
Let It Flow: a Static Method for Exploring Dynamic Graphs
Weiwei Cui∗

Microsoft Research
Xiting Wang†

Tsinghua University
Shixia Liu‡

Microsoft Research
Nathalie H. Riche§

Microsoft Research
Tara M. Madhyastha¶

University of Washington

Kwan-Liu Ma‖

University of California, Davis
Baining Guo∗∗

Microsoft Research

ABSTRACT

Research into social network analysis has shown that graph metrics,
such as degree and closeness, are often used to summarize structural
changes in a dynamic graph. However there have been few visual
analytics approaches that have been proposed to help analysts study
graph evolutions in the context of graph metrics. In this paper, we
present a novel approach, called GraphFlow, to visualize dynamic
graphs. In contrast to previous approaches that provide users with an
animated visualization, GraphFlow offers a static flow visualization
that summarizes the graph metrics of the entire graph and its evo-
lution over time. Our solution supports the discovery of high-level
patterns that are difficult to identify in an animation or in individual
static representations. In addition, GraphFlow provides users with a
set of interactions to create filtered views. These views allow users to
investigate why a particular pattern has occurred. We showcase the
versatility of GraphFlow using two different datasets and describe
how it can help users gain insights into complex dynamic graphs.

Keywords: Dynamic Graphs, Flow Visualization.

1 INTRODUCTION

Many graphs, such as the online social network Twitter, are con-
stantly evolving as nodes join, leave, connect to other nodes, and/or
disconnect from some of their adjacent nodes. We refer to such
graphs as dynamic graphs. They are featured in a wide range of
applications from examining how proteins interact to understanding
how information flows in large social networks over time. For this
reason, there is a great need to analyze an evolving graph.

One major challenge for analyzing dynamic graphs is capturing
all the structural changes for a group of nodes while maintaining an
overview of the entire evolving graph so that users can easily extract
and integrate information across the changing states of the graph [11,
24]. However, existing popular approaches may be inadequate for
this task. For example, it is difficult for users to perceive high-level
patterns in an animated representation, since research has indicated
that it is difficult for people to follow more than six or seven animated
elements at the same time [8, 23].

Research into social network analysis has shown that graph met-
rics are very useful for summarizing structural changes in a dynamic
graph [33]. Different metrics emphasize different aspects of a social
network. For example, the node degree is usually used to indi-
cate people’s engagement with a social network. Illustrating the
changes in node degree can reveal high-level patterns, such as the
increased/decreased engagement of one community. Similarly, the

∗e-mail:weiwei.cui@microsoft.com
†e-mail:v-xitwan@microsoft.com
‡e-mail:shixia.liu@microsoft.com
§e-mail:nathalie.henry@microsoft.com
¶e-mail:tara.madhyastha@gmail.com
‖e-mail:ma@cs.ucdavis.edu
∗∗e-mail:bainguo@microsoft.com

clustering coefficient can provide an overall indication of the cluster-
ing in a network. Furthermore, it is often desirable to understand the
relative metric changes of a set of nodes/edges within the context
of the whole graph. For example, analysts are concerned with the
question of whether the decreased engagement of one community is
caused by the overall engagement decline of the social network or by
an increased engagement in another related community. Therefore,
it is important to take rank factor into account when using graph
metrics to summarize a dynamic graph.

In this paper, we introduce GraphFlow, a new toolkit for ex-
amining and analyzing dynamic graphs from a summary of metric
changes to detailed structural changes. We model the metric changes
of the nodes/edges in a dynamic graph into a vector field.

Visualizing this vector field provides an overview of the graph,
with which users can observe at a glance how a graph changes
over time as well as compare the relative metric changes of two or
multiple nodes. In addition, we propose an energy-based method to
quantitatively measure the changes, so that users can easily identify
critical sections of the evolving graph. Furthermore, using a set
of well-aligned node-link diagrams, GraphFlow enables users to
compare detailed graph structures at different time points.

To summarize, GraphFlow shows a dynamic graph in a static
manner with both high-level insights into the structural changes
across several time points and low-level details to investigate and
understand these changes. It makes the following contributions:

• A flow-based visual metaphor that provides an overview of
property changes in a dynamic graph. This visualization sup-
ports the discovery of salient features of the dynamic graph, as
well as patterns of interest.

• An energy-based trend analysis that helps users identify crit-
ical time points in the flow visualization. Inspired by the seam
carving technique [2], GraphFlow uses an energy function to
define the importance of time points. In addition to finding
critical time points, it can also be used to remove time points
with smooth changes. In this way, screen space can be better
allocated to the more important information.

• An interactive, multi-view system that allows users to an-
alyze a dynamic graph from the global evolving patterns to
detailed structural changes over time.

2 RELATED WORK

Much research has explored static graphs [3, 17, 18, 31] over the past
two decades. However, the visualization of dynamic graphs is much
more challenging and relatively few studies have been conducted in
this area. The most well-known approach is the use of an animated
node-link diagram to convey the evolution of the graph. Early work
on the topic labeled the technique as dynamic graph drawing [9, 16,
15, 21]. The technique consists of generating a sequence of graphs
for each time point and animating the layout from one step to the next
to help the viewer easily follow changes such as fading in and out
of nodes and edges as they appear in or disappear from the diagram.

Although animation techniques are enjoyable and exciting [27], it
is challenging to discover certain patterns due to the temporal nature
of the animation. For example, it is difficult to remember previously
visited states of the graph or compare them if they do not appear

consecutively in the animation [6]. In addition, high-level patterns
often occur over a longer period of time and the maintenance of
a mental map may prove cognitively demanding [1]. A solution
to tackling this problem is to display all the static graphs per time
point. Since this approach requires a large amount of display space,
it often uses a set of stacked layers in 2.5D or 3D [6]. Unfortunately,
stacking the static graphs together often introduces additional visual
clutter and does not scale well for graphs with a large number of
time points, nodes, and edges.

To address this problem, recent research has investigated alterna-
tive static representations. One technique is EdgeSplatting [11]. It
hierarchically organizes vertices of the graphs on vertical, parallel
lines that are placed perpendicular to the horizontal time line. Intu-
itively, the node-link structures of individual graphs are encoded into
the texture between neighboring vertex lines. Due to the extra space
required to display the texture, EdgeSplattng does not scale well with
a large number of time points. Thus, the authors subsequently pro-
posed a “sliding window” approach to solve the scalability issue [4].
A similar pixel-based approach [10] removed the texture between
vertex lines to support better scalability in terms of graph size and
time. In both approaches, the order of vertices in the vertex lines does
not change over time, which helps users to easily track individual ver-
tices. More recently, Sallaberry et al. [29] combined a new evolving
clustering algorithm with two visualization techniques for exploring
large dynamic graphs. Although these methods have achieved some
success in helping users understand the evolution patterns in dynamic
graphs, they may fail to discover some patterns related to the graph
metric, such as a slow increase in the degree of a subgraph over time.

A few researchers have also investigated the use of matrix repre-
sentations [7], placing a bar chart or glyph in the cells of the matrix
to indicate the evolution of the relationships. These techniques ap-
pear very promising as they do not require users to remember graph
states at different time points (i.e., all the information is available in
the static representation) and can scale the amount of information
represented in a single view. However, it remains difficult to extract
high-level patterns, such as an overall evolution in the degree of a
group of nodes, from the evolving graph.

Recently, a number of approaches have been introduced to ex-
tract high-level patterns from graphs. PivotGraph [37] and Honey-
Comb [35] aggregate a graph based on its data attributes, support-
ing the discovery of relationships between node attributes. Graph-
Prism [20] uses graph-theoretic properties such as the diameter to
characterize the structure of large networks. However, none of these
approaches has been applied to the analysis of dynamic graphs.

Rosvall and Bergstrom [28] extended ThemeRiver [12, 28, 30] to
visualize dynamic networks. They split/merged color stripes to rep-
resent the splitting/merging patterns between clusters in a network.
In contrast, GraphFlow does not require cluster information. It fo-
cuses on the order of individual nodes and uses the order changes to
represent the changes in activeness of graph nodes over time.

GraphFlow aims to characterize the overall structural changes of
a dynamic graph by offering a static representation of a number of
high-level graph properties. It provides a flow-based visualization
for summarizing the overall evolution patterns, a trend analysis
for identifying the critical time points in the flow visualization, and
a detailed view of the structural changes across several correlated
states for investigating the major causes of such patterns.

3 GRAPHFLOW

A dynamic graph can be represented by a sequence of timeslices:
Γ = {G1,G2, . . . ,Gn}. Gi = (Vi,Ei) (1≤ i≤ n) is a timeslice that
encodes the structure of the graph at time i.

To visually convey the evolution patterns in Γ in a static way
and within the context of the structure. A straightforward method
is to show each of the timeslices in the form of node-link diagrams,
from G1 to Gn, side by side. However, this is not practical

when n becomes very large. To solve this problem, we present a
visualization framework, GraphFlow that allows users to examine
a dynamic graph at different levels of detail. In GraphFlow, various
graph metrics can be used to summarize the structural evolution
of a dynamic graph. Once high-level insights are derived using the
metrics, detailed graph structures can then be retrieved on demand
to help users investigate and understand those insights.

Accordingly, GraphFlow consists of two views: 1) a flow view
providing a visual summary of Γ to help users understand the
overall evolution patterns and identify critical timeslices; 2) a graph
view to reveal detailed content, such as the structure of Gi, to help
users figure out why those particular patterns occur.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

19

20

21

22
23

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

21

22
23

1

2

3

4

5

6

7

89

10 11

12

13

14

15
16

17

18 19

20

21

22
23

(b)

(a)

(c)

Figure 1: Overview: (a) three curves measuring the energy at each
timeslice in the flow: ev (red), ec (blue), and er (green) (Sec. 4.4.1); (b)
the flow view of a dynamic graph with two enhanced paths (Sec. 4.4.2);
(c) the graph view showing three timeslices selected from the flow
view with four nodes selected to show the splitting pattern (Sec. 5).

In the flow view (Fig. 1(b)), the x-axis represents time. Each
individual timeslice Gi is summarized as “a colored bar” along the
y-axis. In the adopted visual metaphor, colors play a very important
role. The changes in color from left to right represent the changes
of node activeness (measured by a graph metric) over time. With
this feature, users can quickly get an overview of graph evolution
patterns, such as where the graph changes smoothly or dramatically,
even if they have no prior knowledge of the dataset. Generally, users
are interested in timeslices that exhibit important changes. Inspired
by the seam carving technique [2], we introduce an energy-based
technique to measure the flow changes over time (Fig. 1(a)). The
carving technique can be leveraged to emphasize critical timeslices
by giving them more visual space. In addition, it can also be used to
scale the flow visualization with a large number of time points by
shrinking the flow in locations that exhibit fewer changes.

Once a user identifies important time points, he can select them
from the flow view, and the related node-link diagrams are then
displayed for comparison. In particular, we enhance them by visually
linking the same nodes across different graphs (Fig. 1(c)).

4 FLOW VISUALIZATION

In this section, we first introduce our flow design and considera-
tions. Then we present the technical details, including vector field
generation, vector field rendering, and interactions.

4.1 Design Considerations
Research on social network analysis has shown that graph met-
rics such as degree, betweenness, closeness, and cluster coefficient,
are often used to summarize the structural features in a dynamic
graph [33]. For example, node degree is an important metric of node
activeness. Showing the changes in node degree at different levels
can help users analyze the temporal behaviors of a single node (e.g.,
with a dramatic increase of activeness during a time period) or a
group of nodes (e.g., becoming more inter-connected over time).

Furthermore, structural changes in a dynamic graph are measured
not only by the value changes of graph metrics, but also by their
rank changes over time. For example, in a social network, when a
user’s degree decreases, it may seem to indicate that s/he has become
peripheral and dispensable. However, the user may have actually be-
come more central since other users have lost their degrees more. It
is therefore important to involve the rank factor into the visualization
design to better illustrate the evolving patterns.

An intuitive way to visualize the metric changes is to leverage
line charts. Fig. 2 shows an example of a line chart of a dynamic
graph with 23 nodes and 165 timeslices. In the example, a line
represents a node. At each time, the lines are sorted vertically
based on their node degrees in that timeslice. As shown in Fig. 2,
even for a small dynamic graph with only 23 nodes, the line-chart-
based visualization is very cluttered due to there being so many line
crossings. A neuroscientist who worked with us also confirmed
that the cluttered line chart did not help her analysis (Sec. 6.1.2).
Therefore, a new method was required to reduce visual clutter and
allow users to freely control the levels of abstraction. Inspired
by the distant resemblance between Fig. 2 and vector fields, we
adopted the flow visualization technique to represent temporal metric
changes. Previous research has shown that flow visualization is
especially useful for gaining insight into very large, time-variant
flow fields [26]. More importantly, flow visualization can naturally
generate patterns at different abstraction levels by setting different
parameters. We chose Line Integral Convolution (LIC) [13] as our
flow visualization method because it provides not only a coherent
global view of the data but also subtle details within. LIC also avoids
clutter typically found in other types of vector field visualizations.
For better performance, we use fast LIC [32] in GraphFlow.

1 165 Time 1

23

R
an

k

Figure 2: A line chart representation of a dynamic graph consisting
of 23 nodes and 165 time points (the data of the youngest subject in
Fig. 9). Nodes are represented by horizontal lines, which are sorted
vertically based on the node degree at each time.

4.2 Vector Field Generation
We begin with a simple example consisting of two timeslices, G1 and
G2 (Fig. 3), both of which contain the same vertices with their colors
indicating a certain attribute value, such as category information.

A

CB

D

A

CB

D

A

C

B
D

A
C

B

D

A

C

B
D

A
C

B

D

sort sort

,

time

rank
(a) (b)

Figure 3: An example of turning a dynamic graph into a tile matrix:
vertices at each timeslice are sorted by their degree values. Color is
used to encode the category of each vertex.

To transform {G1,G2} into a vector field, we first sort the
vertices in each of them based on a graph metric, such as degree,
betweenness, or the cluster coefficient metric. In Fig. 3(a), degree is
used as an example. After every timeslice is processed, all the sorted
vertex arrays are aligned from left to right based on their temporal
order on a 2D plane (Fig. 3(b)). This creates colorful mosaic tiles.
The next step is to create a vector for each tile. For each vertex in
each timeslice, there is a tile whose vertical location represents its
rank. When it does not exist in a timeslice, we consider it ranked
as the smallest in the array. Thus, one intuitive way to generate

vectors is to connect all the tiles corresponding to the same vertex
in temporal order (Fig. 4(a)). The overall vector pattern can help
users track the rank changes and understand the dynamics of the
graph with respect to the metric (Fig. 4(b) and Fig. 4(c)).

Based on the description above, only one tile belongs to one
vertex. Thus, there are two vectors in each tile: the incoming and
outgoing vectors indicating the rank change for the corresponding
vertex (Fig. 5(a)). To assign a vector to each pixel, we first divide
each tile into four sub-tiles (Fig. 5(b)), each containing one vector
(the incoming vector for the left sub-tiles, and the outgoing vector
for the right sub-tiles). Then the vector at each pixel is calculated
using an interpolation of their neighbors (Fig. 5(c) and Fig. 5(d)).
Before choosing the number four for dividing the tiles, we tried
several other choices, such as nine or sixteen. However, the results
did not seem much different from the original, due to the multiple
intermediate smoothing steps. Therefore, we chose the smallest
number to produce the square sub-tiles.

(a) (b) (c)

Figure 4: Vector generation and possible patterns: (a) vectors gener-
ated by connecting all the tiles corresponding to the same vertex in
temporal order; (b) a dynamic graph changing smoothly; (c) a dynamic
graph changing more dramatically.

(a) (b) (c) (d)

Figure 5: Assigning a vector to each pixel.

4.3 Vector Field Rendering
Our system employs fast LIC [32], an efficient texture-based flow
visualization technique, to render the vector field as a continuous
flow. By comparing the results before and after applying the method
(Fig. 6(a) and (b)), we found that the result is improved by replacing
the mosaic with smooth curves. However, directly applying LIC
has two limitations in our application: 1) the main stream patterns
can easily be interrupted by local patterns, such as a sudden fall/rise
of a single vertex (see Fig. 6A for an example); and 2) colors of
different trends can be readily mixed/convolved together, leading to
false trend patterns (Fig. 6B for an example). To further improve
the flow representation, two techniques are presented: 1) enhancing
the main trends, and 2) differentiating the colors. Fig. 7 shows the
pipeline of our rendering process.

4.3.1 Enhancing Main Trend
The basic idea is to group vectors of similar colors/directions and em-
phasize such groups by giving them the rendering priority necessary
to make their overall patterns easily recognizable (A in Fig. 7).

We first introduce some preliminary definitions that are useful for
subsequent discussions. Assuming we have an n×m matrix of tiles
T, each tile, denoted by ti, j (1≤ i≤ m and 1≤ j ≤ n), contains:
vi, j : the vector contained in ti, j .
vi, j : the vertex in the dynamic graph, which is shared by multiple

tiles in different timeslices.
ci, j : the color of ti, j, indicating the category of vi, j.
Ii, j : the user-specified influence factor defining how much influ-

ence vi, j has on its neighbors. The bigger the factor is, the
more it impacts its neighboring vectors.

Bi, j : the user-specified persistence factor determining how much
vi, j retains its own value under the influences of its neighbors.

(a) (b)

(d)

9
20
16
11
7
8
3
4
10
6
14
19
17
23
12
21
18
13
22
1
15
5
2

A

A

A

B

BB

C

(c)

A

B

C C

C

Figure 6: Comparison: (a) input tile matrix; (b) LIC result; (c) LIC
result with enhanced main trends; (d) our final result (main trend
enhancement + color differentiation + alpha blending).

(a) (b) (c) (d) (e)

A B

C

C

D

Figure 7: Rendering pipeline: (a) input tile matrix; (b) enhanced tile
matrix; (c) refined tile matrix for individual colors; (d) LIC images for
individual colors; (e) final result with alpha blending of all LIC images.

We use Pi, j to denote all tiles having the same vertex vi, j, i.e.,
Pi, j = {tx,y|vx,y = vi, j,1 ≤ y ≤ n,1 ≤ x ≤ m}. The row index y of
tile tx,y that belongs to Pi, j is denoted by Pi, j(x), i.e., y = Pi, j(x).

For each tile ti, j, we use a consistency score Ci, j to measure the
similarity between Pi, j and its neighboring paths in the local area of
ti, j . The bigger Ci, j is, the more Pi, j complies with the main trend at
ti, j. It is calculated as:

Ci, j =
1
R

j+Rr

∑
y= j−Rr

(
max

k

i+Rc

∑
x=i−Rc

1
1+ |Pi,y(x)−Pi, j(x)+ k|

)
, (1)

where Rc and Rr are the user specified factors that control the
localness of the consistency score. The larger the factors are, the
more global the feature that Ci, j indicates. R = (2Rr +1)(2Rc +1)
is the normalizing factor that ensures 0 ≤ Ci, j ≤ 1. Based on the
consistency score, the new vector v′i, j of tile ti, j can be defined as a
weighted average of its neighboring vectors:

v∗i, j =
Bi, jvi, j +∑

j+Rr
y= j−Rr

(Ii,yCi,y|y− j|−1vi,y)

Bi, j +∑
j+Rr
y= j−Rr

(Ii,yCi,y|y− j|−1)
, (2)

If the vectors of a local area have similar directions, they should be
assimilated and enhanced as a group. Based on the dataset quality,
the calculation could be done many times iteratively to obtain a
smooth vector field.

Another part of the enhancement is to remove small, isolated
color blocks that interrupt the main trend patterns (see Fig. 6C for
an example). Similar to the vector smoothing process, the new color
of ti, j is given by:

c∗i, j = argmax
c

Bi, j1{ci, j}(c)+∑
j+Rr
y= j−Rr

(Ii,yCi,y1{ci,y}(c))
|y− j|

Bi, j +∑
j+Rr
y= j−Rr

(Ii,yCi,y)
|y− j|

, (3)

where 1{c}(x) is the indicator function defined as:

1A(x) =

{
1 if x ∈ A,
0 otherwise.

(4)

4.3.2 Differentiating Colors
Another limitation of using LIC in our application is that it only
allows one vector for each pixel. Therefore, trends with different
directions cannot co-exist at the same location. For example, Fig. 6B
shows three colored trends that cross: green, yellow, and blue. Sim-
ply applying LIC to it would convolve all three colors together,
leading to the wrong flow trends (Fig. 6(b) and Fig. 6(c)).

We have solved this problem by running LIC in multiple layers
for individual colors. For each color c, a new tile matrix Tc is
derived from the enhanced tile matrix, denoted by T∗. For each tile
with color c, we search backwards and forwards along the direction
of its vector v to fill more empty tiles with the same color c and
vector v (step B in Fig. 7). Then LIC is applied on Tc to get a flow
image for only color c (step C in Fig. 7).

We merge all layers using alpha blending to get the final result
(step D in Fig. 7). From this result, we can clearly see that the
false flows are not only eliminated, but the remaining flows become
clearer and more fluent (Fig. 6(d)B).

Although our color rendering technique can help users differ-
entiate flow trends of individual colors, it still suffers from some
constraints when using color to represent categorical information.
For example, there are a limited number of colors that can be used to
effectively represent different categories [22, 36]. Our alpha blend-
ing method will reduce the number further. In our experiments, we
found that users generally do well using five or six colors in our
system. On the other hand, different colors may create different
visual impacts, which may cause misleading information, such as
false emphasis. To alleviate this problem, besides providing two
standard color encoding schemes, we also allow users to manually
assign different colors to the categories they are interested in.

4.4 Interaction
GraphFlow allows users to interact with the flow view and to exam-
ine relevant data from multiple perspectives. Specifically, we have
designed two interactions: flow carving and path enhancing.

4.4.1 Flow Carving
We designed flow carving, inspired by seam carving [2], to quanti-
tatively measure the change degree of each timeslice. It serves two
purposes. First, it helps users easily find critical timeslices, such
as those with a dramatic change. Second, it can be used to remove
vertical slices with smooth changes, so that screen space can be
better allocated to more important information.

Mathematically, we define the energy for a timeslice e(Gi) as
∑

n
j=1 e(ti, j), where e(ti, j) is the energy function that measures the

energy of the local change at tile ti, j. We have examined several
possible rank change measures, including the gradient, saliency
measure [2], entropy [14], and the inversion number [25].

The gradient, saliency measure tries to capture the vector change
at a local area of ti, j [2]:

ev(ti, j) =
i+k

∑
x=i−k

j+k

∑
y= j−k

||vi, j−vx,y||, (5)

Entropy can measure the color consistency around ti, j [14]:

ec(ti, j) =−∑
c

pk
i, j(c) log pk

i, j(c), (6)

where pk
i, j(c) = k−2

∑
i+k
x=i−k ∑

j+k
y= j−k 1{c}(cx,y).

The inversion number is used to measure the sortedness of a se-
quence [25]. Formally, the inversion number for tile ti, j is defined as:

er(ti, j) =
n

∑
y=1

1{−1}
(
sgn
(
(Pi,y(i−1)−Pi, j(i−1))×(y− j)

))
, (7)

where 1{−1}(x) is an indicator function defined in Eq. 4. Fig. 1(a)
compares the results of these three energy functions (ev as red, ec

as green, and er as blue) on the same flow. As expected, no single
measure works well across all times, but they have similar temporal
behaviors. According to the experiments, we found the gradient,
saliency measure works better in most cases. Thus, we have adopted
this measure in GraphFlow.

4.4.2 Path Enhancing
Although the flow representation provides a nice overview of the
metric changes, it is ineffective at identifying individual paths. To
tackle this issue, a path enhancing technique was designed.

The basic idea is to enhance the persistence and influence factors
of each tile of the path of interest. As described in Sec. 4.3.1, Bx,y
and Ix,y represent the persistence and influence factors for tile tx,y.
By increasing them, tx,y is more likely to retain its original color and
vector and to have more influence on its neighbors.

For example, when a user finds an interesting region in the flow
representation, and wants to know where this path comes from or
goes to, s/he can simply click it. Our system then retrieves the
related tiles ti, j and path Pi, j. For each tile tx,y that belongs to Pi, j,
we increase Bx,y and Ix,y, and re-generate the flow image. Fig. 1(b)
shows two examples of path enhancement (marked as dotted lines).

4.4.3 Details-on-Demand
Once users identify an interesting pattern in the flow view, they can
click on the point of interest. Our system will locate the correspond-
ing tile and reveal more information to users, such as the graph
structure at that time point or related details that may be different
from application to application.

5 GRAPH LAYOUT

When a user selects several timeslices from the flow visualization,
the corresponding graphs are presented side by side. Then the user
can examine and find the particular reasons why those timeslices
are so interesting. To achieve this, two techniques have been devel-
oped to help users easily track the nodes of interest across multiple
graphs [11, 24].

One widely adopted approach is to lay out each graph by keeping
the relative positions of unchanged vertices/edges as stable as
possible. In our system, we use the energy minimizing method
introduced in [5] to generate the dynamic layouts. For a timeslice
Gt = (Vt ,Et), the energy function is formulated as:

St = ∑
(vi,v j)∈Et

ωi j(di j,t −||xi,t −x j,t ||2)+ω||xi,t −xi,t−1||2, (8)

where ωi, j and ω are the user-specified weight factors. di j,t , and
xi,t are the ideal distance for edge (vi,v j) and the position of vertex
vi at timeslice Gt , respectively.

In addition, we draw curves to visually connect the same vertices
across different graphs (Fig. 8) and bundle the links together to
provide visual aids and help users discover patterns within a group
of vertices. In our system, the bundling result is achieved by turning
the straight links into curves based on a force model introduced
in [19]. Fig. 8 shows an example in which two links connect two
graphs: Gi and Gi+1. For each link connecting the same vertex in Gi
and Gi+1, we put two subdivision points on the link in the middle.
These points are aligned vertically based on which graph they are
close to. A linear, attracting spring force Fs is used between the
shifted subdivision point and its original position. On the other hand,
an attracting force Fe is used between each pair of subdivision points
that are on the same vertical line. Therefore, the total force exerted
on pi is calculated as:

Fpi = k(po
i −pi)+ ∑

q∈P/{pi}

(q−pi)

||q−pi||2
, (9)

where pi and po
i are the actual and original locations of pi, re-

spectively. P contains the locations of all the subdivision points on
the same vertical line as pi.

PP

Q
Q

Figure 8: An example of force settings for two links.

6 CASE STUDY

Two different datasets were adopted to demonstrate the versatility
of GraphFlow. Despite their differences in structure and content,
GraphFlow can easily be applied to both, unveiling interesting pat-
terns that we describe in our two case studies.

The first case study, conducted on the functional brain connectiv-
ity dataset from an MRI scanner, demonstrated how domain experts
can quickly discover patterns in their data using GraphFlow. The
second case study, covering two breaking events in Twitter, describes
how the flow view uses different metrics to help users understand
the overall evolving patterns in each event and locate critical time
points during these events.

All the flow images in this paper took up to 0.6 seconds to gener-
ate on a desktop computer with an Intel Quad-Core 2.80 GHz CPU
and 8G RAM memory, based on image quality and data size.

6.1 Functional Brain Connectivity Dataset

This case study was conducted with a team of neuroscientists at
the University of Washington. We performed the case study over a
couple of months, meeting with the team about twice a month and
improving the prototype after each visit. Our main contact was Mary,
who is a neuroscientist investigating brain aging and attempting to
characterize the effect of aging on cognitive abilities.

6.1.1 Data and Tasks

Higher cognitive abilities (memory, reasoning ability, etc.) are
neither the result of activity strictly localized in specific neural
structures, nor of the brain as a whole. They emerge from the coor-
dination of distributed networks (groups of neurons) of cortical re-
gions. When a subject is resting in a scanner, their blood-oxygenated
level-dependent signal measured by functional magnetic resonance
imaging (fMRI) shows regional patterns of correlations. These pat-
terns recreate maps of known, large-scale brain networks that are
activated when the subject performs tasks in the scanner. Because of
the similarity, the correlation strength between regions is thought to
be related to the efficiency of communication between corresponding
regions.

The team analyzed fMRI data using R. Team members extracted
mean timecourses from cortical regions of interest (ROIs), defined
sliding windows, and computed correlations between ROIs within
each sliding window. In addition to plotting various means and
variances in R, the visualization they created for studying the func-
tional connectivity graph was a dynamic matrix of correlations. The
particular subset of data that they focused on comprised 23 ROIs,
categorized into four groups. These groups represent four different
large-scale brain networks, respectively. Three of them are involved
in the dorsal attentional network, the fronto-parietal task control
network, and the salience network, while the fourth is active when
not engaged in a task (default mode network). Fig. 11 shows one
example of graph construction. 23 nodes represent 23 ROIs with
their background color representing their group attribute. At a time
point, if two nodes (i.e., ROIs) are correlated, they have an edge
connecting them.

Despite such a small graph size, neuroscientists reported that
finding patterns in the animated matrix was extremely difficult, even
when pausing the animation and playing it multiple times. In par-
ticular, they commented that it was difficult for them to identify
high-level patterns involving more than a couple of ROIs, such as

comparing the evolution of intra-connectivity (within a subset of
ROIs) and inter-connectivity (between several groups of ROIs).

Dorsal attentional network Fronto-parietal task control network Salience network Default mode network

Figure 9: Functional brain connectivity summaries of three different
subjects from younger to older (from top to bottom).

6.1.2 Insight discovery
We provided Mary with our prototype, iteratively improving it to
better handle her data. Fig. 9 shows the very first dataset Mary
loaded in GraphFlow. These flow diagrams represent a subset of
the functional connectivity graph of three different subjects, ranging
from younger to older. When studying these visualizations, the team
immediately commented on the higher-level patterns of connectiv-
ity. In particular, they were excited about the pattern exhibited by
the yellow flow, representing the dorsal attentional network. They
observed that the overall degree of the brain regions in this network
tended to decrease (relative to other networks) in older subjects.
This finding seems to indicate that a pattern of lower connectivity
among nodes in the dorsal attentional network is related to brain
aging. While it would require extensive statistical validation and
multiple observations to validate this hypothesis, GraphFlow could
successfully lead to such an insight shortly after loading the data
into the tool.

(a) (b)

Dorsal attentional network Default mode network

Figure 10: The degree changes of two nodes over time (highlighted
as brown and orange) in two subjects: (a) similar evolution patterns in
the middle-aged subject; (b)dissimilar trends in the older subject.

DANLaIPS

DANLFEF

DANLpIPS

DANRaIPS

DANRFEF

DANRpIPS

DMNLAG

DMNLlattemp

DMNmPFC

DMNPCC

DMNRAG

DMNRlattemp

FPTCLdlPFC

FPTCLfrontal

FPTCLIPL

FPTCLIPS

FPTCRdlPFC

FPTCRfrontal

FPTCRIPL

FPTCRIPS

SALACC

SALLFIC
SALRFIC

A

Figure 11: The node-link diagram shows the behavior of two nodes of
the default mode networks. While these two nodes are strongly corre-
lated to each other (green links), they are also negatively correlated
to the nodes of the other two regions (the gray regions).

Fig. 10 illustrates correlations between nodes in two well-
characterized networks, the default mode network (colored blue) and
the dorsal attentional network (colored yellow), obtained while a
subject was at rest. The evolution patterns of a middle-aged subject
are shown in Fig. 10(a) and those of an older subject in Fig. 10(b).
Mary commented that the flow diagrams illustrated a broad pattern
of dynamic connectivity, expressed in terms of the varying degree

of each node in a network over time. She observed that Fig. 10(a)
shows that nodes in the dorsal attentional network (yellow) tend to
be more connected during this scan than those in the resting state
network (blue). In contrast, in Fig. 10(b), the relative degrees of
node connectivity within the default mode network and the dorsal
attentional network varied significantly throughout the duration of
the scan.

In addition, Mary commented on two particular nodes in the
default mode network: the posterior cingulate cortex and the medial
prefrontal cortex, which are highlighted as orange and brown in
Fig. 10, respectively. She was intrigued to notice that in the middle-
aged subject (Fig. 10(a)), they tended to have similar ranks in degree
of connectivity over time whereas they tended to have dissimilar
degrees of connectivity over time in the older subject (Fig. 10(b)).
Intrigued by the behavior of these two neural regions, Mary further
investigated their connections to the rest of the brain. Fig. 11 shows
the new pattern she discovered in the middle-aged subject: these two
nodes are strongly correlated with each other (green link marked
as A) but negatively correlated (red links) to nodes in attentional
networks (purple and orange nodes). This is consistent with vast
literature describing the complimentary roles of the dorsal attentional
network and the resting state network, which tend to be negatively
correlated. However, the variability of this relationship during a
single scan and between subjects is something that GraphFlow
helped them discover at a higher level than previous tools allowed.

In a very short time, they could identify interesting patterns they
did not know about before that could possibly lead to important
discoveries on the nature of the brain and the effects of aging. Mary
commented that she greatly favored the processed flow diagrams
(Fig. 6(d)) over the flow charts (Fig. 4(c)) composed of vectorial
lines (we include both options in the tool). The cluttered line chart
distracted her from her analysis tasks. The team made multiple
comments on the aesthetically pleasing look of GraphFlow and they
were all very excited about the higher-level patterns such visualiza-
tions could exhibit. We are continuing the collaboration with the
team and expect new discoveries in the near future.

6.2 Twitter Dataset
In this case study, we explored the evolving patterns of Twitter
accounts during two social events. The first dataset, covering “the
death of Osama bin Laden,” contains 910,429 tweets spanning May
1st 10:20pm EST, 2011 to May 2nd 2:20am EST, 2011. The second,
related to the basketball event known as “Linsanity,” contains
1,305,906 tweets spanning Feb. 1st 12:00am EST, 2012 to Feb. 14th

12:00am EST, 2012.
The dynamic graph for each dataset is defined as follows: if two

different accounts exist in one single tweet (either content or screen
name), they have one edge at the posting time of the tweet. The time
steps for the two datasets are one minute and one day, respectively.
To simplify the exploration, we collected and categorized the top
100 accounts having the most edges during the time period for each
dataset (Table 1).

bin Laden Data Linsanity Data
News media (green) 31 31
Journalist (blue) 17 16
Celebrity (orange) 39 38
Imposter (purple) 3 0
Others (yellow) 10 15

Table 1: Number of Twitter accounts in the top 100 under each cate-
gory for the bin Laden dataset and Linsanity dataset.

Fig. 12(a) and Fig. 12(c) show the flow summaries of both
datasets, in which vertices are sorted by degree. Intuitively, the
higher a vertex is in the flow image, the more active it is during the
event, in terms of posting tweets or being mentioned by other tweets.

(a)

(c)

10:40 11:37 00:43 00:5610:20

(b)E F

D1

D2

C
B

A

News media JournalistCelebrity Imposter Others

Figure 12: Flow summaries of the twitter datasets: (a) summary of bin
Laden data (sorted by degree); (b) summary of bin Laden data (sorted
by closeness); (c) summary of Linsanity data (sorted by degree).

As shown in Fig. 12(a), the overall pattern becomes more and
more complex as time goes on. In the first few minutes (from
10:20pm to 10:40pm), journalist accounts (blue), such as @kei-
thurbahn, @brianstelter, and @jacksonjk, were dominant. This is
because they posted rumors of Osama Bin Laden’s death, such as

“I’m told by a reputable person they have killed Osama Bin Laden,”
which were widely retweeted as people were wondering about their
reliability. But very soon (around 10:40pm), media accounts (green),
such as @cnnbrk, @nytimes, and @cbsnews, confirmed the rumors,
with tweets such as “NYT NEWS ALERT: Osama bin Laden Is Dead,
White House Says” by @nytimes. They immediately took over the
leading positions, because people stopped retweeting the rumors
and started retweeting information from the reliable sources. Thus,
the journalist accounts (blue) declined in the flow representation
(marked as A in Fig. 12(a)).

Once the rumors had been confirmed and spread throughout
the Internet, people began to change their focus. One interesting
pattern is related to three imposters (purple), @real bin laden,
@osamabinladen, and @osamabinladen96, which we found among
the top 100 accounts. They were very active for a short period (from
11:37pm to 00:43am) after the rumors were confirmed (marked as
B in Fig. 12(a)). By extracting their posting history, we found that
they actually posted messages as early as 10:38pm such as “Relax,
everyone, I’m just faking my own death...” But they only became
popular after the rumors were confirmed. This may be partially due
to people being more curious about the reliability of the rumors at
the beginning, and paying no attention to those imposters. Once
the rumors were confirmed, people were digging everywhere and
found those imposters funny and worth mentioning; however, their
jokes quickly wore out and fell out of the spotlight.

The third wave (marked as C in Fig. 12(a)) of leading accounts
comes from celebrities (orange). We extracted some tweets there
and found that they are mostly joking about bin Laden, such as

“R.I.P to the king of hide-n-seek Osama Bin Laden.” In particular,
we found a very clear splitting pattern around 00:56am for the
celebrity accounts (marked as D1 and D2 in Fig. 12(a)). After
examining the tweets from both branches, we found D1 to be very
focused, involving similar tweets, such as “BREAKING NEWS:
Donald Trump demands Osama Bin Laden’s death certificate.” On
the other hand, D2 is from miscellaneous tweets. So we were curious
why D1 is split from the rest. After checking the content in D1 and
searching the Web, we found that D1 is related to a political joke
caused by Obama’s official TV announcement interrupting the TV
show “Celebrity Apprentice” hosted by Donald Trump, who had
challenged Obama about his birth certificate at that time. People
found such a coincidence funny, so they made several jokes about
Trump, Obama, and the death certificate.

In addition to showing the degree metric, we also generated a flow
image using the closeness centrality metric (Fig. 12(b)). It is clear
that Fig. 12(a) and Fig. 12(b) have a certain similarity at the top.
In addition to the similarity, we also found some interesting outlier
paths in Fig. 12(b). For example, we found an outlier (Fig. 12(b)E)
pattern buried in a group of celebrity accounts. It includes three
highly correlated accounts, i.e., @darrenrovell, @jtalarico328, and
@dvnjr, from three different categories (blue, orange, and yellow).
This attracted our attention because the three accounts co-occurred
with each other for a period of time. So we enhanced all three
accounts and it turns out they co-occurred almost everywhere in the
flow (Fig. 12(b)F).

By retrieving the related content, we found that all three accounts
stayed connected because they all appeared in a single tweet “RT
@darrenrovell: May 1, 1945: Hitler confirmed dead. May 1, 2011:
Bin Laden confirmed dead. (via @JTalarico328, @DVNJr).” To fur-
ther investigate the underlying pattern in this tweet, we extracted the
order of retweeting, and found the tweet was first created by @JTa-
larico328, retweeted by @dvnjr 12 minuteslater, and finally by @dar-
renrovell after another 3 minutes. This example clearly shows how
interesting information is propagated: from an ordinary person to a
journalist to a very visible celebrity and finally to the general public.

Compared with the bin Laden data, the Linsanity data shows a
different pattern (Fig. 12(c)). In this event, the news media (green)
was not dominant. Instead, celebrity accounts (orange) were a rela-
tively stable dominant group. We then calculated the flow carving
curve based on the inversion number. Several peaks occurred at the
beginning. After examining the time points, we found high corre-
lations between those peaks and Jeremy Lin’s game schedule. In
particular, we noticed that the whole flow was generally triggered by
the first game (Feb. 4th 07:30pm), and after several peaks in activity,
“Linsanity” became a normal topic, the curve became smoother, and
the game schedule contributed less to the curve fluctuations.

7 DISCUSSION AND FUTURE WORK

In this paper, we addressed the problem of exploring a dynamic
graph with a static method. Accordingly, we introduced a novel
flow-based visualization design for summarizing high-level evolu-
tion patterns in a dynamic graph. The key idea is to convey changes
in the structure of a graph through the evolution of a number of graph
metrics computed on its nodes/edges. Although we used degree and
closeness as examples throughout this paper, GraphFlow does not
depend on any particular graph metrics. Other metrics, such as clus-
ter coefficient and triangle number, can also be directly applied in our
system. To further aid users in information seeking, a trend analysis
was designed to identify the critical time points in the flow visual-
ization. Furthermore, detailed structural changes across several cor-
related time points were provided to examine the major causes that
lead to such interesting patterns. Two case studies were conducted
to demonstrate the usefulness and effectiveness of our system.

Our flow design does have some limitations. First of all, the
patterns highly depend on the metric adopted. In our case studies,

we used common metrics. However, in some special scenarios,
common metrics may not be meaningful or adequate. Choosing
the most appropriate metrics will highly depend on a user’s domain
knowledge. Second, in certain applications where the absolute
values are critical, our flow representation, which mainly focuses
on rank changes, may not be very helpful. To address this issue,
a standard line chart can be combined with our flow representation
to show absolute values for selected nodes. Third, our graph view
can only work well for small graphs, which limites the scalability
of the whole system. To support large graphs, LOD-based [38] or
DOI-based approaches [34] can be leveraged.

In the future, we plan to combine some of the graph metrics for
more complex graphs, such as weighted graphs. In addition to flow
carving techniques that address the scalability issue on the time di-
mension, we may also investigate techniques for the scalability issue
on graph size, such as aggregating nodes based on the clustering or
hierarchical structure of the nodes. On the other hand, it is not con-
ventional to use the flow visualization to visualize a dynamic graph.
In the future, we plan to design a series of controlled experiments to
systematically evaluate how people accept, consume, and interpret
such unfamiliar visual representations.

REFERENCES

[1] D. Archambault, H. C. Purchase, and B. Pinaud. Animation, small
multiples, and the effect of mental map preservation in dynamic graphs.
IEEE Transaction on Visualization and Computer Graphics, 17(4):539–
552, 2011.

[2] S. Avidan and A. Shamir. Seam carving for content-aware image
resizing. ACM Transaction on Graphics, 26(3):1–9, 2007.

[3] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph drawing:
Algorithms for the visualization of graphs. Prentice-Hall, 1999.

[4] F. Beck, M. Burch, C. Vehlow, S. Diehl, and D. Weiskopf. Rapid serial
visual presentation in dynamic graph visualization. In IEEE Symposium
on Visual Languages and Human-Centric Computing (VLHCC), pages
185–192, 2012.

[5] K. Boitmanis, U. Brandes, and C. Pich. Visualizing internet evolution
on the autonomous systems level. In Graph Drawing, pages 365–376,
2007.

[6] U. Brandes and S. R. Corman. Visual unrolling of network evolu-
tion and the analysis of dynamic discourse. In IEEE Symposium on
Information Visualization, 2002, pages 145–151, 2002.

[7] U. Brandes and B. Nick. Asymmetric relations in longitudinal social
networks. IEEE Transaction on Visualization and Computer Graphics,
17(12):2283–2290, 2011.

[8] U. Brandes and D. Wagner. Tracking multiple independent targets:
Evidence for a parallel tracking mechanism. Spatial Vision, 3(3):179–
197, 1988.

[9] J. Branke. Dynamic graph drawing. In Drawing Graphs, pages 228–
246, 1999.

[10] M. Burch, C. Müller, G. Reina, H. Schmauder, M. Greis, and
D. Weiskopf. Visualizing dynamic call graphs. In Proceedings of
Workshop on Vision, Modeling, and Visualization, pages 207–214. The
Eurographics Association, 2012.

[11] M. Burch, C. Vehlow, F. Beck, S. Diehl, and D. Weiskopf. Parallel edge
splatting for scalable dynamic graph visualization. IEEE Transaction
on Visualization and Computer Graphics, 17(12):2344–2353, 2011.

[12] L. Byron and M. Wattenberg. Stacked graphs - geometry & aes-
thetics. IEEE Transaction on Visualization and Computer Graphics,
14(6):1245–1252, 2008.

[13] B. Cabral and L. C. Leedom. Imaging vector fields using line inte-
gral convolution. In Proceedings of the 20th annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’93, pages
263–270, New York, NY, USA, 1993. ACM.

[14] T. M. Cover and J. A. Thomas. Elements of information theory. Wiley-
interscience, 2006.

[15] C. Erten, P. J. Harding, S. G. Kobourov, K. Wampler, and G. V. Yee.
Graphael: Graph animations with evolving layouts. In Graph Drawing,
pages 98–110, 2003.

[16] C. Friedrich and M. E. Houle. Graph drawing in motion ii. In Graph
Drawing, pages 220–231, 2001.

[17] N. Henry and J.-D. Fekete. Matrixexplorer: A dual-representation
system to explore social networks. IEEE Transaction on Visualization
and Computer Graphics, 12(5):677–684, 2006.

[18] N. Henry, J.-D. Fekete, and M. J. McGuffin. Nodetrix: A hybrid
visualization of social networks. IEEE Transaction on Visualization
and Computer Graphics, 13(6):1302–1309, 2007.

[19] D. Holten and J. J. van Wijk. Force-directed edge bundling for graph
visualization. Computer Graphics Forum, 28(3):983–990, 2009.

[20] S. Kairam, D. MacLean, M. Savva, and J. Heer. Graphprism: Compact
visualization of network structure. In Advanced Visual Interfaces,
pages 498–506, 2012.

[21] G. Kumar and M. Garland. Visual exploration of complex time-varying
graphs. IEEE Transaction on Visualization and Computer Graphics,
12(5):805–812, 2006.

[22] A. Light and P. J.Bartlein. The end of the rainbow? color schemes for
improved data graphics. EOS Transactions of the American Geophysi-
cal Union, 85(40):385–391, 2004.

[23] G. Liu, E. Austen, K. Booth, B. Fisher, M. Rempel, and J. T. Enns. Mul-
tiple object tracking is based on scene, not retinal, coordinates. Journal
of Experimental Psychology: Human Perception and Performance,
31(2):235–247, Apr. 2005.

[24] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment
and the mental map. Journal of visual languages and Computing,
6(2):183–210, 1995.

[25] P. Mutzel and J. Michael. Simple and Efficient Bilayer Cross Counting.
Journal of Graph Algorithms and Applications, 8(2):179–194, 2004.

[26] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch. The
state of the art in flow visualisation: Feature extraction and tracking.
Computer Graphics Forum, 22(4):775–792, 2003.

[27] G. G. Robertson, R. Fernandez, D. Fisher, B. Lee, and J. T. Stasko.
Effectiveness of animation in trend visualization. IEEE Transaction on
Visualization and Computer Graphics, 14(6):1325–1332, 2008.

[28] M. Rosvall and C. T. Bergstrom. Mapping change in large networks.
PloS one, 5(1):e8694, 2010.

[29] A. Sallaberry, C. Muelder, and K.-L. Ma. Clustering, visualizing,
and navigating for large dynamic graphs. In Graph Drawing, pages
487–498, 2012.

[30] C. Shi, W. Cui, S. Liu, P. Xu, W. Chen, and H. Qu. Rankexplorer:
Visualization of ranking changes in large time series data. IEEE Trans.
Vis. Comput. Graph., 18(12):2669–2678, 2012.

[31] L. Shi, N. Cao, S. Liu, W. Qian, L. Tan, G. Wang, J. Sun, and C.-Y. Lin.
Himap: Adaptive visualization of large-scale online social networks.
In PacificVis, pages 41–48, 2009.

[32] D. Stalling and H.-C. Hege. Fast and resolution independent line
integral convolution. In Proceedings of the 22nd annual conference on
Computer graphics and interactive techniques, pages 249–256. ACM,
1995.

[33] R. Toivonen, L. Kovanen, M. Kivelä, J.-P. Onnela, J. Saramäki, and
K. Kaski. A comparative study of social network models: Network evo-
lution models and nodal attribute models. Social Networks, 31(4):240–
254, 2009.

[34] F. Van Ham and A. Perer. Search, show context, expand on demand:
Supporting large graph exploration with degree-of-interest. IEEE
Transaction on Visualization and Computer Graphics, 15(6):953–960,
2009.

[35] F. van Ham, H.-J. Schulz, and J. M. DiMicco. Honeycomb: Visual anal-
ysis of large scale social networks. In Human-Computer Interaction
INTERACT 2009, pages 429–442, 2009.

[36] C. Ware. Information visualization: perception for design. Morgan
Kaufmann, 2012.

[37] M. Wattenberg. Visual exploration of multivariate graphs. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 811–819, 2006.

[38] M. Zinsmaier, U. Brandes, O. Deussen, and H. Strobelt. Interactive
level-of-detail rendering of large graphs. IEEE Transaction on Visual-
ization and Computer Graphics, 18(12):2486–2495, 2012.

