Synthesizing Switching Logic for
Safety and Dwell-Time Requirements

Susmit Jha Sumit Gulwani Sanjit A. Seshia Ashish Tiwari
UC Berkeley Microsoft Research UC Berkeley SRI International
jha@cs.berkeley.edu sumitg@microsoft.com sseshia@eecs.berkeley.edu tiwari@csl.sri.com

Abstract—Cyber-physical systems (CPS) can be usefully multi-modal dynamical systems (MDS). An MDS is a
modeled as hybrid automata combining the physical dynam- physical system (plant) that can operate in different modes
ics within modes with discrete switching behavior between The dynamics of the plant in each mode is known. How-
modes. CPS designs must satisfy safety and performance . - . o
requirements. While the dynamics within each mode is usuajl ever, 1o achleve_ safe and eff|C|er?t operation, '_t is often
defined by the physical plant, the tricky design problem ofta Necessary to switch between the different operating modes.
involves getting the switching logic right. In this paper, we Designing correct switching logic can be tricky and tedious
present a new approach to assist designers by synthesizingwe consider the problem of automatically synthesizing
the switching logic, given a partial system model, using a switching logic, given the intra-mode dynamics, so as to

combination of fixpoint computation, numerical simulation, . . .
and machine learning. Our technique begins with an over- PTES€rve safety in MDS. The human designer can guide the

approximation of the guards on transitions between modes. Synthesis process by providing initial approximationshef t
In successive iterations, the over-approximations are refied switching guards and a library of expressions (components)

by eliminating points that will cause the system to reach ysing which the guards can be synthesized.
unsafe states, and such refinement is performed using nu- Our synthesis approach performs reasoning within each

merical simulation and machine learning. In addition to d d k des in t diff t
safety requirements, we synthesize models to satisfy dw«iine mode and reasoning across modes in two difierent ways.

constraints, which impose upper and/or lower bounds on the Within.each. modg, reaso.ning .iS based entirely on gsing
amount of time spent within a mode. We demonstrate using numerical simulations While this can lead to potential

case studies that our technique quickly generates intuite unsoundness, it allows us to handle complex and nonlinear
system models and that dwell-time constraints can help 10 4ynamics that are difficult to reason about in any other
tune the performance of a design. . . .
way. Across modes, reasoning is performed udirgoint
|. INTRODUCTION computation techniquesimilar to abstract interpretation,

As cyber-physical systems (CPS) are increasingly deemputation of the fixpoint is performed over an “abstract
ployed in transportation, health-care, and other societalomain,” which is specified by the user in the form of
scale applications, there is a pressing need for automaged¢omponent library for the switching guards. Each step
tool support to ensure dependability while enabling desigaf the fixpoint computation involves the use ofachine
ers to meet shortening time-to-market constraints. Modé¢arningto learn improved approximations of the switching
based design tools enable designers to work at a high legelrds based on the results of numerical simulations.
of abstraction, but there is still a need to assist the design The key contribution of our paper is mew approach
in creatingcorrect and efficientsystems. for synthesizing safe switching logic based on integrat-

A holy grail for the design of cyber-physical systeming numerical simulation, machine learning, and fixpoint
is to automatically synthesize models from safety ariterations In addition to safety, our approach also extends
performance specifications. In its most general form, autw handling dwell-time requirements, which impose upper
mated synthesis is very difficult to achieve, in part becausad/or lower bounds on the amount of time spent within
synthesis often involves human insight and intuition, and & mode. While numerical simulations have been used to
part because of system complexity — the tight integratigrerform formal verification (e.g., [7], [5], [4]), to our
of complex continuous dynamics with discrete switchingnowledge our approach is the first to use simulations to
behavior can be tricky to get correct. Nevertheless, erform synthesis with safety guarantees. We demonstrate
some contexts, it may be possible for automated tools tising case studies (Sec. Il and VI) that our technique
complete partial designs generated by a human desigrganerates intuitive system models and that dwell-time con-
thus enabling the designer to efficiently explore the spécesiraints can help to tune the performance of a design.
design choices whilst ensuring that the synthesized system
remains safe.

In this paper, we consider a special class of synthesisin this section, we describe the problem of synthesizing
problems, namely synthesis of mode switching logic fawitching logic for a multi-modal continuous dynamical

II. PROBLEM DEFINITION

system. We present two versions of the problem. In the firstA safety property is a seps C R" of states. We will
version, we ask for a switching logic that only preservesverloadys to also denote the predicate (X). A statex
safety. In the second version, we also require that tiesaid to besafeif and only if x € ¢g (or equivalently, if
synthesized system satisfy some dwell-time requirements(x) is true). A hybrid systeniis is safe with respect to
in each mode. We begin with some definitions. ¢s if and only if all the reachable states #t$ are safe.

A continuous dynamical systef@DS) is a tuple(X, f) Coming up with the correct guards for the mode switches
where X is a finite set of| X| = n real-valued variables such that all reachable states are safe is challenging and
that define the state spaB¥ of the continuous dynamical our proposed technique aims at automating this task. While
system, andf : R” — R™ is a vector field that specifies controller synthesis has been widely studied, what differe
the continuous dynamics & = f(x). The vector field tiates our work is that we provide the designer an option to
f is assumed to be locally Lipschitz at all points, whiclprovide some initial partial design. Specifically, we assum
guarantees the existence and uniqueness of solutions totti# the designer can provide an over-approximations for
ordinary differential equations. the guards. In the extreme case, if transition from mode

Often, a system has multiple modes and in each mode, tissmode; is disallowed, then the designer can ggt= 0,
dynamics is different. Such a multi-modal system behavead if the designer knows nothing about the possibility
as a different continuous dynamical system in each modsf. a transition from modé to modej, then she can set

Definition 1 (Multi-modal CDS (MDS))An MDS is a g;; = R™. The designer can specify partial information by

tuple (X, I, f1, fa,..., fx) where picking an intermediate set as the initial guard.

e (X, f;) is a continuous dynamical system (representing If S := ((gi;)ijem) and S’ := ((g;;)i jem) are two
the i-th mode) switching logics, then we use the notati8hC S to denote

e I C R" is the set of initial states thatg;, C g;; for all i,j € M.

We will use M = {1,2,...,k} as the set of indices of We provide two variants of the problem definition.

the modes. Arajectory for MDS is a continuous function Definition 3 (Switching logic synthesis problem v1):
7(t) : [0,00) — R™ if there is an increasing sequencé&iven a multi-modal continuous dynamical system (MDS),
to:=0 < t; < ty...such that a switching logicS, and the safety specificatiopg, the

.« (0) €1, switching logic synthesis problem seeks to synthesize a

2 o
e for each idnterval[ti,tiﬂ), there is some modg € M ?BWS,SVgIt;h;I%lOgIGS such that

S,UCh thatg; (t) = J; (T(t)_) for all ¢; < b < iy, and (2) the hybrid systenis := (MDS, S’) is safe with respect
e j =1 whent; =0 (that is, we start in Modad.). {0 ¢s.

A multi-modal System can nondeterministica”y switch Consider the case when the designer provides no in-
between its modes. The goal is to control the switchingrmation and sets all guards f&". In this case, it is
between different modes to achieve safe operation. trivial to synthesize a safe hybrid system by just setting

Definition 2 (Switching logic.f)): A switching logicS gl switching guards to beys. The reader can check that
for an MDS (X, I, (fi)ien) is @ tuple ((gi;)izsiijem). this is a solution for the switching logic synthesis problem
containing guardg;; C R". defined above. This solution is, however, undesirable since

A multi-modal system MDS can be combined with gne resulting hybrid system has ontgno behaviorsi.e.,
switching logics5 to create a hybrid syste#is := (MDS, S) an infinite number of transitions can be made in finite time
in the following natural way: the hybrid syste#i has (as we are assuming that a transition is taken as soon as it
k modes with dynamics given b¢X = f; in modei, g enabled).
and with g;; being the guard on the discrete transition The second problem definition below gives the designer
from mode: to modej. The initial states ofis are I 5 way to explicitly rule out solutions that have zeno
in Mode 1, where I is the set of initial states of the pepayious. Specifically, the user can specify (both lower
MDS. The.dlscrete tr.ansmons !HS have identity reset 5nq upper) bounds on the amount of time every trajectory
maps, that is, the continuous variables do not change valugs)|d spend in a mode.

during discrete jumps. The state invaridiat; for a mode Definition 4 (Switching logic synthesis problem v2):

i € [is the (topological) closure of the complement Oéiven a multi-modal continuous dynamical system
the union of all guards on outgoing transitions; in OthetrMDS), a switching logicS, a sequencelte, ..., tey)
words Inv; := Closure(R™ — ;¢ g;;). Note that we are ¢ o0 negative minimum-dwell time requirements, a
assuming here that a discrete transition is taken as SOON@8ence(tas, . .., tzy) of non-negative maximum-dwell
it is enabled: This completes the definition of the hybridj e vequirements, and a safety specification, the

system. The semantics of hybrid systems that defines §igihing |ogic synthesis problem seeks to synthesize a

set ofreachable statesf hybrid systems is standard [1]. o, switching logicS’ such that
IAssume that the mode dynamics are not tangential to theistatéant (1) s c s,)]]
at any point. (2) the hybrid systentis := (MDS, S’) is safe with respect

OFF (F) arm HEATING (H)

to ¢g, and

(3) whenever any trajectory afS enters mode, it stays

in modes for atleastte; and atmostz; time units.

The designer can now force the synthesis of only nonzeno
systems by settinge; to a strict positive number for
selected modes. Note that if the designer gefsto zero
andtzx; to oo for all modes, then the second problem is the
same as the first problem.

& = —0.002(z — 16
T=0

) i=—0.002(z —T)

T=01

&= —0.002(x — T)
T=-0.1

i =—0.002(z —T)
T=0

gnec ON (N)

COOLING (C)
Notation

Our paper makes use of the formal definitions of tempo-
ral formulas and the evaluation of a temporal formula in a
given dynamical system as given below.

Consider the weak untiW and the strong untiU 20°C, that is, ¢g is 18 < z < 20. (We omit the units in
temporal logic operators. Recall that we do not distinguidh€ sequel, for brevity.)
between a set of states and a predicate on statetaté In the OFF mode, the temperature falls at a rate propor-

formulais a predicate on states or a Boolean combinatiéienal to the difference between the room temperature
of predicates. If, ¢’ are sets of states, thefW ¢’ and and the temperature outside the room which is assumed to

#U¢' aretemporal formulas be constant at6. In the HEATING mode, the heater heats
A state formula is evaluated over a state. The formulaUp from 20 to 22 and in the COOLING mode, the heater

evaluates to true on a stateif x c ¢ A tempora' formula cools down from22 to 20. In the ON mOde, the heater is

is evaluated over a given trajectofy The formu|a¢U¢/ at a constant temperature 2. In the HEAT'NG, ON and

Fig. 1. Thermostat

evaluates to true on trajectoryif COOLING mode, the temperature of the room changes in
, proportion to the difference between the room temperature
Jto:7(to) €¢" N (VO E<to:7(t) €) (1) and the heater temperature. We need to synthesize the four

o if & be- Quardsigry,gun,gnc andgor.
Informatlly, the tetmplfral ?rmltj_:a_;;tgqs 'S tru? |f_¢tbe The guards must respect the safety property on the room
comes true eventually and until it becomes tri@s true. emperaturer as well as the specification on the heater

The weak until operatoV, is a weaker notion and doestemperaturel’ in HEATING and COOLING mode. So,
not require thaty’ necessarily becomes true. ¢f ¢’ are from the given specifications, we know that

sets of states, then the temporal formgl& ¢/ evaluates

. . . gra C18 < <20AT =20
to true over a given trajectory if

gun C18 < x <20NT =22
(Fto:1(to) €d N VOt <ty:7(t)€P)) V gne C18 < x <20AT =22
(Vt >0:7(t) € ¢) 2) gor C18 <x <20AT =20 ®)

- - n order that the MDS remains safe, we need to ensure
I_:or uniformity, a state formula can be evaluated on at all states reachable within each mode are safe. Canside
trajectory as follows: a state formula evaluates to trueé the OFF mode. We need to ensure that all traces starting
on a trajectoryr if 7(0) € ¢. We can combine state andfrom some point in the initial conditiod or go» do not
temporal formulas using Boolean connectives and evaluggaich an unsafe state before reaching some stage in
them over trajectories using the natural interpretatiothef Reaching some state - enables a transition out of the

- ; FF mode. In other words, the first two temporal properties
Boolean connectives. I® is a state or temporal formula,in Equation 4 must be satisfied by all traces in the OFF

then we write mode. Similarly, for HEATING mode, all traces starting
Mode:. T o from some state inc € gry Must not reach an unsafe
03, = state before reaching an exit stateginy, as indicated by
the third property below. For the other two modes, similar
to .deno.te that the formul@ eyaluates to true orall temporal properties on the traces need to be enforced.
trajectories of the CDS in modethat start from a state Qyerall, the following temporal assertions can be written

in 1. for the four guards.
[1l. OVERVIEW F.I E ¢sWgrn
In this section, we present an overview of our approach Fogcr | ¢s W grn
using a thermostat controller [9] as an example. The 4- H,gru F ¢s W gun
mode thermostat controller is presented in Figure 1. The N,gun FE ¢s W gne
room temperature is represented:bynd the temperature C,gnce FE ¢s Wgcr (4)

of the heater is Orepresented ﬂiy The initial conditionl is gyyitching Logic Synthesis Problem We can synthesize a
given byT' = 20°C andz = 19°C. The safety requirement safe switching logic by computing the fixpoint of the above
¢s is that the room temperature lies betweE?C and 5 assertions in Equation 4. We initialize using the equation

in Equation 3 obtained from the safety and other usépns in (4) and (5) are as follows.

provided specifications which put an upper bound on the

guards. We then perform greatest fixpoint computation gra @ 18.00 <z <1990 AT =20At > 100
in each iteration, we remove states from the guards which

.) . : .00 <z <19. =
would lead to some unsafe state in a mode. Fixpoint 7~ 1800 sz < 19.95 AT = 22
computation leads to the following guards which ensure gvc @ 1835 <2 <19.95AT =22
that all states reachable are safe. We compute only till the gcr @ 1845 <2 <20.00 AT =20

second place of decimal.
Sincet was a timer variable we had introduced, we next

grm 18.00 < 2 <19.90 AT = 20 eliminate it fromgry. We do so by removing states from
11800 <z < 19. _ gr g Which are reachable from any stateginig in less than

gun 1800 <z < 19.95 N T' = 22 100 seconds. These set of states &)1 < z < 20AT =

gnc 11800 <z < 19.95 AT =22 20. Hence, the final guards that respect the safety property

gor :18.00 < x < 20.00 AT = 20 as well as enforce a minimum dwell-time of 100 seconds

in OFF mode are as follows.

The behavior of the synthesized thermostat for the first 18,00 < 2 < 1801 AT — 20
1000 seconds from the initial state is shown in Figure 2. gra :18.00 = z = 1801 AL =
The room temperature gradually rises from its initial value gun :18.00 < 2 < 19.95 AT =22

of 19 and then stays betwee®.90 and 20. gnc +18.00 <z < 19.95 AT = 22
gor :18.00 <z <20.00 AT =20

N
w

The behavior of the synthesized thermostat for the first
1000 seconds from the initial state is shown in Figure 3.
We observe that the number of switches has gone down
from 21 to 5 and the room temperature now stays between
18.01 and 18.45.

1 AN

= Room temperature

N
N
T

N
[y

N
o
T

Temperature(celsius)

=——Room temperature
—Heater temperature| |

=
©

3
o

200 400 600 800 1000
Time(sec)

Fig. 2. Behavior of Synthesized Thermostat

Temperature(celsius)

Switching Il_ogic Synthesis_ P.roblem vEhough the sys- — Heater temperature| |
tem synthesized above satisfies the safety specificati \/\/\/\/\/\
it has the undesirable behavior of switching frequentl 18 200 200 600 800 1000
It keeps the room temperature in the narrow interval ui Time(seo)

19.90 < z < 20, even though the safety condition onlyrig. 3. Behavior of Synthesized Thermostat with Dwell TimzeSifica-
required it to be in18 < z < 20. Ideally, designers are tion: Minimum dwell time of 100s in OFF mode.
interested not only in safe systems but in systems with

good performance. The dwell time specification provides a Minimum dwell-time of 300 seconds in both OFF and
mechanism to the designer to guide our synthesis techniqdR mode (case B)Ve observe that the design synthesized
to solutions with good performance. with minimum dwell-time of 100 seconds in OFF mode has
Minimum dwell-time of 100 seconds in OFF mode (caselatively less switching but still, we would like to reduce
A): We add an extra constraint in the specification of outs switching frequency. Also, the room temperature can
synthesis problem that the system must spend atleast affely lie betweeri8 and20 but in the above synthesized
seconds in the OFF mode. This would lead to less frequayistem, it is restricted to a narrow interval o$.01 and
switching as well as minimize energy consumption since’.45. So, we increase the minimum dwell-time in OFF
heater remains off in the OFF mode. . mode t0300 seconds. We also enforce a minimum dwell-
Let us add a timer variablé with dynamicst = 1 time of 300 seconds in ON mode to ensure room heats up

in every mode. Assume thatis reset to0 during every g g higher temperature within the safe interval.
discrete transition. To enforce the minimum dwell-times th We now get the following fixpoint equations

following constraint must also be satisfied in addition te th
fixpoint constraints in Equation 4.

[
©

F, I E ¢s Wgru A(t>300)
F.I E ¢sW (gra At > 100) F.gcr E ¢s W gra A (t > 300)
Fogcr FE ¢s W (gru At > 100) (5) H,grn E ¢s W gnn
N,gun FE ¢s W gne A (t > 300)
The guards obtained by computing the fixpoint of equa- Cogne E ¢s W ger

4

Fixpoint computation yields the following guards. SWITCHSYNI(MDS, ¢s, S):
. 1800 <z <1814 AT =20 At > 300 [Input MDS = (X, 1, fus.. fi),
gra : 180 sz < I8lanl =20/t 2 /1 1nput és CR™,
gun ¢ 18.00 <z < 1826 AT =22

/11 nput S = <(gij)i,j€M>v
gne 1960 <z < 19.95 AT =22/t > 300 /| Qutput synthesis successful/failed
gor ¢ 19.65 <z <20.00 AT =20

for all 4,7 M do g;j::gijﬂgbs
We restrictgyc andgrg in the same way as (Case A) by repeat {
computing the set of states reachable fromw and gor for all ieM do {

in less tharB00 seconds respectively. The final synthesized, bad := {x | Mode,. {x} = — ' YU—
guards are as follows. s for al{l |j c M ’(;I{O}g":»- _:(\g’,f.gl_kéad o5}
Je * Jt

~N OO o~ W N P

gra 1800 <z <18.01AT =20 10 if (¢i==1 and InNbad #0)
gan 1800 <z <1826 AT = 22 11 return "synthesis failed"
gye ¢ 1994 <2 <19.95AT = 22 12
gor @ 19.65 <1 <20.00AT =20 13} until (gi;’s do not change)
if (I=¢s)

The behavior of the synthesized thermostat for the first
1000 seconds from the initial state is shown in Figure 4
We observe that the number of switches has gone down to°
and the room temperature is still within the safe interval &fi9- 5. Procedure for solving the switching logic synthesisblem v1.
18 and20. This example shows how our synthesis approach

return "synthesis successful"
el se return "synthesis fail ed"

: : If the guards in the switching logicS’ satisfy the
— Room temperature collection of assertions in Equation 6, then the resulting
~— Heater temperature hybrid system is safe. The converse is also true.

Lemma 1:Given anMDsS := (X, I, f1,..., fx), and a
safety propertyps, if S” = ((gi;)ijen) IS @ switching
logic that satisfies all assertions in Equation 6, then the
hybrid systenHs := (MDS, S’) is safe with respect tggs.

‘ ‘ ‘ Conversely, if there exists a switching logi such that
200 40 imeser) 800 1000 the hybrid systenHs := (MDS, S') is safe with respect to

¢s, then there is a switching logi§” C S’ that satisfies
Fig. 4. Behavior of Synthesized Thermostat with Dwell Tine8fica- ; ; ;
tion: Minimum dwell time of 300s in OFF and ON modes. the assertions in Equation 6.

N
w

N
N
T

N
[y
T

N
o

Temperature(celsius)

i
©

=
(o]

(=)

Proof: The first part follows directly from the defi-
can be used to synthesize not only safe systems but aféon of the semantics of the temporal operators and our
systems with desired performance. Dwell-time properti@ssumption that discrete transitions are taken as soon as
can be used by the user to explore designs with bettbey are enabled.
performance. For the converse part, the desirgtl := ((g;})i jen) IS
obtained by intersecting the s&kach of reachable states

IV. FIXPOINT ALGORITHM . :
, _of HS with S”; that is, g/, := g;; N Reach. The reader can
We are now ready to describe the procedure for SO|VI%rify that S” will satisfy the assertions in Equation @

the switching logic synthesis problem in Definition 3. At a semantic level, we can solve the problem in Def-
Assume that we are given an MDIBS, a safety property inition 3 by computing the fixpoint of the assertions in

¢s, and an over-approximation of the guarsls Equation 6. This procedure is presented in Figure 5. The
MDS := (X, I, f1,..., fx), ¢s CR", S:={((gij)ijem) fixpoint iterations start by picking the most liberal guards

We wish to solve the problem in Def. 3 for these inIoutSpossible (which is the intersection of the safety property

. : and the user-specified bounds). In each successive step, the
Let.us say we find guard@jj S sygh that.they have theguards are made smaller by removing certain “bad” states.
following property: for every mode, if a trajectory enters o ,
mode (via any of the incoming transitions with guardSpeC'flca"y’ e remove fron;, any state that reaches an
, .))) unsafe state following the dynamics of Modebeforeit
g5;), then it remains safentil one of the exit guardg;y,

. : . reaches any exit guard. Thus, in each iteration, we reason
becomes true. This property can be written formally us”\%cally about only one mode at a time. We stop when we
the weak untiloperator. '

reach a fixpoint.

Modey, I E ¢sW(\/g’lk) We state the soundness and completenss of the fixpoint
keM algorithm for solving the switching logic synthesis prahle
Mode:, \/ gf; E ¢sW(\/gj) fori=1.k (6) Lemma 2:If ProcedureSwiTchSyn1 terminates with
JjeM keM “synthesis successful” angl; are the discovered guards,

then these guards satisfy all the assertions in Equation 6. SupposeS” C S’ . Suppose we go fron¥), to Sy,
Proof: If ProcedureSwitcHSyn1 returns “synthesis by deleting the sebad from g’;. We need to show that

successful”, then the condition in Step 10 must be fals¢, th&’ C Sy, ;. Let Sy = ((gi;;)ijen) and letS” :=

is, I N bad = 0. So, from the definition obad, there does ((9i;)i.jenrr)-

not existx € I such thatMode, {x} = (V. 91,) U ¢s.

For all statesx € 1,

Modeq, {x} E ¢psW(\/ 9ir)

X € bad
= Mode;, {x} = ~(\/ giir)U=¢s
k

keM = Mode;, {x} = ~(\/ g/k)U~¢s,"" git. C gvin
that is, k
Mode1, T = psW(\/ gi) = Modei, {x} = ~(6sW \/ gik)
keM k
Also, if ProcedureSwiTcHSYN1 returns “synthesis suc- = Mode;, {x} |~ ¢5W\k/gik

cessful”, the termination condition forepeat loop at
Step 13 must be true. So, for alE M theg’; = g, — bad
for all j € M, that is g}, N bad is empty. So, for all
i € M, there does not exist any € gj; for any j such
that Mode;, {x} = —(V, 9;,)U—¢s. So, for alli € M,
for any statex in \/, ¢,/ g5

= x¢gy, - 8" satisfies Equation 6
x ¢ I'ifi==1, 5" satisfies Equation 6

This shows thats” C S%,,; and Procedur&wiTcHSYN1
cannot return at Line 11. Sind&s is assumed to be safe,
I = ¢s and hence Procedur®viTcHSYN1 cannot return

at Line 16. Hence, ProceduBsviTcHSYN1 can only return
Mode;, {x} = osW(\/ gi1) Y

rens “synthesis successful” contradicting our assumption.m

that is, A. Switching Logic Synthesis V2

Mode;, \/ gj; = osW(\/ gis)
jeEM keM We now consider the switching logic synthesis problem
in Definition 4. Recall that apart from the bounds on
the guards, the user can provide minimum and maximum
dwell time requirements for each mode. The goal is to
synthesize a switching logic where the guards satisfy the
If Procedure SwiITCHSYN1 terminates with “synthesis specified bounds and the trajectories of the resulting dybri

successful” andy/, are the discovered guards, then thaystem satisfy the minimum and maximum dwell time

hybrid systenmHs := (MDS, {(¢’.); ; is safe forgg. requirements.
y Progf: Using L(a(mma<(fz'§a)néelj_we>r‘21ma 2 we Q;D:gnclude ProcedureswiTcHSYN2 for solving the problem in Def-

that the hybrid systeris := (MDS, ') is safe with respect inition 4 is outlined in Figure 6. Procedu@vITcHSYN2
to ¢s. m 'unsin three phases. In the first step, the new problem
Even when it terminates with success, note that tf® ransformed to the old problem. In the second step,
ProcedureswiTcHSyn1 does not guarantee that the synProcedureSwitchSynl is used to solve the generated
thesized hybrid systenis has nonzeno behaviors. In aproblem. In the thlrd_step, the result is transformed back to
post-processing step, one can perform sufficient checks3gt @ result of the given problem.
guarantee the absence of zeno behaviors. Suppose that we are given
We can also show that our procedure is complete. ._ n T
Theorem 2 (Completeness of ProcedSvaTcHSYN1): ?2?;—{§§,I, flié,;f%i; -:(bs{t;gle : ka—} ((9i3)ijem),
If Procedure SwiTcHSYN1 terminates with “synthesis ' B ’ ' B
failed”, then there is noS” C S such that the hybrid |n the first step, the problem in Definition 4 is reduced
systemHs := (MDS, 5') is safe. to the previous problem. This reduction is achieved by
Proof: Assume that the claim is false and there is @troducing a new state variablesuch that
switching logicS” C S such thatis := (MDS, S') is safe. (1) the dynamics of is given byi = 1 in each mode
By Lemma 1, there is a switching logi€” := ReachNS” (2) the variablet is reset to) in each discrete transition
that satisfies Equation 6. Recall thRtach is the set of These two steps are performed by the func-
reachable states afS. Let S7,i = 0,1,..., be the inter- tjon Add_timer_t. Now, the dwell time requirements can
mediate switching logics computed by Proced8veTcH- be specified as bounds on the variahleSpecifically, the

Syn1. Clearly, S5 2 S1 2 55 2 --- and Sj := SN ¢s. over-approximationS of the guards can be updated as
Since Reach C ¢g by assumption, we can easily verifyfgllows:

that S” C S{. We will inductively show thats” C S/ for
all 4. 9ij = Gij A (tei <t< tIl)

Thus, the discovered guargg satisfy all the assertions
in Equation 6.

Theorem 1 (Soundness of ProcedSmTcHSYN1):

In the second step, a call to ProcediB&TcHSYN1 SWITCHSYN2(MDS, ¢s, S5, Te, Tx):
is made, but with the updated. Recall that Proce- ! // Input MDS,¢s,5: As in Figure 5

dureSwiTcHSYN1 essentially performs an iterative fixpoint 2 [T 1nput Te:= (tey,...,tex)
computation to solve Equation 6. Equation 6 assumes that [T Tnput Tx:= (tzy, ..., tzy) .
discrete transitions do not reset any continuous variable¢ // Qutput synth. successful/failed
Since we now have discrete transitions that resai 0, 5 MDS® := Add timer_ t(MDS)
we need a slightly modified ProcedussvitcHSyn1 that 6 95¢ ©= ((gij A (tei <t < ’fzi))i-,jeM>
solves the modified equations below: 7 [1 Call switcHSynl with the updated S
8 res : = SWITCHSYNL1(MDS®, ¢g, S°)
Modey, R(I) | 6sW \/ g1y, o if res == "synthesis failed"
keM 10 return "synthesis fail ed”
Mode;, \/R(g;i) E ¢sW \/ggk fori=1.k(7) 11 else let S be the synthesized guards
jeM keM 12 // post processing step

13 for all 4,j€ M do
gij = {x | (x,t) € gi;}
15 for all 4,5,ke M do {
16 bad: = {(x,x)|x€gji NX € gi N (X', t') & gl
17 A M, {(x,t =0)} = trueU{(x,t')}}
18 Quess Bl,BQ s.t. By x By D bad
19 gji = gji — B1, gik = gi — B2

whereR(S) is the set of states obtained by resetting the
component of every state in the seto 0. If ¢ is a formula
denoting the sef, then R(¢) is Js(o[s/t] At = 0) (the
notationg[s/t] means replaceby s in ¢). Informally, R(¢)
can be computed by first removing facts abofrom ¢ and
then adding the new fac¢t= 0 to it.

The guards synthesized by Proced8vaTcHSYN1 will
use the new state variabte Howevert was not part of
our original problem specification. In the third step, the2
variable ¢ is eliminated from the guards synthesized by23
ProcedureswitcHSYN1. Supposes’ := ((g;,)i,jen) is the , o _ ,
switching logic synthesized by Proced@eiTcHSYNL. We Fig. 6. Procedure for solving the switching logic synthgsisblem v2.
first project out thet-component fromS” to get our first
guess for the desired. Then, for every mode, and for
each entry guard, say’;, and for each exit guarg;,,
we compute pairs of stateg,x’) such thatx € g,;,
x' € g, there is a trajectory in modéethat starts from
state(x, ¢ = 0) and reaches$x’,t’) in time ¢/, and (x',t’) M, \/ 95 = psW(\/)
is not in g},.. A behavior where modé in entered in state jEM keM
x and exited inx’ was disallowed inS’, but it is allowed From Step 16, it follows that
in S (sinceS ignorest). Hence, we need to either remove , ,

x from g;;, or removex’ from g;;.. Procedure&SwitTcHSYN2 M, \/ gji = (= \/ gir)W(t > te;)
procedure non-deterministically makes this choice. jeM keM

Removal of states from the guards can potentially cauSe, the guards;;'s synthesized by ProcedugeviTcHSYN2
the modified switching logic to become unsafe. Hence, satisfy the following assertions
the final step, we need to verify that the updated guards
still satisfy Equation 6. This is performed by the function M;, \/ g E (9s A \/ i)W (t = tes)

Verify. The functionVerify can be implemented by jeM keM
calling ProcedureSwitcHSYN1 and checking its return for all 7 € M (8)
value. So, the synthesized guards define a switching logic that

We can now state the soundness and completensssafisfies the requirements in Problem Definition 4. =
ProcedureSwitcHSyn2 for solving the switching logic We can also state and prove completeness of Proce-
synthesis problem in Def. 4. dure SWITCHSYN2.

Theorem 3 (Soundness of Proced@mTCcHSYN?2): Theorem 4 (Completeness of Proced8v@TcHSYN?2):

If Procedure SwitcHSYN2 terminates with “synthesis If, for every possible guess on Line 18, the
successful” andy;. are the discovered guards, then th€rocedure SwiTcHSYN2 terminates with “synthesis
hybrid systemHS := (MDS, ((g;;)i,jenm)) is safe for¢s failed”, then there is noS’ C S such that the hybrid
and it satisfies the dwell time requirements specified 3ystemHS := (MDS,S’) is safe and it satisfies the dwell
Te and Tx. time requirements.

Proof: The final verify check guarantees th#s is Proof: The completeness of the algorithm follows
safe with respect tgs. The over-approximation defined infrom the non-deterministic guesses in Step 18. The Pro-
Step 6 of ProcedurewiTcHSYN2 ensures that the switchingcedure SwitTcHSYn2 first transforms the problem to an

it (Verify(MDS, és, ((9ij)ijem)))
return "synthesis successful”
el se return "synthesis fail ed"

logic S’ synthesized by ProceduBsvitcHSYn1 on Line 8
satisfies the dwell time requirements. From Theorem 1, the
guards also satisfy the following.

extendedMDS and uses ProcedurgwiTcHSYN1 to com- the following properties: ifbad € C, then out; = bad;
pute the guards (Step 8). By Theorem 2, we know thatherwise,out, O bad.
ProcedureSwitcHSYN1 is complete. So, if there is a For simplicity, we describe below how can be im-
switching logic that produces HDS which is safe and plemented wherbad is an interval constraint on a single
satisfies dwell-time properties, then guards computed variable. It is possible to extend this method to conjuntdio
Step 8 will contain this switching logic. Hence, the onlyof interval constraints on multiple variables. An explovat
place where completeness might be compromised is in thie extensions to more complicated sets is left to future
post-processing step. However, we make non-deterministiork.
guesses for removing states from the guards computed I?y
ProcedureswitcHSyN1 and hence, if a solution exists, we ™"
can always guess the correct sets to be substracted from thé/e assume the availability of the following two kinds of
computed guards in Step 18 such that we obtain the desifdgulation-based oracles:
solution. This gives us the desired completeness remlt. ¢ Oracle SO 4: This is an oracle that, given a state

ProcedureswitTcHSyN2 is nondeterministic and involves the dynamics of a modé/ode;, and state sets; and
making the correct guesses in the postprocessing stage. We,, returns a Boolean answer indicating whether the
can get a deterministic version of the procedure by making following property holds:
arbitrary guesses at each point. This deterministic varsio
will be iogund: whenever thl?a procedure outputs “synthesis Mode;, {x} {= (61U¢2)
successful”, the synthesis problem in Definition 4 indeed Note that definition ofSO 4 is motivated by the need to
has a positive answer. However, it will not be complete: computebad in Line 8 of ProcedureSwiTcHSYN1.
even when there is a positive answer for the synthesisOracle SOp: This is an oracle that, given a state pair
problem, the deterministic variant can fail to find the (x, x’), the dynamics of a modé/ode;, extended-state
appropriate guards because it can make the wrong choicessety), and state set$; andg,, returns a Boolean answer
Some form of backtracking appears to be required. In indicating whether the following property holds:
practice, our implementation’s heuristically-guided icles , ;o
have always obtained a positive answer. XEQNAX € N{X,) Y

A Mode;, {(x,0)} = (trueU(x’,t"))

Simulation Oracles

V. LEARNING GUARDS FROM SIMULATIONS o . .
The definition of SOp is motivated by the need to

A key step in the implementation of Algorithn®sviTcH- computebad in Line 17 of Procedur&wiTcHSYN2.
SyN1 andSwiTcHSYN2 is the computation of théad state

sets. In general, since the mode dynamics can be non-lin
and quite complex, exactly computing thed sets through in Mode;, checking whether the condition on the RHS of

analytical means is computationally infeasible. Howeiter, the U operator has become true, and if not, checking that

is easier to perform numerical simulation of even compleﬁ1e LHS condition remains true. We assume the presence

non-linear dynamics from individual points. In parucularOf a numerical simulator that can, for the mode dynamics

in many cases, numerical simulation can be used to chegk.
y (ﬁkmterest, select an appropriate discretization of time s

whether a_pomtx is @ member ofbad. G|ve_n such @ as to check the above formulas with tReoperator.
membership check, our approach uses machine learning to

compute an over-approximation éfid. While such over- C. Learning Interval Constraints

approximation can result in a loss of completeness, it iS\we now describe how one can impleméhfor learning

guaranteed to generate safe switching logic. an interval constraint over a single variables X. This

form of constraint suffices for learning guards for all ex-

amples we consider in this paper. We give conditions under
Our procedure assumes the availability of a machinghich the algorithm presented here satisfies the conditions

learning algorithm/ that can learn any target set from aequired ofL as stated above in Sec. V-A.

concept clas€. £ uses an oracle that can label poists An interval constraint is of the form € [I;, u;] where

as being in the target concept (i.&,c bad) or not in it [, u; € Q. This constraint can also be expressed using

Irgﬁlementing these oracles involves performing a simula-
fi8h from statex according to the (deterministic) dynamics

A. Machine Learning

(i.e. x € bad). inequalities ag; < x < u;.
L is parameterized by, a point we sometimes make Thus,C is the set of all constraints of the forme [I;, u;]
explicit by writing L rather thanZ. for any /;,u; € Q and for anyz € X. The initial over-

Formally, given the following three inputs: (i) an overapproximatiorc and the sebut, generated by, are both
approximatiort € C of the sethad; (i) a simulation oracle representable as an interval constraint.
that can label a poink asx € bad or x ¢ bad; and Algorithm L begins by checking the end-points of
(iii) (optionally) a sample of example® C bad (if they @ = [I,7] for membership inbad. If both [and 7 are in
exist), Lz must generate as output a sett, € C with bad, it simply outputsout, = ¢. Otherwise, it selects the

. . . Iter. l l l l
minimum and maximum elements,;, and .« in the FHUFH - CHN,UHN - INCHUNG cruer

set of examples$ € bad. (If P is not provided as input; (1) 12-887 ?8-8? 12-887 38-88 }g-gg,?g-gg 12-88,38-88
will rand(_)mly sample elements afut, until an example 2 18.00.19.95 18.00 1995 1800 19.95 18.00.20.00
P € bad is found). B 3 18.00,19.90 18.00,19.95 18.00,19.95 18.00,20.00
We assume that the intervidlw] can be suitably discretized 4 18.00,19.90 18.00,19.95 18.00,19.95 18.00,20.00

so that the extreme points éf.d are members of this dis- TABLE |
cretized set of points. Since guards are implemented using >'EFS OFF1XPOINT COMPUTATION FOR THERMOSTAT V1
finite-precision software, this assumption is not restrict
L then performs binary search in the randes ;.| and
[Tmax, @] until it finds two examplesy; € [I, i) and E. Examples
Xy € [Tmax,) such thatz;, x, € bad wherez; is the
smallest such point and,, is the largest. It then outputs
outy =[xy, Xy
It is easy to see that ifad € C, thenout, = bad.
However, if bad ¢ C, thenbad must be a disjoint union

We illustrate this with an example from our experiments.
For the thermostat example in Figure 1, the room temper-
aturex varies monotonically in the heating mode. We also
start with an over-approximation for the guard from off to

of intervals. Under the condition th& contains one point heating modeyry that gryr € 18 < < 20 AT = 20.
from each interval in this union, we obtainit, > bad. Ve query the simulation oracl§O 4 at » = 18.00 and
Alternatively, suppose that the dynamics within each = 20-00- SO returns ‘yes’ forz = 18 indicating that
modei is such that each state variable evolves monotofi€ evolution fromz = 18 is safe, but it returns ‘no’
ically with time — i.e., its value within that mode either®’ @ = 20. We can then perform a binary search for
increases with time or it decreases, but not both. In thide revised end point of the intervafO4 also returns

case,bad cannot be a disjoint union of intervals, and sd'© for « = 19.96 and ‘yes’ for z = 19.95, then we

outs = bad. All examples discussed in this paper havknow (e.g., by monotonicity) that it will return ‘n_o’ fo_r all
this monotonicity property. x € [19.96,20]. So, we revise the over-approximation of
)) the guard togry C 18 < x < 19.95 AT = 20 at the end

D. Discussion of the first iteration.

We make some remarks on the above procedure.

First, note that restrictingut, to be an interval con- VI. EXPERIMENTS
straint does not require the final guards to also be ofWe have implemented our technique using a Matlab-
this form, since the designer is free to specifstarting based numerical simulator. Here we present three case stud-
switching logic using arbitrary expression syntax. This to illustrate how our technique can be used in practice to
restriction only means that the set of poilsnovedfrom synthesize switching logic for multi-modal continuous dy-
the guards at each iteration of the fixpoint computatiamamical systems. For tHEhermostat Controlledescribed
must be representable as an interval constraint to avadrlier in Section Ill, we give only the intermediate steps
losing completeness by removing too many points. As waf our approach. For two other case studies, we describe
demonstrate in our experimental results, we are able gpnthesis problems and present its solution obtained by our
synthesize interesting and non-trivial switching logic itechnique.
spite of this restriction to the guard syntax.

Next, we observe that to employ the binary search: Thermostat Controller
procedure, we need to discretize the domains of variablesThis example is described in Section IIl with the results
in X. In general, such discretization is induced by a cowe obtained. Here, we only briefly explain how the final
responding discretization of time chosen by the numericgiiards were obtained.
simulator. Since controllers are in any case implementedTable | shows the intermediate steps of the fixpoint
using finite-precision computer arithmetic, we believes thicomputation, indicating how guards shrink in each iteratio
finitization of intervals is not a restriction in practice. of the algorithm. In the first iteration, the reductionof

Finally, we note that it is possible to extend the abovenduxn¢ to 19.95 occurs as the system must spend some
procedure to learn @onjunction of interval constraints time in the HEATING mode ag’ goes from20 to 22,
viz., whereC is the set of all n-dimensional boxes inand during that period cannot increase beyord. Thus,
R™. The extension is to perform binary search along eaehsimulation fromz = 19.96 for example, would reach
dimension independently to identify diagonally-oppositan unsafe state. The subsequent iterations propagate the
corners of the n-dimensional box. These points suffice testrictions on the exit guards of modes (ewgy for ON)
precisely define the box, since each face of the box te apply to the entry guards to those modes (ewg.y).
incident on one of these points. In the case that is not Similarly, for the synthesis problems with dwell-time
of this form, an over-approximation is obtained by applyingonstraints, we show intermediate steps of the fixpoint
the procedure in Sec. V-C to eaghe X separately and computation in Tables Il and Ill. Consider Table Il. One can
taking the disjunction of the generated intervals. observe the impact of the min-dwell-time constraint in the

lter. lpm,urn lHN,UHN INc uNC lerp,ucr Mode N (normal) Mode L (left)

0 18.00,20.00 18.00,20.00 18.00,20.00 18.00,20.00] ﬁ" - (1)00 gNL ﬁ“' - g’g
1 18.00,19.95 18.00,20.00 18.35,19.95 18.45,20.00 Bl = —100 B = 50
2 18.00,19.95 18.00,19.95 18.35,19.95 18.45,20.00 B,=0 B,=—50
3 18.00,19.90 18.00,19.95 18.35,19.95 18.45,20.00
4 18.00,19.90 18.00,19.95 18.35,19.95 18.45,20.00 gRN gLs
TABLE Il A, =50 [, =100
STEPS OFFIXPOINT COMPUTATION FORTHERMOSTAT V2 CASEA Ay =—30 g,,:() 100
B, = =50 =~
B, = 50 9sk - 1B,=0
lter. lpH,urn lHN,UHN Inc unc lerp,ucr Mode R (right) Mode S (straight)
0 18.00,20.00 18.00,20.00 18.00,20.00 18.00,20.00

1 18.00,19.95 18.00, 18.35 19.60, 19.95 19.65, 20.00 Flg 8. Slmpllfled Traffic Collision and Avoidance System
2 18.00,18.14 18.00,18.26 19.60,19.95 19.65,20.00
3 18.00,18.14 18.00,18.26 19.60,19.95 19.65,20.00

TABLE Il 2 dimensions X — Y) to simplify the example. Let
STEPS OFFIXPOINT COMPUTATION FORTHERMOSTAT V2 CASE B (AI’AU), and (BmaBy) denote the(X,Y) velocities of
the two planesi and 5. Let d(A, B) denote the Euclidean

lue of] dlmin iteration 1. where th dt istance between the two planes, that A, B) =
value ofivc andicr in iteration 1, where the need to spend /7 ~ B, 2+ (4, — B,)?. Hence we have the follow-

at least100 sec. in the OFF mode causes the controller § 9 swafety propertyd(A, B) > 200. In addition to this

switch to COOLING or OFF only when the temperaturgafety property, we also require that the planes at the end of
is higher than18.35. Similarly, for the last problem (seethe maneuver must regain their original orientation, teat i
Table II), imposing the min-dwell-time constraint on thedlong the X-axis. SoA, = 0 and B, = 0 when returning
ON mode causes the lower bouhdc to be higher. to the normal mode at the end of the maneuver. Further, we
For the problem Thermostat v2 Case B, we can e\dditior}‘!—ou"lj like tﬁ switch aw:éy frorr? t?ﬁ Stf{%g‘.t r‘r}gode %nl\)//vafter
: - ' - -Ihe planes have crossed each other, thats; B, > 0. We
ally restrictgy c andgrp USing the post-processing step Iélaitirf:lize the guards as given in Equation 9 using the safety

Ehuea%gog:?%gﬁi%”?;%\;\?sFlgure 6. The final synthesiz property and the other specifications mentioned above.

grm :18.00 <y < 18.01 AT =20 gz d(A,B) > 200
grn :18.00 <y <1826 AT = 22 g)s :d(A, B) > 200
gne 21994 <y <1995 AT = 22 g% :d(A,B) > 200A A, — B, >0
gor :19.65 <y < 20.00 AT = 20 gn d(A,B) > 200N A, =0AB, =0 9)

Consider two cases for the synthesis problem - one with
just the minimum dwell-time constraint and the second with
both the minimum and the maximum dwell-time constraint.
This example illustrates how designers can use maximum
dwell-time constraints to synthesize systems with desired

behavior and not just safe behavior.

Case A: Only a minimum dwell-time requirement df
second in the straight mode is provided, ensuring that the
planes spend some time in the straight mode before turning
again. The final guards synthesized by computing fixpoint
are as follows.

B. Traffic Collision and Avoidance System

Mode S

gNL : glr A Bo — Ay > 283
grs : gis A Ay — By > 200
gsr: gsr A Az — By > 117

Consider a simplified version of the Traffic Collision gy : g%y A (As — B. >0V B, — A, > 283) (10)
and Avoidance System (TCAS) [14], which seeks to ensure .) o
that two planes flying in opposite directions do not collideTh? behavior of the_ §ystem synthesaed above is illustrated
and maintain a specified safe distanee((meters in our I Figure 9. The initial state isl, = 0,4, = 0,B, =
example). It operates by guiding the planes through 890: By = 0. X and Y denote the distance between
turn-left/fly-straight/turn-right maneuver as shown ire thth€ planes inX" and Y co-ordinates and> denotes the
Figure 7. The three recovery maneuvers are indicatdptance between the planes. The minimum valueDof
by corresponding mode names. We need to syntheslﬁ_ezpom- The synthesized system is safe and satisfies the

switching logic between the modes such that the planBdnimum dwell-time requirement but it has the undesirable
are always atleast00 meters apart at all times. behavior of switching from normal mode to maneuver

The dynamics of the four modes of TCAS are givefodes immediately at the initial state. The planes could
in Figure 7. We limit the movement of the plane irhave delayed their entry into the maneuver mode.

Fig. 7. Simplified Traffic Collision and Avoidance System

10

600 ‘ ‘ ‘ ‘ ‘ ‘ ‘ an initial state ofd = 0,w = 0, the system must reach

500f 1 0 = Omar = 1700 with w = 0. The synthesis problem is to
= 400 | find the guards between the modes such that the efficiency
T o0 ' | n is high for speeds greater than some threshold, that is,
£ - X w > 5= n>0.5. Also,w must be less than an upper limit
a 200(— v A

of 60. So, the safety propertys to be enforced would be

=

o

o
T

(wW>5=n>05)A(0<w<60)

. G2u G207 G3U
0=w 0=w
w = mp(w)u W =n(w)u

9220 933U
922D 933D

(=]

3 5 6 7 8

(=)
-
N

4
Time(sec)

Fig. 9. Sample Behavior of Synthesized TCAS

Case B: In this case, we also provide a maximum dwell- g;::ltral(N)
time requirement ofi..1 second in the straight mode. This
ensures that the planes fly towards each other till it is o—0
necessary to switch to maneuver modes. By specifying the
maximum dwell-time requirement on the straight mode, we
effectively limit the time spend in maneuver and hence,
force the system to stay in the normal mode for a longer
time. The final guards synthesized by computing the fix-
point are as follows. Fig. 11. Automatic Transmission System

gNL tgr A303 > By — A, > 283 Since the speed must reduceft@n reaching?, .., the

0 guardg; yp is Initialized togps A0 = 0,4 Aw = 0. All the
grs i grs AN Ay = By 2 2(?0 A By = Ay < 103 other guards are initialized tpg. The final set of guards
9sr : gsr N Ae — Be > 117 obtained after fixpoint computation are as follows.

grN : ghn A (A — Bo >0V B, — A, > 283) (11)

gyniv, g1ir - 0 <w < 16.70

We again plot the behavior of the synthesized system with 912U, g22u : 13.29 <w < 26.70

the same initial state as Case A in Figure 10. The timgsy, gssv : 23.29 < w < 36.70 , ga3p : 23.29 < w < 36.70
spent in maneuver is now limited and we stay in normal 932D, ga2p : 13.29 < w < 26.70
mode till the planes arg03 meters far from each otherand g, ;, 4115 : 0 <w < 16.70, ;ginD : 0 = Omas Aw = 0 (12)
then switch to the collision avoidance maneuver.

We now impose a minimum dwell-time &fseconds on
all the six gear modes. The guards obtained by computing
the fixpoint are as follows.

800

600
gyiv tw =0, griv:w=0

giND : 0 =0maz Nw =0 , 912U - 13.29 < w < 23.42
giip :1.31 <w < 16.70 , ga3v : 26.70 < w < 33.42
g22p :w = 26.70 , g33p : w = 36.70
o ‘ ‘ LT ‘ ‘ g32p @ 16.58 < w < 26.70 , g33r : 23.29 < w < 33.42

0 1 2 3 4 5 6 7 8
Time(sec) g21p 1131 <w < 16.70 , goop : 13.29 < w = 23.42 (13)

Distance(m)
B
o
o

Fig. 10. Sample Behavior of Synthesized TCAS with Max Dvielie ~ The plot of the behavior of the transmission system when

it is made to switch from Neutral mode through the six gear

i) _ . modes and back to the Neutral mode is shown in Figure 12.
Our final example is a 3-geautomated transmission Tg efficiencyy is always greater thais when the speed

system [9]. The transmission system is illustrated in Figg higher tharb and we spend atleastseconds in the six

ure 11; notice thathe mode dynamics are non-linear gear modes. Starting from = 0,w = 0, the synthesized

andd denote the throttle in accelerating and deacceleratiggstem reacheé = 6,,,, With w = 0.

mode. The transmission efficiengyis n; when the system

is in modei. D. Train Gate Controller

C. Automatic Transmission

The example is a four mode train-gate controller system
illustrated in Figure 13. The purpose of the train gate
wherea; = 10, a2 = 20, a3 = 30 andw is the speed. The controller is to close the gate when the train approaches
distance covered is denoted byThe acceleration in mode and to open the gate when the train has passed.

i is given by the product of the throttle and transmission The system has two variablesl,a} where d is the
efficiency. For simplicity, we fixu =1 andd = —1. From distance of the train from the gate aads the angle of the

ni = 0.99¢~(@=a)*/64 4 0 01

11

[

0 guards.

gop :d < =290, gpc :d < —50A (a=0)

:g 0.5 /el GZU N G3uV G3D \G,QD .GID\ "20%
i g —Efficiency n h @ gcu : d Z 50 , JUuoO (d 2 50V d S _290) A\ (a = 90) (15)
---Speed w
e ‘ ‘ ‘ The behavior of the system is shown in Figure 14.
0 20 40 e 60 80 10%
Fig. 12. Transmission efficiency and speed with changingsgea 1000
Mode O (open) Mode D (closing) \
d =40 gop d =40 o
4=0 0= —15 - - -Distance
- —Angle
Ypc R] _10
1000 10 20 30 400
d =40
Q=0 Fig. 14. Sample Behavior of Synthesized Gate Controller
geu

Mode C (closed) Case B:We consider a max-dwell time df seconds in

the close mod&’. The

Mode U (opening)

Fig. 13. Train Gate Control System

gop : ¢s , gpc : ¢s A (a=0)
gate. The distancé is negative when the train is approach- go; : s At <5Ad >0, guo : s A (a=90) (16)
ing the train and is positive when the train has passed. The
speed of the train is constant= 40 m/s. The gate closeswhere ¢ denotes the time spent in the closed made
or opens at a constant rate 6f= 15 degrees/sec. The The guards synthesized using fixpoint computation are as
controller has four modes - open (O), closing (D), closellows. The behavior of the system is shown in Figure 15.
(C) and opening (U), that isM = {O,D,C,U}. The

continuous dynamical system in each mode are described gop : (d < =290 Ad > —390)

by a set of ordinary differential equations as illustrated i gpc = (d < =50 Ad > —150) A (a = 0)

Figure 13. d>
gou = 50

Starting from an open gate mode, the controller will
eventually start closing the gate when the train approaches
and eventually train would be closed. The gate would start
opening after the train has passed and would reach the open
mode. The gate closes atdegree and the gate opens to 1000
90 degrees. So, closing mode takegrom 90 degrees to
0 degree and the opening mode takefrom 0 degree to
90 degrees. The mode switch from mode C happens only o
when the train has atleast reached the gate, thatis).

In order for the above system to be safe, we would like
to enforce the following safety propertys .

guo : (d>50Vd< —290) A (a = 90) 17)

100

1000, 10 20 30 20

Time

-50<d<50 <= a=0

. - . Fig. 15. Sample Behavior of Synthesized Gate Controllen Wiax-dwell
that is, when the train is withia0 metres from the gate, the Time

gate remains closed. We need to synthesize the switching

logic S such that the above property is ensured in all

reachable states. E. Performance
Case AWe initialize the guards using the safety property

and other constraints on mode switches mentioned above W& Summarize the number of iterations needed to reach
the fixed point and total runtime in Table below. The total

gop : s, gpc : ¢s A (a=0) runtime includes the time to obtain simulation traces from
gou ds Ad >0, guo : ds A (a=90) (14) different initial states, time to label these traces as gmod
bad and the time to synthesize the new guards cumulative
Solving the fixpoint equations yields the followingover all the iterations.

12

Example # of Iterations| Runtime VIII. CONCLUSION
(seconds) -
We presented a new approach for synthesizing safe
Thermostat Controller : . . . 2
vl 5 216 hybrid systems that uses numerical simulations and fixpoint
' computation. The user can guide synthesis by specifying
v2 Case A 6 26.2 . .
dwell time requirements and the form of the guards. Ex-
v2 Case B 6 25.7
TCAS tension of the approach to synthesize optimal designs and
Case A 4 553 with richer guards is left for future work.
Case B 5 59.1 ACKNOWLEDGMENTS
Automatic Transmissior 6 83.6 The UC Berkeley authors were supported in part by
Train Gate Controller NSF grants CNS-0644436 and CNS-0627734, and by an
Case A 3 22.5 Alfred P. Sloan Research Fellowship. The fourth author
Case B 4 28.3 | was supported in part by NSF grants CNS-0720721 and
VIl. RELATED WORK CSR-0917398 and NASA grant NNX0O8AB95A.
Past work on synthesis of switching logic can be broadly REEERENCES

classified into two categories depending on the goals of sy T R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzing@sH. Ho,

t_heSiS- The ﬁr_s_t Category finds Contm”e_rs_ that me_‘et SOME x. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algtmic
liveness specifications, such as synthesizing a trajettory analysis of hybrid system§heoretical Computer Sciencg38(1):3—
drive a hybrid system from an initial state to a desired finaL] 34, February 1995.

. E. Asarin, O. Bournez, T. Dang, O. Maler, and A. PnuelifeEfive
state [8], [10]. The second category finds controllers that™ synthesis of switching controllers for linear systemsPhceedings

meet some safety specification [2]. Our work combines both of the IEEE volume 88, pages 1011-1025, 2000.

safety specifications with min-dwell requirements (whichf3! J- Cury. B. Krogh, and T. Niinomi. = Synthesis of superviso
controllers for hybrid systems based on approximating raate.

is a form of liveness specification) to enable Synthes_is of In IEEE Transactions on Automatic Contrglages 564-568, 1998.
systems that meet some performance related properties.[4] A. Donze and O. Maler. Systematic simulation using stériti
; ; it i i i analysis. INHSCG volume 4416 ofLNCS pages 174-189, 2007.

Past FeChmqueS for SyntheSIS of SWItChlng |Og|C ".WOIV.5] A. Girard and G. J. Pappas. Verification by simulation. HSCGC
computing the sgt of controlled reachable states elthe_r iN" volume 3927 ofLNCS pages 272—286, 2006.
the style of solving a game [2], [18] or some abstractiorié] T. Henzinger, P.-H. Ho, and H. Wong-Toi. Algorithmic dysis
based reasoning [13], [3], [16]. They all perform some 22238"_’15%"’:{ gégrg'd systemsIEEE Trans. on Automatic Control
kind of iterative fixpoint computation and are limited in (7] 3. kapinski, B H. Krogh, O. Maler, and O. Stursberg. Osteynatic
the kind of continuous dynamics they can handle. The simulation of open continuous systems. HIBCG volume 2623 of

; i ; ; LNCS Springer, 2003.
novelty of our quk lies in _presehtlng a new teChanl_Jes] T. J. Koo, G. J. Pappas, and S. Sastry. Mode switchinghssgig
paseq on combln[ng local simulation 'n5|d? a m_Ode WItH ™ for reachability specifications. IHSCG pages 333-346, 2001.
fix-point computation across modes. Our simulation-basefd] J. Lygeros. Lecture notes on hybrid systems. 2004. .
approach to reason about the continuous dynamics insié £ BEEn SRS B e RE L o e posiam
each mode makes our approach more generally applicable. on inteligent Contral pages 17-22, 1999.
Simulations have been used to perform verification [7[11] S. Mitra, D. Liberzon, and N. Lynch. Verifying averagevell time
[5], [4], but we use simulations to perform SyntheSi‘?lz] chhh%i:gjhfgsfm;ﬁgeh{lsliragﬁdlzgb@igiircogv?;} tismy‘;(lrgioe?ﬁ-
Recently,.[17] plrop.osed a constr_aint—based techqique OF' 2009. Personal communication. ' ’
synthesizing switching logic that involves generating ana3] T. Moor and J. Raisch. Discrete control of switched dineystems.
; ; ; In European Control Conferencd 999.

S.O|V|ng an 3v CO.nStramt (as OppOSQd to performlng .2%4] G. J. Pappas, C. Tomlin, and S. Sastry. Conflict resmiufor multi-
flxpomt computation). However, th_e size of the constrai agent hybrid systems. IFEEEE Control and Decision Conference
increases as the number of modes increase. In our approach, pages 1184-1189, 1996.

i ; ; A. Solar-Lezama, L. Tancau, R. Bodik, S. A. Seshia, andAV
.reasomng IS performed on one mode at a time and hed%% Saraswat. Combinatorial sketching for finite programsA8PLOS
it scales better than [17]. . _ pages 404415, 2006.

Dwell time is a well-known concept in hybrid sys-[16] P. Tabuada. Controller synthesis for bisimulation iegjence.
i ifi~ati Systems and Control Letter§7(6):443-452, 2008.
tems [6], [11], [.12]’ where it has been used for V.enflcatmgi?lj A. Taly, S. Gulwani, and A. Tiwari. Synthesizing switngy logic
We use QWeII time as a requwement for synthesis. The USET sing constraint solving. IWMCAI, pages 305319, 2009.
can use it to guarantee synthesis of nonzeno and desirgidg C. J. Tomlin, J. Lygeros, and S. S. Sastry. A game th@oapproach
systems to controller design for hybrid systems. froceedings of the IEEE
) . . . volume 88, pages 949-970, 2000.
Our problem formulation has the high-level philosophy pag
of “completing a partially-specified design” also explored
in other domains, such as software synthesis by sketch-
ing [15]. To our knowledge, however, the approach we take,
combining verification, learning, and simulation, is disti
and novel.

13

