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1 Introduction

Detecting equivalence of program sub-expressions has a variety of applications.
Compilers use this information to perform several important optimizations
like constant and copy propagation [17], common sub-expression elimination,
invariant code motion [2,14], induction variable elimination, branch elimina-
tion, branch fusion, and loop jamming [9]. Program verification tools use these
equivalences to discover loop invariants, and to verify program assertions. This
information is also important for discovering equivalent computations in dif-
ferent programs; this is useful for plagiarism detection tools and translation
validation tools [13,12], which compare a program with an optimized version
in order to check the correctness of the optimizer.

Checking equivalence of program expressions is an undecidable problem, even
when all conditionals are treated as non-deterministic. Most tools, includ-
ing compilers, attempt to only discover equivalences between expressions that
are computed using the same operator applied to equivalent operands. This
form of equivalence, where the operators are treated as uninterpreted func-
tions, is also called Herbrand equivalence [16]. The process of discovering such
restricted class of equivalences is often referred to as value numbering. Per-
forming value numbering in basic blocks is an easy problem; the challenge is
in doing it globally for a procedure body.

Existing deterministic algorithms for global value numbering are either too ex-
pensive or imprecise. The precise algorithms are based on an early algorithm
by Kildall [8], which discovers equivalences by performing an abstract inter-
pretation [3] over the lattice of Herbrand equivalences. Kildall’s algorithm
discovers all Herbrand equivalences in a function body but has exponential
cost [16]. On the other extreme, there are several polynomial-time algorithms
that are complete for basic blocks, but are imprecise in the presence of joins
and loops in a program. The popular partition refinement algorithm proposed
by Alpern, Wegman, and Zadeck (AWZ) [1] is particularly efficient, however
at the price of being significantly less precise than Kildall’s algorithm. The
novel idea in AWZ algorithm is to represent the values of variables after a
join using a fresh selection function φi, similar to the functions used in the
static single assignment form [4], and to treat the φi functions as additional
uninterpreted functions. The AWZ algorithm is incomplete because it treats
φ functions as uninterpreted. In an attempt to remedy this problem, Rüthing,
Knoop and Steffen have proposed a polynomial-time algorithm (RKS) [16]
that alternately applies the AWZ algorithm and some rewrite rules for nor-
malization of terms involving φ functions, until the congruence classes reach
a fixed point. Their algorithm discovers more equivalences than the AWZ al-
gorithm, but remains incomplete. The AWZ and the RKS algorithm both use
a data structure called value graph [9], which encodes the abstract syntax of
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program sub-expressions, and represents equivalences by merging nodes that
have been discovered to be referring to equivalent expressions. We discuss
these algorithms in more detail in Section 5. Recently, Gargi has proposed a
set of balanced algorithms that are efficient, but also incomplete [5].

Our algorithm is based on two novel observations. First, it is important to
make a distinction between “discovering all Herbrand equivalences” vs. “dis-
covering Herbrand equivalences among program sub-expressions”. The for-
mer involves discovering Herbrand equivalences among all terms that can be
constructed using program variables and uninterpreted functions in the pro-
gram. The latter refers to only those terms that occur syntactically in the
program. Finding all Herbrand equivalences is attractive not only to answer
questions about non-program terms, but it also allows a forwards dataflow or
abstract interpretation based algorithms (e.g. Kildall’s algorithm) to discover
all equivalences among program terms. This is because discovery of an equiv-
alence between program terms at some program point may require detecting
equivalences among non-program terms at a preceding program point. This
distinction is important because we show (in Section 4) that there is a family
of acyclic programs for which the set of all Herbrand equivalences requires an
exponential sized (in the size of the program) value graph representation. On
the other hand, we also show that Herbrand equivalences among program sub-
expressions can always be represented using a linear sized value graph. This
implies that no algorithm that uses value graphs to represent equivalences can
discover all Herbrand equivalences and have polynomial-time complexity at
the same time. This observation explains why existing polynomial-time algo-
rithms for value numbering are incomplete, even for acyclic programs. One
of the reasons why Kildall’s algorithm is exponential is that it discovers all
Herbrand equivalences at each program point.

The above observation not only sheds light on the incompleteness or expo-
nential complexity of the existing algorithms, but also motivates the design of
our algorithm. Our algorithm takes a parameter s and discovers all Herbrand
equivalences among terms of size at most s in time that grows linearly with s.
For the purpose of global value numbering, it is sufficient to set the parameter
s to N , where N is the size of the program, since the size of any program
expression is at most N .

The second observation is that the lattice of sets of Herbrand equivalences
that can arise at any program point in our abstracted program model (which
only allows non-deterministic conditionals) has finite height k, where k is the
number of program variables. We prove this result in Section 3.6. Therefore,
an optimistic-style algorithm that performs an abstract interpretation over
the lattice of Herbrand equivalences will be able to handle cyclic programs
as precisely as it can handle acyclic programs, and will terminate in at most
k iterations. Without this observation, one can ensure the termination of the
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algorithm in presence of loops by adding a degree of pessimism. This leads to
incompleteness in presence of loops, as is the case with the RKS algorithm [16].
Instead, our algorithm is based on abstract interpretation, similar to Kildall’s
algorithm, while using a more sophisticated join operation. Note that even
though the lattice of Herbrand equivalences has small height, representing the
lattice elements and performing lattice operations on them can take exponen-
tial time and space, as pointed out in the first observation above. We avoid
this problem by maintaining a bounded size approximation of lattice elements,
which is sufficient to discover all Herbrand equivalences of bounded size. We
continue with a description of the expression language on which the algorithm
operates (in Section 2), followed by a description of the algorithm itself in
Section 3.

2 Language of Program Expressions

We consider a language in which the expressions occurring in assignments
belong to the following simple language of uninterpreted function terms (here
x is one of the variables, and c is one of the constants):

e ::= x | c | F (e1, e2)

For any expression e, we use the notation Variables(e) to denote the variables
that occur in expression e. We use size(e) to denote the number of occurrences
of function symbols in expression e (when expressed as a value graph). For
simplicity, we consider only one binary uninterpreted function F . Our results
can be extended easily to languages with any finite number of uninterpreted
functions of any constant arity. Alternatively, we can model any uninterpreted
function F a of any constant arity a using the given binary uninterpreted func-
tion F by employing the following closure trick:

F a(e1, . . . , ea) = F (e1, e
′
2), where e′i =

F (ei, e
′
i+1) for 2 ≤ i ≤ a− 1

F (ea, xF a) for i = a

Here xF a is a fresh variable (can be regarded as a new input variable) associ-
ated with the uninterpreted function F a. If we regard a to be a constant, then
this modeling does not alter the quantities (except by a constant factor) on
which the computational complexity of the algorithm depends.
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3 The Global Value Numbering Algorithm

Our algorithm discovers the set of Herbrand equivalences at any program point
by performing an abstract interpretation over the lattice of Herbrand equiva-
lences. We pointed out in the introduction, and we argue further in Section 4,
that we cannot hope to have a complete and polynomial-time algorithm that
discovers all Herbrand equivalences implied by a program (using the standard
value graph based representations) because their representation is worst-case
exponential in the size of the program. Thus, our algorithm takes a parame-
ter s (which is a positive integer) and discovers all equivalences of the form
e1 = e2, where size(e1) ≤ s and size(e2) ≤ s. The algorithm uses a data struc-
ture called Strong Equivalence DAG (described in Section 3.1) to represent the
set of equivalences at any program point. It updates the data structure across
the flowchart nodes shown in Figure 1 using the transfer functions described
in Section 3.2 through Section 3.5. In presence of loops, it goes around loops
until a fixed point is reached as described in Section 3.6.

3.1 Notation and Data Structure (SED)

Let T be the set of all program variables, k the total number of program
variables, and N the size of the program, measured in terms of the number of
occurrences of function symbol F in the program.

The algorithm represents the set of equivalences at any program point by
a data structure that we call Strong Equivalence DAG (SED). An SED is
similar to a value graph. It is a labeled directed acyclic graph whose nodes
η can be represented by tuples 〈V, t〉 where V is a (possibly empty) set of
program variables labeling the node, and t represents the type of node. The
type t is either ⊥ or c, indicating that the node has no successors, or F (η1, η2)
indicating that the node has two ordered successors η1 and η2.

In any SED G, for every variable x, there is exactly one node 〈V, t〉, denoted
by NodeG(x), such that x ∈ V . For every type t that is not ⊥, there is at most
one node with that type. We use the notation NodeG(c) to refer to the node
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with type c. For any SED node η, we use the notation Vars(η) to denote the
set of variables labeling node η, and Type(η) to denote the type of node η.
Every node η in an SED represents the following set of terms Terms(η), which
are all known to be equivalent.

Terms(V,⊥) = V

Terms(V, c) = V ∪ {c}
Terms(V, F (η1, η2)) = V ∪ {F (e1, e2) | e1 ∈ Terms(η1), e2 ∈ Terms(η2)}

We use the notation G |= e1 = e2 to denote that G implies the equivalence
e1 = e2. The judgment G |= e1 = e2 is deduced as follows.

G |= F (e1, e2) = F (e′1, e
′
2) iff G |= e1 = e′1 and G |= e2 = e′2

G |= x = e iff e ∈ Terms(NodeG(x))

G |= c = c

In figures showing SEDs, we omit the set delimiters “{” and “}”, and represent
a node 〈{x1, . . , xm}, t〉 as 〈x1, . . , xm, t〉. Figure 2 shows a program and the
SEDs computed by our algorithm at various points. As an example, note that
Terms(NodeG4(u)) = {u} ∪ {F (z, α) | α ∈ {x, y}} ∪ {F (F (α1, α2), α3) |
α1, α2, α3 ∈ {x, y}}. Hence, G4 |= u = F (z, x). Note that an SED represents
compactly a possibly-exponential number of equivalent terms.

We now describe an alternative representation for SED that is useful in un-
derstanding the join algorithm and for proving the fixed point result. An SED
can be represented by a partition of all program variables into equivalence
classes (where all variables in an equivalence class are known to be equal).
Furthermore, some of these equivalences classes are constrained to be equal to
some F -term over the values of other equivalence classes. The sets of variables
V in nodes of an SED represent these equivalence classes, and the type of
those nodes represent the F -term that the corresponding equivalence class is
constrained to be equal to. For example, the SED G4 shown in Figure 2 can be
represented by the following partition of variables: {u}, {z}, and {x, y}. The
equivalence class {u} is constrained to be equal to F (z, x), and the equivalence
class {z} is constrained to be equal to F (x, x). The equivalence class {x, y} is
unconstrained.

The algorithm starts with the following initial SED at the program start,
which implies only trivial equivalences.

G0 = {〈x,⊥〉 | x ∈ T}

The SED at other program points are computed from the SEDs at previous
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x := 1; y := 1;

z := F(1,1);

x := 2; y := 2;

z := F(2,2);

*

L0

L1 L2

L3

u := F(F(x,y),x);
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<x,y, ><u, >

G3

<u, F>

<z, F>

<x,y, >
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Fig. 2. This figure shows a program and the SEDs computed by our algorithm at
various program points. Gi, shown in dotted box, represents the SED at program
point Li.

program points by using the transfer functions described in the following sub-
sections. These transfer functions may yield SEDs with unnecessary nodes,
which may be removed. A node is unnecessary if it has an em when all its
ancestor nodes or all its descendant nodes have an empty set of variables. The
removal of unnecessary nodes can result in dangling pointers for types of some
(necessary) nodes. The types of such nodes should be set to ⊥.

3.2 Assignment Node

See Figure 1(a). Let G be an SED that represents the Herbrand equivalences
before an assignment node x := e. The SED that represents the Herbrand
equivalences after the assignment node can be obtained by using the fol-
lowing Assignment function. SED G4 in Figure 2 shows an example of the
Assignment function.

Assignment(G′, x := e) =

1 G := G′;

2 let 〈V1, t1〉 = GetNode(G, e) in

3 let 〈V2, t2〉 = NodeG(x) in

4 ReplaceVars(G, 〈V1, t1〉, V1 ∪ {x});
5 ReplaceVars(G, 〈V2, t2〉, V2 − {x});
6 return G;
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GetNode(G, e) =

1 match e with

2 y: return NodeG(y);
3 F (e1, e2): let η1 = GetNode(G, e1) and η2 = GetNode(G, e2) in

4 if 〈V, F (η1, η2)〉 ∈ G for some V , return 〈V, F (η1, η2)〉;
5 else G := G ∪ 〈∅, F (η1, η2)〉; return 〈∅, F (η1, η2)〉;

GetNode(G, e) returns a node η such that e ∈ Terms(η) (and in the process
possibly extends G) in O(size(e)) time. ReplaceVars(G, η, V ) replaces the set
of variables in node η by V (in place) in SED G. Lines 4 and 5 in Assignment

function move variable x to the node GetNode(G, e) to reflect the equivalence
x = e. Hence, the following lemma holds.

Lemma 1 (Soundness and Completeness of Assignment)
Let G = Assignment(G′, x := e). Let e1 and e2 be two expressions. Let e′1 =
e1[

e�x] and e′2 = e2[
e�x]. Then, G |= e1 = e2 iff G′ |= e′1 = e′2.

3.3 Non-deterministic Assignment Node

See Figure 1 (b). If the SED G′ before a non-deterministic assignment node
is ⊥, then the SED G after the non-deterministic assignment node is also ⊥.
Otherwise, the SED G after a non-deterministic assignment node x :=? is
obtained from SED G′ using the following function, which removes variable x
from NodeG′(x), and creates a new node 〈{x},>〉.

Non-det-Assignment(G′, x :=?) =

1 G := G′;

2 let 〈V, t〉 = NodeG(x) in

3 ReplaceVars(G, 〈V, t〉, V − {x});
4 G := G ∪ {〈{x},>〉};
5 return G;

The following lemma holds.

Lemma 2 (Soundness and Completeness of Non-det-Assignment)
Let G = Non− det− Assignment(G′, x :=?). Let e1 and e2 be two expressions.

Let e′1 = e1[
x′
�x] and e′2 = e2[

x′
�x] for some fresh variable x′ that does not

occur in e1 and e2. Then, G |= e1 = e2 iff G′ |= e′1 = e′2.
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3.4 Non-deterministic Conditional Node

See Figure 1 (c). The SEDs G1 and G2 on the two branches of a non-deterministic
conditional node are simply a copy of the SED G before the non-deterministic
conditional node.

3.5 Join Node

See Figure 1(d). Let G1 and G2 be two SEDs. Let s′ be any positive integer.
The following function Join returns an SED G that represents all equivalences
e1 = e2 such that both G1 and G2 imply e1 = e2 and both size(e1) and size(e2)
are at most s′. In order to discover all equivalences among expressions of size at
most s in the program, we need to choose s′ = s+N×k (for reasons explained
later in Section 3.7). Figure 2 shows an example of the Join function.

For any SED G, let ≺G denote a partial order on program variables such that
x ≺G y if y depends on x, or more precisely, if G |= y = F (e1, e2) such that
x ∈ Variables(F (e1, e2)).

Join(G1,G2,s
′) =

1 for all nodes η1 ∈ G1 and η2 ∈ G2, memoize[η1, η2] := undefined;
2 G := ∅;
3 for each variable x ∈ T in the order ≺G1 do

4 counter := s′;
5 Intersect(NodeG1(x), NodeG2(x));
6 return G;
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Intersect(〈V1, t1〉,〈V2, t2〉) =

1 let m = memoize(〈V1, t1〉, 〈V2, t2〉) in

2 if m 6= undefined then return m;

3 let t = if counter > 0 and t1 ≡ F (`1, r1) and t2 ≡ F (`2, r2) then

4 counter := counter − 1;
5 let ` = Intersect(`1,`2) in

6 let r = Intersect(r1,r2) in

7 if (` 6= 〈φ,⊥〉) and (r 6= 〈φ,⊥〉) then F (`, r) else ⊥
8 else if t1 = c and t2 = c for some c, then c
9 else ⊥ in

10 let V = V1 ∩ V2 in

11 if V 6= ∅ or t 6= ⊥ then G := G ∪ {〈V, t〉}
12 memoize[〈V1, t1〉, 〈V2, t2〉] := 〈V, t〉;
13 return 〈V, t〉

The Join function is similar to finite automata intersection algorithm. It is
easier to understand the Join function by ignoring the use of the counter
variable, which is introduced for efficiency reason rather than correctness. If
we ignore the use of counter variable, then Join(G1, G2, s

′) returns an SED
G such that G implies all equivalences that are implied by both G1 and G2.
However, in that case, the size of G as well as the computational complexity
of the Join function will be quadratic in the size of G1 and G2. Hence a join
of n SEDs may result in an SED whose size is exponential in the size of the
input SEDs. (This would be the case, for example, for the program shown in
Figure 5.)

The use of counter variable produces a pruned version of G that maintains all
equivalences of size at most s′ (as stated formally in Lemma 4). The pruned
version of G represents the SED that can be obtained from G by removing
constraints of those equivalence classes represented by G (recall the alternative
representation of SEDs as discussed in Section 3.1) that are of size greater
than s′. Computing a pruned version of G as opposed to G itself is sufficient
since we are interested in computing equivalences of bounded size rather than
all equivalences. The use of counter variable thus ensures that the call to
Intersect function in Join terminates in O(s′) time. Hence, the complexity
of the Join function with use of counter variable is O(s′ × k). An alternative
would have been to compute G by running the Join function without the
use of counter variable, and then pruning G. However, this would have an
increased computational complexity of O(s′2).

The following proposition describes the property of Intersect function that
is required to prove the correctness of the Join function (Lemma 4).

Proposition 3 Let η1 = 〈V1, t1〉 and η2 = 〈V2, t2〉 be any nodes in SEDs
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G1 and G2 respectively. Let n = 〈V, t〉 = Intersect(η1, η2). Suppose that
n 6= 〈∅,⊥〉; hence the function Intersect(η1, η2) adds the node n to G. Let
α be the value of the counter variable when Intersect(η1, η2) is first called.
Then,

(P1) Terms(η) ⊆ Terms(η1) ∩ Terms(η2).
(P2) Terms(η) ⊇ {e | e ∈ Terms(η1), e ∈ Terms(η2), size(e) ≤ α}.

The proof of Proposition 3 is by induction on sum of height of nodes η1 and
η2 in G1 and G2 respectively. We sketch a brief outline of the proof here; the
detailed proof is given in Appendix A.1. Claim P1 follows from the observation
that t = F (...) or c only if both t1 and t2 are F (...) or c respectively (lines 7
and 8), and V = V1 ∩ V2 (line 10). Claim P2 relies on bottom-up processing
of one of the SEDs (line 3 in Join function) , and memoization of calls to
the Intersect function (line 12). Let e′ be one of the smallest expressions (in
terms of size) such that e′ ∈ Terms(η1)∩Terms(η2). If e′ is not a variable, then
for any variable y ∈ Variables(e′), the call Intersect(NodeG1(y),NodeG2(y))
has already finished. The crucial observation now is that if size(e′) ≤ α, then
the set of recursive calls to Intersect are in 1-1 correspondence with the
nodes of expression e′, and e′ ∈ Terms(η).

Lemma 4 (Soundness and Completeness of Join) Let G = Join(G1, G2, s).
If G |= e1 = e2, then G1 |= e1 = e2 and G2 |= e1 = e2. If G1 |= e1 = e2 and
G2 |= e1 = e2 such that size(e1) ≤ s and size(e2) ≤ s, then G |= e1 = e2.

The proof of Lemma 4 follows from Proposition 3 and definition of |=.

3.6 Fixed Point Computation

The algorithm goes around loops in a program until a fixed point is reached.
The following theorem implies that the algorithm needs to execute each flowchart
node at most k times (assuming the standard worklist implementation [9]).

Theorem 1 (Fixed Point Theorem) Let G1, . . . , G` be the SEDs computed
by the algorithm at some program point inside a loop in successive iterations
of that loop such that Gi+1 implies a strictly smaller subset of equivalences
than those implied by Gi. Then, ` ≤ k + 1, where k is the number of program
variables.

PROOF. Consider the alternative representation of SEDs in terms of parti-
tions of constrained or unconstrained equivalence classes of program variables
(as discussed in Section 3.1). Now observe that Gi can be obtained from Gi+1

only by constraining an unconstrained equivalence class or by merging an
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unconstrained equivalence class with another (constrained or unconstrained)
equivalence class. Hence, the number of unconstrained equivalence classes in
Gi is strictly smaller than in Gi+1. Since the number of unconstrained equiv-
alence classes in G` can be at most k, the result follows.

3.7 Correctness of the Algorithm

The correctness of the algorithm follows from Theorem 2 and Theorem 3.

Theorem 2 (Soundness Theorem) Let G be the SED computed by the al-
gorithm at some program point P after fixed point computation. If G |= e1 =
e2, then e1 = e2 holds at program point P .

The proof of Theorem 2 follows directly from soundness of assignment oper-
ation (Lemma 1 in Section 3.2), non-det-assignment operation (Lemma 2 in
Section 3.3) and join operation (Lemma 4 in Section 3.5).

Theorem 3 (Completeness Theorem) Let e1 = e2 be an equivalence that
holds at a program point P such that size(e1) ≤ s and size(e2) ≤ s. Let G
be the SED computed by the algorithm at program point P after fixed point
computation. Then, G |= e1 = e2.

The proof of Theorem 3 follows from an invariant maintained by the algo-
rithm at each program point. For purpose of describing this invariant, we
hypothetically extend the algorithm to maintain a set S of paths at each pro-
gram point (representing the set of all paths analyzed by the algorithm), and
a variable MaxSize (representing the size of the largest expression computed
by the program along any path in S) besides an SED. These are updated as
shown in Figure 3. The initial value of MaxSize is chosen to be 0. The initial
set of paths is chosen to be the singleton set containing an empty path. The
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algorithm maintains the following invariant at each program point.

Lemma 5 Let G be the SED, m be the value of variable MaxSize, and S be
the set of paths computed by the algorithm at some program point P . Suppose
e1 = e2 holds at program point P along all paths in S, size(e1) ≤ s′ −m and
size(e2) ≤ s′ −m. Then, G |= e1 = e2.

The proof of Lemma 5 is by induction on the number of operations performed
by the algorithm, and is given in Appendix A.2.

Theorem 1 (the fixed point theorem) requires the algorithm to execute each
node at most k times. This implies that the value of the variable MaxSize
at any program point after the fixed point computation is at most N × k.
Hence, choosing s′ = s+N ×k enables the algorithm to discover equivalences
among expressions of size s. The proof of Theorem 3 now follows easily from
Lemma 5.

3.8 Complexity Analysis

Let j be the number of join points in the program. Let I be the maximum
number of iterations of any loop performed by the algorithm. (It follows from
Theorem 1 that I is upper bounded by k; however, in practice, this may
be a small constant). One join operation Join(G1, G2, s

′) takes time O(k ×
s′) = O(k × (s + N × k)). Hence, the total cost of all join operations is
O(k× (s+N ×k)× j× I). The cost of all assignment operations is O(N × I).
Hence, the total complexity of the algorithm is dominated by the cost of the
join operations (assuming j ≥ 1). For global value numbering, the choice of
s = N suffices, yielding a total complexity of O(k2×I×N×j) = O(k3×N×j)
for the algorithm.

4 Programs with Exponential Sized Value Graph Representation
for Sets of Herbrand Equivalences

Let m be any positive integer. In this section, we show that there is an acyclic
program Pm of size O(m2) such that any value graph representation of the
set of Herbrand equivalences that are true at the end of the program requires
Θ(2m) size. We first describe program P2 and then show how to generalize it
to obtain program Pm.

The program P2 is shown in Figure 4. First note that the assertion z = b at the
end of the program is true. Also, note that size(b) ≈ size(a1)× size(a2). It is
not difficult to see that z = b is the only non-trivial equivalence that holds at
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x1 := 0; x2 := 0;

*

F F

F

e
13

e
23

e
24

e
14

Expression b

F

F

e
1

e
2

Expression a1

F F

F

e
3 e

4

Expression a2

x1 := 1; 

z := a1;

x2 := 1; 

z := a2;

Assert (z = b);

F

F F

0 1 0 0

Expression e2

F

F F

0 0 1 0

Expression e3

F

F F

0 0 0 1

Expression e4

F

F F

1 0 0 0

Expression e1

F

F F

x1 0 x2 0

Expression e13

F

F F

x1 0 0 x2

Expression e14

F

F F

0 x1 x2 0

Expression e23

F

F F

0 x1 0 x2

Expression e24

Fig. 4. The program P2.

the end of the program. Hence, the size of the value flow graph representation
of the set of equivalences that hold at the end of the program is Θ(size(b)) =
Θ(size(a1)× size(a2)), while the program size is O(size(a1) + size(a2)).

We now describe program Pm. Let n be the largest integer such that n ≤ m
and n is a power of 2. (Note that n ≥ m

2
.) The program Pm, which contains

an n-branch switch statement, is shown in Figure 5. It consists of n + 1 local
variables: z, x1, x2, . . , xn, and uses expressions ai and b, which are defined
below.

ai = A(i, C(Si,1), C(Si,2))

b = B(n, R)

R[j] = C(Tj), 0 ≤ j < 2n

For any integer i ∈ {1, . . , n} and expressions r1 and r2, A(i, r1, r2) denotes

the expression as shown in Figure 6(a). For any integer i ∈ {1, . . , n} and
an array R[0 . . . 2i−1] of expressions, B(i, R) denotes the expression as shown
in Figure 6(b). For any array S[0 . . 2n−1] of expressions, C(S) denotes the
expression as shown in Figure 6(c). For any integer i ∈ {1, . . , n}, b ∈ {1, 2},
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x1 := 0; x2 := 0; …..; xn := 0;

x1 := 1; 

z := a1;

x2 := 1; 

z := a2;

*

Assert (z = b);

xn := 1; 

z := an;

L1 L2 Ln

Fig. 5. The program Pm. Expressions ai and b are as defined in the text on page 14.

C(S)

F

F F

S[0] S[1] S[2n-2] S[2n-1]

Depth = log22n

A(i,r1,r2)

F

F

r1

F

F Depth = n-i

F

r2

Depth = i

F F

B(i,R)

F

F

F

F F

R[0] R[1] R[2i-2]R[2i-1]

Depth = i

Depth = n-i

(b) (c)(a)

Fig. 6. Value graph representation of expressions A(i, r1, r2), B(i, R) and C(S).

Si,b[0 . . 2n−1] denotes the following array of expressions,

Si,b[j] = 1, if j = 2(i− 1) + b− 1

= 0, otherwise

For any integer j ∈ {0, . . , 2n−1}, let jn . . j1 be the binary representation of
j. Then, Tj[0 . . 2n−1] denotes the following array of expressions:

Tj[2(`− 1) + j`] = x`, 1 ≤ ` ≤ n

Tj[2(`− 1) + 1− j`] = 0, 1 ≤ ` ≤ n

Note that for all i ∈ {1, . . , n}, size(ai) ≤ 6n. Thus, the size of program Pm is
O(n2) = O(m2). We now show that any value graph representation of the set
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of equivalences that hold at the end of the program Pm requires Θ(2m) nodes.
First note that it is sufficient to maintain only equivalences of the form x = e
where x is a variable and e an expression. (This also follows from the fact that
the SED data structure that we introduce in Section 3.1 can represent the
set of equivalences at any program point). Theorem 4 stated below implies
that there is only one such equivalence, namely z = b, that holds at the
end of program Pm. Note that any value graph representation of expression b
must have size Θ(2n) since R[j1] 6= R[j2] for j1 6= j2. Hence, any value graph
representation of the equivalence z = b requires Θ(2n) = Θ(2m) nodes.

Theorem 4 Let E denote the set of all Herbrand equivalences of the form
x = e that are true at the end of the program Pm. Then, E = {z = b}.

In the remainder of this section, we prove Theorem 4. For this purpose, we
first introduce some notation.

For any integer i ∈ {1, . . , n} and sets of expressions r̃1 and r̃2, let Ã(i, r̃1, r̃2)
denote the following set of expressions:

Ã(i, r̃1, r̃2) = {A(i, r1, r2) | r1 ∈ r̃1, r2 ∈ r̃2}

For any integer i ∈ {1, . . , n} and an array R̃[0 . . . 2i−1] of sets of expressions,
let B̃(i, R̃) denote the following set of expressions:

B̃(i, R̃) = {B(i, R) | ∀j ∈ {0, . . , 2i−1}, R[j] ∈ R̃[j]}

Using the definitions of Ã(i, r̃1, r̃2) and B̃(i, R̃), we can show that

Ã(i + 1, r̃1, r̃2) ∩ B̃(i, R̃) = B̃(i + 1, R̃′) (1)

R̃′[j] = R̃[j] ∩ r̃1, 0 ≤ j < 2i

R̃′[j] = R̃[j − 2i] ∩ r̃2, 2i ≤ j < 2i+1

Equation 1 is also illustrated diagrammatically in Figure 7. The point to note
is that if R̃[0], . . , R̃[2i−1] are all distinct sets of expressions, then the most
succinct value graph representation of B̃(i, R̃) is as shown in Figure 7(b). If
r̃1 and r̃2 are such that for all 0 ≤ j1, j2 < 2i, the sets r̃1 ∩ R̃[j1], r̃2 ∩ R̃[j2] are
non-empty and distinct, then the most succinct value graph representation of
B̃(i, R̃) ∩ Ã(i + 1, r̃1, r̃2) is as shown in Figure 7(c), whose representation is
almost double the size of B̃(i, R̃) (even though it has fewer elements!).
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A(i+1,r1,r2)
~~

F

F

F

F

F F

r1
~

r2
~

B(i,R)
~

F

F

F F

Depth = n-i

R[0]
~

R[2i-1]
~

R[1]
~

F

B(i+1,R )
~ 0~

=
(a) (b) (c)

F

Depth = n-(i+1)

F

R [0]0~
R [2i-1]0~

R [1]0~
R [2i]0~

R [2i+1-1]0~

F

F F

F

F F

~ ~

Fig. 7. Relationship between sets Ã(i + 1, r̃1, r̃2) and B̃(i, R̃). Nodes immediately
below the horizontal dotted line are at the same depth n − (i + 1) from the corre-
sponding root nodes.

Note that Ã(1, r̃1, r̃2) = B̃(1, R̃) where R̃[1] = r̃1 and R̃[2] = r̃2. Hence, using
Equation 1, we can prove by induction on i that:

Proposition 6 For any i ∈ {1, . . , n}, let r̃i,1 and r̃i,2 be some sets of expres-
sions. For any integer j, let jn . . . j1 be the binary representation of j. Then,

n⋂
i=1

Ã(i, r̃i,1, r̃i,2) = B̃(n, R̃), where R̃[j] =
n⋂

i=1

r̃i,ji+1 for 0 ≤ j < 2n

For any array S̃[0 . . 2n−1] of sets of expressions, let C̃(S̃) denote the following
set of expressions:

C̃(S̃) = {C(S) | ∀i ∈ {0, . . , 2n− 1}, S[i] ∈ S̃[i]}

For any integer i ∈ {1, . . , n}, b ∈ {1, 2}, let S̃i,b[0 . . 2n−1] be the following
array of sets of expressions,

S̃i,b[j] = {xi, 1}, if j = 2(i− 1) + b− 1

= {x1, . . , xi−1, xi+1, . . , xn, 0}, otherwise

Using the above definitions, we can prove the following proposition.

Proposition 7 Let j ∈ {0, . . , 2n−1}. Let jn . . j1 be the binary representation
of j. Then,
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n⋂
i=1

C̃(S̃i,ji+1) = {C(Tj)}

The following proposition, which follows from Proposition 6 and Proposition 7,
summarizes the interesting property of these sets.

Proposition 8

n⋂
i=1

Ã(i, C̃(S̃i,1), C̃(S̃i,2)) = {B(n, R)}, where R[j] = C(Tj), for 0 ≤ j < 2n

We now prove Theorem 4 using Proposition 8.

PROOF. [Theorem 4] Let Ei denote the set of all Herbrand equivalences of
the form x = e that are true at point Li in the program Pm. Then it is not
difficult to see that:

Ei = {z = e | e ∈ Ã(i, C̃(S̃i,1), C̃(S̃i,2))} ∪
{xi = 1} ∪ {xj = 0 | 1 ≤ j ≤ n, j 6= i}

Using Proposition 8 we get:

E =
n⋂

i=1

Ei = {z = e | e ∈
n⋂

i=1

Ã(i, C̃(S̃i,1), C̃(S̃i,2))}

= {z = e | e ∈ {b}} = {z = b}

�

5 Related Work

In this section, we describe some other algorithms for global value numbering.
We provide a detailed analytical comparison of these algorithms. This explains
why these algorithms were not able to solve the problem described in this paper
in polynomial time.

18



5.1 Kildall’s Algorithm

Kildall’s algorithm [8] performs an abstract interpretation over the lattice of
sets of Herbrand equivalences. It represents the set of Herbrand equivalences
at each program point by means of a structured partition.

The transfer function Assignment for an assignment node x := e is:

Assignment(π) = {(e1, e2) | (e1[
e�x], e2[

e�x] ∈ π}

The join operation for two structured partitions π1 and π2 is defined to be
their intersection. Kildall’s algorithm is complete in the sense that if it termi-
nates, then the structured partition at any program point reflects all Herbrand
equivalences that are true at that point. However, the complexity of Kildall’s
algorithm is exponential. The number of elements in a partition, and the size
of each element in a partition can all be exponential in the number of join
operations performed. Also, Kildall did not prove any upper bound on the
number of iterations required for achieving fixed-point.

Our algorithm is also based on abstract interpretation. We have proved that
the number of iterations required for reaching fixed-point is bounded above by
the number of variables live at any point in the program. We avoid the problem
of exponential sized representation for equivalences by using a different data
structure SED, and a more sophisticated join algorithm:

• Our data structure represents only those partition classes explicitly that
have at least one variable. Furthermore, our data structure represents an ex-
ponential number of elements in each partition class succinctly by means of
DAGs in which the common substructures are shared. This avoids the prob-
lem of explicitly maintaining an exponential number of partition classes, and
an exponential number of terms in each partition class. This observation was
also made by Rüthing, Knoop and Steffen [15,16].

• Kildall’s join algorithm is polynomial in the number of terms in the two
partition classes whose join is computed, which can be exponential in the
value graph representation of the partition classes. Our join algorithm runs
in time polynomial in the value graph representation of the partition classes.

• The size of some elements in a partition class can have an exponential
size even if the elements are represented using value graph representation.
Section 4 describes such an example. We get around this problem by main-
taining only those terms in each partition class that have size less than
s + N × k, where s is a parameter of the algorithm. We prove that this is
sufficient to preserve relationships between program terms of size less than
s.
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x1 := 1; y1 := 1;

z1 := F(1,1);

*

<z2, F>

<z3, 1>

<z1, F>

<1> <2>

<y3, 1>

<y1,1> <y2,2>
<x3, 1>

<x1, 1> <x2, 2>

<t, F>

x2 := 2; y2 := 2;

z2 := F(2,2);

Ga: The value graph representation
x3 := 1(x1,x2); y3 := 1(y1,y2);

z3 := 1(z1,z2); t := F(x3,x3);

Assert(y3 = x3); Assert(z3 = t);

<z3, 1>

<z2, F><z1, F>

<x1,y1,1> <x2,y2,2>

<x3, y3 1>

<t, F>

<x1,y1,1> <x2,y2,2>

Gb: The value graph after congruence partitioning

Fig. 8. A program in SSA form, its value graph representation, and the value graph
after congruence partitioning. The AWZ algorithm can deduce the first assertion
x3 = z3 but not the second assertion t = y3.

5.2 Alpern, Wegman and Zadeck’s (AWZ) Algorithm

The AWZ algorithm [1] works on the value graph representation [9] of a pro-
gram that has been converted to SSA form. A value graph can be represented
by a collection of nodes of the form 〈V, t〉 where V is a set of variables, and the
type t is either ⊥, a constant c (indicating that the node has no successors),
F (η1, η2) or φj(η1, η2) (indicating that the node has two ordered successors η1

and η2). φj denotes the φ function associated with the jth join point in the
program. Our data structure SED can be regarded as a special form of a value
graph which is acyclic and has no φ-type nodes. The main step in the AWZ
algorithm is to use congruence partitioning to merge some nodes of the value
graph.

The AWZ algorithm cannot discover all equivalences among program terms.
This is because it treats φ functions as uninterpreted. The φ functions are
an abstraction of if-then-else operator wherein the conditional in if-then-else
expression is abstracted away, but the two possible values of if-then-else expres-
sion are retained. Hence, the φ functions satisfy the following two equations.

∀e : φj(e, e) = e (2)

∀e1, e2, e3, e4 : φj(F (e1, e2), F (e3, e4)) = F (φj(e1, e3), φj(e2, e4)) (3)

Figure 8 shows a program for which the AWZ algorithm fails to discover some
equivalences. The AWZ algorithm can deduce that y3 = x3, but it cannot
deduce that z3 = t because it treats φ functions as uninterpreted.
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<x3,z3, 1>

<x1,z1,1> <x2,z2,2>

<t, F>
<y2, F>

<y3, F>

<y1, F>

<x1,z1,1> <x2,z2,2>

< 1>

Congruence PartitioningRule 4

<y2, F>

<y3, t, F>

<y1, F>

<x1,z1,1> <x2,z2,2>

<x3,z3, 1>

Gb

The resultant value graph Gc

Fig. 9. The value graph for the program in Figure 8 that results after applying the
RKS algorithm. The RKS algorithm can deduce both the assertions y3 = x3 and
z3 = t.

5.3 Rüthing, Knoop and Steffen’s (RKS) Algorithm

Like the AWZ algorithm, the RKS algorithm [16] also works on the value
graph representation of a program that has been converted to SSA form. It
tries to capture the semantics of φ functions by applying the following rewrite
rules, which are based on equations 2 and 3, to convert program expressions
into some normal form.

〈V, φj(η, η)〉 and η → 〈V ∪ Vars(η),Type(η)〉 (4)

〈V, φj(〈V1, F (η1, η2)〉, 〈V2, F (n3, n4)〉)〉 →
〈V, F (〈∅, φj(η1, n3)〉, 〈∅, φj(η2, n4)〉)〉 (5)

Nodes on the left of the rewrite rules are replaced by the (new) node on the
right, and incoming edges to nodes on the left are made to point to the new
node. However, there is a precondition to applying the second rewriting rule.

P : ∀ nodes η ∈ succ∗({〈V1, F (η1, η2)〉, 〈V2, F (η3, η4)〉}),Vars(η) 6= ∅

The RKS algorithm assumes that all assignments are of the form x := F (y, z)
to make sure that for all original nodes n in the value graph, Vars(η) 6= ∅.
This precondition is necessary in arguing termination for this system of rewrite
rules, and proving the polynomial complexity bound. The RKS algorithm
alternately applies the AWZ algorithm and the two rewrite rules until the
value graph reaches a fixed point. Thus, the RKS algorithm discovers more
equivalences than the AWZ algorithm. For example, the RKS algorithm can
discover all equivalences for the program in Figure 8. Figure 9 shows the
value graph (for the program in Figure 8) that results after applying the RKS
algorithm.

The RKS algorithm cannot discover all equivalences even in acyclic programs,
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*

*

x3 := 7; u3 := 8; v3 := 9;

w3 := F(x3,x3);

y3 := F(w3,w3);

x2 := 4; u2 := 5; w2 := 6;

v2 := F(x2,x2);

y2 := F(v2,v2);

x1 := 1; v1 := 2; w1 := 3;

u1 := F(x1,x1);

y1 := F(u1,u1);

x4 := 1(x1,x2
); u4 := 1(u1,u2); v4 := 1(v1,v2);

w4 := 1(w1,w2); y4 := 1(y1,y2);

x5 := 2(x4,x3
); v5 := 2(v4,v3); w5 := 2(w4,w3); u5 := 2(u4,u3); y5 := 2(y4,y3);

t := F(x5,x5); z := F(t,t); Assert(z = y5);

(a) The RKS algorithm cannot discover z = y5 in this program.

<u5, 2>

<u4, 1>

<u1, F> <u2, 5>

<u3, 8>

<x1, 1>

<v5, 2>

<v4, 1>

<v1, 2> <v2, F>

<v3, 9>

<x2, 4> <x3, 7>

<x5, 2>

<x4, 1>

<x1, 1> <x2, 4>

<z, F>

<t, F>

<w5, 2>

<w4, 1>

<w2, 6>

<w3, F>

<y5, 2>

<y4, 1>

<y1, F> <y2, F>

<y3, F>

<u1, F>

<x1, 1>

<v2, F>

<x2, 4>

<w3, F>

<x3, 7>

G
d

<w1, 3> <x3, 7>

(b) The value graph representation of the program in Figure 10(a) after congruence
partitioning.

<y5, 2><y5, 2>

<y4, F>

<y1, F> <y2, F>

<y3, F>

<u1, F>

<x1, 1>

<v2, F>

<x2, 4>

<w3, F>

<x3, 7>

<F>

< 1>

<y4, F>

<y1, F> <y2, F>

<y3, F>

<u1, F>

<x1, 1>

<v2, F>

<x2, 4>

<w3, F>

<x3, 7>

< 1>

Rule 4
Rule 4

G
d

(c) The resultant subgraph after applying Rule 5 transformation to subgraph
Gd in Figure 10(b).

Fig. 10. The RKS algorithm cannot discover all equivalences even in acyclic pro-
grams.
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contrary to what is claimed in the paper [16]. This is because the precondition
P can prevent two equal expressions from reaching the same normal form.
Figure 10(a) shows a program for which the RKS algorithm fails to infer the
equivalence of the two program variables z and x5. Figure 10(b) shows the
value graph representation of the program after the congruence partitioning
step. Figure 10(c) shows the value graph representation after an exhaustive
application of the rewrite rules 4 and 5. The precondition P prevents any
further applications of rule 5, which is necessary for merging the nodes labeled
with z and y5.

On the other hand lifting precondition P may result in the creation of an
exponential number of new nodes, and an exponential number of applications
of the rewrite rules. Such would be the case when, for example, the RKS
algorithm is applied to the program Pm described in Section 4.

The RKS algorithm has another problem, which the authors have identified.
It fails to discover all equivalences in cyclic programs, even if the precondition
P is lifted. This is because the graph rewrite rules add a degree of pessimism
to the iteration process. While congruence partitioning is optimistic, it relies
on the result of the graph transformations which are pessimistic, as they are
applied outside of the fixed point iteration process. Figure 11 shows an ex-
ample where the RKS algorithm fails to discover all equivalences even if the
precondition P for applying rewrite rules is lifted. In this example, the RKS
algorithm fails to discover the equality of variables x2 and y2 in Figure 11 at
the end of the loop. Note that detecting equality of y2 and x2 requires that the
φ2-operator applied to y4 and y5 is identified as an unnecessary one (by Rule
4). However, this cannot be achieved, since it would require a pre-knowledge
about the value equivalence of x3 and y3 at node m. However, congruence
partitioning is not able to do so, because it requires the Rule 4 simplification.
This cyclic dependency between Rule 4 and congruence partitioning cannot
be resolved.

5.4 Other Related Work

Gulwani and Necula gave a randomized polynomial-time algorithm that dis-
covers all Herbrand equivalences among program terms [6]. This algorithm
can also verify all Herbrand equivalences that are true at any point in a pro-
gram. However, there is a small probability (over the choice of the random
numbers chosen by the algorithm) that this algorithm deduces false equiva-
lences. This algorithm is based on the idea of random interpretation, which
involves performing abstract interpretation using randomized data structures
and algorithms.
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y4 := x2; y5 := F(1,y3);

x1 := 0; y1 := x1;

<y2, 2>

<y3, 1>

y3 := 1(y1,y2); x3 := 1(x1,x2);

x2 := F(1,x3);

*

*

y2 := 2(y4, y5);

<y1,x1,0> <y4,x2, F> <y5, F>

<x3, 1>

<1><1>

Value graph after RKS algorithm
Assert (y2 = x2);

Fig. 11. The RKS algorithm cannot discover that x2 = y2 in this cyclic program
even if precondition P is lifted.

Gulwani, Tiwari and Necula recently gave a join operation for the theory
of uninterpreted functions [7]. They showed that the join operations used
in the AWZ algorithm, RKS algorithm, and the algorithm described in this
paper can all be cast as specific instantiations of their join operation. This
suggests a possibility of a more powerful abstract interpretation for the theory
of uninterpreted functions using that join operation.

Müller-Olm, Seidl, and Steffen have shown that if conditionals with equality
guards are taken into account, then the problem of determining whether a
specific equality holds at a program point or not is undecidable [10]. They have
presented an analysis of Herbrand equalities that takes disequality guards into
account.

Müller-Olm, Seidl, and Steffen have given an algorithm to detect Herbrand
equalities in an interprocedural setting [11]. Their algorithm is complete (i.e.,
it detects all valid Herbrand equalities) for side-effect-free functions. Their
algorithm can also detect all Herbrand constants.

6 Conclusion and Future Work

We have given a polynomial-time algorithm for global value numbering. We
have shown that there are programs for which the set of all equivalences con-
tains terms whose value graph representation requires exponential size. This
justifies the design of our algorithm, which discovers all equivalences among
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terms of size at most s in time that grows linearly with s. An interesting the-
oretical question is to figure if there exist representations that may avoid the
exponential lower bound for representing the set of all Herbrand equivalences.

An interesting direction of future work is to extend this algorithm to perform
precise inter-procedural value numbering. It would also be useful to extend
the algorithm to reason about some properties of program operators like com-
mutativity, associativity or both.
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A Proofs

A.1 Proof of Proposition 3

The proof is by induction on sum of height of nodes η1 and η2 in G1 and G2

respectively.
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The base case corresponds to the case when t1 = ⊥ or t2 = ⊥. Without loss
of generality, let us assume that t1 = ⊥. Hence, t = ⊥. Let T1 = {F (e1, e2) |
e1 ∈ Terms(`2), e2 ∈ Terms(r2)} if t2 = F (`2, r2, and T1 = ∅ if t2 = ⊥. Thus,

Terms(η) =Terms(〈V,⊥〉) = V = V1 ∩ V2

= V1 ∩ (V2 ∪ T1)

=Terms(η1) ∩ Terms(η2)

For the inductive case, t1 = F (`1, r1) and t2 = F (`2, r2). Let ` = Intersect(`1, `2)
and r = Intersect(r1, r2).

Let T2 = V ∪ {F (e1, e2 | e1 ∈ Terms(`), e2 ∈ Terms(r)}. Note that t = ⊥ or
t = F (`, r). If t = ⊥, then either ` = 〈∅,⊥〉 or r = 〈∅,⊥〉. Hence, T2 = V ∪∅ =
V and thus Terms(η) = V = T2. If t = F (`, r), then clearly Terms(η) = T2.
Thus, in either case Terms(η) = T2.

We first prove that Terms(η) ⊆ Terms(η1)∩Terms(η2). It follows from the in-
ductive hypothesis on `1 and `2 that Terms(`) ⊆ Terms(`1)∩Terms(`2). Sim-
ilarly, it follows from the inductive hypothesis on r1 and r2 that Terms(r) ⊆
Terms(r1) ∩ Terms(r2).

Terms(η) = V ∪ {F (e1, e2) | e1 ∈ Terms(`), e2 ∈ Terms(r)}
⊆ (V1 ∩ V2) ∪ {F (e1, e2) | e1 ∈ Terms(`1) ∩ Terms(`2),

e2 ∈ Terms(r1) ∩ Terms(r2)}
= (V1 ∩ V2) ∪ ( {F (e1, e2) | e1 ∈ Terms(`1), e2 ∈ Terms(r1)}

∩ {F (e1, e2) | e1 ∈ Terms(`2), e2 ∈ Terms(r2)} )

= (V1 ∪ {F (e1, e2) | e1 ∈ Terms(`1), e2 ∈ Terms(r1)}) ∩
(V2 ∪ {F (e1, e2) | e1 ∈ Terms(`2), e2 ∈ Terms(r2)})

= Terms(〈V1, F (`1, r1)〉) ∩ Terms(〈V2, F (`2, r2)〉)
= Terms(η1) ∩ Terms(η2)

We now prove that Terms(η) ⊇ {e | e ∈ Terms(η1) ∩ Terms(η2), size(e) ≤
α}. Let α1 and α2 be the value of the counters when Intersect(`1, `2) and
Intersect(r1, r2) are first called respectively. It follows from the inductive hy-
pothesis on `1 and `2 that Terms(`) ⊇ {e | e ∈ Terms(`1), e ∈ Terms(`2), size(e) ≥
α1}. Similarly, it follows from the inductive hypothesis on r1 and r2 that
Terms(r) ⊇ {e | e ∈ Terms(r1), e ∈ Terms(r2), size(e) ≥ α2}. Note that
α1 is either N or α − 1. Also, α2 is either N or α1 − size(es), where es is the
smallest expression such that es ∈ Terms(`1) ∩Terms(r1). Hence, α1 ≥ α− 1
and α2 ≥ α− 1− size(es).
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Terms(η) = V ∪ {F (e1, e2) | e1 ∈ Terms(`), e2 ∈ Terms(r)}
⊇V ∪ {F (e1, e2) | e1 ∈ Terms(`1) ∩ Terms(`2),

size(e1) ≤ α1,

e2 ∈ Terms(r1) ∩ Terms(r2),

size(e2) ≤ α2}
⊇V ∪ {F (e1, e2) | e1 ∈ Terms(`1) ∩ Terms(`2),

size(e1) ≤ α− 1,

e2 ∈ Terms(r1) ∩ Terms(r2),

size(e2) ≤ α− 1− size(es) }
⊇V ∪ {F (e1, e2) | e1 ∈ Terms(`1) ∩ Terms(`2),

size(e1) ≤ α− 1,

e2 ∈ Terms(r1) ∩ Terms(r2),

size(e2) ≤ α− 1− size(e1) }
= V ∪ {F (e1, e2) | e1 ∈ Terms(`1) ∩ Terms(`2),

e2 ∈ Terms(r1) ∩ Terms(r2),

size(F (e1, e2)) ≤ α}

= V ∪ {F (e1, e2) | e1 ∈ Terms(`1) ∩ Terms(`2)

e2 ∈ Terms(r1) ∩ Terms(r2),

size(F (e1, e2)) ≤ α}
= V ∪ {F (e1, e2) | F (e1, e2) ∈ Terms(η1) ∩ Terms(η2),

size(F (e1, e2)) ≤ α}
= {e | e ∈ Terms(η1) ∩ Terms(η2), size(e) ≤ α}

A.2 Proof of Lemma 5

The proof is by induction on the number of operations performed by the
abstract interpreter. The base case is trivial since G does not imply any non-
trivial relationship. For the inductive case, the following cases arise:

• Assignment Node. See Figure 1(a) and Figure 3(a).
Suppose that e1 = e2 holds after the assignment node, and size(e1) and
size(e2) is at most s′ − m. We show that G |= e1 = e2. Let e′1 = e1[

e�x],
and e′2 = e2[

e�x]. Note that e′1 = e′2 holds before the assignment node, and
size(e′1) and size(e′2) is at most s′ −m + size(e). Hence, it follows from the
induction hypothesis on G′ that G′ |= e′1 = e′2. It now follows from Lemma 1
that G |= e1 = e2.

• Non-det Assignment Node. See Figure 1(b) and Figure 3(b).
The proof of this case is similar to the case for assignment node. (Consider
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the expressions e′1 = e1[
x′
�x], and e′2 = e2[

x′
�x], where x′ is a fresh variable

that does not occur in G′.)
• Conditional Node. See Figure 1(c) and Figure 3(c).

This case is trivial.
• Join Node. See Figure 1(d) and Figure 3(d).

The proof of this case follows easily from Lemma 4.
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