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Abstract

Most dynamic programming methods for solving MDPs store
the value function explicitly as a table of state-value pairs.
However, since the size of the state space is exponential in
the number of state variables, these methods often run out
of memory even on medium-sized problems. In response,
researchers have suggested two ways to learn a compact ap-
proximation of the value function, either by combining a set
of basis functions or by abstraction. While these methods
have proved successful in continuous domains and in a few
logically-specified domains with regular structure, noone has
successfully applied them to probabilistic IPC domains.
This paper fuses these two paradigms into a novel value-
function approximation scheme, which enables the solution
of large problems from the Competition. Our method, RE-
TRASE, has three steps. First, we use a fast classical plan-
ner, such as LPG-d, to generate a set of diverse plans for
a determinized version of the probabilistic domain. Next,
we regress these plans to generate a small set of basis func-
tions, which induce overlapping neighborhoods over the state
space. Third, we use a modified RTDP procedure to learn
weights for each basis function (not for the whole space of
reachable states). Finally, an agent can execute in the domain
by using applicable basis functions to estimate the value of
destination states and choose a good policy. Preliminary ex-
periments show that RETRASE performs well on hard prob-
lems that challenge other planners.

INTRODUCTION
Markov Decision Processes (MDPs) are a popular frame-

work for formulating probabilistic planning problems,
which are applicable to a variety of interesting domains,
ranging from military-operations planning to controlling a
Mars rover (Aberdeen, Thiebaux, & Zhang 2004; Mausam
et al. 2005). One of the most popular family of algorithms
for solving MDPs is based on dynamic programming: value
iteration, RTDP, and related approaches (Bellman 1957;
Barto, Bradtke, & Singh 1995). Unfortunately, all of these
algorithms suffer from the same critical drawback — they
manipulate (reachable) states explicitly, thus requiring mem-
ory (and time) exponential in the number of domain features.
The explicit table of values required to represent the value
function grows too quickly. As a result, these approaches
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do not scale to handle practical problems, which are often
too large. Indeed, value iteration and RTDP may often ex-
haust memory within a few minutes when applied to large
problems from the probabilistic planning competition.

Two general approaches have been proposed to circum-
vent the memory requirements of algorithms that tabulate
state values: abstraction, associating values with sets of
states equivalent in some way, and approximation, eschew-
ing the exact function for a compactly-representable alterna-
tive (e.g., a linear combination of basis functions) (Boutilier,
Dean, & Hanks 1999). These approaches have proved quite
successful when applied to MDPs whose state variables are
ordinal quantities (e.g.continuous) (Guestrin et al. 2003b;
Gordon 1995). Nonetheless, they are sometimes difficult to
apply in what we call nominal domains, such as the PPDDL
domains used in IPC.1

Abstraction is an elegant and powerful technique whose
applicability depends on the presence of a meaningful dis-
tance/similarity measure over the state space. Sets of states
that are similar according to this measure are assumed
to have the same value. In grid worlds such as “Race-
track” and “WetFloor” (Barto, Bradtke, & Singh 1995;
Bonet & Geffner 2006), which are common testbeds for
the reinforcement-learning community, Euclidean distance
is applicable, since states which have similar 〈x, y〉 coordi-
nates tend to have similar values. However, few of the estab-
lished logical (nominal) testbeds admit even an approximate
distance function, which should obey symmetry and the tri-
angle equality. Any domain that contains irreversible actions
doesn’t afford a distance function, and irreversible actions
are common. E.g., blocks cannot be recreated in “Explod-
ing Blocksworld,” a flat cannot be repaired without a spare in
“Tireworld”, and in many domains, irreplaceable resources
may be consumed. As we explain later, an important contri-
bution of this paper is a novel state similarity measure that,
while not a metric, has a very intuitive meaning.

Approximating the value function with a linear combi-
nation of basis functions is another approach which has
had some success in a few nominal domains. For exam-
ple, Guestrin has used this method in the “SysAdmin” and

1Algebraic-decision-diagram-based approaches, such as Sym-
bolic LAO* and SPUDD are notable exceptions (Feng & Hansen
2002; Hoey et al. 1999), but even these novel methods exhaust
memory for moderate sized problems.



“FreeCraft” domains (Guestrin et al. 2003b; 2003a). But
both of these domains have numeric features which corre-
late naturally with the value of the state: e.g., the number of
crashed processors, the amount of gold, etc. To our knowl-
edge, noone has discovered comparable decompositions for
the Competition domains.

Regressing Deterministic Plans. In this paper, we pro-
pose an algorithm RETRASE, which stands for Regressing
Trajectories for Approximate State Evaluation. RETRASE
learns a compact value function approximation, which ap-
pears to work well in a range of nominal domains. Our ap-
proach combines abstraction and approximation ideas, but
requires neither a distance measure nor a linearly decom-
posable value function.

The key insight behind RETRASE is a novel measure of
similarity between states, defined relative to a path to the
goal. Intuitively, let P be a plan to reach the goal. We con-
sider two states to be similar if one may use P to reach the
goal from either of those states. We define properties which
characterize this similarity by regressing the goal through a
suffix of the plan to generate a set of logical formulas, and
we use each of these formulas to specify a basis function.
During our planning process, RETRASE uses a modified
version of RTDP (Barto, Bradtke, & Singh 1995) to assign
weights to each of these basis functions, instead of to indi-
vidual states as is traditional. During execution, the policy
is defined from Q-values, where the value of a state is cal-
culated from all matching basis functions; we considered a
variety of combination methods, concluding that min cap-
tures the notion of choosing the best path toward a goal.

So far our discussion has assumed the existence of paths
to the goal, but of course this begs the question to some de-
gree. The final insight underlying RETRASE is the gener-
ation of a wide variety of diverse paths by exploiting recent
advances in deterministic planning. Specifically, we deter-
minize the probabilistic domain and use existing techniques,
e.g. LPG, to generate multiple, qualitatively different, de-
terministic plans to the goal (Srivastava et al. 2007). While
no deterministic plan may be guaranteed to reach the goal,
every successful probabilistic trajectory must correspond to
some deterministic plan. After generating a comprehensive
set of these plans, RETRASE regresses each to create the
compact set of value functions. This set is typically much
smaller than the set of reachable states, thus giving our plan-
ner a big reduction in memory requirements as well as in the
number of parameters to be learned.

We demonstrate the practicality of our framework by
comparing it to the top performing planners of the IPC-5
probabilistic track on some of the hardest problems from
that competition as well as some other challenging prob-
lems. RETRASE demonstrates orders of magnitude better
scalability than one of the best optimal planners, and finds
significantly better policies than the state-of-the-art approx-
imate planners.

BACKGROUND
In this paper, we restrict ourselves to indefinite-horizon
MDPs. An indefinite-horizon MDP is defined to be a tuple

〈S,A, T , C,G, s0〉, where
• S is a finite set of states,
• A is a finite set of actions,
• T is a transition function T : S × A × S → [0, 1] that

describes the probability of transitioning from state Si to
Sj by executing action A,

• C is a map C : A → R+ that specifies a cost for every
action,

• G is a set of a goal states,
• s0 is the start state.

Solving an MDP means finding a policy π : S → A that
specifies for every state an action the agent should take to
eventually reach the goal. We are interested in computing an
optimal policy, i.e. one that incurs the minimum total action
cost to reach the goal. Indefinite horizon refers to the fact
the the total action cost is accumulated over a finite-length
action sequence whose length is unknown. The expected
cost of reaching the goal from a state s under policy π is
described by the value function

V π(s) = C(s, π(s)) +
∑
s′∈S
T (s, π(s), s′)V π(s′) (1)

An optimal function satisfies the following conditions,
called Bellman equations:

V ∗(s) = 0 if s ∈ G, otherwise (2)

V ∗(s) = min
a∈A

[C(s, a) +
∑
s′∈S
T (s, π(s), s′)V ∗(s′)]

Given an optimal value function, an optimal policy can be
computed as follows:

π∗(s) = arg min
a∈A

[C(s, a) +
∑
s′∈S
T (s, π(s), s′)V ∗(s′)] (3)

Equations (2) and (3) suggest a dynamic programming-
based way of finding an optimal policy, first described by
Bellman (1957). It involves initializing state values using
a heuristic and iteratively updating the values of all states
using equations (2) in an operation called Bellman backup
until the values converge (or change by only a very small
amount between successive iterations). The policy is read
off the value function via equation (3).

This algorithm, called value iteration (VI), has given
rise to many improvements. One of them, RTDP (Barto,
Bradtke, & Singh 1995), does value function initialization
like VI and tries to reach the goal multiple times by using the
policy derived from the current value function. During each
trial, it updates the value function over the states in the path
using Bellman backups. A popular variant, LRTDP, adds
a terminating condition to RTDP by labeling those states
whose values have converged as ‘solved’ (Bonet & Geffner
2003).

Note that to compute the policy, both VI and RTDP have
to store values for many states, the number of which is expo-
nential in the number of domain features. RTDP saves some



space by storing values only for the states reachable from
the initial one. However, the reduction is typically limited to
a constant factor for many domains.

Determinization of Probabilistic Domains Recently,
there has been significant progress in exploiting the fast de-
terministic planners to approximate policy construction for
MDPs. This approach is pioneered by FFReplan (Yoon,
Fern, & Givan 2007). We will use the key insight of de-
terminization from this work. Determinization refers to the
conversion of the probabilistic planning domain into a deter-
ministic domain by treating each outcome of a probabilistic
action as an independently controllable deterministic action
with the same preconditions and effects. Thus, the lack of a
deterministic plan to the goal makes the state a dead end in
the original planning problem. However, existence of a de-
terministic plan only guarantees a non-zero probability tra-
jectory starting from the state.

Diverse Deterministic Plans Our work crucially builds
on yet another previous work. We use a package called
LPG-d (Srivastava et al. 2007) that returns a set of diverse
deterministic plans for a domain. Based on the LPG planner
(Gerevini, Saetti, & Serina 2003), it finds a desired number
of plans for the given problem while making sure that these
plans differ from each other in the number and sequence of
actions they involve. The desired diversity of the plan set is
specified by the d-parameter, its values ranging from 0 to 1.

ReTrASE DETAILS
On a high level, RETRASE works as follows. First, it
computes certain “good” properties of states. Possessing a
given such property p guarantees the existence of certain
trajectories from the state to the goal. Thus, possessing
property p naturally defines a set of p-similar states. The
properties differ in the expected cost of the trajectories to
the goal that they enable, as well as in the total probability
of these trajectories. RETRASE takes this difference into
account by learning a weight for each computed property.
With property weights learned, the value of a state is, to a
first approximation, the minimum of its properties’ weights.
A key advantage of the algorithm is that in practice the
number of properties RETRASE needs in order to compute
a good approximation to the value function is far smaller
than the number of states VI/RTDP need to store values for.

Definitions. We define a state property to be a conjunction
of literals. We say that a state s possesses property p if p
holds in s. With each property p, we associate a basis func-
tion that has value 1 in s iff s possesses p. We call a set of
states p-similar if all states in the set possess property p.

We say that property p enables a set of trajectories T to
the goal if the goal can be reached from any state possessing
p by following any of the trajectories in T 2. We call a state
that doesn’t possess any properties from the set we are
interested in a mysterious state. A dead-end is a state with
no trajectory to the goal. An implicit dead-end is a state that

2assuming that the desired outcome is obtained for each action
on the trajectory.

has no trajectory to the goal but has at least one applicable
action. An explicit dead-end is a state with no applicable
actions.

Algorithm intuition. Consider a trajectory of actions and
outcomes, A = a1, o1, a2, o2, . . . , an, on. Moreover, sup-
pose that a goal is reached when A is executed. This is an in-
dication that A is causally an important sequence of actions.
To discover the causal properties p1, . . . , pn that allow A’s
successful execution, we simply regress from the goal state.
We can now claim that action sequence aj , . . . , an executed
starting from any state possessing property pj will lead us
to the goal with positive probability. Note that A chooses
specific outcomes per action and thus the actual real-world
execution may not always reach the goal. Nevertheless, all
properties that enable any positive-probability trajectory to
the goal are important for our purposes, as they act as a basis
for further planning. In essence, this step can be thought of
as unearthing the relevant causal structure necessary for the
planning task at hand. If we start with diverse candidate tra-
jectories that take us to goal we can hope to compute several
causal properties of the domain useful for our task.

We can now define a new probabilistic planning problem
over a state space comprising of these properties. Hopefully,
the space of properties will be much smaller than the origi-
nal state space, since only the relevant causal structure will
be retained3. There are many imaginable ways to learn the
weights for the basis functions. In this paper, we explore one
of them — a modified version of LRTDP.

Importantly, each property defines a set of states with sim-
ilar expected behavior, based on the action sequence it en-
ables. A set of properties will define a set of sets of p-similar
states (not all disjoint).

Note, however, that the properties differ in the total ex-
pected cost of trajectories they enable as well as in the to-
tal probability of these trajectories. This happens partly be-
cause each trajectory considers only one effect for each of its
actions. The sequence of effects the given trajectory consid-
ers may be quite unlikely. In fact, getting some action out-
comes that the trajectory doesn’t consider may prevent the
agent from ever getting to the goal. Thus, it may be much
“easier” to reach the goal from some p-similar sets than oth-
ers. Property weights reflect these differences. Now, given
that each state is generally in several p-similar sets, what
is the connection between the state’s value and the weights
of the p-similar sets of which the state is a member? Intu-
itively, the state’s value shouldn’t be higher than the lowest
wp of any of its p-similar sets. Since several properties can
enable the same plan, it is hard to determine the true value of
a state even while knowing the property weights. However,
we can approximate the state value by the smallest weight
of any property the state possesses. This amounts to saying
that the “better” a state’s “best”’ property is, the “better” is
the state itself.

Thus, deriving useful state properties and their weights
gives us an approximation to the optimal value function.

3We may approximate this further by putting a bound on the
number of properties we are willing to handle in this step.



Algorithm’s operation. RETRASE, whose pseudo code
is presented in Algorithm 1, starts by computing the deter-
minization D′ of the domain. We need D′ to rapidly com-
pute many trajectories from the start state to the goal in the
original domain D. This is exactly what the algorithm does
next. It uses LPG-d to find a desired number of plans in D′.
The plans differ in the number of actions they use as well as
in their sequence. Finding all ways of reaching the goal from
the initial state in D′ would give us all properties we are in-
terested in. However, this approach is impractical, because
in some domains the number of plans may be exponential
in the number of states. The best we can hope for is a large
number of fairly diverse plans.

To extract properties from a plan in D′, we simply regress
through it (subroutine Regress(pD′) in the pseudo code).
Regression yields not only the basis functions but also the
cost of reaching the goal in D′ from any state with the
given basis function via the given plan. We use these val-
ues to compute a powerful (though inadmissible) heuristic,
described in the next subsection. The heuristic is computed
by method GetBasisFuncsAndHeuristic(PD′) in Algo-
rithm 1.

After obtaining the basis functions and heuristic values
for their weights, RETRASE runs a modified version of
RTDP to learn their actual values. For each state sj the
modified RTDP visits, ModifiedBellmanBackup(.)
routine updates the smallest weight of any basis function
in sj , i.e. the weight of the basis function that currently
determines sj’s value. Ideally, we would like to update the
weight of the basis function(s) that enabled the action that
brought the agent from sj to the next state in the current
RTDP trial, si. However, there may be no such basis
function (e.g., in case sj is an implicit dead-end), or this
basis function may be expensive to determine. Nonetheless,
the operation in ModifiedBellmanBackup(.) serves as a
reasonable approximation.

Heuristic. For every basis function F and a plan, the to-
tal cost of actions of the plan we’ve regressed to obtain F
is an estimate of the “distance” from F to the goal, i.e. an
estimate of F ’s weight. If we knew all deterministic plans
whose regression yields F , we could construct a very good
admissible heuristic H by taking the minimum of distances
from F to the goal over all these plans. In practice, the min-
imum of distances from F to the goal over all plans that we
computed with LPG-d gives a natural approximation H ′ to
H . H ′ is inadmissible, since deterministic plans we haven’t
considered may see F closer to the goal than our estimate.
However, it is easy to see that the more plans we choose to
consider, the closer H ′ values get to those of H .

We use H ′ in our algorithm by initializing ba-
sis function weights with values computed in
GetBasisFuncsAndHeuristic(PD′).
Dead-ends and mysterious states. So far, we have implic-
itly assumed all states to possess at least one of the discov-
ered properties. Mysterious states are states without any of
the properties we are interested in, so this assumption does
not hold for them. Mysterious states can be states that lie on

Algorithm 1 ReTrASE
1: Input: probabilistic domain D, problem P , #RTDP tri-

als NR, trial length L, #deterministic plans ND′ , plan
difference δ

2: declare M , a map from basis functions to weights
3: compute D′, the determinization of D
4: compute a set of deterministic plans PD′ ← LPG-

d(D′, P, ND′ , δ)
5: // Populate M with basis function - heur. weight pairs
6: GetBasisFuncsAndHeuristic(PD′)
7: // Do modified RTDP over the basis functions
8: for all i = 1 : NR do
9: declare current state s← s0

10: declare numSteps← 0
11: while numSteps < L do
12: choose action a with minimum expected value
13: ModifiedBellmanBackup(a, s)
14: execute and randomly sample next state
15: numSteps← numSteps + 1
16: end while
17: end for
18:
19: GetBasisFuncsAndHeuristic(PD′ )
20: for all deterministic plans pD′ ∈ PD′ do
21: declare SFC , set of basis function-cost pairs

〈Fp, cost(Fp)〉
22: Regress(pD′)
23: for all 〈Fi, cost(Fi)〉 ∈ SFC do
24: if M [Fi] == NULL then
25: M [Fi]← cost(Fi)
26: else
27: M [Fi]← min[M [Fi], cost(Fi)]
28: end if
29: end for
30: end for
31:
32: Regress(pD′ )
33: declare F ← Goal
34: declare cost← 0
35: for all i = length(pD′) : 1 do
36: action← pD′ [i]
37: cost← cost + cost(action)
38: F ← (F ∪ precond(action))− effect(action)
39: SFC ← SFC ∪ {F, cost}
40: end for
41:
42: ModifiedBellmanBackup(a, s)
43: find basis function F with smallest weight M [F ] that

holds in s
44: M [F ]← Cost(a) + ExpectedV alue(a, s)



some trajectory to the goal that we haven’t discovered. They
can also be implicit or explicit dead-ends – neither type can
be on any trajectory to the goal by definition. In either case,
recognizing them and learning their values may be crucial
for learning a good policy approximation. To be able to do
that, whenever during the RTDP trials we encounter a mys-
terious state (which may also be a dead-end), we create a
special basis function equal to the state at hand. Clearly, this
basis function only holds in this state; therefore, creating
too many such basis functions may potentially increase RE-
TRASE ’s memory requirements to those of ordinary RTDP.
Fortunately, our experiments have shown that in practice, we
have to create relatively few of these basis functions. We
discuss this issue more in the Future Work section.

We also tried another method of dealing with mysterious
states, by assuming all of them to be dead ends. Theoret-
ically, this makes the algorithm very sensitive to the basis
functions used in a given run, as they carve out the valid
part of the state space. Therefore, the assumption should
be accurate if we use nearly all plans to the goal; as the
fraction of plans that we use for discovering basis functions
diminishes, the performance of the algorithm should drop.
Experimentally, we found the behavior to be as described.

EXPERIMENTAL RESULTS
Our goal in this section is to demonstrate two important
properties of RETRASE – (1) scalability on large domains,
and (2) quality of solutions in complex domains. We start
by showing that RETRASE easily scales to problems on
which the state-of-the-art optimal planners run out of mem-
ory. Then, we illustrate RETRASE’s ability to compute bet-
ter policies for very hard problems than state-of-the-art ap-
proximate planners.

We report results on two domains — Triangle-Tire, and
Drive. Triangle-Tire is a modified version of the TireWorld
domains from the IPC5 due to (Little & Thiebaux 2007).
The task of the domain is to reach a destination while navi-
gating through a network of roads, in our case, of the form of
a triangle. The car may get a flat tire with some probability,
but if it has a spare tire then it can still reach the goal. We
test on 6 problems, reported by Little and Thiebaux, with
increasing complexity. The size of the problem state space
and the difficulty of finding the optimal solution increase ex-
ponentially in the ordinal of the problem.

Our second domain is the Drive domain4 from IPC-5.
Here, the task is to drive along a network of crossroads and
traffic crossings. We experiment on two of the hardest prob-
lems (p13 and p15) used in the competition for this domain.

We run several planners on these domains, including FPG
(Buffet & Aberdeen 2006) – the competition winner of
IPC5, FFReplan (Yoon, Fern, & Givan 2007) – the compe-
tition winner of IPC4, LRTDP run with the inadmissible FF
heuristic (LRTDPFF ), and LRTDPopt – LRTDP with Atom-
Min-1-Forward|Min-Min heuristic (Bonet & Geffner 2005).

4We discovered a bug in the original PPDDL file, and hence,
report on a slightly modified version of the domain.

The last of these is one of the best known optimal algo-
rithms, whereas the rest are the state-of-the-art approximate
solvers.

Our algorithm, RETRASE, takes two parameters – the
number of desired diverse deterministic plans, and the total
number of trials for RTDP. For now, we focus on providing
the proof of concept for our system, and hence we have set
these parameters by manual inspection. We plan to estimate
these parameters automatically by analyzing the structure of
the problem and a better convergence test. We revisit this
issue in the next section.

Comparing Scalability. We begin by demonstrating the
memory savings and the running time improvements of RE-
TRASE over LRTDPopt. Figure 1 and 2 shows the savings
of RETRASE to increase dramatically with problem size.
For example, for the hardest triangle-tire problem we out-
perform the optimal solver in the memory usage by an order
of magnitude. Moreover, even though RETRASE has an
unoptimized implementation, it still outperforms the opti-
mal algorithm in the total planning time. The performance
of RETRASE is also significantly better than LRTDPFF .
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Figure 1: Speed of RETRASE and other VI-based planners. Even
our unoptimized implementation is significantly faster than the op-
timal algorithm and quite comparable to LRTDPFF .
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Figure 2: Memory usage of RETRASE and other VI-based plan-
ners. RETRASE is dramatically better than LRTDPopt and some-
what better than LRTDPFF .

Of course, other approximate algorithms don’t suffer
from the scalability issues so much. For instance, FPG
learns policy directly and represents it with an appropriately
trained neural net. FFReplan is essentially a deterministic
planner that tries to act according to a deterministic plan
and replans when something goes wrong. Thus, it is more
meaningful to compare RETRASE against these on the



quality of solutions produced.

Comparing Solution Quality. Figure 3 describes the cov-
erage (percentage of simulation runs reaching the goal) com-
parisons for the Triangle-Tire domain, whereas Table 1 re-
ports the same for the Drive domain. We observe that RE-
TRASE outperforms both FFReplan and FPG by signifi-
cant margins. The performance of FPG and FFReplan drops
sharply on hard problems, whereas RETRASE is able to
learn near-optimal policies for all of them.
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Figure 3: Success rates on Triangle-Tire domain. RETRASE out-
performs both FFReplan and FPG by wide margins. It performs
almost as well as LRTDPFF .

Problem RETRASE LRTDPopt LRTDPFF FPG
p13 37% 37% 37% –
p15 67% 67% 67% 30%

Table 1: Success rates on Drive domain. RETRASE produces
optimal solutions for both domains. FPG doesn’t converge on one
problem, and produces lower quality solution on the other.

Due to its learning strategy, FFReplan is not well-suited
for the Tireworld domain. FFReplan doesn’t plan for contin-
gencies; as a result, it doesn’t make an effort to go through
locations that have a spare tire. When a tire bursts, FFRe-
plan finds itself in a dead-end. This is indeed what happens
in practice. Consider problem p14 of Tireworld, one of the
hardest problems from this domain. IPC-5 report shows that
FFReplan’s policy is only successful in about 40% of runs.
FPG, incidentally, has a 70%-success. However, it is pos-
sible to learn a better policy. RETRASE does exactly that,
succeeding in 100% of trials.

Moreover, RETRASE is at-par with LRTDPFF on cov-
erage. However, as illustrated in Figure 4, RETRASE re-
sults with better expected costs to reach the goal compared
to LRTDPFF . So, overall RETRASE is enormously bet-
ter than the optimal algorithm on scalability, and yields a
much higher quality solution than the other state-of-the-art
systems.

We particularly experimented on the variants of the
TiresWorld domain, since it is considered very difficult
for the approximate techniques. RETRASE’s excellent
performance on the hard problems in this domain is highly
encouraging. We plan to further test our algorithm on the
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Figure 4: Plan quality. While all algorithms have 100% coverage
for almost all problems RETRASE returns near-optimal solutions
whereas LRTDPFF produces worse solutions.

other difficult problems of the planning competition.

Control Experiment: Mysterious States. For the Drive
domain, one that has several dead-end states, we ran a con-
trol experiment to test two approaches to handle the myste-
rious states. Recall that mysterious states are ones that do
not possess any property from our set of properties. In other
words no deterministic plans found in the first step can be
executed from these states. This can happen due to two rea-
sons — the states are dead ends, or the deterministic plans
found were not diverse enough. Explicit dead ends are easy
to detect, but implicit ones are not.

In the first of the approaches, we treated all mysterious
states as dead ends. In the second, we created a new basis
function for each mysterious state encountered (except when
it was an explicit dead end). This way, we ended up learning
values for each of the mysterious states individually. We ob-
served that the first solution is not a robust approach, since it
branded many legitimate states as dead ends, and hence, the
coverage of the resulting policy was low. The second tech-
nique, on the other hand, worked well. However, it ended up
exploring a large number of states, since it had to explicitly
store each dead end, which can be large in number. For the
results above we have used the second technique. However,
we discuss other approaches to handle mysterious states in
the next section.

DISCUSSION
As evidenced by the experimental results, our algorithm per-
forms on the par or better with the state-of-the-art systems,
while requiring considerably less memory. However, there
are a number of areas for improvement, which we discuss
below.

Mysterious states and dead ends One limitation of our
current implementation is its lack of skill in dealing with
mysterious states. Our experiments with the Drive domain
illustrate that mysterious states may have paths to goal not
found earlier, and so we cannot presuppose that all mysteri-
ous states will be implicit dead ends.

Our current solution is robust to quality of diverse plans,
since it explicitly stores all mysterious states, including im-



plicit dead ends found so far. However, it is potentially ex-
pensive, since it might end up enumerating all dead ends,
which can be huge in number. In the future we plan to ex-
plore several ways to deal with mysterious states effectively.
For instance, one approach can be to use causal regression
to infer properties that will prove that a state is a dead end.
Thus we will be able to compactly characterize the mysteri-
ous states which will reduce much of our computation and
memory requirements.
Improving Property Construction The quality of our
state value approximation is highly dependent on the quality
of our basis function set. An ideal set of properties will – (1)
be causally diverse, and (2) include all high probability, low
cost trajectories. At the moment, LPG-d is not looking for
either of the two, it is just looking for diversifying the set of
actions that participate in the plans. We plan to test our im-
plementation with the version of LPG-d reported in (Srivas-
tava et al. 2007) that specifically tries to diversify the causal
structure of the returned plans. Moreover, we hope to mod-
ify the algorithm that will include, with each determinized
action, a pseudo cost (reflecting the probability of outcome,
and cost of the original action), so that the returned plans
have higher probabilities of success and low total costs.
Updating basis function weights As previously men-
tioned, our modified Bellman backup isn’t always updating
the correct basis function. We need a more principled way of
selecting the basis function to update during this operation.
Ideally, we will store the mapping from a property to an ac-
tion (duplicating the property if it appears in multiple plans)
and update the basis function based on the greedy action at
the current backup.
Convergence Test Running RETRASE currently involves
specifying the desired number of RTDP trials. In the current
experiments we stop the process by manual inspection when
the basis function weights seem to have converged. An as-
pect that complicates an automatic convergence detection is
that the basis function weights and state values don’t change
monotonically. In fact, in some cases these may oscillate a
lot even when the fraction of trials that reach the goal stays
nearly constant over many trials, indicating no benefit in ad-
ditional learning. We are considering two solutions to con-
vergence detection problem. One is to use the benefit of ad-
ditional learning for convergence. Let f(t) be the fraction of
trials that reached the goal for a short window along the tth

trial, the learning process should stop when f ′(t) ≈ 0. Our
experiments have showed the graph of f(t) to be not very
smooth. To simplify matters, we could pick the stopping
condition | f(t)−f(t−c)

c | < δ, where c is an integer smooth-
ing parameter. An alternative solution is to employ a learn-
ing rate αt similar to reinforcement learning approaches like
Q-learning. Using an appropriately decaying α, s.t. αt → 0
as t → ∞ we can guarantee convergence. More experi-
ments are needed to test the quality of policies produced by
this technique.

RELATED WORK
Several researchers have considered state abstraction for
MDP planning. A popular approach is based on algebraic

decision diagrams (ADDs). ADDs compactly represent a
value function for a factored nominal domain. All steps of
value iteration are compactly performed for the whole state
space at once using operations on ADDs. Optimal algo-
rithms such as SPUDD and Symbolic LAO* (Hoey et al.
1999; Feng & Hansen 2002) have been popular, however,
the compactness achieved depends severely on the variable
order in an ADD. Moreover, the algorithms scale well only
to medium sized domains, after which the memory typically
exhausts. APRICODD is an approximation technique using
ADDs (St-Aubin, Hoey, & Boutilier 2000). While APRI-
CODD has been shown successful on many problems, it is
not clear whether it is competitive with today’s top methods
since it hasn’t been applied to the competition domains.

Another technique to solve large MDPs involves a basis
function decomposition for a domain, and uses a combi-
nation of basis function weights (e.g., linear combination)
to represent the value function. This kind of function ap-
proximation has been immensely popular (Gordon 1995;
Koller & Parr 2000; Guestrin et al. 2003b). These tech-
niques have two major drawbacks. First, finding a set of
good basis functions is fairly tricky. Most often the re-
searchers or domain experts encode them manually. Sec-
ond, and more importantly, these algorithms are typically
applied on domains that have ordinal state variables. Such
variables offer a very different structure (easy to find dis-
tance metrics in the domains) that is well exploited by these
methods. Unfortunately, nominal domains behave very dif-
ferently, and our initial attempts to directly apply these tech-
niques to nominal domains were not that successful.

A notable exception to above is FPG (Buffet & Aberdeen
2006), a rare example of a function approximation approach
successful in nominal domains. It performs policy search
and represents the policy compactly with a neural network.
For each action, FPG learns the probability with which it
should be executed in each state. Using gradient ascent on
the probabilities and doing simulation to estimate the re-
wards, FPG converges on a local optimum. In the domains
we tried RETRASE performed as well or better than FPG:
it reached the goal a larger percentage of trials than FPG.

There is also a large body of work on learning policies
for relational MDPs. (Gretton & Thiebaux 2004) do first-
order regression on optimal plans in small problem instances
to construct a policy for large problems in a given domain.
The policy is learned from the obtained first-order formulas
by inductive logic programming. (Sanner & Boutilier 2006)
use first-order regression to obtain a set of basis functions.
They aggregate them into a linear weighted combination by
solving a linear program to compute their weights. (Wu &
Givan 2007) analyze the Bellman residual of a value func-
tion approximation to iteratively compute a set of basis func-
tions.

Our work uses the determinization of the domain simi-
larly to (Gretton & Thiebaux 2004) and (Sanner & Boutilier
2006) — regressing deterministic plans to compute basis
functions. However, our function aggregation and weight-
learning methods are completely different from theirs. Our
approach is also related in spirit to the probabilistic plan-
ners that use determinized domains for solving probabilistic



planning problems. The most popular of these is FFReplan,
(Yoon, Fern, & Givan 2007), the competition winner in IPC-
4. Other planners include Tempastic (Younes & Simmons
2004), precautionary planning (Foss, Onder, & Smith 2007),
and hindsight determinization (Yoon et al. 2008).

CONCLUSION
The most popular algorithms for solving MDPs over nom-
inal domains (e.g. those specified in PPDDL) have to tab-
ulate the value function and consequently suffer from high
memory requirements. To resolve the issue, a number of ap-
proaches have been proposed, including approximating the
value function by state abstraction or as a combination of
basis functions. Both methods have been applied rather suc-
cessfully in domains with ordinal-valued variables. In nom-
inal domains, however, state abstraction suffers from a lack
of a state-similarity metric, caused by the presence of irre-
versible actions. This paper makes the following contribu-
tions:

• We present a domain-independent state-similarity mea-
sure, under which states are alike if they share a goal path.

• We define a set of domain-specific state properties, each
enabling a trajectory from a state to the goal. These prop-
erties let us induce the above similarity measure over a
nominal state space. We propose computing these proper-
ties in a domain-independent way by regressing through a
set of plans in the determinized version of the domain.

• We show how combining the weights of the state prop-
erties helps approximate the state value. We modify the
RTDP algorithm to learn the property weights.

• We empirically demonstrate that our planner learns better
policies than state-of-the-art planners like FPG and FFRe-
plan on the hardest problems from IPC-5 competition.

Despite the promise of our method, much remains to be
done. Diversifying the deterministic plans that we use to
extract state properties by different metrics could give us a
more informative set of properties. Ability to better deal
with states that have none of the properties we’ve discov-
ered may help us further shrink the set of basis functions.
Detecting convergence is crucial for increasing usability and
reducing the running time of our algorithm.
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