
Inductive Programming Meets the Real World

Sumit Gulwani José Hernández-Orallo Emanuel Kitzelmann

Stephen H. Muggleton Ute Schmid Benjamin Zorn

Since most end users lack programming skills they often
spend considerable time and effort performing tedious and
repetitive tasks such as capitalizing a column of names man-
ually. Inductive Programming has a long research tradition
and recent developments demonstrate it can liberate users
from many tasks of this kind.

Key insights

• Real-world applications emerge with spreadsheet
tools, scripting, and intelligent program tutors.

• Learning from few examples is possible because users
and systems share the same background knowledge.

• Search is guided by domain-specific languages and
the use of higher-order knowledge.

Much of the world’s population use computers for every-
day tasks, but most fail to benefit from the power of com-
putation due to their inability to program. Most crucially,
users often have to perform repetitive actions manually be-
cause they are not able to use the macro languages which
are available for many application programs. Recently, a
first mass-market product was presented in the form of the
Flash Fill feature in Microsoft Excel 2013. Flash Fill al-
lows end users to automatically generate string processing
programs for spreadsheets from one or more user-provided
examples. Flash Fill is able to learn a large variety of quite
complex programs from only a few examples because of in-
corporation of inductive programming methods.

Inductive Programming (IP) is an inter-disciplinary do-
main of research in computer science, artificial intelligence,
and cognitive science that studies the automatic synthesis of
computer programs from examples and background knowl-
edge. IP developed from research on inductive program syn-
thesis, now called inductive functional programming (IFP),
and from inductive inference techniques using logic, nowa-
days termed inductive logic programming (ILP). IFP ad-
dresses the synthesis of recursive functional programs gener-
alized from regularities detected in (traces of) input/output
examples [42, 20] using generate-and-test approaches based
on evolutionary [35, 28, 36] or systematic [17, 29] search
or data-driven analytical approaches [39, 6, 18, 11, 37, 24].
Its development is complementary to efforts in synthesizing
programs from complete specifications using deductive and
formal methods [8].

ILP originated from research on induction in a logical
framework [40, 31] with influence from artificial intelligence,
machine learning and relational databases. It is a mature
area with its own theory, implementations, and applications

and recently celebrated the 20th anniversary [34] of its in-
ception as an annual series of international conferences.

Over the last decade Inductive Programming has attracted
a series of international workshops. Recent surveys [7, 19,
14] reflect the wide variety of implementations and applica-
tions in this area.

In the domain of end-user programming, programming by
demonstration approaches were proposed which support the
learning of small routines from observing the input behavior
of users [5, 25, 23]. The above-mentioned Microsoft Ex-
cel’s sub-system Flash Fill provides an impressive illustra-
tion that program synthesis methods developed in IP can
be successfully applied to gain more flexibility and power
for end-user programming [9, 11]. Further applications are
being realized for other desktop applications (for example,
PowerShell scripting in the ConvertFrom-String cmdlet [2])
as well as for special-purpose devices such as home robots
and smartphones.

In this paper, several of these current applications are
presented. We contrast the specific characteristics of IP with
those of typical machine learning approaches and we show
how IP is related to cognitive models of human inductive
learning. We finally discuss recent techniques —such as use
of domain-specific languages and meta-level learning— that
widen the scope and power of IP and discuss new challenges.

1. REAL-WORLD APPLICATIONS
Originally, IP was applied to synthesizing functional or

logic programs for general purpose tasks such as manipulat-
ing data structures (e.g., sorting or reversing a list). These
investigations showed that small programs could be synthe-
sized from a few input/output examples. The recent IT rev-
olution has created real-world opportunities for such tech-
niques. Most of today’s large number of computer users
are non-programmers and are limited to being passive con-
sumers of the software that is made available to them. IP
can empower such users to more effectively leverage comput-
ers for automating their daily repetitive tasks. We discuss
below some such opportunities, especially in the areas of
End-user Programming and Education.

1.1 End-User Programming
End users of computational devices often need to create

small (and perhaps one-off) scripts to automate repetitive
tasks. These users can easily specify their intent using ex-
amples, making IP a great fit. For instance, consider the
domain of data manipulation. Documents of various types,
such as text/log files, spreadsheets, and webpages, offer their



creators great flexibility in storing and organizing hierarchi-
cal data by combining presentation and formatting with the
underlying data model. However, this makes it extremely
hard to extract the underlying data for common tasks such
as data processing, querying, altering the presentation view,
or transforming data to another storage format.

Existing programmatic solutions to manipulating data (such
as Excel macro language, regular expression libraries inside
Perl/Python, and JQuery library for Javascript) have three
key limitations. First, the solutions are domain-specific and
require expertise in different technologies for different docu-
ment types. Second, they require understanding of the entire
underlying document structure including the data fields the
end-user is not interested in (some of which may not even
be visible in the presentation layer of the document). Third,
and most significantly, they require knowledge of program-
ming. As a result, users have to resort to manual copy-paste,
which is both time consuming and error prone.

Ana Trujillo
357 21th Place SE
Redmond, WA
(757) 555-1634

Antonio Moreno
515 93th Lane
Renton, WA
(411) 555-2786

Thomas Hardy
742 17th Street NE
Seattle, WA
(412) 555-5719

Christina Berglund
475 22th Lane
Redmond, WA
(443) 555-6774

Hanna Moos
785 45th Street NE
Puyallup, WA
(376) 555-2462

Frederique Citeaux
308 66th Place
Redmond, WA
(689) 555-2770

(a)

Label 1 Label 2 Label 3

Ana Trujillo Redmond (757) 555-1634
Antonio Moreno Renton (411) 555-2786
Thomas Hardy Seattle (412) 555-5719
Christina Berglund Redmond (443) 555-6774
Hanna Moos Puyallup (376) 555-2462
Frederique Citeaux Redmond (689) 555-2770

(b)

PairSeq SS ::= LinesMap(λx:Pair(Pos(x,p1),Pos(x,p2)),LS)

| StartSeqMap(λx:Pair(x, Pos(R0[x:], p)), PS)

LineSeq LS ::= FilterInt(init, iter, BLS)

BoolLineSeq BLS ::= FilterBool(b, split(R0, ‘\n’))

PositionSeq PS ::= LinesMap(λx:Pos(x, p), LS)

| FilterInt(init, iter, PosSeq(R0, rr))

Pred b ::= λx:{Starts,Ends}With(r, x) | λx:Contains(r, k, x)

(c)

Figure 1: FlashExtract [24]: A framework for extracting
data from documents of various kinds such as text files and
web pages using examples. Once the user highlights one or
two examples of each field in the textfile in (a), FlashEx-
tract extracts more such instances and arranges them in a
structured format in the table in (b). This is enabled by syn-
thesis of a program in the domain-specific language (DSL)
in (c) that is consistent with the examples in (a) followed by
execution of that program on the textfile in (a).

Inductive synthesis can help out with a variety of data ma-
nipulation tasks. These include: (a) Extracting data from
semi-structured documents including text files, web pages,
and spreadsheets [24] (as in Fig. 1). (b) Transformation
of atomic data types such as strings [9] (as in Fig. 2) or
numbers. Transformation of composite data types such as
tables [11] and XML [36]. (c) Formatting data [37]. Com-
bining these technologies in a pipeline of extraction, trans-
formation, and formatting can allow end users to perform
sophisticated data manipulation tasks.

Figure 2: Flash Fill [9]: An Excel 2013 feature that
automates repetitive string transformations using exam-
ples. Once the user performs one instance of the de-
sired transformation (row 2, col. B) and proceeds to trans-
forming another instance (row 3, col. B), Flash Fill learns
a program Concatenate(ToLower(Substring(v,WordToken,1)),
“ ”, ToLower(SubString(v,WordToken,2))), which extracts the
first two words in input string v (col. A), converts them
to lowercase, and concatenates them separated by a space
character, to automate the repetitive task.

Example
Problem
⇓

sinA

1 + cosA
+

1 + cosA

sinA
= 2 cscA

Generalized
Problem
Template
⇓

T1A

1± T2A
+

1± T3A

T4A
= 2 T5A

where Ti ∈ {cos, sin, tan, cot, sec, csc}

New
Similar
Problems

cosA

1− sinA
+

1− sinA

cosA

cosA

1− sinA
+

1− sinA

cosA

cosA

1− sinA
+

1− sinA

cosA
=== 2 tanA2 tanA2 tanA

cosA

1 + sinA
+

1 + sinA

cosA

cosA

1 + sinA
+

1 + sinA

cosA

cosA

1 + sinA
+

1 + sinA

cosA
=== 2 secA2 secA2 secA

cotA

1 + cscA
+

1 + cscA

cotA

cotA

1 + cscA
+

1 + cscA

cotA

cotA

1 + cscA
+

1 + cscA

cotA
=== 2 secA2 secA2 secA

tanA

1 + secA
+

1 + secA

tanA

tanA

1 + secA
+

1 + secA

tanA

tanA

1 + secA
+

1 + secA

tanA
=== 2 cscA2 cscA2 cscA

sinA

1− cosA
+

1− cosA

sinA

sinA

1− cosA
+

1− cosA

sinA

sinA

1− cosA
+

1− cosA

sinA
=== 2 cotA2 cotA2 cotA

Figure 3: Problem generation for algebraic proof problems
involving identities over analytic functions. A given problem
is generalized into a template and valid instantiations are
found by testing on random values for free variables.

1.2 Computer-aided Education
Human learning and communication is often structured

around examples —be it a student trying to understand or
master a certain concept using examples, or be it a teacher
trying to understand a student’s misconceptions or provide
feedback using example behaviors. Example-based reason-
ing techniques developed in the inductive synthesis commu-
nity can help automate several repetitive and structured
tasks in education including problem generation, solution
generation, and feedback generation [10]. These tasks can



be automated for a wide variety of STEM subject domains
including logic, automata theory, programming, arithmetic,
algebra, and geometry. For instance, Fig. 3 shows the output
of an inductive synthesis technique for generating algebraic
proof problems similar to a given example problem.

1.3 Future opportunities
We have described important real world applications of

IP. We believe there are many other domains to which IP
can and will be applied in the near future. Any domain
in which a set of high-level abstractions already exists is
a strong candidate for IP. For example, the If This Then
That (IFTTT) service (http://ifttt.com/), which allows
end users to express small rule-based programs using triggers
and actions, is an excellent candidate for application of IP.
IFTTT programs connect triggers (such as I was tagged in
a photo) with actions (send an email) over specific channels
such as Facebook. In such a domain, IP can be used to
learn programs from examples of a user doing the task. For
instance, it can learn a program to send a text message
every time a smartphone user leaves work for home. Looking
further ahead, automatically building robot strategies from
user provided examples [31] is a promising new direction for
IP.

As the frameworks to build IP-based solutions mature,
including meta-synthesis frameworks that simplify the pro-
cess of building synthesizers (see section 3.2), it will become
easier for developers to create new IP-empowered applica-
tions. Currently developers must 1) design a domain-specific
language that encodes domain knowledge suitable for the
task, 2) capture user intent by extracting examples, and
3) search the large space of programs represented by the
domain-specific language (DSL) to find those that satisfy
the constraints established by the examples, and then rank
them to find the one likely intended by the user. In the fu-
ture, just as compiler generation frameworks such as lex and
yacc simplify compiler development, we believe IP frame-
works will simplify the synthesis problem.

2. IP VS. MACHINE LEARNING
IP is concerned about making machines learn programs

automatically and can hence be considered another machine
learning paradigm. So, what is distinctive about inductive
programming? Table 1 outlines a series of differences, some
of which we discuss below.

We will also use a running example to indicate some of
the features about IP. Fig. 4 shows an illustrative appli-
cation where the goal is to identify repetitive patterns and
rules about a user’s personal contacts. The IP system learns
an easy rule stating that the user’s boss must be added to
her circles and a more complex one that states that any
person who is married to a family member should also be
added to her circles. There we can see some of the distinctive
features of IP systems, such as the small number of exam-
ples, the kind and source of data, the role of background
knowledge, the interaction and feedback from the user, the
use of a common declarative language, the use of recursion,
and the comprehensibility and expressiveness of the learned
patterns. Though machine learning and IP are quite com-
plementary, they can also work well together. For instance,
if IP generates multiple programs that are consistent with
the provided examples, then machine learning can be used
to rank such programs [12].

2.1 Small data
As collecting and storing data is becoming cheaper, it is

easy to gain the impression that the only interesting datasets
nowadays involve big data. However, datasets from a single
user’s interaction with whatever kind of device are usually
quite small, such as the amount of data gathered about a
person’s agenda, as shown at the top of Fig. 4.

Figure 4: An example of the interaction with an IP system
and the key role of the background knowledge. A user inter-
acts with several devices about his/her agenda and contact
groups. The system gathers a collection of facts, rules and
operators into its background knowledge. From this back-
ground knowledge and a few examples, the system is able
to infer new rules that —once validated— can be used to
enlarge the background knowledge and also to make recom-
mendations or suggest choices for the user.

It is well known that learning from small numbers of ex-
amples is more difficult and unreliable than learning from
lots of data. The fewer examples we have, the more prone
we are to overfitting, especially with expressive languages.
IP is particularly useful when the number of examples is
small but the hypothesis space is large (Turing-complete).

2.2 Declarative representation
Most (statistical) machine learning techniques are based

on probabilities, distances, weights, kernels, matrices, etc.
None of these approaches, except for techniques based on
(propositional) decision trees and rules, are declarative, i.e.,



Table 1: A simplified comparison between Inductive Programming and other machine learning paradigms

Inductive Programming Other Machine Learning Paradigms

Number of examples Small. Large, e.g. big data.

Kind of data Relational, constructor-based datatypes. Flat tables, sequential data, textual data, etc.

Data source Human experts, software applications, HCI,
etc.

Transactional databases, Internet, sensors
(IoT), etc.

Hypothesis language Declarative: general programming languages
or domain-specific languages.

Linear, non-linear, distance-based, kernel-
based, rule-based, probabilistic, etc.

Search strategy Refinement, abstraction operators, brute-
force.

Gradient-descent, data partition, covering,
instance-based, etc.

Representation learning Higher-order and predicate/function inven-
tion.

Deep learning and feature learning.

Pattern comprehensibility Common. Uncommon.

Pattern expressiveness Usually recursive, even Turing-complete. Feature-value, not Turing-complete.

Learning bias Using background knowledge and constraints. Using prior distributions, parameters and
features.

Evaluation Diverse criteria, including simplicity, compre-
hensibility and time/space complexity.

Oriented to error (or loss) minimisation.

Validation Code inspection, divide-and-conquer debug-
ging, background knowledge consistency.

Statistical reasoning (only a few techniques
are locally inspectable).

expressed as potentially comprehensible rules. Hence, an-
other distinctive feature of IP is that it uses a rich sym-
bolic representation, as hypotheses are usually declarative
programs.

The declarative approach permits the use of a single lan-
guage to represent background knowledge, examples and hy-
potheses, as shown in Fig. 4. Apart from the accessibility of
one single language for the (end-)user, knowledge can be in-
spected, revised and integrated with other sources of knowl-
edge much more easily. As a result, incremental, cumulative
or life-long learning becomes easier [14]. For instance, NELL
(Never-Ending Language Learner) [3] uses an ILP algorithm
that learns probabilistic Horn clauses.

Nowadays, many languages in IP are hybrid such as func-
tional logic programming languages, logic programming with
types and higher-order constructs, constraints, probabilities,
etc. The logic (ILP) vs functional (IFP) debate has also been
surpassed recently by the breakthrough of domain-specific
languages (DSL), which are usually better suited for the ap-
plication at hand, as we will discuss in Section 3.1.

2.3 Refinement and abstraction
Another particular issue about IP is the way the hypothe-

sis space is arranged by properly combining several inference
mechanisms such as deduction, abduction and induction.
Many early IP operators were inversions of deduction opera-
tors, leading to bottom-up and top-down approaches, where
generalization and specialization operators, respectively, are
used [34]. More generally, refinement and abstraction oper-
ators, including the use of higher-order functions, predicate
and function invention, can be defined according to the op-
erational semantics of the language.

This configures many levels between merely extensional
facts and more intensional knowledge, leading to a hierar-
chical structure. Actually, the use of the same representation
language for facts, background knowledge and hypotheses,
as illustrated in Fig. 4, facilitates this hierarchy.

2.4 Deep knowledge
Because of the abstraction mechanisms and the use of

background knowledge, IP considers learning as a knowl-
edge acquisition process. In Fig. 4, for instance, inductive
programming has access to some information about contact
groups as well as relationships between the contacts (such
as family bonds or work hierarchies). Such knowledge is
known as background knowledge and works as a powerful ex-
plicit bias to reduce the search space and to find the right
level of generalization.

Knowledge can be considered deep if it references lower
level definitions, including recursively referencing itself. Rep-
resentation of such structured and deep knowledge is achieved
by programming languages that feature variables, rich oper-
ational semantics and, most especially, recursion. Recursion
is a key issue in inductive programming [42, 31, 39, 20]. Note
that both the background knowledge and the new hypothesis
in the example of Fig. 4 are recursive.

This is in contrast to other machine learning approaches
where background knowledge has only the form of prior
distributions, probabilities or features. The difference is
also significant with other non-symbolic approaches to deep
learning [1], a new approach in machine learning where more
complex models and features are also built in a hierarchical
way, but data, knowledge and bias are represented differ-
ently.

2.5 Purpose and evaluation
In other machine learning approaches, hypotheses are mea-

sured by different metrics accounting for a degree of error.
The purpose of IP is not just to maximize some particular
error metric, but to find meaningful programs that are oper-
ational, according to the purpose of the IP application. This
usually implies that they have to be consistent with most of
(if not all) the data but also with the background knowl-
edge and other possible constraints. Also, as hypotheses are
declarative (and possibly recursive), the evaluation is more
diverse, including criteria such as simplicity, comprehensi-
bility, coherence and time/space complexity.



3. RECENT TECHNIQUES
IP is essentially a search problem, and can benefit from

techniques developed in various communities. We present
below certain classes of techniques used in recent IP work.

3.1 DSL synthesizers
Domain-specific languages (DSL) have been introduced in

the IP scenario under the following methodology:

1. Problem Definition: Identify a vertical domain of tasks
and collect common scenarios by studying help forums
and conducting user studies.

2. Domain-specific language (DSL): Design a DSL that is
expressive enough to capture several real-world tasks in
the domain, but also restricted enough to enable efficient
learning from examples. Fig. 1(c) describes one such DSL
for extracting data from textfiles. (The full version of this
DSL along with its semantics is described in [24].) This
DSL allows for extracting a sequence of substrings using
composition of filter and map operations.

3. Synthesis Algorithm: Most of these algorithms work by
systematically reducing the problem to the synthesis of
sub-expressions of the original expression (by translat-
ing the examples for the expression to the examples for
the sub-expressions). These algorithms typically end up
computing a set of DSL programs.

4. Ranking: Rank the various programs returned by the
synthesizer perhaps using machine learning techniques.

The above methodology has been applied to various domains
including the transformation of syntactic strings [9, 30], se-
mantic strings, numbers, and tables [11].

3.2 Meta-synthesis frameworks
Domain-specific synthesizers (as opposed to general pur-

pose synthesizers) offer several advantages related to effi-
ciency (i.e., the ability to synthesize programs quickly) and
ranking (i.e., the ability to synthesize intended programs
from fewer examples). However, the design and develop-
ment of a domain-specific synthesizer is a non-trivial pro-
cess requiring critical domain insights and implementation
effort. Furthermore, any changes to the DSL require making
non-trivial changes to the synthesizer.

A meta-synthesis framework allows easy development of
synthesizers for a related family of DSLs that are built using
the same core set of combinators. Building such a framework
involves the following steps:

1. Identify a family of vertical task domains which allow a
common user interaction model.

2. Design an algebra for DSLs. A DSL is an ordered set of
grammar rules (to model ranking).

3. Design a search algorithm for each algebra operator such
that it is compositional and inductive.

Meta-synthesis frameworks can allow synthesizer writers to
easily develop domain-specific synthesizers, similar to how
declarative parsing frameworks allow a compiler writer to
easily write a parser. The FlashExtract framework [24] and
the Test Driven Synthesis framework [36] allows easy de-
velopment of synthesizers for extracting and transforming
data from documents of various types such as text files, web
pages, XML documents, tables and spreadsheets. Fig. 1(c)
describes a DSL that is composed of Filter and Map oper-
ators, which are supported by the FlashExtract framework.

The FlashExtract framework is thus able to automatically
construct an efficient synthesis algorithm for this DSL.

3.3 Higher-order functions
Higher-order functions are a possibility to provide a bias

when searching for hypotheses. In contrast to DSLs, higher-
order functions do not tailor IP to a predefined domain, but
instead provide common patterns for processing recursive
(linked) data as background knowledge to the IP system.
For instance, the fold higher-order function (also known as
reduce) iterates over a list of elements and combines the el-
ements by applying another function which is also given as
a parameter to the fold. For example, fold (+) [1, 2,

3, 4] would combine the numbers in the list with the plus
function and return 10. Rather than learning a recursive
function, the IP system then only needs to pick the suit-
able higher-order function and instantiate it appropriately.
One of the first systems which made use of higher-order
functions in IP was MagicHaskeller [17], which generates
Haskell functions from a small set of positive inputs. The
generated programs are instantiations of a predefined set of
higher-order functions such as fold. An extension of the
analytical IP system Igor2, also implemented in Haskell,
takes a similar approach. In contrast to [17], which finds
programs by enumeration, Igor2 analyzes the given data to
decide which higher-order function fits. The argument func-
tion to instantiate the higher-order function is either picked
from background knowledge or, if not existing, is invented as
an auxiliary function. The use of this technique not only re-
sults in a speed-up of synthesis but also enlarges the scope of
synthesizable programs [15]. An example for induction with
higher-order functions in given in Fig. 5. Finally, Hender-
son [13] proposed to use higher order to constrain and guide
the search of programs for cumulative learning where func-
tions induced from examples are abstracted and can then
be used to induce more complex programs. Unlike a DSL,
higher-orderness does not restrict IP to a predefined domain,
instead it guides search.

reverse x = fold f [] x

f x0 [] = [x0]

f x0 (x1 : xs) = x1 : f x0 xs

Figure 5: Given examples to reverse a list for lengths zero
to three, Igor2 synthesizes a program using the higher-order
function fold. The auxiliary function f, which appends a
single element to the end of a list and parameterizes the
fold, is not given as background knowledge but is invented.

3.4 Meta-interpretive learning
Meta-Interpretive Learning (MIL) is a recent ILP tech-

nique [33, 32] aimed at supporting learning of recursive def-
initions. A powerful and novel aspect of MIL is that when
learning a predicate definition it automatically introduces
sub-definitions, allowing decomposition into a hierarchy of
reuseable parts. MIL is based on an adapted version of a
Prolog meta-interpreter. Normally such a meta-interpreter
derives a proof by repeatedly fetching first-order Prolog clauses
whose heads unify with a given goal. By contrast, a meta-
interpretive learner additionally fetches higher-order meta-
rules whose heads unify with the goal, and saves the result-
ing meta-substitutions to form a program. To illustrate the
idea, consider the meta-rule below relating P , Q and R:



Name Meta-Rule
Chain P (x, y)← Q(x, z), R(z, y)

Example Background knowledge
boss(lucas,lucy) boss(lucas,john). boss(john,lucy).

Meta-substitution Chain Hypothesis
P=Q=R=boss boss(X,Y) :- boss(X,Z), boss(Z,Y)

In this example, the Chain Hypothesis on the boss predicate
from Fig. 4 is learned from the Meta-substitutions into the
X, Y and Z meta-variables by proving the Example using
the Meta-rule and the Background knowledge.

Given the higher-order substitutions, instantiated program
clauses can be reconstructed and re-used in later proofs, al-
lowing a form of IP which supports the automatic construc-
tion of a hierarchically defined program.

In [26] the authors applied MIL to a task involving string
transformations tasks previously studied by Gulwani [9].
Fig. 6 shows the outcome of applying MIL to learning a
set of such tasks, using two approaches, dependent and in-
dependent learning, where in the former new definitions are
allowed to call already learned definitions at lower levels.
Dependent learning produced more compact programs ow-
ing to the re-use of existing sub-definitions. This in turn led
to reduced search times since the smaller task definitions
required less search to find them.

17

5

Time Out

Size Bound Dependent Learning Independent Learning

4

3

2

1

9

3

5 7 8 4 6 12 13 11

1 10 17

2 15

14 16

4 9 5

1 6 7 8 12

3 13 11

10 15

2

14 16

Figure 6: A comparison of the programs generated by
Dependent and Independent Learning using MIL. Nodes
marked n correspond to programs which solve task n, and
nodes are arranged vertically according to their sizes. For
Dependent Learning (left), the arrows correspond to the call-
ing relationships of the induced programs. Dependent learn-
ing produces re-use of existing sub-definitions which in turn
leads to reduced search times.

3.5 New kinds of brute-force search
The general idea here is to systematically explore the en-

tire state space of artifacts and check the correctness of each
candidate against the given examples. This approach works
relatively well when the specification consists of examples (as
opposed to a formal relational specification) since checking
the correctness of a candidate solution against examples can
be done much faster than validating the correctness against
a formal relational specification. However, this is easier said
than done because of the huge underlying state space of po-
tential artifacts and often requires innovative nontrivial op-
timizations, such as goal-directed search, branch and bound,
complexity-guided evolutionary approaches, clues based on
textual features of examples [29], and offline indexing [17].

3.6 Constraint solving
The general idea here is to reduce the synthesis prob-

lem to an equivalent satisfiability problem that is expressed
as a standard logical formula. Then, this formula can be
solved by a general off-the-shelf tool using the recent ad-
vances made in the technology of Satisfiability (SAT) and
Satisfiability Modulo Theory (SMT) solvers. This approach
has been applied to synthesis from complete formal specifi-
cations, but its applicability has been limited to synthesizing
restricted forms of programs. On the other hand, if the spec-
ification is in the form of examples, then the reduction of the
synthesis problem to solving of SAT/SMT constraints can
be performed for a larger variety of programs. These ex-
amples may be generated inside a counter-example guided
inductive synthesis loop [41] (which involves using a valida-
tion technology to find new test inputs on which the current
version of the synthesized program does not meet the given
specification), or using a distinguishing-input based method-
ology [16] (which involves finding new test inputs that distin-
guish two semantically distinct synthesized programs, both
of which are consistent with the given set of examples).

4. CHALLENGES
There is an ongoing research effort in IP to address in-

creasingly challenging problems in terms of size, effective-
ness and robustness.

4.1 Compositionality
The ability of IP to perform adequately for more complex

tasks will require breakthroughs in several areas. First, the
underlying complexity of the search space for correct solu-
tions limits the overall usability of IP, especially in interac-
tive settings where instant feedback is required. There will
undoubtedly be improvements in the performance of such
algorithms, including approaches such as version space al-
gebras which provide compact representations of the search
space. Ultimately, there will be limits to complexity which
no algorithm improvements can address. In such cases, new
approaches are needed which allow users to decompose more
complex tasks into sufficiently small subtasks and then in-
crementally compose the solutions provided by IP for each
subtask.

4.2 Domain change
Applying IP to new domains efficiently will also require

new approaches, including the creation of meta-synthesizers
as mentioned above. Because the application of IP tech-
niques in real-world applications is relatively new, there is
insufficient experience in exploring the space of applications
to clearly identify common patterns that might arise across
domains. It is likely that in the short term, domain-specific
IP systems will be developed in an ad hoc way, and which
over time, as experience with such systems grows, new ap-
proaches will systematize and formalize the ad hoc practices,
so systems become more general and reusable across differ-
ent domains.

4.3 Validation
It is important that the artifacts produced by IP give the

end user confidence that what they have created is correct
and makes sense. For instance, the plethora of automat-
ically named hierarchy of invented sub-tasks generated by
approaches such as Meta-Interpretive Learning (Section 3.4)



can lead to confusion if the new names do not bear a clear
correspondence to the semantics of the sub-tasks being de-
fined. To address such challenges, we must find new ap-
proaches to explain the behavior of the resulting program
to the user in intuitive terms and find ways for them to
guide the solution if it is incorrect. There is great room
for creativity on this problem, such as the use of abstrac-
tions which connect the user to the IP result, the ability to
highlight those inputs where the tool is less confident and
the user should consider inspecting the results, explicitly
showing the inferences the synthesized program is applying
in domain-specific intuitive ways (e.g., using pictures), and
paraphrasing synthesized programs in natural language and
letting the user make stylized edits.

4.4 Noise tolerance
Real data is often unclean—some values might be missing

and/or incorrect, while some values might occur in differ-
ent formats (as in representations for dates and numbers).
Sometimes even the background knowledge can be incorrect
if the user accidentally makes mistakes in providing it.

Addressing the issue of robustness to such noise may be
best done in a domain-specific manner. For example, if a
table contains mostly correct data with a few outliers, ex-
isting techniques to detect and report outliers (or even just
missing values) will help the IP process. Fortunately, there
is a body of work in the existing ML literature which can be
applied to this problem (see, e.g., [4]).

4.5 Making IP more cognitive
Cognitive science and psychology have shown that humans

learn from a small number of —usually positive— exam-
ples and are relatively intolerant to exceptions [27]. Coher-
ence, simplicity and explanatory power are guiding rules in
human inductive inference. The role of background knowl-
edge and the necessary constructs that need to be developed
in order to acquire more abstract concepts have also been
studied in cognitive science [43]. The progressive acquisi-
tion of deep knowledge in humans is especially prominent
in language learning but also in learning from problem solv-
ing experience. Recently, IP has been used in the context
of cognitive modeling, demonstrating that generalized rules
can be learned from only a few, positive examples [38]. For
instance, Fig. 7 shows the result of learning the Tower of
Hanoi problem induced by the IP system Igor2. This result
is equivalent to the generalization from three disc to n disc
problems (some) humans would infer from the same exam-
ples [21]. However, up to now there are no empirical studies
which allow for a detailed comparison between high-level
human learning of complex routines and the training input
and the induced programs of IP systems, to see whether
they lead to similar solutions and, when they diverge, to see
whether the IP solution is still comprehensible to humans.

Presupposing that the declarative nature of learning in
IP systems is sufficiently similar to knowledge level learning
in humans, IP systems could be augmented with a Cog-
nitive User Interface [44] with the ultimate goal that ma-
chines interact like humans, and evaluate whether in this
way they can become more intuitive, trustable, familiar and
predictable —including predicting when the system is going
to fail. In order to achieve this through IP we need to settle
the interaction model. For instance, the supervision from
the user can be limited to some rewards (“OK” buttons) or

penalties (“Cancel” buttons) about what the system is do-
ing, as illustrated in Fig. 4. Alternatively, the user can give
a few examples, the IP system makes guesses for other ex-
amples and the user corrects them [11, 5]. In this interactive
(or query) learning process the user can choose among a set
of candidate hypotheses by showing where they differ, us-
ing a distinguishing input generated by the user —or more
effectively— by the IP system itself [16].

5. CONCLUSION
Since the 1970s basic research in IFP and ILP resulted

in the development of fundamental algorithms tackling the
problem of inducing programs from input/output examples.
However, these approaches remained within the context of
artificial intelligence research and did not trigger a success-
ful transfer into technologies applicable in a wider context.
In 2009 Tessa Lau presented a critical discussion of pro-
gramming by demonstration systems noting that adoption
of such systems is not yet widespread, and proposing that
this is mainly due to lack of usability of such systems [22].
In this paper we have presented recent work in IP where
we identified several new approaches and techniques which
have the potential to overcome some restrictions of previous
systems: learning from very few positive examples becomes
possible when users and systems share background knowl-
edge that can be represented in a declarative way, which,
combined with name inference, is likely to be more easily
understandable. Using algorithmic techniques developed in
either or both ILP and IFP as well as the use of higher-
order functions and meta-interpretative learning resulted in
more powerful IP algorithms; the adoption of techniques
based on domain-specific languages has allowed the realiza-
tion of technologies which are ready to use in mass-market
products as demonstrated by Flash Fill. Hopefully, the re-
cent achievements will attract more researchers from the dif-
ferent areas in which IP originated—AI, machine learning,
functional programming, ILP, software engineering, and cog-
nitive science—to tackle the challenge of bringing IP from
the lab into the real world.

6. REFERENCES
[1] Y. Bengio, A. Courville, and P. Vincent.

Representation learning: A review and new
perspectives. Pattern Analysis and Machine
Intelligence, 35(8):1798–1828, 2013.

[2] B. Bielawski. Using the convertfrom-string cmdlet to
parse structured text. PowerShell Magazine,
http: // www. powershellmagazine. com/ 2014/ 09/

09/ using-the-convertfrom-string-cmdlet-to-

parse-structured-text/ , September 9, 2004.

[3] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E.R.
Hruschka-Jr, and T.M. Mitchell. Toward an
architecture for never-ending language learning. In
AAAI, 2010.

[4] Varun Chandola, Arindam Banerjee, and Vipin
Kumar. Anomaly detection: A survey. ACM
Computing Surveys (CSUR), 41(3):15, 2009.

[5] A. Cypher, editor. Watch What I Do: Programming
by Demonstration. MIT Press, Cambridge, MA, 1993.

[6] C. Ferri-Ramı́rez, J. Hernández-Orallo, and M.J.
Ramı́rez-Quintana. Incremental learning of functional
logic programs. In FLOPS, pages 233–247, 2001.



Figure 7: Input of the Tower of Hanoi problem for Igor2 and the induced recursive rule set.

[7] P. Flener and U. Schmid. An introduction to inductive
programming. Artificial Intelligence Review,
29(1):45–62, 2009.

[8] S. Gulwani. Dimensions in program synthesis. In
PPDP, 2010.

[9] S. Gulwani. Automating string processing in
spreadsheets using input-output examples. In POPL,
2011. http://research.microsoft.com/users/
sumitg/flashfill.html.

[10] S. Gulwani. Example-based learning in
computer-aided STEM education. CACM, Aug 2014.

[11] S. Gulwani, W. Harris, and R. Singh. Spreadsheet
data manipulation using examples. CACM, Aug 2012.

[12] Sumit Gulwani, William R Harris, and Rishabh Singh.
Spreadsheet data manipulation using examples.
Communications of the ACM, 55(8):97–105, 2012.

[13] R.J. Henderson and S.H. Muggleton. Automatic
invention of functional abstractions. Latest Advances
in Inductive Logic Programming., 2012.

[14] J. Hernández-Orallo. Deep knowledge: Inductive
programming as an answer, Dagstuhl TR 13502, 2013.

[15] M. Hofmann and E. Kitzelmann. I/O guided detection
of list catamorphisms – towards problem specific use
of program templates in IP. In ACM SIGPLAN
PEPM, 2010.

[16] S. Jha, S. Gulwani, S. Seshia, and A. Tiwari.
Oracle-guided component-based program synthesis. In
ICSE, 2010.

[17] S. Katayama. Efficient exhaustive generation of
functional programs using Monte-Carlo search with
iterative deepening. In PRICAI, 2008.

[18] E. Kitzelmann. Analytical inductive functional
programming. In LOPSTR 2008, volume 5438 of
LNCS, pages 87–102. Springer, 2009.

[19] E. Kitzelmann. Inductive programming: A survey of
program synthesis techniques. In AAIP, pages 50–73.
Springer, 2010.

[20] E. Kitzelmann and U. Schmid. Inductive synthesis of
functional programs: An explanation based
generalization approach. Journal of Machine Learning
Research, 7(Feb):429–454, 2006.

[21] K. Kotovsky, J. R. Hayes, and H. A. Simon. Why are
some problems hard? Evidence from Tower of Hanoi.
Cognitive Psychology, 17(2):248–294, 1985.

[22] T. A. Lau. Why programming-by-demonstration
systems fail: Lessons learned for usable AI. AI
Magazine, 30(4):65–67, 2009.

[23] T. A. Lau, S. A. Wolfman, P. Domingos, and D. S.
Weld. Programming by demonstration using version
space algebra. Machine Learning, 53(1-2):111–156,
2003.

[24] V. Le and S. Gulwani. FlashExtract: A framework for
data extraction by examples. In PLDI, 2014.

[25] H. Lieberman, editor. Your Wish is My Command:
Programming by Example. Morgan Kaufmann, 2001.

[26] D. Lin, E. Dechter, K. Ellis, J.B. Tenenbaum, and
S.H. Muggleton. Bias reformulation for one-shot
function induction. In ECAI, 2014.

[27] G.F. Marcus. The Algebraic Mind. Integrating
Connectionism and Cognitive Science. Bradford,
Cambridge, MA, 2001.

[28] F. Mart́ınez-Plumed, C. Ferri, J. Hernández-Orallo,
and M.J. Ramı́rez-Quintana. On the definition of a
general learning system with user-defined operators.
arXiv preprint arXiv:1311.4235, 2013.

[29] A. Menon, O. Tamuz, S. Gulwani, B. Lampson, and
A. Kalai. A machine learning framework for
programming by example. In ICML, 2013.

[30] R. C. Miller and B. A. Myers. Multiple selections in
smart text editing. In IUI, pages 103–110, 2002.

[31] S.H. Muggleton. Inductive Logic Programming. New
Generation Computing, 8(4):295–318, 1991.

[32] S.H. Muggleton and D. Lin. Meta-interpretive learning
of higher-order dyadic datalog: Predicate invention



revisited. In IJCAI 2013, pages 1551–1557, 2013.

[33] S.H. Muggleton, D. Lin, N. Pahlavi, and
A. Tamaddoni-Nezhad. Meta-interpretive learning:
application to grammatical inference. Machine
Learning, 94:25–49, 2014.

[34] S.H. Muggleton, L. De Raedt, D. Poole, I. Bratko,
P. Flach, and K. Inoue. ILP turns 20: biography and
future challenges. Machine Learning, 86(1):3–23, 2011.

[35] R. Olsson. Inductive functional programming using
incremental program transformation. Artificial
Intelligence, 74(1):55–83, March 1995.

[36] D. Perelman, S. Gulwani, D. Grossman, and
P. Provost. Test-driven synthesis. In PLDI, 2014.

[37] M. Raza, S. Gulwani, and N. Milic-Frayling.
Programming by example using least general
generalizations. In AAAI, 2014.

[38] U. Schmid and E. Kitzelmann. Inductive rule learning
on the knowledge level. Cognitive Systems Research,
12(3):237–248, 2011.

[39] U. Schmid and F. Wysotzki. Induction of recursive
program schemes. In ECML, volume 1398 of LNAI,
pages 214–225, 1998.

[40] E.Y. Shapiro. An algorithm that infers theories from
facts. In IJCAI, pages 446–451, 1981.

[41] A. Solar-Lezama. Program Synthesis by Sketching.
PhD thesis, UC Berkeley, 2008.

[42] P. D. Summers. A methodology for LISP program
construction from examples. Journal ACM,
24(1):162–175, 1977.

[43] J.B. Tenenbaum, T.L. Griffiths, and C. Kemp.
Theory-based Bayesian models of inductive learning
and reasoning. Trends in Cognitive Sciences,
10(7):309–318, 2006.

[44] S. Young. Cognitive user interfaces. Signal Processing
Magazine, IEEE, 27(3):128–140, 2010.

Sumit Gulwani (sumitg@microsoft.com) is principal re-
searcher at Microsoft Corporation, Redmond, WA, USA.

José Hernández-Orallo (jorallo@dsic.upv.es) is a reader
at Universitat Politècnica de València, Spain. He is sup-
ported by EU (FEDER) and Spanish projects PCIN-2013-
037, TIN 2013-45732-C4-1-P and GV PROMETEOII2015/013.

Emanuel Kitzelmann (ekitzelmann@gmail.com) is a teacher
at Adam-Josef-Cüppers Commercial College, Ratingen, Ger-
many.

Stephen H. Muggleton (s.muggleton@imperial.ac.uk)
is professor at the Department of Computing, Imperial Col-
lege London, UK.

Ute Schmid (ute.schmid@uni-bamberg.de) is professor
at University of Bamberg, Germany.

Benjamin Zorn (Ben.Zorn@microsoft.com) is a princi-
pal researcher and research co-manager of the Research in
Software Engineering (RiSE) group at Microsoft Research
in Redmond, WA, USA.


