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ABSTRACT

Cyber-physical systems (CPS) can be usefully modeled as
hybrid automata combining the physical dynamics within
modes with discrete switching behavior between modes. CPS
designs must satisfy safety and performance requirements.
While the dynamics within each mode is usually defined by
the physical plant, the tricky design problem often involves
getting the switching logic right. In this paper, we present a
new approach to assist designers by synthesizing the switch-
ing logic, given a partial system model, using a combination
of fixpoint computation, numerical simulation, and machine
learning. Our technique begins with an over-approximation
of the guards on transitions between modes. In successive
iterations, the over-approximations are refined by eliminat-
ing points that will cause the system to reach unsafe states,
and such refinement is performed using numerical simulation
and machine learning. In addition to safety requirements,
we synthesize models to satisfy dwell-time constraints, which
impose upper and/or lower bounds on the amount of time
spent within a mode. We demonstrate using case studies
that our technique quickly generates intuitive system mod-
els and that dwell-time constraints can help to tune the per-
formance of a design.

Categories and Subject Descriptors

C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems; 1.2.2 [Artificial Intel-
ligence]: Program Synthesis; K.3.2 [Learning]: Concept
Learning

General Terms

Design, Verification, Performance

Keywords

Automated synthesis, Oracle-based learning, Switching logic,
Cyber-physical Systems, Hybrid Systems

1. INTRODUCTION
As cyber-physical systems (CPS) are increasingly deployed
in transportation, health-care, and other societal-scale appli-
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cations, there is a pressing need for automated tool support
to ensure dependability while enabling designers to meet
shortening time-to-market constraints. Model-based design
tools enable designers to work at a high level of abstraction,
but there is still a need to assist the designer in creating
correct and efficient systems.

A holy grail for the design of CPS is to automatically syn-
thesize models from safety and performance specifications.
In its most general form, automated synthesis is very dif-
ficult to achieve, in part because synthesis often involves
human insight and intuition, and in part because of system
complexity — the tight integration of complex continuous dy-
namics with discrete switching behavior can be tricky to get
correct. Nevertheless, in some contexts, it may be possible
for automated tools to complete partial designs generated by
a human designer, thus enabling the designer to efficiently
explore the space of design choices whilst ensuring that the
synthesized system remains safe.

In this paper, we consider a special class of synthesis prob-
lems, namely synthesis of mode switching logic for multi-
modal dynamical systems (MDS). An MDS is a physical
system (plant) that can operate in different modes. The
dynamics of the plant in each mode is known. However,
to achieve safe and efficient operation, it is often necessary
to switch between the different operating modes. Design-
ing correct switching logic can be tricky and tedious. We
consider the problem of automatically synthesizing switch-
ing logic, given the intra-mode dynamics, so as to preserve
safety in MDS. The human designer can guide the synthesis
process by providing initial approximations of the switch-
ing guards and a library of expressions (components) using
which the guards can be synthesized.

Our synthesis approach performs reasoning within each
mode and reasoning across modes in two different ways.
Within each mode, reasoning is based entirely on using nu-
merical simulations. While this can lead to potential un-
soundness, it allows us to handle complex and nonlinear
dynamics that are difficult to reason about in any other
way. Across modes, reasoning is performed using fizpoint
computation techniques. Similar to abstract interpretation,
computation of the fixpoint is performed over an “abstract
domain,” which is specified by the user in the form of a com-
ponent library for the switching guards. Each step of the
fixpoint computation involves the use of machine learning
to learn improved approximations of the switching guards
based on the results of numerical simulations.

The key contribution of our paper is a new approach for
synthesizing safe switching logic based on integrating numer-
ical simulation, machine learning, and fixpoint iterations. In
addition to safety, our approach also extends to handling
dwell-time requirements, which impose upper and/or lower
bounds on the amount of time spent within a mode. While



numerical simulations have been used to perform formal ver-
ification (e.g., [8, 5, 4]), to our knowledge our approach is the
first to use simulations to perform synthesis with safety guar-
antees. We demonstrate using case studies (Sec. 3 and 6)
that our technique generates intuitive system models and
that dwell-time constraints can help to tune the performance
of a design.

2. PROBLEM DEFINITION

In this section, we describe the problem of synthesizing
switching logic for a multi-modal continuous dynamical sys-
tem. We present two versions of the problem. In the first
version, we ask for a switching logic that only preserves
safety. In the second version, we also require that the syn-
thesized system satisfy some dwell-time requirements in each
mode. We begin with some definitions.

A continuous dynamical system (CDS) is a tuple (X f)
where X is a finite set of | X| = n real-valued variables that
define the state space R™ of the continuous dynamical sys-
tem, and f : R™ — R" is a vector field that specifies the
continuous dynamics as 2 = f(x). The vector field f is
assumed to be locally Lipschitz at all points, which guaran-
tees the existence and uniqueness of solutions to the ordinary
differential equations.

Often, a system has multiple modes and in each mode, its
dynamics is different. Such a multi-modal system behaves
as a different continuous dynamical system in each mode.

DEFINITION 1 (MuLri-MODAL CDS (MDS)). An MDS
is a tuple (X, I, f1, fo, ..., [x) where

o (X, fi) is a continuous dynamical system (representing
the i-th mode)
e [ CR" is the set of initial states

We will use M = {1,2,...,k} as the set of indices of
the modes. A trajectory for MDS is a continuous function
7(t) : [0,00) — R™ if there is an increasing sequence to :=
0 < t1 <t2...such that
o 7(0) €1,

e for each interval [t;,t;+1), there is some mode j € M such
that 97(t) = f;(7(t)) for all t; <t < tiy1, and
e j =1 when t; = 0 (that is, we start in Mode 1.).

A multi-modal system can nondeterministically switch be-
tween its modes. The goal is to control the switching be-
tween different modes to achieve safe operation.

DEFINITION 2
S for an MDS (X, I,(fi)icnm) is a tuple {(gij)izj:i,jem), con-
taining guards gi; C R™.

A multi-modal system MDS can be combined with a switch-
ing logic S to create a hybrid system HS := (MDS, S) in the
following natural way: the hybrid system HS has k£ modes
with dynamics given by % = fi in mode 4, and with gs;
being the guard on the discrete transition from mode ¢ to
mode j. The initial states of HS are I in Mode 1, where I is
the set of initial states of the MDS. The discrete transitions
in HS have identity reset maps, that is, the continuous vari-
ables do not change values during discrete jumps. The state
invariant Inv; for a mode ¢ € I is the (topological) closure
of the complement of the union of all guards on outgoing
transitions; in other words Inv; := Closure(R" — ;< 9i5)-
Note that we are assuming here that a discrete transition is

(SWITCHING LOGIC (5)). A switching logic

taken as soon as it is enabled.® This completes the defini-
tion of the hybrid system. The semantics of hybrid systems
that defines the set of reachable states of hybrid systems is
standard [1].

A safety property is a set ¢s C R™ of states. We will
overload ¢g to also denote the predicate ¢s(X). A state x
is said to be safe if and only if x € ¢g (or equivalently, if
¢s(x) is true). A hybrid system HS is safe with respect to
¢s if and only if all the reachable states in HS are safe.

Coming up with the correct guards for the mode switches
such that all reachable states are safe is challenging and our
proposed technique aims at automating this task. While
controller synthesis has been widely studied, what differen-
tiates our work is that we provide the designer an option
to provide some initial partial design. Specifically, we as-
sume that the designer can provide an over-approximations
for the guards. In the extreme case, if transition from mode
i to mode j is disallowed, then the designer can set g;; = 0,
and if the designer knows nothing about the possibility of a
transition from mode i to mode j, then she can set g;; = R".
The designer can specify partial information by picking an
intermediate set as the initial guard.

If S := ((gij)ijem) and S" = ((gi;)i,jem) are two switch-
ing logics, then we use the notation S’ C S to denote that
gi; C gij for all i,j € M.

We provide two variants of the problem definition.

DEFINITION 3
Given a multi-modal continuous dynamical system (MDS), a
switching logic S, and the safety specification ¢s, the switch-
ing logic synthesis problem seeks to synthesize a new switch-
ing logic S" such that
(1) 8" C S and
(2) the hybrid system HS := (MDS, S’) is safe with respect to
¢s.

Consider the case when the designer provides no informa-
tion and sets all guards to R™. In this case, it is trivial to
synthesize a safe hybrid system by just setting all switching
guards to be ¢s. The reader can check that this is a solu-
tion for the switching logic synthesis problem defined above.
This solution is, however, undesirable since the resulting hy-
brid system has only zeno behaviors, i.e., an infinite number
of transitions can be made in finite time (as we are assuming
that a transition is taken as soon as it is enabled).

The second problem definition below gives the designer a
way to explicitly rule out solutions that have zeno behavious.
Specifically, the user can specify (both lower and upper)
bounds on the amount of time every trajectory should spend
in a mode.

DEFINITION 4
Given a multi-modal continuous dynamical system (MDS),
a switching logic S, a sequence (teq,. .., tey) of non-negative
minimum-dwell time requirements, a sequence (txi,...,txy)
of non-negative mazimum-dwell time requirements, and a
safety specification ¢s, the switching logic synthesis problem
seeks to synthesize a new switching logic S" such that
(1) 8" C S,

(2) the hybrid system HS := (MDS, S") is safe with respect to
¢s, and

(8) whenever any trajectory of HS enters mode i, it stays in
mode i for atleast te; and atmost tx; time units.

! Assume that the mode dynamics are not tangential to the
state invariant at any point.

(SWITCHING LOGIC SYNTHESIS PROBLEM V1).

(SWITCHING LOGIC SYNTHESIS PROBLEM V2).



The designer can now force the synthesis of only nonzeno
systems by setting te; to a strict positive number for selected
modes. Note that if the designer sets te; to zero and tx; to
oo for all modes, then the second problem is the same as the
first problem.

Notation

Our paper makes use of the formal definitions of temporal
formulas and the evaluation of a temporal formula in a given
dynamical system as given below.

Consider the weak until W and the strong until U tem-
poral logic operators. Recall that we do not distinguish be-
tween a set of states and a predicate on states. A state
formula is a predicate on states or a Boolean combination of
predicates. If ¢, ¢’ are sets of states, then pW¢' and ¢Uq¢’
are temporal formulas.

A state formula is evaluated over a state. The formula ¢
evaluates to true on a state x if x € ¢. A temporal formula
is evaluated over a given trajectory 7. The formula ¢Ug’
evaluates to true on trajectory 7 if

Jto: T(to) €' A (VO<t <to:7(t) € ) (1)

Informally, the temporal formula ¢U¢’ is true if ¢’ becomes
true eventually and until it becomes true, ¢ is true. The
weak until operator, W, is a weaker notion and does not
require that ¢’ necessarily becomes true. If ¢, ¢’ are sets of
states, then the temporal formula ¢W¢' evaluates to true
over a given trajectory 7 if

(Fto:7(to) €d N (VO<t<to:7(t)€@)) V
(Vt>0:7(t) € ¢) (2)
For uniformity, a state formula can be evaluated on a tra-
jectory as follows: a state formula ¢ evaluates to true on a
trajectory 7 if 7(0) € ¢. We can combine state and temporal
formulas using Boolean connectives and evaluate them over
trajectories using the natural interpretation of the Boolean

connectives. If @ is a state or temporal formula, then we
write

Mode;, I = @

to denote that the formula ® evaluates to true on all tra-
jectories of the CDS in mode ¢ that start from a state in
1.

3. OVERVIEW
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Figure 1: Thermostat

In this section, we present an overview of our approach us-
ing a thermostat controller [10] as an example. The 4-mode

thermostat controller is presented in Figure 1. The room
temperature is represented by x and the temperature of the
heater is represented by 7T'. The initial condition I is given
by T = 20°C and x = 19°C. The safety requirement ¢gs
is that the room temperature lies between 18°C and 20°C,
that is, ¢s is 18 < x < 20. (We omit the units in the sequel,
for brevity.)

In the OFF mode, the temperature falls at a rate propor-
tional to the difference between the room temperature z and
the temperature outside the room which is assumed to be
constant at 16. In the HEATING mode, the heater heats
up from 20 to 22 and in the COOLING mode, the heater
cools down from 22 to 20. In the ON mode, the heater is at
a constant temperature of 22. In the HEATING, ON and
COOLING mode, the temperature of the room changes in
proportion to the difference between the room temperature
and the heater temperature. We need to synthesize the four

guards: gru,gHN,gNC and goF.

The guards must respect the safety property on the room
temperature x as well as the specification on the heater tem-
perature 7" in HEATING and COOLING mode. So, from
the given specifications, we know that

grr C18 <z <20AT =20
gan C18 <z <20AT =22
gne C18 <z <20AT = 22
gor C18 <z <20AT =20 (3)

In order that the MDS remains safe, we need to ensure that
all states reachable within each mode are safe. Consider the
OFF mode. We need to ensure that all traces starting from
some point in the initial condition I or gcr do not reach
an unsafe state before reaching some state in grp. Reach-
ing some state in gry enables a transition out of the OFF
mode. In other words, the first two temporal properties in
Equation 4 must be satisfied by all traces in the OFF mode.
Similarly, for HEATING mode, all traces starting from some
state in ¢ € grm must not reach an unsafe state before reach-
ing an exit state in gy, as indicated by the third property
below. For the other two modes, similar temporal proper-
ties on the traces need to be enforced. Overall, the following
temporal assertions can be written for the four guards.

F7 1 ): ¢S w 9gFH

F.ger FE ¢sWgrn

H,grm = ¢s Wgnn

N,gun F ¢s Wgnc
C,gne E  ¢s Wgcr 4)
Switching Logic Synthesis Problem v1: We can synthesize a
safe switching logic by computing the fixpoint of the above 5
assertions in Equation 4. We initialize using the equations in
Equation 3 obtained from the safety and other user provided
specifications which put an upper bound on the guards. We
then perform a greatest fizpoint computation: in each itera-
tion, we remove states from the guards which would lead to
some unsafe state in a mode. Fixpoint computation leads to

the following guards which ensure that all states reachable
are safe. We compute only till the second place of decimal.

grer :18.00 < 2 < 19.90 AT = 20
gun :18.00 < z < 19.95 AT = 22
gne 1 18.00 <2 < 19.95AT = 22
gor : 18.00 < z < 20.00 AT = 20

The behavior of the synthesized thermostat for the first
1000 seconds from the initial state is shown in Figure 2.
The room temperature gradually rises from its initial value
of 19 and then stays between 19.90 and 20.
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Figure 2: Behavior of Synthesized Thermostat

Switching Logic Synthesis Problem v2: Though the system
synthesized above satisfies the safety specification, it has the
undesirable behavior of switching frequently. It keeps the
room temperature in the narrow interval of 19.90 < x < 20,
even though the safety condition only required it to be in
18 < x < 20. Ideally, designers are interested not only in
safe systems but in systems with good performance. The
dwell time specification provides a mechanism to the de-
signer to guide our synthesis technique to solutions with
good performance.

Minimum dwell-time of 100 seconds in OFF mode (case
A): We add an extra constraint in the specification of our
synthesis problem that the system must spend atleast 100
seconds in the OFF mode. This would lead to less fre-
quent switching as well as minimize energy consumption

since heater remains off in the OFF mode. .

Let us add a timer variable ¢t with dynamics ¢ = 1 in
every mode. Assume that ¢ is reset to 0 during every dis-
crete transition. To enforce the minimum dwell-time, the
following constraint must also be satisfied in addition to the
fixpoint constraints in Equation 4.

I E ¢s W (gpu At > 100)
F.gcr FE ¢s W (gra At > 100) (5)
The guards obtained by computing the fixpoint of equa-
tions in (4) and (5) are as follows.
grr ¢ 18.00 <z < 19.90 AT =20 At > 100
gan : 18.00<x <19.95AT =22
gve : 1835< 2 <19.95AT = 22
gocr : 1845 <z <20.00NT =20
Since t was a timer variable we had introduced, we next
eliminate it from grp. We do so by removing states from
gru which are reachable from any state in gor in less than
100 seconds. These set of states are 18.01 < x < 20AT = 20.
Hence, the final guards that respect the safety property as
well as enforce a minimum dwell-time of 100 seconds in OFF
mode are as follows.
grpp 1 18.00 <z < 18.01 AT = 20
guN :18.00< 2 <19.95 AT = 22
gne 118.00 <z < 19.95 AT = 22
gor :18.00 < x <20.00 AT =20

The behavior of the synthesized thermostat for the first
1000 seconds from the initial state is shown in Figure 3. We
observe that the number of switches has gone down from 21
to 5 and the room temperature now stays between 18.01 and
18.45.

Minimum dwell-time of 300 seconds in both OFF and ON
mode (case B): We observe that the design synthesized with
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Figure 3: Behavior of Synthesized Thermostat with
Dwell Time Specification: Minimum dwell time of
100s in OFF mode.

minimum dwell-time of 100 seconds in OFF mode has rel-
atively less switching but still, we would like to reduce its
switching frequency. Also, the room temperature can safely
lie between 18 and 20 but in the above synthesized system, it
is restricted to a narrow interval of 18.01 and 18.45. So, we
increase the minimum dwell-time in OFF mode to 300 sec-
onds. We also enforce a minimum dwell-time of 300 seconds
in ON mode to ensure room heats up to a higher tempera-

ture within the safe interval.
We now get the following fixpoint equations.

FI E ¢sWgrg A(t>300)
F.gcr FE  ¢s W grna A (t > 300)
Hgru F ¢sWgnan
N,gun FE ¢s Wgne A (t > 300)
Cigne E  ¢s Wgcr

Fixpoint computation yields the following guards.

gr ¢ 18.00 <z <18.14 AT =20 At > 300
gun ¢ 18.00 <z < 18.26 AT = 22
gne ¢ 1960 <z <19.95AT =22 At > 300
gor ¢ 19.65 <z <20.00 AT =20

We restrict gnec and grpg in the same way as (Case A) by
computing the set of states reachable from guny and gcor
in less than 300 seconds respectively. The final synthesized
guards are as follows.

grm ¢ 18.00<z <18.0LAT =20
gun ¢ 18.00 <z <1826 AT = 22
gne ¢ 190.94< 2 <19.95AT =22
gor : 19.65 <z <20.00AT =20

The behavior of the synthesized thermostat for the first
1000 seconds from the initial state is shown in Figure 4. We
observe that the number of switches has gone down to 1
and the room temperature is still within the safe interval
of 18 and 20. This example shows how our synthesis ap-
proach can be used to synthesize not only safe systems but
also systems with desired performance. Dwell-time proper-
ties can be used by the user to explore designs with better
performance.

4. FIXPOINT ALGORITHM

We are now ready to describe the procedure for solving
the switching logic synthesis problem in Definition 3.
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Assume that we are given an MDS MDS, a safety property
¢s, and an over-approximation of the guards S.

S fr)s ¢s SR, S = ((gij)ijem)

We wish to solve the problem in Def. 3 for these inputs.

Let us say we find guards g§j7s such that they have the
following property: for every mode i, if a trajectory enters
mode 7 (via any of the incoming transitions with guard gé-i)7
then it remains safe until one of the exit guards g;r becomes
true. This property can be written formally using the weak
until operator.

Moder, I = ¢sW(\/gix)

MDS := (X, I, f1,..

keM
Mode;, \/g;l E osW( \/gik) fori=1.k (6)
jeM keM

If the guards in the switching logic S’ satisfy the collection
of assertions in Equation 6, then the resulting hybrid system
is safe. The converse is also true.

LEMMA 1. Given anMDS := (X, I, f1,..., fk), and a safety
property ¢s, if S' = ((gi;)ijem) is a switching logic that
satisfies all assertions in Equation 6, then the hybrid system
HS := (MDS, S”) is safe with respect to ¢s.

Conversely, if there ewists a switching logic S’ such that
the hybrid system HS := (MDS, S) is safe with respect to ¢sg,
then there is a switching logic S” C S' that satisfies the
assertions in Equation 6.

ProOF. The first part follows directly from the definition
of the semantics of the temporal operators and our assump-
tion that discrete transitions are taken as soon as they are
enabled.

For the converse part, the desired S” := ((gi})ijenm) is
obtained by intersecting the set Reach of reachable states of
HS with S’; that is, g} := gi; N Reach. The reader can verify
that S” will satisfy the assertions in Equation 6. [

At a semantic level, we can solve the problem in Defini-
tion 3 by computing the fixpoint of the assertions in Equa-
tion 6. This procedure is presented in Figure 5. The fixpoint
iterations start by picking the most liberal guards possible
(which is the intersection of the safety property and the
user-specified bounds). In each successive step, the guards
are made smaller by removing certain “bad” states. Specif-
ically, we remove from gj; any state that reaches an unsafe
state following the dynamics of Mode 4, before it reaches any

SwWITCHSYN1 (MDS, ¢s, S):

1 // Input MDS :=(X,I, f1,..., fk),

2 // Input ¢s CR",

8 // Input S:= ((gij)ijem),

4 // Output synthesis successful/failed
5 for all i,j € M do gj; :=gij Nds

6 repeat {

7 for all i€ M do {

s bad = {x| Modes, {x} £ ~(V, 9ix)U~0s}
9 for all j€ M do gj; := g} — bad

10 if (i==1 and IN bad # 0)

11 return "synthesis failed"

12}

13} until (g;;’s do not change)

14 if (I = ¢s)

15 return "synthesis successful"
16 else return "synthesis failed"

Figure 5: Procedure for solving the switching logic
synthesis problem v1.

exit guard. Thus, in each iteration, we reason locally about
only one mode at a time. We stop when we reach a fixpoint.

We state the soundness and completenss of the fixpoint
algorithm for solving the switching logic synthesis problem.

THEOREM 1  (SOUNDNESS OF PROCEDURE SWITCHSYN1).
If Procedure SWITCHSYN1 terminates with “synthesis success-
ful” and gi; are the discovered guards, then the hybrid system
HS := (MDS, ((gi;)ijem)) is safe for ¢s.

PROOF. (Sketch) If Procedure SwircuSyN1 terminates with
“synthesis successful” and ggj are the discovered guards, then
these guards satisfy all the assertions in Equation 6. Us-
ing Lemma 1, we conclude that the hybrid system HS :=
(MDS, S") is safe with respect to ¢s. [

Even when it terminates with success, note that the Pro-
cedure SwiTcuSYN1 does not guarantee that the synthesized
hybrid system HS has nonzeno behaviors. In a post-processing
step, one can perform sufficient checks to guarantee the ab-
sence of zeno behaviors.

We can also show that our procedure is complete.

THEOREM 2
If Procedure SWITCHSYN1 terminates with “synthesis failed”,
then there is no S' C S such that the hybrid system HS :=
(MDS, S") is safe.

PROOF. Assume that the claim is false and there is a
switching logic S’ C S such that HS := (MDS,S’) is safe.
By Lemma 1, there is a switching logic S” := Reach N S’
that satisfies Equation 6. Recall that Reach is the set of
reachable states of HS. Let S.,i = 0,1,..., be the inter-
mediate switching logics computed by Procedure Swircn-
Syn1. Clearly, S; D S1 D S5 D --- and S := SN ¢s.
Since Reach C ¢s by assumption, we can easily verify that
S C Sf. We will inductively show that S” C S} for all i.

Suppose S” C Si. Suppose we go from Sy to Sy, by
deleting the set bad from gj;. We need to show that S” C

(COMPLETENESS OF PROCEDURE SWITCHSYN1).



Sy Let Sy := ((ghvij)ijenm) and let S” := ((gi;)ijenm)-

x € bad
= Mode;,{x} = ﬁ(v Inix)Uds
k
=  Mode;,{x} = —|(v gz’.;)Uﬁqﬁs,'.'g;’k C 9vir
k

= Mode;, {x} £ ~(6sW \/ g)
k

= Mode;, {x} ~ qbsW\/g;}C
k

= X g g;’zﬁ

x ¢ [ifi==1, .S satisfies Equation 6

.- 8" satisfies Equation 6

This shows that S” C Sy,; and Procedure SwircuSyn1
cannot return at Line 11. Since HS is assumed to be safe,
I = ¢s and hence Procedure SwiTcHSYN1 cannot return
at Line 16. Hence, Procedure SwitcuSyN1 can only return
“synthesis successful” contradicting our assumption. [

4.1 Switching Logic Synthesis V2

We now consider the switching logic synthesis problem
in Definition 4. Recall that apart from the bounds on the
guards, the user can provide minimum and maximum dwell
time requirements for each mode. The goal is to synthesize a
switching logic where the guards satisfy the specified bounds
and the trajectories of the resulting hybrid system satisfy the
minimum and maximum dwell time requirements.

Procedure SwitcuSyn2 for solving the problem in Defi-
nition 4 is outlined in Figure 6. Procedure SwiTcuSyn2
runs in three phases. In the first step, the new problem
is transformed to the old problem. In the second step, Pro-
cedure SwiTcHSYN1 is used to solve the generated problem.
In the third step, the result is transformed back to get a
result of the given problem.

Suppose that we are given

MDS := <X7I7f17"'7fk>7 os an7 S = <(gij)i;j61w>7
Te := {te1,...,tex}, Tx:= {tx1,...,txy}

In the first step, the problem in Definition 4 is reduced to the
previous problem. This reduction is achieved by introducing
a new state variable ¢ such that

(1) the dynamics of ¢ is given by £ = 1 in each mode

(2) the variable ¢ is reset to 0 in each discrete transition
These two steps are performed by the function Add timer t.
Now, the dwell time requirements can be specified as bounds
on the variable t. Specifically, the over-approximation S of
the guards can be updated as follows:

gij = Ggij N\ (tei <t< t:Ci)

In the second step, a call to Procedure SwiTcuSyN1 is
made, but with the updated S. Recall that Procedure Switcu-
SyN1 essentially performs an iterative fixpoint computation
to solve Equation 6. Equation 6 assumes that discrete tran-
sitions do not reset any continuous variables. Since we now
have discrete transitions that reset ¢t to 0, we need a slightly
modified Procedure SwitcuSyn1 that solves the modified
equations below:

Mode1, R(I) = ¢sW \/ gix
keM

Mode:, \/R(g};:) E ¢sW \fgix fori=1.k (7)
JjEM keM

SwITCHSYN2 (MDS, ¢s, S, Te, Tx):

1 // Input MDS,¢s,S: As in Figure 5

2 // Input Te:= (tei,...,tex)

3 // Input Tx:= (tz1,...,txk)

4 // Output synth. successful/failed
5 MDS® := Add_timer_t(MDS)

6 S = ((gij A (tei <t <twi))ijem)

7 // Call SwiTcHSYN] with the updated S
8 res := SWITCHSYN1(MDS®, s, S€)

9 if res == "synthesis failed"

10 return "synthesis failed"

11 else let S’ be the synthesized guards
12 // post processing step

13 for all 4,57 € M do

14 gij = {x|{x,1) € gi;}

15 for all 4,5,k € M do {
16 bad:= {(x,x') | x € gji AX' € g N (X', ') & gis
17 A M, {(x,t =0)} E trueU{(x',t')}}
18 Guess Bi1,B2 s.t. Bi X Bz D bad
19 gji = g5 — B1y gik 1= gi — B2

}

20
21 if (Verify(MDS, ¢s, ((gij)ijenm)))
22 return "synthesis successful"

25 else return "synthesis failed"

Figure 6: Procedure for solving the switching logic
synthesis problem v2.

where R(S) is the set of states obtained by resetting the ¢-
component of every state in the set S to 0. If ¢ is a formula
denoting the set S, then R(¢) is 3s(¢[s/t] At = 0) (the
notation ¢[s/t] means replace ¢ by s in ¢). Informally, R(¢)
can be computed by first removing facts about ¢ from ¢ and
then adding the new fact ¢t = 0 to it.

The guards synthesized by Procedure SwitcuSyn1 will use
the new state variable t. However ¢ was not part of our
original problem specification. In the third step, the vari-
able t is eliminated from the guards synthesized by Proce-
dure SwircuSyn1. Suppose S’ := ((gi;)ijem) is the switch-
ing logic synthesized by Procedure SwitrcuSyn1l. We first
project out the t-component from S’ to get our first guess
for the desired S. Then, for every mode i, and for each entry
guard, say g¢/;, and for each exit guard gj;,, we compute pairs
of states (x,x’) such that x € g;;, x' € gix, there is a trajec-
tory in mode ¢ that starts from state (x,¢ = 0) and reaches
(x',t') in time ¢’, and (x’, ') is not in g};. A behavior where
mode i in entered in state x and exited in x” was disallowed
in S, but it is allowed in S (since S ignores t). Hence,
we need to either remove x from gj;, or remove x' from
gik. Procedure SwitcnSyn2 procedure non-deterministically
makes this choice.

Removal of states from the guards can potentially cause
the modified switching logic to become unsafe. Hence, in
the final step, we need to verify that the updated guards
still satisfy Equation 6. This is performed by the function
Verify. The function Verify can be implemented by calling
Procedure SwrtcnSyn1 and checking its return value.

We can now state the soundness and completenss of Pro-
cedure SwiTcHSYN2 for solving the switching logic synthesis
problem in Def. 4.

THEOREM 3  (SOUNDNESS OF PROCEDURE SWITCHSYN2).
If Procedure SWITCHSYN2 terminates with “synthesis success-



ful” and gz'-j are the discovered guards, then the hybrid sys-
tem HS := (MDS, ((gi;)i,jem)) is safe for ¢s and it satisfies
the dwell time requirements specified by Te and Tx.

PROOF. (Sketch) The final Verify check guarantees that
HS is safe. By Theorem 1, the switching logic S’ synthe-
sized by Procedure SwitcuSyN1 on Line 8 satisfies the dwell
time requirements. In the third phase, we explicitly ensure
that the projected guards g;;’s admit the same trajectories
that guards g{-j’s admitted. Hence, dwell time requirements
continue to hold for the new guards. [

We can also state and prove completeness of Procedure SwiTcH-

SYN2.

THEOREM 4
If, for every possible guess on Line 18, the Procedure SWITCH-
SYN2 terminates with “synthesis failed”, then there is no
S’ C S such that the hybrid system HS := (MDS, S’) is safe
and it satisfies the dwell time requirements.

PROOF. (Sketch) The first phase just transforms the prob-
lem to an extended MDS and by Theorem 2, we know that
we do not lose any solutions in the second phase (Line 8).
Hence, the only place where completeness might be compro-

mised in the third phase. However, we make non-deterministic

guesses and hence we can always guess the correct solution, if
one exists. This gives us the desired completeness result. [

Procedure SwiTcHSYN2 is nondeterministic and involves
making the correct guesses in the postprocessing stage. We
can get a deterministic version of the procedure by making
arbitrary guesses at each point. This deterministic version
will be sound: whenever the procedure outputs “synthesis
successful”, the synthesis problem in Definition 4 indeed has
a positive answer. However, it will not be complete: even
when there is a positive answer for the synthesis problem,
the deterministic variant can fail to find the appropriate
guards because it can make the wrong choices. Some form
of backtracking appears to be required. In practice, our im-
plementation’s heuristically-guided choices have always ob-
tained a positive answer.

5. LEARNING GUARDS FROM SIMULATIONS

A key step in the implementation of Algorithms Swirch-
SyN1 and SwITCHSYN2 is the computation of the bad state
sets. In general, since the mode dynamics can be non-linear
and quite complex, exactly computing the bad sets through
analytical means is computationally infeasible. However,
it is easier to perform numerical simulation of even com-
plex, non-linear dynamics from individual points. In par-
ticular, in many cases, numerical simulation can be used to
check whether a point x is a member of bad. Given such
a membership check, our approach uses machine learning
to compute an over-approximation of bad. While such over-
approximation can result in a loss of completeness, it is guar-
anteed to generate safe switching logic.

5.1 Machine Learning

Our procedure assumes the availability of a machine learn-
ing algorithm £ that can learn any target set from a concept
class C. L uses an oracle that can label points x as being in
the target concept (i.e., x € bad) or not in it (i.e. x & bad).

L is parameterized by C, a point we sometimes make ex-
plicit by writing L¢ rather than L.

(COMPLETENESS OF PROCEDURE SWITCHSYN2).

Formally, given the following three inputs: (i) an over-
approximation ¢ € C of the set bad; (ii) a simulation oracle
that can label a point x as x € bad or x ¢ bad; and (iii)
(optionally) a sample of examples P C bad (if they exist), Lc
must generate as output a set outs € C with the following
properties: if bad € C, then out, = bad; otherwise, outs 2O
bad.

For simplicity, we describe below how £ can be imple-
mented when bad is an interval constraint on a single vari-
able. It is possible to extend this method to conjunctions of
interval constraints on multiple variables. An exploration of
extensions to more complicated sets is left to future work.

5.2 Simulation Oracles

We assume the availability of the following two kinds of
simulation-based oracles:

e QOracle SO 4: This is an oracle that, given a state x, the
dynamics of a mode Mode;, and state sets ¢1 and ¢2, re-
turns a Boolean answer indicating whether the following
property holds:

Mode;, {x} E (¢1Ug2)

Note that definition of SO 4 is motivated by the need to
compute bad in Line 8 of Procedure SwiTcHSYN1.

e QOracle SOp: This is an oracle that, given a state pair
(x,x'), the dynamics of a mode Mode;, extended-state
set 1), and state sets ¢1 and ¢z, returns a Boolean answer
indicating whether the following property holds:

x€ P AX €A (X, t) E
A Mode;, {(x,0)} &= (trueU(x’,t'))

The definition of SOp is motivated by the need to com-
pute bad in Line 17 of Procedure SwiTCcHSYN2.

Implementing these oracles involves performing a simulation
from state x according to the (deterministic) dynamics in
Mode;, checking whether the condition on the RHS of the
U operator has become true, and if not, checking that the
LHS condition remains true. We assume the presence of
a numerical simulator that can, for the mode dynamics of
interest, select an appropriate discretization of time so as to
check the above formulas with the U operator.

5.3 Learning Interval Constraints

We now describe how one can implement £ for learning an
interval constraint over a single variable x € X. This form
of constraint suffices for learning guards for all examples we
consider in this paper. We give conditions under which the
algorithm presented here satisfies the conditions required of
L as stated above in Sec. 5.1.

An interval constraint is of the form z € [l;,u;] where
li,u; € Q. This constraint can also be expressed using in-
equalities as [; < x < u;.

Thus, C is the set of all constraints of the form = € [I;, u]
for any l;,u; € Q and for any * € X. The initial over-
approximation ¢ and the set out, generated by L are both
representable as an interval constraint.

Algorithm L¢ begins by checking the end-points of ¢ =
[,7] for membership in bad. If both I and T are in bad, it
simply outputs out, = ¢. Otherwise, it selects the minimum
and maximum elements Zmin and Tmax in the set of examples
P € bad. (If P is not provided as input, £ will randomly
sample elements of out, until an example P € bad is found).



L then performs binary search in the ranges [77 Zmin] and
[Zmax, 7] until it finds two examples z; € [77 Zmin] and z, €
[Zmax, ¥ such that z;, . € bad where z; is the smallest such
point and z,, is the largest. It then outputs out,s = [z, zu].
It is easy to see that if bad € C, then out, = bad.
However, if bad & C, then bad must be a disjoint union
of intervals. Under the condition that P contains one point
from each interval in this union, we obtain out,s O bad.
Alternatively, suppose that the dynamics within each mode
i is such that each state variable evolves monotonically with
time — i.e., its value within that mode either increases with
time or it decreases, but not both. In this case, bad can-
not be a disjoint union of intervals, and so outz = bad.
All examples discussed in this paper have this monotonicity

property.
5.4 Discussion

We make some remarks on the above procedure.

First, note that restricting outs to be an interval con-
straint does not require the final guards to also be of this
form, since the designer is free to specify a starting switching
logic using arbitrary expression syntax. The restriction only
means that the set of points remowved from the guards at each
iteration of the fixpoint computation must be representable
as an interval constraint to avoid losing completeness by
removing too many points. As we demonstrate in our ex-
perimental results, we are able to synthesize interesting and
non-trivial switching logic in spite of this restriction to the
guard syntax.

Next, we observe that to employ the binary search proce-
dure, we need to discretize the domains of variables in X.
In general, such discretization is induced by a correspond-
ing discretization of time chosen by the numerical simulator.
Since controllers are in any case implemented using finite-
precision computer arithmetic, we believe this finitization of
intervals is not a restriction in practice.

Finally, we note that it is possible to extend the above
procedure to learn a conjunction of interval constraints, viz.,
where C is the set of all n-dimensional boxes in R" [7]. In
the case that bad is not of this form, an over-approximation
is obtained by applying the procedure in Sec. 5.3 to each
x € X separately and taking the disjunction of the generated
intervals.

6. EXPERIMENTS

We have implemented our technique using a Matlab-based
numerical simulator. Apart from the Thermostat Controller
described earlier in Section 3, we present two other case
studies: Traffic Collision and Avoidance System and Auto-
mated Transmission System. The total runtime of synthesis
for Thermostat Controller v1, v2 Case A, v2 Case B, TCAS
Case A, Case B and Automated Transmission was 21.6, 26.2,
25.7, 55.3, 59.1 and 83.6 seconds respectively. More detailed
experimental results are presented in the full version [7].

6.1 Traffic Collision and Avoidance System

Consider a simplified version of the Traffic Collision and
Avoidance System (TCAS) [15], which seeks to ensure that
two planes flying in opposite directions do not collide and
maintain a specified safe distance (200 meters in our ex-
ample). It operates by guiding the planes through a turn-
left /fly-straight /turn-right maneuver as shown in the Fig-
ure 7. The three recovery maneuvers are indicated by cor-

Mode S

Mode S

Figure 7: Simplified Traffic Collision and Avoidance
System

responding mode names. We need to synthesize switching
logic between the modes such that the planes are always
atleast 200 meters apart at all times.

Mode N (normal) Mode L (left)

A, =100 A, =50
—4,=0 gL

B, = —100

B,=0

gRrN gLs

A, =50 A, =100

dv=%0 52 %100

B, =—50 ) 3, = —

B, =50 gsm By=0

Mode R (right) Mode S (straight)

Figure 8: Simplified Traffic Collision and Avoidance
System

The dynamics of the four modes of TCAS are given in
Figure 7. We limit the movement of the plane in 2 dimen-

sions (X —Y) to simplify the example. Let (A, Ay), and
(Baz, By) denote the (X, Y) velocities of the two planes A and
B. Let d(A, B) denote the Euclidean distance between the
two planes, that is, d(4, B) = \/(As — Bx)? + (A, — By)2.
Hence we have the following safety property: d(A, B) > 200.
In addition to this safety property, we also require that the
planes at the end of the maneuver must regain their origi-
nal orientation, that is, along the X-axis. So, A, = 0 and
By = 0 when returning to the normal mode at the end of
the maneuver. Further, we would like to switch away from
the straight mode only after the planes have crossed each
other, that is, A, — By > 0. We initialize the guards as
given in Equation 8 using the safety property and the other
specifications mentioned above.

g% d(A, B) > 200
g% d(A, B) > 200
92p 1 d(A,B) > 200 A Ay — By >0
g% 1 d(A,B) > 200N Ay =0ABy =0 (8)

Consider two cases for the synthesis problem - one with
just the minimum dwell-time constraint and the second with
both the minimum and the maximum dwell-time constraint.
This example illustrates how designers can use maximum
dwell-time constraints to synthesize systems with desired

behavior and not just safe behavior.

Case A: Only a minimum dwell-time requirement of 1
second in the straight mode is provided, ensuring that the
planes spend some time in the straight mode before turning
again. The final guards synthesized by computing fixpoint



are as follows.
INL 9%, A Be — Az > 283
grs : 9%g A Ay — By > 200
gsr: 9%p A Ag — By > 117
9RN ¢ 9y A (Az — Ba >0V By — Ag > 283) (9)

The behavior of the system synthesized above is illustrated
in Figure 9. The initial state is A, = 0,4, = 0,B, =
600, By = 0. X and Y denote the distance between the
planes in X and Y co-ordinates and D denotes the distance
between the planes. The minimum value of D is 200m.
The synthesized system is safe and satisfies the minimum
dwell-time requirement but it has the undesirable behavior
of switching from normal mode to maneuver modes imme-
diately at the initial state. The planes could have delayed
their entry into the maneuver mode.
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Figure 9: Sample Behavior of Synthesized TCAS

Case B: In this case, we also provide a maximum dwell-
time requirement of 1.1 second in the straight mode. This
ensures that the planes fly towards each other till it is neces-
sary to switch to maneuver modes. By specifying the max-
imum dwell-time requirement on the straight mode, we ef-
fectively limit the time spend in maneuver and hence, force
the system to stay in the normal mode for a longer time.
The final guards synthesized by computing the fixpoint are
as follows.

NI : g% A303> By — Ay > 283

grs : 9%g A Ay — By > 200 A By — A, < 103

9sR i 94 A Az — By > 117
RN 9% N A (Az — By >0V By — Ay > 283) (10)
We again plot the behavior of the synthesized system with
the same initial state as Case A in Figure 10. The time
spent in maneuver is now limited and we stay in normal

mode till the planes are 303 meters far from each other and
then switch to the collision avoidance maneuver.
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Figure 10: Sample Behavior of Synthesized TCAS
with Max Dwell-time

6.2 Automatic Transmission

Our final example is a 3-gear automated transmission sys-
tem [10]. The transmission system is illustrated in Figure 11;
notice that the mode dynamics are non-linear. u and d de-
note the throttle in accelerating and deaccelerating mode.
The transmission efficiency 7 is 7; when the system is in
mode 7.

ni = 0.99e (e /6% 4 0 01

where a1 = 10,a2 = 20,a3 = 30 and w is the speed. The
distance covered is denoted by 6. The acceleration in mode
i is given by the product of the throttle and transmission
efficiency. For simplicity, we fix u = 1 and d = —1. From
an initial state of # = 0,w = 0, the system must reach
0 = Omaz = 1700 with w = 0. The synthesis problem is to
find the guards between the modes such that the efficiency
7 is high for speeds greater than some threshold, that is,
w >5=mn>0.5 Also, w must be less than an upper limit
of 60. So, the safety property ¢s to be enforced would be

(w>5=n>05)A(0<w< 60)

Figure 11: Automatic Transmission System

Since the speed must reduce to 0 on reaching 6,42, the
guard g1 np is initialized to ¢s A 0 = Omar Aw = 0. All the
other guards are initialized to ¢s. The final set of guards
obtained after fixpoint computation are as follows.

gNn1U, 9110 1 0 <w < 16.70
g12U, 9220 ¢ 13.29 < w < 26.70
9230 9330 1 23.29 < w < 36.70 | g33p : 23.29 < w < 36.70
932D, 922D + 13.29 < w < 26.70
921D0,911D : 0 <w < 16.70, ;918D : 0 = Omax Aw =0 (11)

We now impose a minimum dwell-time of 5 seconds on all
the six gear modes. The guards obtained by computing the
fixpoint are as follows.

gniv tw =0, gy :w=0

GIND 0= 0Omaz Aw =0, gop : 13.29 < w < 23.42

g11p 1 1.31 < w < 16.70 , gosy : 26.70 < w < 33.42

goop 1w = 26.70 , g33p : w = 36.70

g3op ¢ 16.58 < w < 26.70 , gasr : 23.29 < w < 33.42
go1p : 1.31 < w < 16.70 , gooy : 13.29 < w = 23.42 (12)

The plot of the behavior of the transmission system when
it is made to switch from Neutral mode through the six gear
modes and back to the Neutral mode is shown in Figure 12.
The efficiency 7 is always greater than 0.5 when the speed is
higher than 5 and we spend atleast 5 seconds in the six gear
modes. Starting from 6 = 0,w = 0, the synthesized system
reaches 0 = 00, with w = 0.
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Figure 12: Transmission efficiency and speed with
changing gears

7. RELATED WORK

Past work on synthesis of switching logic can be broadly
classified into two categories depending on the goals of syn-
thesis. The first category finds controllers that meet some
liveness specifications, such as synthesizing a trajectory to
drive a hybrid system from an initial state to a desired fi-
nal state [9, 11]. The second category finds controllers that
meet some safety specification [2]. Our work combines both
safety specifications with min-dwell requirements (which is a
form of liveness specification) to enable synthesis of systems
that meet some performance related properties.

Past techniques for synthesis of switching logic involve
computing the set of controlled reachable states either in
the style of solving a game [2, 19] or some abstraction based
reasoning [14, 3, 17]. They all perform some kind of iterative
fixpoint computation and are limited in the kind of contin-
uous dynamics they can handle. The novelty of our work
lies in presenting a new technique based on combining local
simulation inside a mode with fix-point computation across
modes. Our simulation-based approach to reason about the
continuous dynamics inside each mode makes our approach
more generally applicable. Simulations have been used to
perform verification [8, 5, 4], but we use simulations to per-
form synthesis. Recently, [18] proposed a constraint-based
technique for synthesizing switching logic that involves gen-
erating and solving an 3V constraint (as opposed to per-
forming a fixpoint computation). However, the size of the
constraint increases as the number of modes increase. In
our approach, reasoning is performed on one mode at a time
and hence it scales better than [18].

Dwell time is a well-known concept in hybrid systems [6,
12, 13], where it has been used for verification. We use
dwell time for synthesis. The user can use it to guarantee
synthesis of nonzeno and desirable systems.

Our problem formulation has the high-level philosophy
of “completing a partially-specified design” also explored in
other domains, such as software synthesis by sketching [16].
To our knowledge, however, the approach we take, com-
bining verification, learning, and simulation, is distinct and
novel.

8. CONCLUSION

We presented a new approach for synthesizing safe hybrid
systems that uses numerical simulations and fixpoint com-
putation. The user can guide synthesis by specifying dwell
time requirements and the form of the guards. Extension of
the approach to synthesize optimal designs and with richer
guards is left for future work.
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