints with a
simple voting mechanism to identify dominant patterns. Our
inference algorithm can work with both filtered and unfiltered
collections.

ACKNOWLEDGEMENTS
This work is supported in part by NSF CAREER award IIS-
0845921 and NSF awards IIS-0856045 and CCF-1012056.

REFERENCES
1. Bae, S.-H., Balakrishnan, R., and Singh, K. Everybodylovessketch: 3d
sketching for a broader audience. In Proceedings of the 22nd annual
ACM symposium on User interface software and technology, ACM
(2009), 59-68.

2. Baudel, T. A mark-based interaction paradigm for free-hand drawing.
In Proceedings of the 7th annual ACM symposium on User interface
software and technology, ACM (1994), 185-192.

3. Bernhardt, A., Pihuit, A., Cani, M.-P., and Barthe, L. Matisse: Painting
2d regions for modeling free-form shapes. In SBIM '08 (2008), 57-64.

4. Cheema, S., Gulwani, S., and LaViola, J. Quickdraw: improving
drawing experience for geometric diagrams. In CHI "12 (2012),
1037-1046.

5. Cypher, A., Ed. Watch What I Do — Programming by Demonstration.
MIT Press, 1993.

6. Davis, R. C., Colwell, B., and Landay, J. A. K-sketch: a ’kinetic’ sketch
pad for novice animators. In CHI "08 (2008), 413-422.

7. Fernquist, J., Grossman, T., and Fitzmaurice, G. Sketch-sketch
revolution: an engaging tutorial system for guided sketching and
application learning. In Proceedings of the 24th annual ACM
symposium on User interface software and technology, ACM (2011),
373-382.

8. Fung, R., Lank, E., Terry, M., and Latulipe, C. Kinematic templates:
end-user tools for content-relative cursor manipulations. In Proceedings
of the 21st annual ACM symposium on User interface software and
technology, ACM (2008), 47-56.

9. Gulwani, S. Synthesis from examples: Interaction models and
algorithms. In /4th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (2012). Invited talk paper.

10. Gulwani, S., Harris, W. R., and Singh, R. Spreadsheet data
manipulation using examples. Commun. ACM 55, 8 (2012), 97-105.

11. Igarashi, T., Matsuoka, S., Kawachiya, S., and Tanaka, H. Interactive
beautification: a technique for rapid geometric design. In UIST '97
(1997), 105-114.

12. Igarashi, T., Matsuoka, S., and Tanaka, H. Teddy: a sketching interface
for 3d freeform design. In SIGGRAPH 99 (1999), 409-416.

13. Julia, L., and Faure, C. Pattern recognition and beautification for a pen
based interface. In Document Analysis and Recognition, 1995.,
Proceedings of the Third International Conference on, vol. 1, IEEE
(1995), 58-63.

14. Kazi, R. H., Igarashi, T., Zhao, S., and Davis, R. Vignette: interactive
texture design and manipulation with freeform gestures for pen-and-ink
illustration. In CHI *12 (2012), 1727-1736.

15. Kurtenbach, G., and Buxton, W. Issues in combining marking and
direct manipulation techniques. In Proceedings of the 4th annual ACM
symposium on User interface software and technology, ACM (1991),
137-144.

16. Lau, T. A., Domingos, P., and Weld, D. S. Version space algebra and its
application to programming by demonstration. In Machine Learning
(ICML) (2000), 527-534.

17. Lieberman, H. Your Wish Is My Command: Programming by Example.
Morgan Kaufmann, 2001.

18. Paulson, B., and Hammond, T. Paleosketch: accurate primitive sketch
recognition and beautification. In IUI *08 (2008), 1-10.

19. Singh, R., Gulwani, S., and Rajamani, S. Automatically generating
algebra problems. In AAAT (2012).

20. Xiong, Y., and LaViola Jr., J. J. Technical section: A shortstraw-based
algorithm for corner finding in sketch-based interfaces. Comput. Graph.
34 (October 2010), 513-527.

21. Yang, C., Sharon, D., and van de Panne, M. Sketch-based modeling of
parameterized objects. In SIGGRAPH 2005 (2005).

22. Zeleznik, R. C., Bragdon, A., Liu, C.-C., and Forsberg, A.
Lineogrammer: creating diagrams by drawing. In UIST "08 (2008),
161-170.

