
Wearable Phased Arrays for Sound Localization and Enhancement

Sumit Basu, Steve Schwartz, and Alex Pentland

MIT Media Laboratory
E-mail: fsbasu,schwartz,sandyg@media.mit.edu

Abstract

We present the idea of a flexible phased array of mi-
crophones for wearable computers. We show how such an
array can be used for both source localization and signal
enhancement. As a result, it can help to solve two funda-
mental problems for audio input to wearables: determining
who is speaking when (user commands vs. nearby speech,
who is speaking in a conversation, etc.) and obtaining high-
quality audio without the use of a headset microphone. We
describe methods for learning the mapping between phase
delays and world coordinates without specifying the array
geometry and requiring minimal effort from the user. Last,
we describe an implementation we have built of such an ar-
ray using low-cost microphones and show some preliminary
results for source localizationand speaker-change detection.

1. Introduction

Audio is a critical input modality for wearable computers
– in its most obvious form, it allows us to give commands
to our systems without using our hands. In addition, we can
use it to record conversations, identifypeople by their voices,
and react to cues from the auditory environment. However,
to accomplish these tasks well, it is necessary to know who
is speaking when, or more generally, where the sound is
coming from (i.e., was that a command from the user or an
utterance from someone standing nearby?). Next, in order
to do speaker identification reliably, we need to know where
speaker changes occur, since identification is only possi-
ble when information is integrated over contiguous blocks
of speech (at least a half-second or so long) from a single
speaker. Furthermore, we would prefer not to encumber the
user with a headset microphone and at the same time get
high-quality audio input from sources other than the user.

As a possible solution to these problems, we propose the
notion of a flexible, wearable phased array of microphones.

On the hardware side, this simply means having a number
of omnidirectional microphones mounted around the body
(three microphones in our implementation). On the software
side, we can use computationally inexpensive signal process-
ing techniques to estimate the direction of arrival of sounds
and also enhance the signal to noise power ratio by N times
(where N is the number of microphones). Knowing where
the sound is coming from allows us to detect speaker changes
and distinguish speech from the users. Signal enhancement
allows us to get high-quality input without a close-talking
microphone. The computations are simple enough that we
can estimate the source direction and do the signal enhance-
ment in real time without taking up a significant fraction of
the CPU. While placing an array on the body does provide
some challenges not encountered in the traditional arrays
with fixed, known geometries, we will show how we can
deal with or not worry about most of them.

We have implemented a test version of our concept using
three microphones attached to the upper body, with which
we have seen that we can reliably determine the direction
of incoming sound, detect speaker changes, differentiate the
user’s speech from other sounds, and enhance the signal
quality. In the sections that follow, we will describe how
we achieved this state. We begin with the theoretical foun-
dations of direction estimation and signal enhancement, de-
scribe our setup and experiments, and finally show some
preliminary results from conversations analyzed using the
array. While more work is necessary to perfect the mech-
anisms presented, we believe the basic experiments already
show how useful a phased microphone array can be for a
wearable device.

2. Background and Methods

The concept of phased arrays is quite old – they have been
heavily used and developed since the early days of radar. A
guidebook such as [4] gives a complete description of various
geometries and methods. However, there are three assump-
tions typically made in this work that are not satisfied here.

1

Perceptual Computing
Sumit Basu, SteveSchwartz, and Alex Pentland. "Wearable Phased Arrays for Sound Localization and Enhancement." In Proceedings of the IEEE Int'l Symposium on Wearable Computing 2000 (ISWC '00). Atlanta, GA. October, 2000.

2

First, the signals dealt with in the radar/antenna community
are either of a known form (a pulse that is sent out and mod-
ified in parametric ways upon reflection) or within a small
frequency range. Second, the signals are coming from a
great distance, allowing for a “plane wave” assumption (i.e.,
the wavefronts appear as straight lines instead of circles be-
cause the source is so far away). Third, the array geometry
is assumed to be both known and fixed. In our case, we have
to deal with an unknown signal (usually speech) that has a
very wide spectral range and is often coming from nearby
(the user’s mouth!). To make the problem even worse, our
array geometry is unknown and constantly in motion.

Because speech does not satisfy the usual assumptions,
phased arrays have not been widely used for speech pro-
cessing. There are a number of works that do beamforming
(signal enhancement) with speech [2, 3, 5, 1], including [5],
who develop an array built into a pair of eyeglasses that do
fixed beamforming for a hearing aid. The use of arrays for
speech localization has been even more limited – there has
been some work by PictureTel and a handful of others such
as [3]. Last, as far as we know, there is no other work before
ours on building arrays on the body for source localization.

In the remainder of this section, we go through a brief
description of the theory behind the two problems of source
localization and beamforming and describe the methods and
approximations we have used to apply these mechanisms in
our work.

2.1. Sound Localization

The basic principle behind source localization with an ar-
ray is that the sound arrives at the different microphones
at different times. With enough microphones in a non-
pathological geometry, the mapping between source loca-
tions becomes one-to-one, and we can thus estimate the
position of the source exactly from only knowing the delays.
Typically, we will not have the number of mics nor the ge-
ometry to reliably pinpoint the source in 3D, but we will be
able to reasonably estimate its orientation in both azimuth
and elevation.

The basic tool for determining the delay between two
microphones is normalized cross correlation, n[k]. It can be
expressed as:

n[k] =

PN

i=1 s1[i]s2[i+ k]

(
PN

i=1 s
2
1[i])

2(
PN

i=1 s
2
2[i+ k])2

(1)

where s1[i] and s2[i] are the raw samples from the micro-
phones. This measure is guaranteed to be inside [�1; 1], and
can be interpreted as the cosine of the angle between the two
vectors s1[i] and s2[i + k]. This comes from the definition
of the inner product for two vectors a and b:

< a; b >=
X
i

a[i]b[i] = kakkbkcos� (2)

Solving for �, we achieve the expression above. There
are several interesting properties of this quantity. Since n[k]
reaches its maximum when s2 is precisely k elements ahead
of s1, we can use this k as our estimate of the delay:

d1;2 = arg max
k

n[k] (3)

Next, since audio has a good amount of low-frequency
energy (i.e., slowly varying waves), small shifts will not
drastically change the correlation, and thus we expect the
signal n[k] to be smooth in k. We can see that it is in figure 1
below.

0 20 40 60 80 100 120
0.2

0.1

0

0.1

0.2

0.3

0.4

0.5

delay (in samples)

co
rr

el
at

io
n

m
ag

ni
tu

de

Figure 1. The normalized correlation between
two microphone signals near the optimal lag.
Note the smoothness due to the typically
strong low-frequency content of speech.

The last important property is that when the signals are
different at the different microphones, the correlation value
will be close to zero. Thus when there is no coherent au-
dio source, even the maximum correlation will be quite low.
This acts as an important cue in our algorithm – when the
correlation magnitude across all lags falls below a certain
threshold, we assume there is no coherent source (or it is
overwhelmed by noise) and do not attempt to localize it.
(Note that in our more recent work, we have moved beyond
a simple threshold and are now using dynamic program-
ming to simultaneously decode source location and whether
a coherent source is present.)

Before we continue, there are two important parameters
that have been left out of the discussion: the correlation
length, N , and the range of the lags k over which we es-
timate n. The latter is simpler in that a given microphone
spacing and sampling rate will determine the minimum and

3

maximum lag possible. Since the speed of sound in air is
approximately 331 meters/second, at a 16 kHz sampling rate
sound moves approximately 2 cm per sample. For a spacing
of r cm, then, the maximum lag on one side is�r=2, and r=2
coming from the other direction, yielding a total lag range of
r+1 samples. ChoosingN is more tricky. If we choose too
long a window, we will smooth across speaker changes; with
too small a window, our estimates will be noisy and unreli-
able. Based on our experiments, we have found overlapping
windows of 1024 samples with a stepsize of 512 samples at
16 kHz are a good compromise, since the window is about
1/16th of a second (it is basically impossible to have utter-
ances shorter than this) and the stepsize gives us a frame rate
of about 32 per second. As a result, even a short “yeah” or
“uh-huh” gives us at least 10 frames to work with.

The reader may wonder at this point why the difficulty of
estimating this delay is even necessary for a wearable, when
it seems the voice of the speaker could be easily differentiated
based on magnitude (or even differential magnitude with
respect to a second microphone). This is not as powerful
for a number of reasons. First of all, in order to have the
magnitude be greater only for the user, the microphone must
basically be placed just in front of the mouth and thus leads
to an unwieldy headset-mic solution. Otherwise, a speaker
who is standing right in front of the user will appear as
loud, or perhaps louder, than the user, as we have found
empirically. Next, this method is basically incapable of
estimating source direction with any precision, since the
energy difference is not significant unless the source is right
by one of the microphones.

Returning to our development, we now consider what in-
formation we actually have when we detect a phase lag d

between two signals. In the 2D version shown in figure 2
below, we see that a constant difference between two fixed
points yields one side of a hyperbola (the other side is not rel-
evant since sound only propagates in a positive direction). In
3D, this is a hyperboloid (the hyperbola is rotated around the
axis connecting the two mics. If we have three microphones
arranged in a plane (as is the case in our implementation) ,
the surface of constraint from estimating the delay between
two pairs (the third pair is redundant) is the intersection of
two hyperboloids, which can be quite complex. Fortunately,
the hyperboloids asymptotically becomes cones, though the
intersection of cones can still be quite complicated to deter-
mine analytically (a line, parabola, two ellipses, etc.). Fur-
thermore, given that the spacing of the microphones is on the
order of 50 centimeters, we are often working in the region
where the asymptotes are poor approximations. Lastly, we
cannot even begin to solve for these surfaces if we do not
know the geometry of our array, which will be the case with
our wearable array.

d2
d1

d1-d2=constant

Figure 2. The hyperbola of constraint formed
by a known delay between two microphones.
The dotted lines represent asymptotes. Note
that the constraint only takes one branch of
the hyperbola since sound can only propa-
gate in a positive direction.

As a result, we propose to learn the mapping between the
two phase delays and the source direction. Note that in most
cases, the intersection of the two hyperboloids will result
in a parabola in space. Since our microphones will be in a
plane in the front of the user’s body, this parabola will be
going through the user’s body at its apex. Asymptotically,
this parabola will become a “V.” Because the user acts as an
acoustic shield, the half of the “V” behind the user is blocked,
and thus we can approximate the single asymptote with a 2D
source direction (azimuth and elevation). Though this is an
approximation, there is a significant advantage to learning
the mapping as opposed to defining it explicitly: we can
place the microphones anywhere we like. If our clothing
for a particular day makes it impossible to use our usual
configuration, we can simply move the mics and recalibrate.

To learn a mapping, we first must choose a model. At this
stage, we are using the simplest possible – a linear mapping
between delay space and 2D orientation, i.e.,

[� �]T = A[d1 d2]T (4)

Because there is no affine component to this model, we
need to make sure the point (0,0) is aligned with the user’s
body. Since the natural choice for the origin is the point di-
rectly in front of the user, we can easily get the data necessary
for this by having the user repeatedly snap his fingers in front
of his chest. We then use the cross-correlation mechanism
to estimate the delay and realign all three signals such that
the delay is zero for this orientation. Note that for this entire
calibration phase, we use a longer time window (20000 sam-
ples) to make sure all of the snaps are captured. Because we

4

are using multiple sound devices, these delays can be quite
different from run to run, so this initial front-snapping must
be done every time the system is started up.

At this point, the user steps through a sequence where
he snaps to his right, to his left, below his waist, and then
speaks a short utterance (all upon cue from the program).
We now have four labeled 2D [d1d2] pairs, [d1

1d
1
2] through

[d4
1d

4
2]. Writing the i; j element of A as aij, we can rewrite

equation 4 as

2
666664

d1
1 d1

2 0 0
0 0 d1

1 d1
2

d2
1 d2

2 0 0
0 0 d2

1 d2
2

...
...

...
...

3
777775

2
664

a11

a12

a21

a22

3
775 =

2
666664

�1

�1

�2

�2

...

3
777775

(5)

If we write this equation as Da = b, we can easily find
the least-squares solution for a as

â = (DTD)�1DT b (6)

Empirically, this mechanism has worked quite well for
mapping the delays to an actual source direction. We are
currently conducting experiments to quantitatively test the
accuracy of this mapping under various degrees of defor-
mation of the array. Note that since the microphones will
stay in the same place on the user’s wearable, we do not
need to relearn A from run to run – we only need to recal-
ibrate the overall phase between the microphones with the
front-snapping.

An important issue which we haven’t discussed thus far is
the actual placement of the microphones. As we mentioned
before, a pair spacing of r cm results in r + 1 samples
of resolution along that pair (at 16 kHz). There is also a
constraint on the maximum separation – the further apart
the microphones get, the more periods of a signal can exist
between the microphones. If the correlation range is r + 1
samples, the period of a harmonic sound must be greater than
this. Otherwise, it will have more than one peak within this
space and will cause aliasing in the phase delay (there will
now be more than one correlation peak of the same height
within the delay range). This lower bound on period length
translates to an upper bound on frequency. We can express
this as:

fmax =
fs

cr
(7)

where fs is the sampling frequency and cr is the number
of samples in the correlation range (r + 1). Furthermore, if
we examine where the cr comes from,

cr =
2l
vs
fs + 1 (8)

where l is the separation of the microphones (in meters)
andvs is the velocity of sound in air. The factor of two and the
one appear because the lag can go from a minimum of�l=vs
to a maximum of l=vs samples: although the propagation
delay along the line between the microphones is only l=vs
samples, the sound could be coming from either direction.
For periodic sounds, these effects go away, since the signal
is repeated in both directions. As a result, we can simply
write cr as l

vs
. When we combine this with equation 7, we

see that fmax is independent of the sampling frequency:

fmax =
vs

l
(9)

For our maximum spacing of 50cm and 16kHz sampling
frequency, this corresponds to a maximum frequency of 331
Hz. To prevent aliasing, we thus have to first lowpass filter
the signals at this frequency. This does not typically hurt our
performance for speech localization, since the adult human
voice typically falls within the 80 Hz to 400 Hz range, with
few speakers over 300Hz. Localizing higher pitched sounds
(children, singing, etc.), however, would not be possible with
this spacing. If we wish to increase this frequency range, we
need to decrease the microphone spacing, which will reduce
our correlation range cr (equation 8). However, increasing
the sampling frequency will increase the correlation range
again without affecting fmax. As a result, we can have both
an arbitarily high cutoff frequency and an arbitrarily large
correlation range if we can bring the mics arbitrarily close
together (which we wish to do anyway) and sample at an
arbitrarily high rate. The only downside of the latter is the
increased computational load.

A bigger problem is that we would like to keep the array
in a reasonably fixed geometry with respect to the body so
that we can hope to apply the mapping learned above. Un-
fortunately, the size of the body is limited, and the size of the
part of the body that is fixed (the torso) is smaller yet. We
maximized the use of this space by placing the microphones
on the shoulders and near the beltline as shown in figure 3
below. Because the shoulder mics are only about 25 cen-
timeters or so apart, we do not get very good resolution in
the horizontal direction. However, as our experiments show,
the resolution is sufficient to separate two other speakers in
a conversation who are within 60 degrees of each other. Be-
cause the user’s mouth is at maximal phase with respect to
one of the pairs, it is quite easy to pick out the speech from
the user.

Another issue which we have already touched on is the
fact that the array is always in motion in two senses. First

5

of all, the microphones are moving relative to each due to
the user shifting his shoulders, his clothing moving around,
etc. Secondly, the array is moving as a whole when the
user turns his body to face a different speaker, when he is
walking, etc. The first issue is not too much of a problem
– the relative motion of the microphones rarely seemed to
outweigh the noise in the delay estimation, which is at least
one or two samples. This is due to the fact that the sound
is moving at 2 cm per sample, so even if the microphone
moves within a radius of 4 cm, the delay will only shift by
a maximum of 2 samples. However, the motion of the array
is a whole is more vexing – it becomes quite difficult to
identify different speakers by their location if their location
signal keeps changing.

As a result, we cannot depend on the phase to identify
a speaker and must depend on speaker identification tech-
niques. As we mentioned earlier, such techniques require
long (a half-second or more) chunks of contiguous speech in
order to perform well, since they can only provide reliable
information when integrating log-likelihoods over a good
number of samples. Otherwise, the overlap in features from
speaker to speaker makes classification impossible. In other
words, for speaker ID to work, it needs a signal that tells it
when a speaker change occurs. We can provide precisely this
cue from our system by looking for “jumps” in the source
direction. In order to find these jumps, we look for a change
in the mean over a sliding window of 80 frames (40 on each
side) – if the mean on one side of the window differs from the
mean on the other side by a threshold, we mark a potential
speaker change. Figures illustrating this process are shown
in the experiments section below. We are currently devel-
oping a more accurate means of tracking changes which we
will give a preliminary overview and demonstration of in our
results section.

Note that we should be able to use speaker ID methods
even if we do not know the speakers a priori. When we find
a contiguous chunk of a sufficient length, we could build a
new model for it. When the next chunk appears, we could
then compare it to all the models we have from before. If it
matches one of the previous models, we can incorporate it
into the model; otherwise, we could begin a new model.

There are some remaining difficulties in the source local-
ization problem. The most significant among these is that of
reflections. When the user is standing close to a hard surface
such as a whiteboard, each signal hits the microphones twice
– once from the source, and once from the reflection. As
a result, two distinct (and often equal) phase peaks appear.
There are several simple solutions to this problem. Since
the distance to the source is always shorter than the reflected
distance, the first occurence (i.e., the peak closer to the zero
lag) is always the actual source. As long as the dual nature of

the peak can be detected, this issue can be resolved. We hope
to incorporate this capability in a later version of our system.
Thus far, we have only encountered one situation when this
was a problem (the user was right next to a whiteboard) and
expect it will not occur that often.

2.2. Beamforming

The concept behind beamforming (signal enhancement
with an array) is quite simple. The basic idea is to align
the signals and add them up. Since we have already found
the delays between the signals for the source localization
methods above, this is straightforward for us to do. The
remaining question is how much it actually buys us.

Let us assume we have already aligned the signals, so the
three inputs to be summed are s1 = s + n1, s2 = s + n2,
and s3 = s + n3. In general, the noise signals n will be
uncorrelated with each other – basically, it is the sum of the
air moving around the microphones and all the other sources
in the room, which are all coming in at different phases from
the source, and are thus uncorrelated with each other when
shifted by delay for the source direction. Of course, if the
noise sources are directional and of low enough frequency,
they will not be completely uncorrelated from each other
despite the phase shift, but will be less correlated than the
source itself. To simplify the calculation, though, let us
consider the typical case of completely uncorrelated noise.
In that case, the sum of the signals is

3s+ n1 + n2 + n3 (10)

When a signal is multiplied by a constant, its variance
(power) goes up as the square of the constant. However,
when uncorrelated variables are summed, their variances
simply add. Thus, if the noise signals are all of the same
power, the power of the signal is going up by a factor of nine
while the power of the noise is only going up by a factor of
three. In general, with uncorrelated noise signals, we see this
n-fold increase in signal-to-noise power when we combine
n signals.

3. Experimental Setup

For the experiments in the next section, we put together
our first version of a wearable phased array shown in figure 3.
The microphones are low-power omnidirectional Gentek el-
ements (approximately $12 apiece) mounted in rubber cap-
sules and attached to the vest with velcro. The circuit boards
they are attached to come from Telex M-560 USB micro-
phones (approximately $60 apiece) – we simply removed
their original microphone elements and replaced them with

6

the Gentek elements. We did this because of the omnidirec-
tional magnitude response and extremely flat phase response
as opposed to the directional element shipped with the Telex.
We originally chose the USB microphone path because of
its low cost and its practicality for wearables. Also, they are
low-enough power that they can be used with tiny USB hubs
that do not require external power. Furthermore, three mi-
crophones at 16 kHz only occupy 0.77 Mbits of bandwidth,
less than a tenth of the 7-12 Mbit range of USB buses.

Unfortunately, there are a number of aspects to the current
performance of USB microphones that have driven us away
from this solution in our recent work. The first issue is with
the Telex USB converters themselves, which we were aware
of at the time of submission. These devices do not produce
data at precisely 16 kHz, but instead at rates “close” to 16
kHz – most likely the result of using cheap oscillators. Since
this is different for each microphone, it causes a slow drift
between microphones which becomes noticeable after a few
seconds of data. However, it is not difficult to compensate
for these rates (as we have done in the paper) if they are
constant. However, since the time of the submission, we
have discovered that these rates are temperature sensitive
as well, which makes it necessary to calibrate these rates on
every run. Worst of all, very recently we have found in longer
term experiments that the microphones will drop samples –
often 20 samples at a time. While this is not a significant
effect for single microphone applications, it is fatal for delay
estimation, since the phase delay between the microphones
is now changing arbitrarily. As a result, we have moved
away from USB audio and are putting together a new system
using a small laptop’s internal sound card (stereo line-in)
and an additional PC sound card, allowing for a total of four
input channels.

For the experiments in this paper, the rig was worn by
a user, but the microphones were plugged into a desktop
machine (a dual-processor 600 Mhz Pentium III running
Windows 2000). The phase-estimation code only consumed
8% of the total CPU on this machine, and on separate tests
consumed about 25% of the CPU on the Sony Picturebook
(300 MHz Pentium I) which we are using as the wearable
platform for this application. The relatively low computa-
tional load is due to our heavy usage of the Intel MMX/SIMD
operations through the Intel Performance Libraries, which
optimizes operations such as normalized correlation.

4. Experiments and Results

For the experiments, a user wore the vest and partici-
pated in three conversations, each involving three people
(including the user). The conversations varied in length
from two minutes to twelve minutes, and the estimation and

Figure 3. Initial implementation of wearable
phased array.

sampling rate compensation mechanisms worked reliably
throughout these intervals. This was an unrestricted con-
versation and thus was filled with interruptions and small
interjections (such as “uh-huh” and “yeah”). The system
catches about 70% of all speaker changes (if we include the
interjections as speaker changes) and 85% of long-segment
changes (segments longer than 1 second). Only 5% of the
reported changes were false alarms. We can see some ex-
amples of this in the two minutes of speech shown in the
sequence below. Figure 4 shows the phase estimates for
frames where the peak correlation energy was greater than
0.5.

Figure 5 shows the noisy lag signals plotted against each
other. The three distinct clusters for the three speakers are
clear. Finally, Figure 6 shows the system’s estimates of
speaker change locations (vertical lines) superimposed on
the raw lag values.

This is a fairly typical example from our data – the three
speakers were separated reliably, and regions of speech vs.
silence (via the correlation magnitude) were also accurately
identified. There is one error at the 1150 mark, where there
is another speaker change (which lasted for 1 second), but
the mean-window approach we are currently using often
smooths over such very short speaker segments.

While the mean-window approach is very simple to com-
pute, this smoothing effect is not acceptable if we want to
capture short-duration speaker changes. As a result, we
have been developing a more sophisticated algorithm based
on dynamic programming that uses the history of raw cor-
relation values at each possible phase delay to determine

7

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

es
tim

at
ed

 d
el

ay
 (

in
 s

am
pl

es
)

be
tw

ee
n

m
ic

1
an

d
m

ic
2

frame number (framestep=512 samples)

Figure 4. Raw lag values between two micro-
phones.

20 30 40 50 60 70 80 90

20

30

40

50

60

70

80

es
tim

at
ed

 d
el

ay
 (

in
 s

am
pl

es
)

be
tw

ee
n

m
ic

1
an

d
m

ic
3

estimated delay (in samples) between mic1 and mic2

Figure 5. The two lag values plotted against
each other. Note the clear emergence of the
three clusters for the three speakers.

the most likely path between sound positions and silences.
Though we have only tested this on a small amount of data,
it seems to be far more effective, capturing more than 95%
of speaker changes (including interjections), and is capable
of reliably separating speakers that are much closer together
(only 30 degrees apart). An example of this algorithm’s
performance is shown in figure 7. The dotted line shows
the decoded path, and the jumps in the line signify speaker
changes. This segment corresponds to 10 seconds of speech
with 7 speaker changes, all of which are completely caught
by the algorithm. The short utterances include laughter and
a 1/3 second interjection. We will present the details of this
algorithm in a later paper.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

frame number (framestep=512 samples)

es
tim

at
ed

 d
el

ay
 (

in
 s

am
pl

es
)

be
tw

ee
n

m
ic

1
an

d
m

ic
2

Figure 6. Speaker change detections using
the original mean-window algorithm overlaid
on the raw lag values. All are correct; how-
ever, the system missed a speaker change at
1150 due to the brevity of the utterance (1 sec-
ond).

5. Future Work

There are variety of directions in which we wish to extend
this work. First and foremost, we wish to continue work on
the new tracking algorithm and formalize the preliminary
results by running more tests on labeled data. In addition,
we have a number of ideas for further improvements and ex-
tensions to our methods. The first and simplest is to increase
the sampling rate. As we showed earlier, this will allow
us to bring the microphones closer together (and as a result
increase the cutoff frequency) and increase the correlation
range. If we sample all three microphones at 44.1kHz, we
only consume 2.1Mbits of bandwidth. This would increase
the processing load as well (since we would be using longer
windows), but we could increase the stepsize between frames
and sacrifice time resolution for phase accuracy at a constant
computational load.

Other obvious extensions include implementing solutions
to the multipath problem, trying nonlinear models to map
between the phase delays and source directions, develop-
ing the speaker ID component, and building a user interface
to browse the conversational data. A final project we are
interested in pursuing is integrating a wide-angle wearable
camera with this work. We could then learn the mapping
between pixels in the camera and phase delays. When we
detect speech from a particular source direction, we could
then use flesh-finding techniques (as in [6]) to find the face
associated with the sound. This could be a significant aid
to the speaker recognition task. In addition, we could au-
tomatically take pictures of sound sources as we walked by

8

3100 3150 3200 3250 3300

10

15

20

25

30

35

40

45

frame number (framestep=512 samples)

de
la

y
(in

 s
am

pl
es

)

Figure 7. Speaker change detections us-
ing the new dynamic programming algo-
rithm overlaid on the raw cross-correlogram.
Darker values on the cross-correlogram sig-
nify higher correlation values. The contigu-
ous line segments correspond to different
speakers. Ten seconds of speech are shown;
all seven speaker changes are caught by the
algorithm, including a 1/3 second interjection.

them, thus using source direction as an interesting means of
attentive foveation for our wearables.

6. Conclusions

We have presented the idea of a flexible phased array for
wearable computers. We have shown how such an array can
be used to estimate the direction of the sound source and
enhance the signal-to-noise ratio of the sound – solutions
to two problems that are fundamental for unencumbered
audio input and auditory scene analysis for wearables. We
have shown how this array can be placed arbitrarily on the
body, how it can be calibrated with respect to the user’s body
with minimal user effort (a 15-second snapping session), and
how it can be effective despite small changes in the array
geometry due to user motion. We have built and described
a test implementation of the wearable array with low-cost
microphones and have successfully used it to detect speaker
changes in a conversational setting. While there is a clear
need for a more formal set of experiments to fully assess and
optimize the performance of this system, we feel it is already
clear that a phased array can be a very powerful mechanism
for audio input and auditory analysis of the environment for
wearable computers.

Acknowledgements: Many thanks to the reviewers for
their detailed and insightful comments.

References

[1] S. Basu, M. Casey, W. Gardner, A. Azarbayejani, and A. Pent-
land. “Vision-Steered Audio for Interactive Environments”. In
Proceedings of IMAGE’COM, Bordeaux, France, May 1996.

[2] H. Cox. Robust adaptive beamforming. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 35(10):1365–1376,
1987.

[3] F. Khalil, J. Jullien, and A. Gilloire. Microphone array for
sound pickup in teleconference systems. Journal of the Audio
Engineering Society, 42(9):691–699, 1994.

[4] P. Mailloux. Phased Array Antenna Handbook. Artech House,
Boston, 1994.

[5] R. Stadler and W. Rabinowitz. On the potential of fixed arrays
for hearing aids. Journal of the Acoustical Society of America,
94(3):1332–1342, 1993.

[6] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland. Pfinder:
Real-time tracking of the human body. IEEE Trans. Pattern
Analysis and Machine Intelligence, 19(7):780–785, July 1997.

