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Abstract
One challenge in making online education more
effective is to develop automatic grading software
that can provide meaningful feedback. This pa-
per provides a solution to automatic grading of the
standard computation-theory problem that asks a
student to construct a deterministic finite automa-
ton (DFA) from the given description of its lan-
guage. We focus on how to assign partial grades for
incorrect answers. Each student’s answer is com-
pared to the correct DFA using a hybrid of three
techniques devised to capture different classes of
errors. First, in an attempt to catch syntactic mis-
takes, we compute the edit distance between the
two DFA descriptions. Second, we consider the en-
tropy of the symmetric difference of the languages
of the two DFAs, and compute a score that es-
timates the fraction of the number of strings on
which the student answer is wrong. Our third tech-
nique is aimed at capturing mistakes in reading of
the problem description. For this purpose, we con-
sider a description language MOSEL, which adds
syntactic sugar to the classical Monadic Second Or-
der Logic, and allows defining regular languages in
a concise and natural way. We provide algorithms,
along with optimizations, for transforming MOSEL
descriptions into DFAs and vice-versa. These allow
us to compute the syntactic edit distance of the in-
correct answer from the correct one in terms of their
logical representations. We report an experimental
study that evaluates hundreds of answers submitted
by (real) students by comparing grades/feedback
computed by our tool with human graders. Our
conclusion is that the tool is able to assign partial
grades in a meaningful way, and should be pre-
ferred over the human graders for both scalability
and consistency.

1 Introduction
There has been a lot of interest recently in of-
fering college-level education to students world-
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wide via information technology. Several websites
such as EdX (https://www.edx.org/), Cours-
era (https://www.coursera.org/), and Udac-
ity (http://www.udacity.com/) are increasingly
providing online courses on numerous topics, from computer
science to psychology. Several challenges arise with this new
teaching paradigm. Since these courses, often referred to as
massive open online courses (MOOCs), are typically taken
by several thousands of students located around the world,
it is particularly hard for the instruction staff to provide
useful personalized feedback for practice problem sets and
homework assignments.

Our focus in this paper is on the problem of determinis-
tic finite automata (DFA) construction. The importance of
DFA in computer science education hardly needs justifica-
tion. Beside being part of the standardized computer science
curriculum, the concept of DFA is rich in structure and poten-
tial applications. It is useful in diverse settings such as control
theory, text editors and lexical analyzers, and models of soft-
ware interfaces. We focus on grading assignments in which
a student is asked to provide a DFA construction correspond-
ing to a regular language description. Our main goal is that
of automatically measuring how far off the student solution is
from the correct answer. This measure can then be used for
two purposes: assigning a partial grade, and providing feed-
back on why the answer is incorrect.

Figure 1 shows five solutions from the ones we collected
as part of an experiment involving students at UIUC. The so-
lutions are for the following regular language description:

L = {s | s contains the substring “ab” exactly twice}
For this problem the alphabet is Σ = {a, b}. Current tech-
nologies for this kind of problem [Aut, 2010] simply check
whether the DFA proposed by the student is semantically
equivalent to the correct one. For this particular example such
a technique would only point out that the first solution A1 is
correct, while all the other ones are wrong. Such a feedback,
however, does not tell us how wrong each solution is.

The four DFAs A2,A3,A4, and A5 in Figure 1 are repre-
sentative of different mistakes. We first concentrate on A2. In
this attempt the DFA accepts the language
L1 = {s | s contains the substring “ab” at least twice}

This example shows a common mistake in this type of as-
signments: the student misunderstood the problem. We need
an automated technique that is able to recognize this kind of



a 

b A1 accepts the correct 
language 
Grade: 10/10 

A1 0 

a 

b a 

b 

2 

a 

b 

b 

a b 

a,b 

A2 accepts the strings that 
contain ̀ ab’ at least twice 
instead of exactly twice 
Grade: 5/10 

A2 

A3 
A3 misses the final state 5 
Grade: 9/10 

A4 

A4 behaves correctly 
on most of the strings 
Grade: 6/10 

DFA Attempt Grade and Feedback 

1 3 4 5 6 

a 

a 

b 

0 

a 

b a 

b 

2 

a 

b 

a,b 

1 3 4 

a 

b 

0 

a 

b a 

b 

2 

a 

b 

b 

a b 

a,b 

1 3 4 6 

a 

5 

a 

b 

0 

a 

b a 

b 

2 

a 

b 

a 

b 

a,b 

1 3 4 5 

A5 

A5 accepts the strings that 
contain ̀ ab’ at least twice 
instead of exactly twice 
Grade: 5/10 

a 

b 

0 

a 

b 

a 

b 
2 a 

a a,b 

1 3 4 

5 

b 

Figure 1: Example of DFA grading. The dark states are final.
Column 1 contains the name of the DFA depicted in column
2. Column 3 shows the grade computed by our tool for the
DFA with the corresponding feedback.

mistake. The necessary ingredient to address this task is a
procedure that, given a DFA A, can synthesize a description
of the language L(A) accepted by A. Here a question that
immediately arises is: what should the description language
for L(A) be? Ideally we would like to describe L(A) in En-
glish, but such a description cannot be easily subjected to au-
tomated analysis. A better option is a logical language that
is not only efficient to reason about, but one which also pro-
vides a rich set of primitives at a level of abstraction that is
close to how language descriptions are normally stated in En-
glish. For this purpose, we extend a well-known logic, called
monadic-second order logic (MSO) [Thomas, 1996; Büchi
and Landweber, 1969], that can describe regular languages,
and we introduce MOSEL, an MSO-equivalent declarative
logic enriched with syntactic sugar. In MOSEL, the languages
L and L1 can be described by the formulas |indOf ‘ab’|= 2
and |indOf ‘ab’| ≥ 2 respectively. Thanks to this formal
representation, we can compute how far apart two MOSEL
descriptions are from each other and translate such a value
into a grade. To compute the distance between two descrip-
tions we use an algorithm for computing the edit distance be-
tween trees [Bille, 2005]. We design two algorithms: the first
one computes the DFA corresponding to a MOSEL descrip-
tion, and conversely the second one computes the MOSEL
description of the language accepted by a DFA. Despite the
high computational complexity of such algorithms, through
several optimizations, we were able to make them work on
examples used to learn automata. We executed the first algo-
rithm on all the DFA assignments appearing in [Hopcroft et
al., 2006], achieving running times below 1 second. On the
same set of assignments we were able to execute the second
algorithm on 95% of the problems, achieving running times
below 5 seconds.

The approach presented in the previous paragraph is able
to capture a particular class of mistakes. However, several
DFAs, such as A3 in Figure 1, do not fall in this class. A3

has the full structure of the correct DFA but state 5 is not
marked as final. A possible MOSEL description of A3 is
|indOf ‘ab’| = 2 ∧ endWt ‘b’ where the second conjunct

indicates that all strings must end with a b. This description
is syntactically far from the description of L causing the cor-
responding grade to be too low. This example shows that
there should be a metric that tells how far A2 is from a cor-
rect DFA. To address this class of mistakes we introduce a
notion of DFA edit distance that given a DFA A and a regular
language R computes how many states and transitions of A
we need to modify in order to obtain a DFA A′ that accepts
R. Such a computation naturally translates into a grade.

The previous techniques cover two broad classes of mis-
takes. However, in several cases they are still not enough.
The language accepted by the DFA A4 in Figure 1 has a com-
plicated MOSEL description and the number of operations
needed to “fix” A4 is quite high (more than 5) because we
need to add a new state and redirect several edges. However,
this solution is on the right track and behaves correctly on
most of the strings. The student just did not notice that in
state 4 the machine does not necessarily read the symbol a
causing strings such as ababb to be rejected. Hence, A4 cor-
rectly rejects all the strings that are not in L, but also rejects
“few” more. Following this intuition we introduce a notion
of language density and we use it to approximate the percent-
age of strings in Σ∗ on which a DFA A misbehaves. Again,
such a quantity naturally translates into a grade. We finally
combine the three techniques to compute a unique grade.

DFA A5, despite being syntactically different from A2,
computes exactly the same language as A2. This similarity
might be hard to notice for a human. While our tool, using
the same approach as for A2, assigned the same grade to both
the attempts, we observed in our experiments that the same
human grader assigned different grades.

We evaluated our tool on DFAs submitted by students at
UIUC and compared the grades generated by the tool to those
provided by human graders. First, we identified several in-
stances in which two identical DFAs were graded differently
by the same grader, while this was not the case for the tool.
Second, we observed that the tool produces grades compa-
rable to those produced by humans. In order to check such
properties, we used statistical metrics to compare the tool
with two human graders, and manually inspected the cases in
which there was a discrepancy between the grades assigned
by the tool and by the human. The resulting data suggests that
the tool grades as well as a human, and we often found that,
in case of a discrepancy, the grade of the human was less fair
than that of the tool.

2 MOSEL: Declarative Descriptions of
Regular Languages

This section provides a preliminary background on DFAs, de-
fines the language MOSEL, and presents algorithms for trans-
forming MOSEL descriptions into DFAs and vice-versa.

2.1 Background on DFAs
A deterministic finite automaton (DFA) over an alphabet Σ
is a tuple A = (Q, q0, δ, F ) where Q is a finite set of states,
q0 ∈ Q is the initial state, δ : Q × Σ 7→ Q is the transi-
tion function, and F ⊆ Q is the set of accepting states. We
define the transitive closure of δ as, for all a ∈ Σ, s ∈ Σ∗,



δ∗(q, as) = δ∗(q′, s), if δ(q, a) = q′, and δ∗(q, ε) = q. The
language accepted by A is L(A) = {s | δ∗(q0, s) ∈ F}.

2.2 The Language MOSEL

MOSEL was designed with the goal to be (a) expressive
enough to describe problems that arise in common assign-
ments, (b) simple enough to have a close correspondence to
natural language descriptions so that the syntactic distance
between MOSEL descriptions reflects the distance between
their English language descriptions, and (c) succinct enough
to have small descriptions for common DFA assignments.

The syntax and semantics of MOSEL can be found in the
full version of this paper [Alur et al., ]. We illustrate features
of this language through some examples. The 5 languages
described in the first column of Table 1 can be described by
the following MOSEL formulas:

L1 = begWt ‘a’ ∧ |indOf ‘ab’|% 2 = 1: strings that start
with an a and have and odd number of ab substrings;

L2 = |indOf ‘a’| ≥ 2 ∨ |indOf ‘b’| ≥ 2: strings that con-
tain at least two a’s or at least two b’s;

L3 = a@{x | |psLe x|% 2 = 1}: strings where every odd
position is labeled with an a;

L4 = begWt ‘ab’ ∧ |all|% 3 6= 0: strings that start with ab
and with length not divisible by 3;

L5 = |indOf ‘ab’| = 2: strings that contain the substring ab
exactly twice; and

L6 = |indOf ‘aa’| ≥ 1 ∧ endWt ‘ab’: strings that contain
the substring aa at least once and end with ab.

2.3 From MOSEL to DFAs
Next, we describe how we transform a MOSEL formula φ
over an alphabet Σ into the corresponding DFA Aφ, such that
Aφ describes the same language as φ. Since MOSEL only
adds syntactic sugar to Monadic Second Order Logic (MSO)
over strings, MOSEL formulas can be transformed into equiv-
alent MSO formulas. In the first step of our transformation we
inductively transform φ into an MSO formula φ′. Next, we
use standard techniques to transform an MSO formula into
the corresponding DFA [Henriksen et al., 1995]. Such tech-
niques inductively generate the DFAs corresponding to each
sub-formula of φ′ and then combine such DFAs using au-
tomata operations. In the transformation from MSO to DFA,
the alphabet is enriched with bitvectors that represent the val-
ues of the quantified variables, causing the alphabet to grow
exponentially in the number of nested quantifiers.

We implemented the transformation using the Automata
library [Veanes and Bjørner, 2012]. This library relies on
BDDs to succinctly represent large alphabets, making our
transformation efficient in practice. During the inductive
transformation we always keep the minimized DFA in order
to avoid a blow-up in the number of states. For every exercise
E appearing in [Hopcroft et al., 2006], our tool generated the
DFA from the corresponding MOSEL description of E in less
than 1 second.

2.4 From DFAs to MOSEL

While it is well known that every DFA can be transformed
into an equivalent MSO formula, in the standard transforma-

tion from DFA to MSO, the distance between MSO repre-
sentations is not meaningful as it directly reflects the DFA
structure rather than the accepted language. Since our goal
is to use MOSEL descriptions to capture the syntactic differ-
ence between two languages, we use a different approach.
Given a DFA A, we use an iterative deepening search to enu-
merate all possible MOSEL formulas and find the one that
describes L(A). As we showed in the previous subsection,
MOSEL descriptions of common DFA assignments are suc-
cinct. Thanks to such succinctness the brute force approach
works adequately for our purpose.

Since typical formulas have small size/width, we use an it-
erative deepening search on the width of a formula. We next
describe some optimizations that make this approach feasible
in practice. In order to check whether a formula φ is equiv-
alent to the target language, the simplest approach would be
that of using the algorithm of Section 2.3 to generate the au-
tomaton Aφ corresponding to φ and then run a DFA equiva-
lence algorithm. Such a procedure does not scale in practice.
In our implementation we first check whether φ behaves cor-
rectly on some selected inputs and, only if it passes this test,
we compute the DFA for φ and perform the equivalence test.

Next, we describe the procedure for generating the input
test set. Given the input DFA A = (Q, q0, δ, F ), we com-
pute two sets P and N of positive and negative examples
respectively, that is, P ⊆ L(A), and N ∩ L(A) = ∅. For
every two states q1, q2 ∈ Q, we add the string sq1pq1 to
P , and the string sq2nq2 to N , where δ∗(q0, sqi) = qi and
δ∗(qi, pqi) ∈ F and δ∗(qi, nqi) 6∈ F . Similarly, for every
two states q1, q2 ∈ Q, and for every a ∈ Σ, we add the string
sq1apδ(q1,a) to P and the string sq2anδ(q2,a) toN . The sets P
andN contain at most |Q|2|Σ| strings. Finally, for every DFA
B = (QB , q

B
0 , , δB , FB) such that |QB | ≤ |QA|, it is enough

to test QB on the test sets P and N in order to check whether
L(A) 6= L(B). Therefore, if the minimal DFA correspond-
ing to φ has fewer states than A, we detect the inequivalence
of φ and A by simply testing the formula on P and N . In our
experiments this technique yields a 300X speed-up.

Next, we optimized the algorithm for common cases in
which the target formula is a disjunction or a conjunction.
When we come across formulas φ1, φ2 which pass the nega-
tive test set N during the enumeration, we check if φ1 ∨ φ2
passes the positive test set P and follow it with an equiva-
lence check if needed. Conjunctions are handled in a similar
manner. This optimization permits to identify formulas of big
width early in the search. For example, the tool was able to
synthesize the formula describing the language in Figure 2 in
less than a second. Without this optimization it would have
taken more than 5 minutes to reach the corresponding formula
in the enumeration.

Finally, we implemented several pruning techniques. First,
using syntactic properties of the input DFA we can avoid enu-
merating some formulas. For example, if the DFA has only
loops of size 1, and 2, the formula | |% 3 = can be stati-
cally ruled out. Secondly, we statically remove several terms
that are equivalent to other terms of smaller width (¬¬φ).
These pruning techniques caused a 500X speed-up on our
test set of 30 examples. We tested the algorithm on the ex-
ercises in [Hopcroft et al., 2006] for which the alphabet only



contained two elements.. For each exercise, given the corre-
sponding DFA solutionA, we were able to generate a MOSEL
description of A in less than 5 seconds for 95% of the prob-
lems. In few cases, the MOSEL description was too big and
the tool was not able to generate it.

3 An Algorithm for Grading DFA
Constructions

We next address the problem of grading a student attempt.
Given a target language LT , and a student solution As, we
need a metric that tells us how far As is from a correct solu-
tion. Based on our experience related to teaching and grading
DFA constructions, we identified three classes of mistakes:
Problem Syntactic Mistake: the student gives a solution for

a different problem (see (2) and (5) in Figure 1);
Solution Syntactic Mistake: the student omits a transition

or a final state (see (3) in Figure 1); and
Problem Semantic Mistake: the solution is wrong on a

small fraction of the strings (see (4) in Figure 1).
We investigated three approaches that try to address each

class. First, we use the classic notion of tree edit dis-
tance [Gao et al., 2010] to compute the difference between
two MOSEL formulas. Secondly, we introduce a notion of
DFA edit distance to capture the distance between DFAs.
Last, we use the concept of regular language density to com-
pute the difference between two languages when viewed as
sets.

3.1 Problem Syntactic Distance
The following metric captures the case in which the MOSEL
description of the language corresponding to As is close to
the MOSEL description of the target language LT . This met-
ric computes how syntactically close two MOSEL descrip-
tions are. We consider MOSEL formulas as the ordered trees
induced by their parse trees. Given a MOSEL formula φ, we
call Tφ its parse tree. Given two ordered trees t1 and t2, their
tree edit distance TED(t1, t2) is defined as the minimum num-
ber of edits that can transform t1 into t2. Given a tree t, an
edit is one of the following operations:
relabel: change the label of a node n;
node deletion: given a node n with parent n′, 1) remove n,

2) place the children of n as children of n′, inserting
them in the “place” left by n; and

node insertion: given a node n, 1) replace a consecutive
subsequence C of children of n with a new node n′, and
2) let C be the children of n′.

We use the algorithm in [Gao et al., 2010] to compute TED.
Next, we compute the distance D(φ1, φ2) between two for-
mulas φ1 and φ2 as TED(Tφ1

, Tφ2
). Finally, we compute

WTED(φ1, φ2)
def
= D(φ1, φ2)/|Tφ2

|, where |T| is the number
of nodes in T. In this way, for the same number of edits, less
points are deducted for languages with a bigger description.
Since we are ultimately interested in grading DFAs, given a
DFA As we use the procedure proposed in § 2.4 to compute
the formula φAs corresponding to As.

Example 1 Consider the language L corresponding to
φ

def
= |indOf ‘ab’|% 2 = 1 ∧ begWt ‘a’ over the alphabet

Σ = {a, b}. Let’s assume the student provides the DFA A′

that implements the language φ′ def
= |indOf ‘ab’|% 2 = 1 ∨

begWt ‘a’, where ∧ has been replaced by ∨. The
problem syntactic distance will yield the following values:
TED(φ′, φ) = 1, and WTED(φ′, φ) = 1/9. In this case apply-
ing one node relabeling is enough to “fix” Tφ′ . We omit the
parse tree of φ which contains 9 nodes. �

3.2 Solution Syntactic Difference
The following metric captures the case in which the student
DFA As is syntactically close to a correct one, by computing
how many edits are needed to transform As to make it accept
the correct language LT . We define the notion of DFA edit
distance. Given two DFAs A1, A2, we say that the difference
between A1 and A2, DFA-D(A1, A2) is the minimum num-
ber of edits that can transform A1 into some DFA A′1 such
that L(A′1) = L(A2). Given a DFA A, an edit is one of the
following operations:
transition redirection: given a state q and a symbol a ∈ Σ,

update δ(q, a) = q′ to δ(q, a) = q′′ where q′ 6= q′′;
state insertion: insert a new disconnected state q, with

δ(q, a) = q for every a ∈ Σ; and
state relabeling: given a state q, add it or remove it from the

set of final states.
To take into consideration the severity of a mistake based

on the difficulty of the problem, we compute the quantity
WDFA-D(A1, A2)

def
= DFA-D(A1, A2)/k + t, where k and t

are, respectively, the number of states and transitions of A2.
Example 2 Consider the DFA A3 in Figure 1 where state 5

is mistakenly marked as non-final. A1 is the correct solution
for the problem. In this case
DFA-D(A3, A1) = 1 WDFA-D(A3, A1) = 1/12+6 = 1/18

since applying one state relabeling will “fix” A3. �
In the tool we compute this metric by trying all the possible

edits and checking for equivalence with a technique similar to
the one presented in Section 2.3.

A similar distance notion graph edit distance [Bille, 2005].
However this metric does not take into account the language
accepted by the DFA.

3.3 Problem Semantic Difference
The following metric captures the case in which the DFA As
behaves correctly on most inputs, by computing what per-
centage of the input strings is correctly accepted/rejected by
As. Given two languages L1 and L2, we define density dif-
ference to be

DEN-DIF(L1, L2)
def
= lim
n→+∞

|((L1 \ L2) ∪ (L2 \ L1)) ∩ Σn|
max(|L2 ∩ Σn|, 1)

Σn denotes the set of strings in Σ∗ of length n. Informally,
for every n, the expression E(n) inside the limit computes
the number of strings of length n that are misclassified by L1

divided by the number of strings of length n in L2. The max
in the denominator is used to avoid divisions by 0. Unfor-
tunately, the density difference is not always defined, as the
limit may not exist.

Example 3 Consider the languages LA corresponding to
|all|% 2 = 0 and LB corresponding to true (i.e. Σ∗) over



the alphabet Σ = {a, b}. The limit DEN-DIF(LA, LB) is not
defined since it keeps oscillating between 0 and 1. �

In practice we compute the approximated density
A-DEN-DIF(L1, L2)

def
= (

∑2k
n=0E(n))/2k+ 1, where k is the

number of states of the minimum DFA representing L2. This
approximation is not precise, but it is very helpful for captur-
ing the cases in which the student forgot a finite number of
strings in its solution (for example only ε).

Example 4 Consider the DFAs A1 and A4 in Figure 1 and
their respective languages L(A1) and L(A4). In this case
A-DEN-DIF(L(A4), L(A1)) = 0.09. This value is the one
used to compute the grade shown in Figure 1. �

Similar notions of density have been proposed in the lit-
erature [Bodirsky et al., 2004; Kozik, 2005]. These defini-
tions have good theoretical foundations, but, unlike our met-
ric, they are undefined for most DFAs.

3.4 Combining the Approaches
The aforementioned approaches need to be combined in or-
der to compute the final grade. We are aware of the many
machine learning techniques that could be used for combin-
ing the three features, but instead, we decide to use a simple
combination function for the following reason : 1) in the fu-
ture we would like to extract feedback information from the
computed grade, and 2) in general, only one of the three fea-
ture succeeds in computing a positive grade.

Next, we provide the general schema of the combining
function. First, each deduction v, which ranges between 0
and 1, is scaled to a new value v′ using a formula of the form
v′ := (v + c)2 − c2 where c is a constant. We used a training
set of 60 manually graded attempts to identify the constants c
for the combining function. Finally, we pick the metric which
awarded the highest score.

4 Experimental Evaluation
The aim of our experiment is to evaluate to what extent the
grades given by our tool and those given by human instruc-
tors agree. To do so we collected around 800 attempts at DFA
construction questions by students taking a theory of compu-
tation course for the first time. For each problem we had two
instructors and our tool grade each attempt separately. In or-
der to see how well the tool does we compare statistics that re-
veal variation between human graders and variation between
a human grader and our tool. To measure the extent of agree-
ment between two graders we employ Pearson’s correlation
coefficient. The correlation coefficient is a number between
-1 and 1. A value of 1 indicates that the paired points are
linearly related with a positive slope. When this quantity is
closer to 1 it indicates that the two measurements being com-
pared tend to vary together in the same direction.

In order to obtain a basis for comparing the correlation co-
efficients we also see how a naive grader would perform with
respect to human graders. There could be many ways to de-
fine a naive grader. A simple one that we consider uses the
following grading scheme: (i) it awards near maximum (9 or
10) marks to the correct solutions, and (ii) for incorrect so-
lutions it deducts marks based on the number of states that
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Figure 2: Selected attempts for the language L1 = {s | s
starts with a and has odd number of ab substrings}.

are lacking or in excess and adds a small random noise. We
summarize the resulting calculations in Table 1.

Detailed Analysis In the following we only consider the
first problem where the language is L1 = {s | s starts with a
and has odd number of ab substrings}. The first column in the
averages reads 0.99 for H1-H2 meaning that H1 has awarded,
on average, 1 point more than H2. The next two columns
show that H1 is on average closer to the naive grader N and to
the tool T than it is to H2. However, the standard deviation for
H1-N (2.62) is greater than that for H1-T (1.99), which means
that the grades given by our tool show a lot less variation,
and are in fact closer to H1 more often than N. The Pearson
correlation coefficients shows that the degree of correlation
between the tool T and H1 (0.83) is clearly better than that
between N and H1 (0.65), and at the same time comes very
close to the degree of correlation between two human graders
H1 and H2 (0.87).

We say that two graders agree on an attempt with a thresh-
old of t if the grades given by the two graders do not dif-
fer by more than t. The plot on the right shows 3 curves.
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Each curve com-
pares two graders
and displays how
the percentage of
problems on which
they agree increases
with the threshold
varying from 0 to
10. The three curves
compare T, H2 and
N against H1, and it
is easy to see that our tool T comes to an agreement much
faster than N. More surprisingly, the tool also comes to an
agreement faster than H2.

Figure 2 shows five cases in which either the human
graders and the tool have a discrepancy. In case (1)
the computed language L′1 is described by the formula
|indOf ‘b’|% 2 = 1 ∧ begWt ‘a’. Since the MOSEL de-
scriptions of L1 and L′1 are similar, the tool gives a high grade
for this attempt. However, L′1 has an easier construction than
L1. We attenuate these “false high grades” by deducting extra
points when the size of the minimal DFA corresponding to the
student solution has less states than the target DFA. Case (2)
shows a DFA for which the language density is low, causing
the tool to award this attempt with 7 points. One can argue
that this grade is too high for such a DFA. However, the same



Attempts Average Standard Deviation Pearson Correlation
Problem Tot. Dis. H1-H2 H1-T H1-N H1-H2 H1-T H1-N H1-H2 H1-T H1-N

L1 = {s | s starts with a and has odd number of ab substrings} 131 108 0.99 0.54 0.22 2.06 1.99 2.62 0.87 0.83 0.65
L2 = {s | s has more than 2 a’s or more than 2 b’s} 110 100 -0.66 0.85 0.26 1.80 2.44 2.71 0.90 0.80 0.75
L3 = {s | s where all odd positions contain the symbol a} 96 75 -0.52 0.86 -1.38 1.61 2.67 3.84 0.90 0.74 0.31
L4 = {s | s begins with ab and |s| is not divisible by 3} 92 68 0.40 1.32 0.36 1.68 2.78 2.48 0.81 0.71 0.61
L5 = {s | s contains the substring ab exactly twice} 52 46 0.02 0.19 0.29 2.01 1.88 3.23 0.71 0.79 0.49
L6 = {s | s contains the substring aa and ends with ab} 38 31 -0.50 -1.34 -1.5 2.42 2.90 3.70 0.76 0.63 0.34

Table 1: Comparing grades given by humans and tool. The grades were between 0 and 10. H1 and H2 denote the two human
graders, T the tool, and N the naive grader. A-B denotes the difference between the graders A and B when grading each
individual attempt. For each problem Li the table shows in the order: the number of student attempts, the number of distinct
attempts, the average difference, the standard deviation, and the Pearson’s correlation between single attempt grades.

DFA as (2) was submitted by multiple students, and, while
the tool always awarded 7 points, both human graders were
inconsistent: H1 graded five identical attempts with 4,5,7,7,
and 7 points, while H2 awarded 1,1,2,3, and 8 points. Case
(3) shows a DFA for which the DFA edit distance yields a
too “generous” grade. For this DFA it is enough to remove
the transition δ(0, b) in order to obtain a DFA that accepts
L1. However, in this case the mistake is deeper than a simple
typo. Case (4) shows a DFA for which the human awarded
too high a score. Even though this DFA has several syntac-
tic mistakes, H1 awarded the same grade as for attempt (5),
where only one final state is missing. For case (5), where
state 3 was mistakenly marked as non-final, both H1 and H2

lacked in consistency. H1 awarded different grades from 8 to
10 for 7 identical attempts.
Strengths of the tool Inspecting the data for the 131 at-
tempts for the language L1 we observed the following: 1)
in 6 cases one of the human graders mistakenly assigned the
maximum score to an incorrect attempt; 2) in more than 20
out of 34 cases in which T and H1 were disagreeing by at
least 3 points, H1, after reviewing the attempt, agreed with
the grade computed of T; and 3) in more than 20 cases at
least one of the human graders was inconsistent: i.e. two syn-
tactically equivalent attempts were graded differently by the
same grader.
Limitations The tool suffers two types of limitations: be-
havioral and structural. The former type concerns the failure
of the grading techniques on some particular examples. An
example is the attempt (3) of Figure 2 where a small DFA
edit distance did not reflect the severity of the mistake. As for
the structural limitations, our techniques are crafted to per-
form well on problems appearing in theory of computation
books [Sipser, 1996; Hopcroft et al., 2006]. Such techniques
do not scale for DFAs with large alphabets or many states.
Moreover the MOSEL edit distance fails when the language
does not admit a succinct description. We do not believe these
to be actual limitations, because such situations typically do
not arise in undergraduate level DFA constructions. However,
we plan on extending our tool to deal with these cases.

5 Related Work
JFLAP [Rodger and Finley, 2006] is a mature system used
widely for teaching automata and formal language theory. To
the best of our knowledge JFLAP does not offer an automatic
grading of DFA constructions.

Benedikt et.al have proposed a notion of regular language
repairing [Benedikt et al., 2011]. Their approach could also
be used for defining a grading metric, however, we believe
that such metric would not be a good fit for our purposes since
it cannot be associated with any natural feedback.

Singh et.al. have proposed an automatic grading frame-
work for programming problems [Singh et al., 2013]. Given a
error model in the form of expression rewrite rules, their sys-
tem uses SAT based techniques to find the minimal number
of corrections that can fix the student solution. Our syntactic
edit distance approach is similar to this proposal.

There has been a lot of work in the AI community for
building automated tutors for helping novice programmers
learn programming by providing feedback about semantic er-
rors [Adam and Laurent, 1980; Murray, 1987]. Such tech-
nologies share similar ideas with our tool in the way they
measure distance from a correct solution.

6 Conclusion
We investigated the problem of grading DFA constructions.
First, we introduced MOSEL, a declarative logic able to pro-
vide succinct and natural descriptions of regular languages
appearing in automata theory textbooks. Second, we pro-
vided algorithms for transforming MOSEL descriptions into
DFAs and vice-versa. Last, we presented three grading tech-
niques based on three different classes of mistakes.

We evaluated our tool on DFAs submitted by real students
and compared the grades generated by the tool to those pro-
vided by human graders. The results are encouraging and
show that the tool grades as well as a human. In fact we plan
on further engineering our tool, deploy it, and soon use it in
real courses. We also plan on storing problem solutions in a
database in order to speed up the grading and fix the few cases
in which the tool does not assign a fair grade. We believe our
techniques can provide foundations for generating automated
feedback for students, and can be also adapted for other types
of constructions. In particular we are working on automati-
cally generating an inductive proof that a given DFA accepts
a given language. Finally, this tool will not replace the need
for teaching assistants (TAs), but it automates a task that of-
ten consumes several TA-hours. Although we only address a
small problem, once a satisfactory grading tool for this prob-
lem is constructed, it will be used for a long time, since the
concept of DFA will be always taught as it is now.
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