Applications of Program Synthesis to End-User
Programming and Intelligent Tutoring Systems’

Sumit Gulwani
Microsoft Research, Redmond
sumitg@microsoft.com

ABSTRACT

Computing devices have become widely available to billions
of end users, yet a handful of experts have the needed exper-
tise to program these devices. Automated program synthesis
has the potential to revolutionize this landscape, when tar-
geted for the right set of problems and when allowing the
right interaction model. The first part of this talk discusses
techniques for programming using examples and natural lan-
guage. These techniques have been applied to various end-
user programming domains including data manipulation and
smartphone scripting. The second part of this talk presents
surprising applications of program synthesis technology to
automating various repetitive tasks in Education including
problem, solution, and feedback generation for various sub-
ject domains such as math and programming. These results
advance the state-of-the-art in intelligent tutoring, and can
play a significant role in enabling personalized and interac-
tive education in both standard classrooms and MOOCs.

Categories and Subject Descriptors

D.1.2 [Software]: Programming Techniques—Automatic Pro-

gramming; K.3.1 [Computing Milieux]|: Computers and
Education—Computer Uses in Education

Keywords

Programming by Examples, Computer-aided Education

1. INTRODUCTION

Program synthesis is the task of automatically synthesiz-
ing a program in some underlying domain-specific language
(DSL) from a given specification using some search tech-
nique [8]. Program synthesis has the potential to revolution-
ize the computing landscape, when targeted for the right set
of problems and using the right interaction model. In this
article, we discuss two such classes of applications.

*This article accompanies Sumit’s GECCO’14 invited talk.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).

GECCO’14, July 12-16, 2014, Vancouver, BC, Canada.

ACM 978-1-4503-2881-4/14/07.

http://dx.doi.org/10.1145/2598394.2598397.

2. END USER PROGRAMMING

General-purpose computational devices, such as smart-
phones and computers, are becoming accessible to people
at large at an impressive rate. Most end users of these de-
vices are non-programmers and they need to create small,
often one-off applications to automate repetitive tasks.

While the traditional view of program synthesis is that of
synthesizing programs from complete logical specifications,
we have developed end-user friendly techniques for synthe-
sizing programs from examples [10] and natural language
using the following methodology [11]: (a) Study help forums
and conduct user studies to identify an important problem
domain, (b) Design a DSL expressive enough to capture real-
world tasks in the domain, but restricted enough to enable
efficient synthesis, (c) Develop a synthesis algorithm, and
(d) Rank the various programs returned by the synthesizer.

Programming by Example (PBE): We have devel-
oped PBE techniques for various data manipulation tasks.
Data is available in documents of various types, e.g., text/log
files, spreadsheets, and webpages. These documents offer
great flexibility in storing and organizing hierarchical data
by combining presentation/formatting with the underlying
data model. However, this makes it hard to manipulate
the underlying data. We have developed PBE techniques
for syntactic string transformations [9] (this technology was
shipped as the Flash Fill feature in Excel 2013), seman-
tic string transformations [19], number transformations [20],
and table transformations [14]. Besides transformation tasks,
we have also invested in extraction [15] and formatting [18]
tasks. Combining these technologies in a pipeline of extrac-
tion, transformation, and formatting can allow end users to
perform sophisticated data manipulation.

Most of the underlying algorithms work by systemati-
cally reducing the problem of synthesizing a DSL expres-
sion (given input-output examples for that expression) to
the problem of synthesizing the sub-expressions of that ex-
pression (by translating the examples for the expression to
the examples for the sub-expressions).

Programming by Natural Language (PBNL): Some
tasks such as filtering, summarization, actions with side-
effects can often be best communicated using natural lan-
guage (as opposed to using examples). There are two gen-
eral approaches that we have used for understanding nat-
ural language based intent. Omne approach leverages nat-
ural language processing techniques along with type-based
synthesis—this approach has been used to synthesize spread-
sheet formulas [13] and smartphone automation scripts [16].
Another approach leverages the power of web search engines



to identify relevant code snippets from the web and then
adapt them to the user’s context—this approach was used
in Bing Code Search, a Visual Studio 2013 add-in [1].

Future Directions: A key future direction is to de-
velop general frameworks that can allow synthesizer writers
to easily develop domain-specific synthesizers of the kind
described in this article, similar to how declarative pars-
ing frameworks allow a compiler writer to easily write a
parser. We have already made some progress in this direc-
tion: The FlashExtract framework [15] allows easy develop-
ment of synthesizers for extracting data from documents of
various types such as text files, web pages, and spreadsheets.
The Test Driven Synthesis framework [17] allows easy de-
velopment of synthesizers for transforming various forms of
data such as strings, tables, and XML. Another interesting
future direction is to develop a multi-modal programming
interface that allows easy integration of different PBE and
PBNL technologies to accomplish sophisticated tasks.

3. INTELLIGENT TUTORING SYSTEMS

The search techniques used in program synthesis can help
automate several repetitive and structured tasks in Educa-
tion including generation of problems, solutions, and feed-
back [7]. These tasks can be automated for various subject
domains including logic [2], automata theory [3], program-
ming [22], arithmetic [5], algebra [21], and geometry [12, 4].

Problem Generation: Generating fresh problems that
have specific solution characteristics (e.g., difficulty level,
use of a certain set of concepts) is a tedious task for the
teacher. Automating it can help prevent plagiarism (each
student can be provided with a different problem with the
same characteristics) and enable personalized workflows for
students. [21] describes a PBE like technique for generating
algebraic proof problems that are similar to a given problem.
There is also recent work on generating fresh problems in
geometry [4], natural deduction [2], and arithmetic [5].

Solution Generation: Solution generation is the task
of automatically generating solutions given a problem de-
scription in some subject domain. [12] shows how to phrase
the problem of generating a solution to a geometry construc-
tion problem as a program synthesis problem.

Feedback Generation: Feedback generation involves
identifying whether the student’s solution is incorrect and,
if so, the nature of the error and potential fix. Automating
it can save teachers time, and enable consistency in grading.
It can also be used to provide immediate feedback to stu-
dents thereby improving student learning. [22] shows how to
phrase generation of a minimal fix to the student’s program
(in an introductory programming course) as a program syn-
thesis problem. [3] suggests generating not only a minimal
fix to the student’s automata, but also a minimal change to
the problem description where the new problem description
corresponds to the student’s (incorrect) solution.

Future Directions: The above-mentioned search tech-
niques can be augmented with complementary techniques
that leverage large amounts of student populations and data
(facilitated by recent interest in online education). E.g., we
can leverage student data to collect different correct solu-
tions to a problem and use them to generate feedback [6]
or to discover effective learning pathways to guide problem
selection. We also ought to devise ways to quantify the ben-
efits of computer-aided education on student learning.

4. REFERENCES

[1] Bing Code Search—Visual Studio 2013 add-in.
http://blogs.technet.com/b/inside_microsoft_
research/archive/2014/02/17/bing-code-search-
makes-developers-more-productive.aspx.

[2] U. Ahmed, S. Gulwani, and A. Karkare.

Automatically generating problems and solutions for

natural deduction. In IJCAI, 2013.

R. Alur, L. D’Antoni, S. Gulwani, D. Kini, and

M. Viswanathan. Automated grading of DFA

constructions. In IJCAI 2013.

C. Alvin, S. Gulwani, R. Majumdar, and

S. Mukhopadhyay. Synthesis of geometry proof

problems. In AAAI 2014.

[5] E. Andersen, S. Gulwani, and Z. Popovic. A

trace-based framework for analyzing and synthesizing

educational progressions. In CHI, 2013.

E. Fast, C. Lee, A. Aiken, M. S. Bernstein, D. Koller,

and E. Smith. Crowd-scale interactive formal

reasoning & analytics. In UIST, 2013.

[7] S. Gulwani. Example-based learning in
computer-aided stem education. To appear in CACM.

[8] S. Gulwani. Dimensions in program synthesis. In
PPDP, 2010.

[9] S. Gulwani. Automating string processing in
spreadsheets using input-output examples. In POPL,
2011. http://research.microsoft.com/users/
sumitg/flashfill.html.

[10] S. Gulwani. Synthesis from examples: Interaction
models and algorithms. In SYNASC, 2012.

[11] S. Gulwani, W. Harris, and R. Singh. Spreadsheet
data manipulation using examples. CACM, 2012.

[12] S. Gulwani, V. A. Korthikanti, and A. Tiwari.
Synthesizing geometry constructions. In PLDI, 2011.

[13] S. Gulwani and M. Marron. NLyze: Interactive
programming by natural language for spreadsheet
data analysis and manipulation. In SIGMOD, 2014.

[14] W. R. Harris and S. Gulwani. Spreadsheet table
transformations from examples. In PLDI, 2011.

[15] V. Le and S. Gulwani. FlashExtract: A framework for
data extraction by examples. In PLDI, 2014.

[16] V. Le, S. Gulwani, and Z. Su. Smartsynth:
Synthesizing smartphone automation scripts from
natural language. In MobiSys, 2013.

[17] D. Perelman, S. Gulwani, D. Grossman, and
P. Provost. Test-driven synthesis. In PLDI, 2014.

[18] M. Raza, S. Gulwani, and N. Milic-Frayling.
Programming by example using least general
generalizations. In AAAI 2014.

[19] R. Singh and S. Gulwani. Learning semantic string
transformations from examples. PVLDB, 5, 2012.

[20] R. Singh and S. Gulwani. Synthesizing number
transformations from input-output examples. In CAV,
2012.

[21] R. Singh, S. Gulwani, and S. Rajamani. Automatically
generating algebra problems. In AAAI 2012.

[22] R. Singh, S. Gulwani, and A. Solar-Lezama.
Automated feedback generation for introductory
programming assignments. In PLDI, 2013.

3

[4

6



