Sumit Basu, Irfan Essa, and Alex Pentland. "Motion Regularization for Model-Based Head Tracking." In Proceedings of the IEEE Int'| Conf.

on Pattern Recognition (ICPR '96). Vienna, Austria. 1996.

Motion Regularization for M odel-Based Head Tracking

Sumit Basu, Irfan Essa, Alex Pentland
Perceptual Computing Section, Media L aboratory,
Massachusetts I nstitute of Technology, Cambridge, MA., U.S.A.
{shasu,irfan,sandy } @media.mit.edu

Abstract

This paper describes a method for the robust tracking of
rigid head motion from video. This method uses a 3D &l-
lipsoidal model of the head and interprets the optical flow
in terms of the possible rigid motions of the model. This
method is robust to large angular and translational motions
of the head and is not subject to the singularities of a 2D
model. The method has been successfully applied to heads
with a variety of shapes, hair styles, etc. This method also
has the advantage of accurately capturing the 3D motion pa-
rameters of the head. This accuracy is shown through com-
parison with a ground truth synthetic sequence (a rendered
3D animation of a model head). In addition, the ellipsoidal
model is robust to small variationsin theinitial fit, enabling
the automation of the model initialization. Lastly, due to
its consideration of the entire 3D aspect of the head, the
tracking is very stable over alarge number of frames. This
robustness extends even to sequences with very low frame
rates and noisy camera images.

1. Introduction and Motivation

This paper describes a method for robust tracking of
head movements in extended video sequences. The main
contribution of this paper is the regularization of optical
flow usinga 3D head model for robust and accurate tracking
in3D usingonly asinglecamera. Thismodel-based method
does not require the same features on the face to be visible
over the entire length of the sequence and is stable over
extended sequences, including those with large and rapid
head motions. Additionally, this method allows tracking
of al the six degrees of freedom of the rigid motion of
the head, dealing gracefully with the motion singularities
that most template-based methods fail to handle. We will
show that the method presented in this paper can be used for
tracking of large head motions over extended segquences for
both full frame rate (30 frames per second) sequences and
low-quality sequences captured at only 5 frames per second.

Our motivation for this work has come from the recent
outburst of interest in face recognition, expression interpre-
tation, and model-based coding. To date, most research
efforts have assumed that only very small head motions are
present [4, 7,8, 12]. This, of course, limitsthe applicability
of these methods.

Consequently, research in head tracking has become an
increasingly important topic. Azarbeyajani and Pentland [2]
have presented a recursive estimation method for structure
and motion based on tracking of small facial features like
the corners of the eyes or mouth. However, itsuse of feature
tracking limited its applicability to sequences in which the
same pointswere visible over most of the image sequence.

Most recently, Black and Yacoob [6] have developed a
regularized optical-flow method that uses an eight parame-
ter 2D model of flow and yields surprisingly good results.
However, asthey point out, the use of aplane-like 2D model
limits accurate tracking to medium-size head motions; the
method will fail when presented with large head rotations.

2. Our Approach

We were interested in devel oping a system that could ac-
curately track the head under virtually all conditionsinclud-
ing large head motions and low frame rates. Conseguently,
we became interested in developing a more accurate and
robust head tracking method. This meant that we could not
depend on the same points on the head being visible over
the entire length of the sequence; nor could we use a scheme
that would have singularitiesfor certain kinds of motion or
certain orientations. It was necessary to have a system that
could robustly and accurately track all six degrees of free-
dom of the rigid motion of the head over a wide range of
values.

Asaresult, we decided to take the approach of interpret-
ing the optical flow field using a three-dimensional model.
In doing this there was a tradeoff as to how complex a
model of the head to use. Too simple a model, such as a
plane, would not track the motion accurately. Too complex
amodel, such as an actual head, would require a very exact
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initial fit. If a detailed model were not fit accurately, the
detailed features of the model could cause more harm than
good. We thus settled on an ellipsoidal model of the head,
which is a reasonable approximate to the entire shape and
which can easily be automatically initialized.

The technique we use for tracking this model may be
considered as motion regularization or flow regularization.
The unconstrained optical flow is first computed for the
entire sequence. The rigid motion of the 3D head model
that best accounts for the observed flow isinterpreted asthe
motion of thehead. A similar approach isused by Horowitz
and Pentland [9] to track non-rigid deformations.

A good amount of previouswork exists on the technique
of flow regularization; Adiv [1] segmented flow into patches
that were consistent withasingle3D motion. Bergen, Anan-
dan, et al. [3] described a method for estimating model and
motion parameters for severa types of motion models us-
ing a “direct estimation” technique. Black and Yacoob's
method [6] is based on Black and Anandan’s [5] robust re-
gression scheme over visua motion, constraining the flow
computation by an analytic eight parameter transform.

Our work differs from thisin that we use afull 3D rigid
model. The model we chose to use was an ellipsoid; how-
ever, the framework we have created allows any set of 3D
points to be used as a model for tracking. Certainly, this
method does not account for all of the different motions
of the head. However, it captures the rigid motions very
accurately.

3. Methodology
3.1. TheMod€

The elipsoid itself is parameterized by the sizes of its
major axes, r,, 1, and r,. These values are determined
by automatically fitting an ellipsoid to the head in the first
frame of the sequence (details of the initialization are de-
scribed below). The surface of theresulting ellipsoidisthen
sampled to produce a set of 3D points, P, and correspond-
ing outward-pointing normal vectors, N ,. The kth column
of Pyis[ zr w = 1]%,whilethekthcolumnof N,
is[ 20 yn 2 ¥

3.2. Rigid Motion Formulation

The rigid motion of the model is described by avector of
Six parameters:
a=[a 8 v t, t, t, ]T.
The first three parameters describe the rotations about the

z, y, and x axes (respectively) of thelocal coordinate frame
of the elipsoid. The last three parameters define the 3D

trandation of the model. A given vector a results in the
following4x4 transform T (notecos(«), sin(3), etc., . have
been abbreviated as ¢, sg, €tc., .):

CaCf  CaS38y — 8qCy CaSgCy + Sa8y 1g

T — 8aCB  8a838y F Caly 84850y — Casy 1y
—383 €3Sy CRCy i,
0 0 0 1

(1)
The current state of the model points, P, can then be com-
puted withP = T - P,. The current normal vectors can be
similarly found with N = T - N,, where T isthe 3x3
(pure rotational) transform contained in the first three rows
and columnsof T'.

3.3. Automatic I nitialization

During the development of the system, the parameters
a, for theinitia frame were obtained using a graphical tool
in which an ellipsoid could be moved along all six degrees
of freedom. In addition, the axes of the ellipsoid could be
adjusted to obtain z,., .., and z,..

However, since our goals required the ability to find and
track people automatically, we incorporated the modular
eigenspace face and feature detection work of Moghaddam
and Pentland [10] in order to parameterize and fit this el-
lipsoid. This system findsthe location of the head itself and
the locations of the eye, nose, and mouth within the head.
We have developed expressions for the scales and initial lo-
cation of the ellipsoid in terms of these coordinates based
on a database of hand-fit ellipsoids. These expresions are
then applied to the output of the feature-finding system to
automatically scale and fit the ellipsoid in the first frame.
Since Moghaddam and Pentland's system is optimized for
the frontal view (i.e., where the head is facing the camera),
it was necessary to ensure that each sequence began with a
near-frontal view.

3.4. Projecting the M odel onto the Viewing Plane

Though our model is a 3D representation, the image se-
guenceisin 2D, and thuswe must project thisrepresentation
onto the viewing plane of the sequence. This can be done
with a simple perspective transformation. Consider the z, y
origin to be at the center of the viewing plane. Then, for
each z, y, z triplein P, the corresponding 2D point will have
coordinates:

L Y
= y = T 2
o 1—z/zy Y 1—2z/24 2
The z, term specifies how significant the effect of perspec-
tive is and thus corresponds roughly to focal length. Note
that this value does not have to be estimated for a given



sequence: it simply determines the magnitude of the z pa-
rameter. Clearly, the numerical valueswill vary with theac-
tual focal length of the camera. If actual physical distances
(i.e., depth in meters) are required, it is a simple matter to
calibrate this value to a given camera’s focal length.

We now define Q as the matrix of 2D points «,, y, cor-
responding to the 3D points of P, with each column of the
matrix containing one coordinate pair. At thispoint, we aso
take into consideration IN, the matrix of normals we have
been carrying along. We are looking at the 3D world from
our viewing plane with a “view vector” (gaze direction) of
[0 0 —1]". Wewill be able to view only those parts
of themodel for which the dot product of the surface normal
and the view vector is negative. Because of our particular
view angle, this means that only the points with positive
zn, values (the z component of the surface normal) will be
visible.

3.5. Generating Flow Fieldsfrom the M odel

The optic flow at each point =, y in an image istradition-
aly defined as the vector [ v v |7, which describes the
displacement from the corresponding point in the previous
image (i.e., thepointinthe previousframewas  — u, y —v).
Tofind the corresponding measure for our model given a set
of initial parameters a; for one frame and a candidate set a;
for the next frame, we first need to find the subset of points
in the model which are visible for both frames (for all other
model points, the flow is undefined). We define V; and V;;
as the appropriate subsets of Q; and Q;.

The “model flow” between these two frames of the
model is then F3y = V; - V;. The kth column of Fy,,
[ upmr vame |7, isthe model flow vector for the image
coordinates z, yx specified by the kth column of V;.

3.6. Comparing Generated Flow with Actual Flow

The next task is to see how well the model flow for the
candidate parameters a; fits the actual flow (as computed
by a genera optic flow algorithm). The metric we will use
isa“robust” mean squared error between the actual and the
model flow. Since the model flow only has values for some
z, y locations while the actual flow is defined everywhere,
we sum over only the n, common locations. Using the no-
tation previously defined, we have the following expression
for the error between the model flow F 5, and the actual flow
F 4, where vy, isthe vector error for one pair of model and
actual flow vectors, v; is the error threshold of the robust
norm, and e, isthe contribution to the total error from this
pair:

v = (upp — ua(r, yk))z + (var e — val(@r, yk))z (3)

o

if vp < vy
if v, > vy

1 &
E(Po,ai,aj,FA) = —Zek (5)
¢ k=1

3.7. Finding the Optimal Parameter Set

We now need to find thelocally optimal parameter set a;
which resultsin the flow that best matches the actual flow:

aj = arg(rr}inE(Po,ai,aj,FA)) (6)
Exhaustively searching through the six-dimensional space
of a would of course be impossible; we thus settle for a
local minimum. This minimum is found by using the “sim-
plex” gradient descent technique (implemented as described
by [11]) withthe error function £ defined above, and a start-
ing point of a; (i.e., the current parameters).

4. Experiments and Results

4.1. Tracking

To demonstrate the tracking performance of this system
we have presented several example sequences in thefigures
below. In figure 1, severa key frames from a sequence
captured at 30 FPS with a Sony HandyCam are shown. The
first row of images contains the original images from the
sequence, while the next two show tracking with a planar
and an elipsoidal model respectively. Both models were
initialized automatically. The plots below the images show
the values of the rotations around the axes of the model’s
coordinate frame («, 3, and v). Though these parameters
are difficult to interpret at a glance, it is clear that al three
angles should return to zero when the face passes throughits
original, frontal orientation (see the plots at time 0, where
a = =y = 0). We can see that thisis the case for the
ellipsoidal model around frames 160 and 110, wheretheface
isfrontal. For the planar model, though, we do not see these
convergences. Whileits point to point correspondence (i.e.,
a point on the model to a feature on the face) is quite good,
the planar model does not seem to follow the orientations
nearly as well as the ellipsoidal model, as can be seen by
comparing the states of the models at the key frames shown.

The next two segquences are intended to show the robust-
ness of the system over a variety of users and operating
conditions. These are shown in figure 2 below. Severa
key frames are shown for each sequence with the ellipsoidal
model superimposed ontheimage. Thefirst sequence shows
a head in normal conversation and shows the system’s ro-
bustness to the non-rigid motions of the eyes and mouth.
Because it uses all of the visible region of the head and a
robust norm, it is not confused by the outliers that do not
correspond to rigid motion.
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Figure 1. Results of tracking on asequence acquired at 30 fps (using JPEG compression) and 320x240
resolution. The plots show the tracked orientation through the sequence.

The next sequence showsthe system’srobustness to poor
operating conditions. The sequence was digitized with a
very poor quality camera (an IndyCam) and contained a
large amount of camera noise. In addition, the frame rate
varied between 4 and 6 frames per second in the presence
of significant (and rapid) head motion. Lastly, there was
a great deal of “external motion” in the background from
the hands moving around behind the head. Despite these
conditions, the system was able to track the head accurately
for the full 330 frames of the sequence, as can be seeninthe
key frames shown.

4.2. Validation
To demonstrate the accuracy of the system’s positionand

orientation estimates, we have compared the resultsto acal-
ibrated synthetic sequence. This sequence was generated

by animating a synthetic head using the Silicon Graphics
Inventor graphics libraries. The motion parameters used to
drive the model were in the same format as those estimated
by the system, and were obtained from running the system
on a separate image sequence (not shown). As aresult, the
exact rigid parameters of the model were known at every
frame. The results of this experiment are shown in figure 3
below. Again, severa key frames are shown from the orig-
inal sequence, followed by the tracking by the planar and
ellipsoidal models. Below these key frames, a separate plot
is shown for each rigid parameter. The “model” (dashed)
line corresponds to the actual rigid parameters of the an-
imated head, the “planar” (dotted) line corresponds to the
parameters estimated for a planar model, and the “ellipsoid”
(solid) line corresponds to the parameters estimated for an
ellipsoidal model.

Asinthe sequence showninfigure 1, itisclear that both
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(a) A 150 frame sequence at 30 FPS (320x240).

(b) A 300 frame sequence at about 5 FPS (90x90) Captured using an indycam.

Figure 2. Results of tracking on two sequences of different frame rates, resolution, and image quality

models maintain good point to point correspondence (i.e.,

point on the model to point on the head) over the whole
sequence. However, the estimated orientations are far more
accurate for the ellipsoidal model than for the planar model.

This is clear from the plots: while the elipsoidal model

rarely variesmore than 0.2 radians (10 degrees) from the ac-
tual orientationfor agiven axisof rotation, the planar model

is often much further off than this. The ellipsoidal model

also produces aslightly better estimate of the trandlation pa-
rameters, as can be seen below. It isthe detailed orientation
informationthat thissystem extracts, though, that isitsmost
significant advantage over other schemes. Thisisduetothe
explicit 3D nature of the model.

5. Discussion and Conclusions

We have presented a method for robust tracking of heads
in video. We have shown that this method is stable over
extended sequences and large head motions and accurately
extracts the three-dimensional rigid parameters of the head
fromasingleview. We have shown that thismethod extracts
more accurate information than a simple planar model be-
cause the ellipsoidal model represents the overall structure
of the head.

We have aso shown that flow regularization using a
model is sensitive only to the motion being observed and
completely ignores other motion in the scene.  Unlike
feature-based methods, the whole head is tracked, and we
are not constrained by some features vanishing from view.
We have also shown that robust tracking is possibleeven un-
der poor digitization conditions. Lastly, the system isrobust
tovariationsin theinitialization of the ellipsoid and thus can

be reliably initialized automatically.

Even though we have framed this technique of model-
based motion regularization only in the context of head
tracking, we believe the method to be general enough to be
appliedto other trackingdomains. Inaddition, themethodis
certainly not restricted to ellipsoidal models- any 3D model
can be easily fitted into the framework described above.
Even models with significant concavities can be used, since
the robust error norm will effectively ignore these points
when they are occluded. This framework can thus be ap-
plied to a variety of tracking tasks with a variety of models.

Note: Example sequences (with tracking) in QuickTime
format can be viewed at http://vismod.www.media.mit.edu-
/vismod/demos/faceview!.
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