
Kraken: Online and Elastic Resource Reservations

for Multi-tenant Datacenters

Carlo Fuerst1 Stefan Schmid2 Lalith Suresh1 Paolo Costa3

1 TU Berlin, Germany 2 Aalborg University, Denmark 3 Microsoft Research

{carlo,lalith}@inet.tu-berlin.de schmiste@cs.aau.dk paolo.costa@microsoft.com

Abstract—In multi-tenant cloud environments, the absence of
strict network performance guarantees leads to unpredictable job
execution times. To address this issue, recently there have been
several proposals on how to provide guaranteed network per-
formance. These proposals, however, rely on computing resource
reservation schedules a priori. Unfortunately, this is not practical
in today’s cloud environments, where application demands are
inherently unpredictable, e.g., due to differences in the input
datasets or phenomena such as failures and stragglers.
To overcome these limitations, we designed KRAKEN, a system

that allows tenants to dynamically request and update minimum
guarantees for both network bandwidth and compute resources
at runtime. Unlike previous work, Kraken does not require prior
knowledge about the resource needs of the tenants’ applications
but allows tenants to modify their reservation at runtime. Kraken
achieves this through an online resource reservation scheme which
comes with provable optimality guarantees.
In this paper, we motivate the need for dynamic resource

reservation schemes, present how this is provided by Kraken,
and evaluate Kraken via extensive simulations.

I. INTRODUCTION

Cloud-based applications, including batch processing, stream-

ing, and scale-out databases, generate a significant amount of

network traffic and a considerable fraction of their runtime

is due to network activity. For example, traces of jobs from

a Facebook cluster reveal that network transfers on average

account for 33% of the execution time [16].

Unfortunately, as reported in previous studies [5], in existing

cloud infrastructures the bandwidth available to the tenants

varies significantly over time, i.e., by a factor of five or

more [25], even within the same day. Given the time spent

in network activity by these applications, this variability has a

non-negligible impact on the application performance, which

makes it impossible for tenants to accurately estimate the

execution time in advance [17].

Over the last years, several solutions have been proposed

to improve the sharing of network bandwidth among tenants,

by leveraging admission control and bandwidth reservations,

thus enabling tenants to specify absolute guarantees [5], [7],

[11], [14], [20], [21], [23]. In particular, many of these

proposals offer a virtual cluster abstraction [5], [7], which

provides the tenants with the illusion of having their own

dedicated network. A virtual cluster guarantees a specified

minimal bandwidth between all tenant’s virtual machines,

independently of their locations in the datacenter topology.

However, the vast majority of existing solutions providing

absolute bandwidth guarantees are based on offline and con-

stant reservations schemes [5], [7], [11], [14], [19], [23]: they

require that tenants announce the entire resource reservation

schedule ahead of time, i.e., at job submission time. They

typically assume that the corresponding resource reservations

need to be constant over time, and hence tenants either have

to over-provision during idle times (thus reducing efficiency

and inflating cost) or under-provision during peak times (thus

reducing application performance), or both. Noteable excep-

tions are Cicada [15], which offers predicitive instead of

absolute guarantees, and Proteus [7], which allows tenants to

specify time-varying bandwidth reservations. However, even

with Proteus, the reservations must be made at the startup

time and they cannot be changed afterwards. This inflexibility

is at odds with the cloud computing paradigm, which enables

elasticity by allowing tenants to “scale out” or “scale in” their

applications at runtime. We argue that in most cases it is very

hard to accurately estimate application resource needs ahead of

time, rendering offline reservation schemes inadequate. Several

factors contribute to this unpredictability including unexpected

events such as stragglers and failures [3], [4] as well as spikes

in application demand (flash crowds).

A naive approach to enable runtime reconfiguration would be

to restart the resource allocation from scratch every time an

update request is received from the tenants. This, however,

would introduce an unacceptable overhead as most (if not

all) the compute resources such as VMs need be migrated. At

the other extreme, there are approaches such as Blender [23]

that support a weak form of reconfiguration by allowing

tenants to update rate limiters at runtime. This, however,

prevents users from upgrading both compute and network

resources at the same time. More importantly, as we show in

the evaluation, since no migration is considered, the efficacy

of the solution is very limited. In this paper, we strike a

balance between these two approaches by allowing users to

dynamically reconfigure both compute and network resources

simultaneously while minimizing the number of migrations.

Our Contribution. We make the following contributions.

1) The need for online resource reservation schemes: We

show that offline resource reservation schemes are in-

sufficient: Even for simple Hadoop jobs small internal

changes can lead to significantly different executions.

Therefore, in order to meet application performance

goals, not only strict resource isolation needs to be pro-

vided, but also a possibility to update these reservations

at runtime.

2) The Kraken system: We design Kraken, a system which

supports the online (and joint) update of both bandwidth

as well as the compute resources. Kraken can also per-

form migrations in order to satisfy upgrade requests:

While the migration of entire virtual machines may be

expensive in practice, Kraken only assumes that compute

units, the endpoints of traffic flows, can be migrated.

Kraken comes with provable performance guarantees and

ensures (i) the satisfaction of all upgrade/downgrade

requests for which this is possible, (ii) minimal recon-

figuration and resource costs, (iii) low runtimes.

3) Benefits of online resource reservations: Our simulations

show the benefits of elastic resource reservations.

Kraken can be used for many applications that benefit from

resource elasticity, including batch-processing applications

(e.g., graph processing or distributed databases) or high-

performance computing applications.

Non-Goals. We focus on how to efficiently embed and

reconfigure virtual clusters; a detailed discussion of when to

change a virtual network specification is left for future work.

The time and extent of upgrades and downgrades depend on

the setting, on the type of application, as well as on the tenants’

objectives. In this paper, we advocate for a clean interface

between tenant and provider over which such reconfiguration

requests can be issued based on the tenants’ needs.

II. MOTIVATION FOR AN ONLINE APPROACH

Before presenting our solution in detail, we argue that to-

day’s offline reservation schemes are not sufficient to ensure

application performance guarantees in an efficient manner.

We distinguish between two offline reservation schemes:

(1) schemes with constant resource reservations such as the

ones proposed in [5], [11]; and (2) schemes such as Pro-

teus [7] with time-varying resource reservations which need

to be announced ahead of time and, hence, require accurately

predicting a job’s resource-utilization over time, e.g., using

data from previous runs.

Constant reservation schemes are wasteful for any applica-

tion with time-varying resource demands, such as MapRe-

duce applications, which cycle between network-intensive and

compute-intensive phases [7], or an online computer game

whose demand is subject to time-of-day effects [25].

While offline and time-varying reservations may be possible

in idealized conditions, in practice, this is rarely the case.

This is obvious for continuously running applications, such as

a web-service or video-on-demand service, whose popularity

can change significantly and unexpectedly. But, as we show

next, even the resource pattern of very simple MapReduce

applications are hard to predict accurately. It has been reported

that stragglers can be several times slower than the median

task completion time [3], [4], [8], [13], [24]. Stragglers occur

due to a variety of environmental factors such as slow disks

and failures. Cluster frameworks typically use control-loops

based on these factors to (re-)schedule tasks, e.g., Hadoop’s

speculative executor. This makes it hard to predict if there will

be stragglers in the first place and if so, when and where the

cluster framework will re-schedule a slow task.

To highlight this we perform a simple and idealized experi-

ment wherein we run a single Hadoop cluster in an OpenStack-

✵�✵✵

✵�✁✂

✵�✂✵

✵�✄✂

✶�✵✵

✹✵✵ ✹✂✵ ✂✵✵ ✂✂✵
❈☎✆✝✞✟✠✡☎☛ ☞✡✆✟ ✌✍✟✎☎☛✏✍✑

❊
✒
✓
✔

✕✖✕✕

✕✖✗✘

✕✖✘✕

✕✖✙✘

✚✖✕✕

✻ ✽ ✚✕
◆✛✜✢✣✤ ✥✦ ✧★✩✩✣✪ ✫✬✭✧✭

✮
✯
✰
✱

Fig. 1: Execution unpredictability—Completion times of jobs

in the presence of speculative execution (left) and the number

of speculated tasks (right).

based testbed. For this we use five physical servers (8 CPU

cores and 64GB of RAM) with one virtual machine each.

Each virtual machine is allocated 4 virtual cores with 4 GB

of RAM. Each node is mapped to a virtual machine each (one

master, four slaves). The workload consists of a TeraSort job,

operating on 150 million 100-byte records.

We repeat the experiment five times with speculative exe-

cution enabled. Figure 1 (left) indicates the variance in job

completion times across the runs: a range of 150 seconds.

This observation is also supported by Figure 1 (right) which

indicates the number of straggling tasks that were speculatively

re-executed by the Hadoop cluster.

Note that since TeraSort is IO-bound and all data are ran-

domly generated with a uniform distribution, its behavior is

much more regular than most other jobs used in data analytics,

which can suffer from skewed data distribution, irregular

computation patterns, etc. Therefore, we expect real jobs to

exhibit even higher variance across runs, as it is often reported

in literature [3], [4], [8], [13]. These observations serve to

demonstrate that even with the same workload and a dataset

of the same size being re-executed, it is difficult to predict

how a job progresses over time.

In conclusion, we argue that offline approaches for resource

reservations such as Proteus do not suffice, as cloud environ-

ments such as Amazon EC2 [24] are even more noisy than our

environment studied here. This makes it more difficult to pre-

dict performance of an application a priori, which underlines

the need for dynamic and online reservation schemes.

III. MODEL & EXAMPLE

We start by introducing the settings and the virtual network

abstraction considered in this paper, and subsequently high-

light the algorithmic challenge.

A. Setting

We consider the standard Virtual Cluster abstraction to model

virtual networks with strict performance guarantees [5], [7],

[17]. A virtual cluster offers the tenant the illusion for all

her Compute Units (CUs) to be attached to a single non-

oversubscribed switch with a minimum bandwidth b guar-

anteed. If excess bandwidth is available, it can be used

in addition to the reserved bandwidth, e.g., using recently

proposed extensions to TCP such as Seawall [22].

A virtual cluster VC(n,b) has two parameters: n, the num-

ber of (identical) CUs in the cluster, and b, the bandwidth

of CUs belonging to other tenants, although in some cases

this might result in lower embedding costs. The standard

metric to evaluate the embedding cost (see also [5], [7]),

is to measure the embedding footprint F(VC) of a virtual

cluster VC: F(VC) is given by the overall network resources

consumed by the VC, i.e., the sum of bandwidth reservations

over all substrate links. (Note that the number of used CU

slots is independent of the embedding.)

In order to measure the reconfiguration costs, we count the

number of CUs which need to be embedded to a different

location during an upgrade.

Notice that there is a trade-off between the two metrics:

sometimes, at the price of higher reconfiguration costs, smaller

footprints can be realized. In the following, we design our al-

gorithms according to the following priorities (cf Section IV-F

for a discussion of alternative objectives supported by Kraken):

(1) the top priority is to satisfy a reconfiguration request;

(2) the second priority is to minimize reconfiguration costs;

and (3) the third priority, is to minimize the embedding

footprint, i.e., among all solutions of the same reconfiguration

costs, we compute the most resource efficient embedding.

Kraken provides the following worst-case guarantees.

1) Request Satisfiability: As long as a feasible solution exists

all upgrade and downgrade requests are satisfied.

2) Minimal Reconfiguration: The reconfiguration cost is

always minimized. In particular, if a solution without

migrations exists, it is used. CUs of other tenants are

never migrated.

3) Optimal Allocation: Among all possible solutions with

minimal reconfiguration costs, Kraken computes the one

with the minimal embedding footprint.

4) Complexity: The time complexity of re-configuring (or

embedding) a virtual cluster is linear in the substrate size,

in the worst-case.

B. Algorithmic Concepts

At the heart of Kraken lie two main concepts: (1) The center-

of-gravity (or simply: center) of a virtual cluster and (2) the

slotCount values. The center-of-gravity concept (introduced

in [21]) allows us to decouple the embedding of the individual

Compute Units (CUs), in the sense that, given the location

of the center-of-gravity, the CUs can be mapped “greedily”,

one after the other, avoiding the combinatorial complexity

and rendering the problem polynomial time solvable. The

slotCount(v) values provide an aggregate information about

the number of available CU slots in the subtree of the fat-

tree below a given node v; they constitute the main data

structure used by Kraken. While previous virtual cluster em-

bedding algorithms used a similar concept [5], [7], [9], only

the combination with the center-of-gravity concept allows a

modification which enables the low runtime of the dynamic

algorithm (roughly linear in the substrate size).

Center-of-Gravity. The virtual cluster abstraction offers ten-

ants a network where each CU is connected to a virtual switch

at bandwidth b [5]. While this virtual switch is only a logical

concept, its position in the substrate matters, as resources need

Algorithm 1 Algorithm upgrade(VC,x,δ)

Output: success or failure

1: for all nodes v in the fat-tree: compute slotCount(v) values
2: m∗← ∞; F∗← ∞; cog∗←⊥;
3: for all v in substrate do
4: M← minMig(v)
5: if |M| ≤ m∗ then
6: F ← footprint(v, |M|)
7: if F < ∞∧ (|M|< m∗∨F < F∗) then
8: cog∗← v
9: m∗← |M|

10: F∗← F
11: end if
12: end if
13: end for
14: if m∗ = ∞ then
15: return failure
16: end if
17: µ ← computeEmbedding(VC,cog∗)
18: return success

to be reserved from it to each CU.1 The center-of-gravity may

also be located on a server, not only on a switch (e.g., if many

CUs of the virtual cluster are collocated on the same server).

Given a mapping of the CUs of a given virtual cluster VC, we

will refer to the optimal position of the virtual switch (with

respect to embedding footprint) as the center-of-gravity COG

of VC.

Given any node v in the fat-tree (either a server or a switch),

we can partition the nodes of VC into two sets with respect

to v: the set of CUs at or below the node v in the fat-tree, and

the remaining CUs above (or “outside”) v. Sometimes, we

use the same terminology to refer to the location of substrate

components relative to each other.

When applying the COG concept to the fat-tree topology, we

have two important properties, which Kraken leverages: (1) no

more than half of the nodes, can be above COG and (2) no

more than half of the nodes are below one of the children of

COG. The correctness of this property can be shown easily by

contradiction: If more than half of the CUs are behind one link,

moving the COG in this direction will decrease the bandwdith

costs for more than half of the CUs by 1 and increase the costs

for the other CUs by 1, resulting in a smaller footprint.

Moreover, when computing the embedding footprint of a

virtual cluster VC, it is often helpful to count the number

of CUs which are embedded below COG(VC); we will refer

to this number as β . The remaining CUs of VC which are

embedded above COG(VC), fall into three classes: the α(p)

“far-away” CUs located in a different pod, the α(r) CUs in

the same pod but in a different rack, and the α(s) CUs in

the same rack but on a different server. This classification

results in simple formulas for the embedding footprint of a

virtual cluster. For instance, if COG(VC) is embedded to

a top-of-rack switch, the embedding footprint is given by

F(VC) = β + 3 ·α(r)+ 5 ·α(p) as the distance to servers in

the same rack (β) is 1 and the distance to all servers in the

1Note that there could be multiple positions with the same embedding cost,
and that in a fat-tree, a distributed switch mapping does not reduce costs.

same pod but in differnt racks (α(r)) is 3 while the distance

to servers in other pods (α(p)) is 5.

slotCount-Values. The second core concept of Kraken is

the slotCount(v)-value: intuitively, the slotCount(v)-value in-

dicates how many additional CUs can be placed below a

certain substrate node v (a server or switch), such that the

currently available server and link resources are all satisfied.

The number of CUs which can be placed below a certain sub-

strate node v depends on two factors: the available bandwidth

and the available CU slots. For Kraken it is sufficient to com-

pute the bandwidth criteria for cases where COG is above v.

This eases the computation of these values significantly, since

the resulting interval of possible amounts of CUs becomes

continuous. In order to keep the runtime of the slotCount com-

putation low, we leverage the optimal sub-problem property in

our dynamic program: We start by computing the slotCount-

values on the host level. For each server s we compute

slotCount(s) = min(spareCUs(s),⌊spareBW (s) /b⌋) where

spareCUs(s) denotes the available CU slots of a server s and

spareBW (s) denotes the available bandwidth on the uplink.

The slotCount of a rack r is then defined as: slotCount(r) =
min(∑s∈r slotCount(s),⌊spareBW (s) /b⌋). The slotCount(p)-
values for pods can subsequently be computed from the racks’

slotCount-values.

Overview. Based on these concepts, in order to embed or

reconfigure a virtual cluster VC, Kraken simply cycles through

all possible center-of-gravity locations in the substrate network

(servers and switches): for each possible COG location v,

Kraken determines the minimal number of migrations needed,

in order to shift the center to v. This is a fast operation since it

does not scale with the size of the substrate, but with the size

of the VC. If COG can be implemented on v with minimal

migration costs, the slotCount values are used to calculate the

best possible embedding footprint of a mapping with the center

at v. As we will show, this also does not require scanning the

entire substrate, and is fast.

C. Upgrade Algorithm

Algorithm 1 shows the pseudo-code of Kraken’s algorithm

to implement an upgrade operation upgrade, from VC(n,b)
to VC(n+ x,δ ·b) with x≥ 0 more nodes and a factor δ ≥ 1

more bandwidth. We use µ to denote the embeddings.

Kraken first pre-computes the slotCount-values for the entire

substrate network, i.e., for each substrate node v (a server

or switch). Subsequently, Kraken computes the new center-

of-gravity COG for VC which minimizes the reconfiguration

costs in terms of the number of to be released, i.e., migrated

CUs M (function minMigs) and embedding footprint F

(function footprint), by iterating over all nodes in the

substrate. Subsequently, the best found solution is embedded

(function computeEmbedding).

1) Minimal Migrations: To compute the minimal number

of migrations, function minMig proceeds as follows, see

Algorithm 2: For each node v in the substrate (i.e., all servers

and switches), it computes a list of CUs which have to be

“released” (i.e., put in a pool of CUs which will be embedded

Algorithm 2 minMig(substrate node v)

Output: set of CUs

1: M← /0
2: L← computeConflictLinks(v)
3: sort L with decreasing distance from v
4: for all links ℓ ∈ L do
5: while ℓ oversubscribed do
6: let c be an arbitrary CU below ℓ
7: M←M∪{c}
8: end while
9: end for

10: M←M∪extraCUs(v)
11: return M

Algorithm 3 footprint(substrate node v, number of CUs

to migrate m)

Output: cost value

1: done ← 0
2: for all children v′ of v in the fat-tree do
3: done ← done +slotCount(v′)
4: end for
5: return ST(v)+height(v) ·n+costsAbove(v,m−done)

somewhere else by the algorithm), to be able to realize the

new center-of-gravity at node v.

ComputeConflictLinks computes the set of links L

whose capacity would be oversubscribed if the center-of-

gravity cog was on v and the bandwidth was increased to

b · δ under the current embedding µ of the existing CUs.

Subsequently, we iteratively release CUs until a critical link

ℓ ∈ L is no longer oversubscribed. This yields the first part

of the set M of CUs which need to be migrated. The conflict

resolution is ordered by distance to the center-of-gravity.

While releasing the CUs so far in M ensures that no link

is oversubscribed, additional CUs may have to be moved to

guarantee that the center-of-gravity is realized at the desired

physical node: thus, extraCUs adds more CUs to the set M,

such that the sum of the CUs which are currently hosted below

v and the cardinality of M reach n/2. To make v the center-

of-gravity of the virtual cluster, it is necessary and sufficient

that at least n/2 CUs are below v.

2) Minimal Footprint: After determining the number of

CUs that have to be migrated, we compute the embedding

footprint. Interestingly, Kraken can compute the embedding

cost of a desired center-of-gravity without determining an

explicit embedding of the new virtual cluster, by utilizing the

slotCount-values.

The function footprint is described in Algorithm 3. It

takes a desired center-of-gravity v and a target number m

of CUs which are to be migrated. Let us first observe that

the footprint of a virtual cluster can be computed via the

following case distinction: (1) If v is a core switch, all CUs

are located below v, and hence the distance between v and

the CUs is three. Thus, F(VC) = 3 · β , where β counts

the number of CUs which are embedded below COG(VC).

(2) If v is an aggregation switch of a pod, the CUs of VC

are either located on servers in the same pod, or on servers

in different pods. Clearly, all servers in the same pod are

Algorithm 4 costsAbove(substrate node v, number of

flexible CUs x)

Output: cost value

1: if z = 0 then
2: return 0
3: end if
4: if (v is a core switch or the uplink from v does not have z ·δ ·b

spare bandwidth) then
5: return ∞
6: end if
7: done← 0
8: for all for all siblings v′′ of v′ do
9: done← done+ slotCount(v′′) +Dv′′

10: end for
11: return 2 · z+costsAbove(v′,z−done)

at distance two from v, and the servers in other pods are

at distance four from v. We have F(VC) = 2 · β + 4 ·α(p),

where α(p) is the number of CUs of VC which are embedded

above COG(VC), in a different pod. (3) In case v is embed-

ded to a ToR switch, the embedding footprint is given by

F(VC) = β + 3 ·α(r) + 5 ·α(p), where α(r) is the number

of CUs of VC which are embedded above COG(VC), in a

different rack. (4) The embedding footprint for a v on servers is

given by F(VC) = 2 ·α(s)+4 ·α(r)+6 ·α(p), where α(s) is the

number of CUs of VC which are embedded above COG(VC),

on a different server. In this case, CUs which are embedded

below the COG are omitted, as they have no bandwidth costs.

The function footprint first computes the number of CUs

which can be placed on each of the sub-trees represented

by the direct children of v. Since the center-of-gravity v

is above its children by definition, the slotCount(v)-values

of the children are accurate. Then, the embedding cost is

computed recursively by the formula ST(v) +height(v) ·n+
costsAbove(v,z−done). The first cost term ST(v) accounts

for the static costs, i.e., the costs from CUs which are not

scheduled for migration according to the minimal migrations.

The second cost term height(v) · n depends on the depth of

the center-of-gravity in the tree. The third term computes the

additional costs from the CUs above v, if any, see the function

costsAbove (Algorithm 4): we leverage the fact that the

costs for placing CUs further away from a candidate center v

increases by two for every layer in the fat-tree, regardless of

the layer where v is located. Accordingly, given z flexible CUs,

we add 2z to the costs and execute the function again with the

parent node of v as the new v and z−∑v′∈V ′ slotCount(v′) as

the new z, where V ′ is the set of siblings of v (i.e., children of

the parent node of v excluding v). If v is the core switch, or the

spare capacity on the uplink of v is less then z ·δ ·b, v cannot

be the center-of-gravity, and the upgrade request fails for this

specific location of the COG. If this is the case for all nodes

v in the substrate, the upgrade request has to be rejected.

D. Downgrade Algorithm

Downgrade operations in Kraken never require any mi-

grations. However, the center-of-gravity may change. Thus,

the downgrade algorithm of Kraken proceeds similar to the

upgrade algorithm, but without functions minMig and with-

out the need to compute the slotCount(v) values. The main

difference regards how the values are actually used to compute

the costs. While the original algorithm depends on slotCount-

values and the current distribution, we set the current distri-

bution to 0 and all slotCount-values to the distribution prior

to the upgrade.

E. Formal Guarantees

Since the calculated cost and slotCount values are exact, we

have derived the following result.

Theorem IV.1. Kraken guarantees:

1) Request Satisfiability: As long as a feasible solution exists

all upgrade and downgrade requests are satisfied.

2) Minimal Reconfiguration: The reconfiguration costs is

always minimized. In particular, if a solution without

migrations exists, it is used.

3) Optimal Allocation: Among all possible solutions with

minimal reconfiguration costs, Kraken computes the one

with the minimal embedding footprint.

4) Complexity: The time complexity of re-configuring (or

embedding) a virtual cluster is bounded by O(N · n ·∆)
in the worst-case, where N is the size of the substrate

(number of servers), n is the virtual cluster size, and ∆ =
S+R+P is the number of servers in a single rack S (i.e.,

the degree of a ToR switch), plus the number of racks in

a single pod R (i.e., the degree of an access switch), plus

the number of pods P (i.e., the degree of a core switch).

Note that Kraken can also be used to embed virtual clusters

from scratch, and ensuring a minimal footprint. Thus, together

with property 4), Kraken also outperforms state-of-the-art

virtual cluster embedding algorithms which do not support

any reconfigurations, e.g., [9], [21].

F. Alternative Migration Cost Models

For ease of exposition, we presented Kraken for a sim-

ple model where the objective of minimizing the number

of migrations is prioritized over optimizing the embedding

footprint. However, our algorithms can be extended to other

migration cost models and trade-offs between migration and

footprint costs, without sacrificing optimality. For instance,

intra-pod migration costs could be modeled to be cheaper

than inter-pod migrations, and migration costs could also

depend on the available bandwidth along the migration path.

Further, our algorithms support objectives describing arbitrary

(weighted) linear combinations between the migration and

footprint costs: e.g., if smaller resource footprints can be

achieved with more migrations, they can also be computed.

V. EVALUATION

We conduct extensive simulations to study the feasibility of

online reservation upgrades at runtime. By default, we will

assume the same settings and parameters as used in previous

work [5]. However, given our more dynamic environment, we

also introduce a model for elastic reconfiguration requests,

and conduct a sensitivity analysis, studying the impact of

different factors (such as magnitude of reconfiguration and

system load) by using parameter sweeps.

A. Metrics

We consider the following two metrics:

Acceptance Ratio. Ideally, a system such as Kraken should

be able to accept and satisfy as many requests as possible.

For each request (either arrival of a new virtual cluster or

a reconfiguration request), we distinguish whether or not the

request was satisfied and, if satisfied, whether it was satisfied

(1) with or (2) without migrations. Note that Kraken does not

use “strategic access control” (e.g., to favor “small” requests

to improve that acceptance ratio); in fact, Kraken never rejects

a request if it can be satisfied.

Reconfiguration Costs. While our simulation does not cap-

ture many parameters that determine the actual cost of a

migration we count the number of migrations; this is a natural

metric given the uniform size of CUs of the virtual cluster.

In particular, we will report on the fraction of migrated CUs

relative to the virtual cluster size, which provides more insights

than an absolute number.

B. Methodology & Runtime

Substrate. We model the datacenter as a three-level fat-

tree. Overall, we have 16,000 servers distributed over P = 10

pods of R = 40 racks each; a rack contains S = 40 servers.

By varying the connectivity and the bandwidth of the links

between the switches, we change the over-subscription of the

physical network. By default, we will assume that the access

network is oversubscribed by a factor γ1 = 4, while the core is

not oversubscribed (γ2 = 1). The available bandwidth is B= 10

Gbps.

Demand. New virtual cluster requests arrive according to a

Poisson process with λ = 0.36. The lifetime of each virtual

cluster is chosen according to an exponential distribution with

average 3,600 s (one hour). By default, the size of a virtual

cluster and the bandwidth are chosen from an exponential

distribution with mean 49 and 2.5 Gbps respectively. The

parameters are normalized to induce a system load of 0.75

on average. The size of the virtual cluster in numbers of CUs

is chosen randomly from an exponential distribution, with an

average of 49 CUs per cluster.

Elastic Model. To add dynamicity to the virtual cluster

demands, we use six additional Poisson processes which

continuously pick virtual clusters for upgrading and/or down-

grading in a multiplicative manner. More precisely, the em-

bedded clusters are continuously reconfigured by these six

independent processes which randomly choose one of the ex-

isting clusters and perform a multiplicative update, i.e., either

(1)+(2) upgrade or downgrade the bandwidth by a factor fb (fb

corresponds to δ in our formal sections), (3)+(4) increase or

decrease the cluster size by a factor fn (fn is the multiplicative

version of the additive x in our formal sections), (5)+(6) jointly

upgrade or downgrade the bandwidth and the cluster size by a

factor f . By default, we assume that f = fb = fn = 1.5. With

regards to reporting the results, we focus on the upgrades as

these are the ones which trigger migrations.

To ensure the statistical significance, we run our simulations

for 80k rounds which is roughly eighty times the duration (i.e.,

Migration cost

E
C

D
F

 [
R

e
q
u
e
s
ts

]

0 0.5 1

0
0

.5
1

Kraken

KrakenNM

Oktopus

Migration cost

E
C

D
F

 [
R

e
q
u
e
s
ts

]

0 0.5 1

0
0

.5
1

Migration cost

E
C

D
F

 [
R

e
q
u
e
s
ts

]

0 0.5 1

0
0

.5
1

Fig. 3: Reconfiguration costs: KrakenNP vs. Kraken vs. Base-

line (augmented Oktopus)—(left:) cluster size upgrade, (mid-

dle:) bandwidth upgrade, (right:) joint upgrade. The legend on

the left is valid for all three plots.

lifetime) of a virtual cluster. To avoid artifacts related to the

initial empty substrate, we omit the first 10k requests.

Runtime. In this scenario, Kraken requires 86 ms on average

to satisfy any given request (the 99th percentile is 344 ms),

when run on an Intel i3-2310M CPU @ 2.10GHz.

C. Baseline Comparison

Kraken features two main mechanisms for the efficient up-

grade of a virtual cluster: (1) Kraken allows to upgrade an

existing embedding by increasing the bandwidth between CUs

at their current locations, as well as by the extending the

cluster by the local addition of new CUs; (2) if a local

extension is not sufficient to satisfy a request, Kraken also

supports the re-embedding, i.e., migration of existing CUs.

In order to understand the contribution of each of these two

features, we break down the analysis of Kraken into two

steps: We first study a variant of Kraken, called KrakenNP,

which does not perform fine-grained migrations. (NM stands

No (local) Migrations.) That is, KrakenNP is equivalent to

Kraken, but if a request cannot be satisfied with the given CU

embedding, it resorts to embedding the virtual cluster with the

new specification from scratch. Subsequently, we study the

full-fledged Kraken system which can migrate CUs arbitrarily

in order to satisfy requests (subject to the usual constraint

that the number of migrations should be kept minimal).

For a simple baseline comparison, we also re-implemented

Oktopus [5]; we extended Oktopus so that requests can be

satisfied by re-embedding.

To give a basic understanding of the number of migrations

required to support elastic virtual clusters, Figure 3 plots

the empirical cumulative distribution function (ECDF) of the

migration cost for the three algorithms KrakenNP, Kraken

and Oktopus, and the three operations: add CUs, upgrade

bandwidth, and joint upgrade of CUs and bandwidth. Note

that when a new embedding is performed to satisfy an upgrade

request, the mechanism will guide the embedding process to a

similar configuration. This means that when possible, the CUs

will be assigned to the same old location, which, hence, will

not be counted toward the migration cost. This explains why

in some cases the migration cost of Oktopus and KrakenNP

can also have values different from zero (no migrations) and

one (all CUs are migrated).

We first discuss a scenario where only the bandwidth is

upgraded. In Figure 3 (middle), we can observe that already

KrakenNP is far superior to Oktopus as it can satisfy 45% of

Up−/Downgrade Factor

A
c
c
e

p
ta

n
c
e

 r
a

ti
o

0.0

0.2

0.4

0.6

0.8

1.0

1.1 1.5 2.0

Up−/Downgrade Factor

A
c
c
e

p
ta

n
c
e

 r
a

ti
o

0.0

0.2

0.4

0.6

0.8

1.0

1.1 1.5 2.0

Up−/Downgrade Factor

A
c
c
e

p
ta

n
c
e

 r
a

ti
o

0.0

0.2

0.4

0.6

0.8

1.0

1.1 1.5 2.0

Fig. 4: Kraken acceptance ratios: without migration (dark

gray), with migration (light gray)—(left:) cluster size upgrade,

(middle:) bandwidth upgrade, (right:) joint upgrade.

the upgrade requests without migrations at all, while Oktopus

has to migrate all CUs of a VC for 80% of the upgrade

requests. In general, we find that Oktopus will likely find

similar embeddings (with few migrations) if the upgrade

request happens temporally close to the embedding time.

However, later it becomes likely that virtual clusters will be

embedded on a different sub-tree (or pod), resulting in many

migrations. The performance of Kraken is very similar to the

one of KrakenNP. However, the missing support of partial and

coordinated migrations leads to ≈ 50% cases where KrakenNP

has to migrate all CUs, while Kraken can avoid migrating more

then 50% of the CUs for nearly 80% of the requests.

The corresponding results for cluster size upgrades are shown

in Figure 3 (left). While Oktopus can only embed about 10%

of the upgrade requests without migrating any CUs, Kraken

can upgrade 70% of the requests without migration. KrakenNP

achieves a similar performance, and only for 10% of the

requests, we can observe an improvement ≥ 5% with Kraken

in terms of reconfiguration costs.

Figure 3 (right) studies joint upgrades (bandwidth and cluster

size). Here, the overall performance of Oktopus remains the

same, and the performance of Kraken and KrakenNP becomes

a mixture of the previous cases. While both variants of Kraken

need no migrations for 35% of the requests, KrakenNP has to

migrate all CUs for 40% of the requests, while Kraken can

satisfy about 70% of all requests without migrating all CUs.

D. Sensitivity Study

Next, we conducted a sensitivity study of Kraken, in which

we performed parameter sweeps for the up- and downgrade

ratios fb and fn, the mean number of CUs per request, the

bandwidth requirements per CU, the substrate load, and the

access network over-subscription ratio. We will first study the

effect of the upgrade ratios fb = fn in greater detail, and

subsequently, we report on our general observations for the

other parameters.

Figure 4 shows the acceptance ratio for virtual cluster

upgrades as bar plots. The dark gray area corresponds to

upgrade requests that do not require migration. The light

gray component of the bar corresponds to those requests that

can be satisfied by Kraken but require migration. We again

have three subplots corresponding to the three operations:

adding CUs, upgrading bandwidth, and joint upgrades of

CUs and bandwidth. The impact of the upgrade factor f is

significant, opening a spectrum from “accepting almost all

requests without migrations” (for factors close to one) to “no

0.0

0.2

0.4

0.6

0.8

1.0

Up−/Downgrade Factor

R
e

c
o

n
fi
g

u
ra

ti
o

n
 c

o
s
ts

1.1 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

Up−/Downgrade Factor

R
e

c
o

n
fi
g

u
ra

ti
o

n
 c

o
s
ts

1.1 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

Up−/Downgrade Factor

R
e

c
o

n
fi
g

u
ra

ti
o

n
 c

o
s
ts

1.1 1.5 2.0

Fig. 5: Kraken reconfiguration costs for upgrades with

migrations—(left:) cluster size upgrade, (middle:) bandwidth

upgrade, (right:) joint upgrade.

migration for only 50% of the cluster size upgrade requests”.

The impact of f on the bandwidth upgrades is even more

articulated. As expected in the joint upgrade scenario, the two

factors are amplified. Indeed, the problem is unfeasible for

more than 40% of the requests if the upgrade factor is 2.

To better understand the difference between adding CUs

and upgrading the bandwidth, Figure 5 zooms into the light-

gray area and plots the distribution of the relative number

of migrations, given that the upgrade required at least one

migration. While in most cases it is sufficient to migrate

less than half of the CUs for bandwidth upgrades, it is

necessary to migrate more than 90% of the CUs, if any

reconfigurations are necessary during a size upgrade. This can

be explained by the different triggers of migrations for the two

operations: In many situations, the CUs of a VC are collocated

with each other. Adding CUs in this cases does not require

reconfigurations, as long as there is sufficient spare bandwidth

on the subtree, which currently hosts the VC. Contrary, even a

small bandwidth upgrade can change the maximum number of

CUs which can be collocated (e.g., a bandwidth upgrade from

2.4 Gbps to 2.6 Gbps changes maximum number of collocated

CUs from 4 to 3), which will require a share of the CUs (in this

case 25%) to be migrated. The only case in which adding CUs

will actually trigger migrations, occurs when the subtree which

currently hosts the VC is already highly filled, and the center

has to be moved in order to meet the bandwidth guarantees.

This can also happen during a bandwidth upgrade, but the first

case occurs more often, and hence has a strong impact on the

outcome shown in Figure 5. The joint upgrade case, shows

the combined effects of the other two described upgrades.

We will now report on our observations for the other pa-

rameters: Varying any of the above parameters by 50% never

caused the acceptance ratio to drop below 80%. Moreover, the

acceptance ratio for CU as well as bandwidth upgrades are

comparable to those of Figure 4. Joint upgrades are slightly

more complex but the acceptance ratio is still above 80%. The

largest difference we observed in the worst case acceptance

ratio was 6%.

With regards to the reconfiguration costs we find that cluster

size upgrades are typically more expensive. This is fully

consistent with the observations above. It also points out that

even local greedy search strategies for re-embedding CU size

upgrades can be fairly successful.

In general, we see that most parameters only have a very

small effect on the reconfiguration costs of bandwidth up-

grades, and a small effect on the joint upgrade. On average

✵ ✷ ✹ ✻ ✽ ✶✵
�
✁�

�
✁✂

�
✁✄

�
✁☎

�
✁✆

✝
✁�

❆✈❛✞✟❛✠✟❧ ✡❛☛☞✌✞☞✍✎ ✏✑✠✒✓✔

❈
✕
✖
✗✘
✙
✚
✛
✙
✜
✢✜
✣

✤✥✓

❏✦✞☛✍

✡❛☛☞✌✞☞✍✎

✧ ★ ✩ ✪ ✫ ✬✧
✭
✮✭

✭
✮✯

✭
✮✰

✭
✮✱

✭
✮✲

✳
✮✭

✴✸✺✼✾✺✿✾❀ ❁✺❂❃❄✼❃❅❇ ❉❊✿❋●❍

■
❑
▲
▼◆
❖
P
◗
❖
❘
❙❘
❚

❯❱●

❲❳✼❂❅

❁✺❂❃❄✼❃❅❇

Fig. 6: CDF of the available bandwidth to migrate a compute

unit for upgrades which require migrations. Left: avg. band-

width; Right: min. bandwidth.

across all evaluated parameters, bandwidth upgrades need

approximately one third reconfigurations per CU, while joint

upgrades typically require two third reconfigurations per CU.

This indicates that these operations benefit from the rigorous

optimizations of Kraken.

E. Bandwidth for Migrations

While compute units can be small and light-weight, it may

sometimes be desirable to migrate more state or entire VMs.

Therefore, we investigate the bandwidth available during CU

migrations. Figure 6 shows that for bandwidth upgrades, on

average, approximately 3 Gbps can be guaranteed along the

migration path of each CU on average; the minimum is around

2 Gbps. For joint upgrades, the values are 2 Gbps on average

and 1 Gbps for the CU with the lowest available bandwidth.

These values are encouraging, indicating that even large mi-

grations are feasible in reasonable time. However, we also

see that on the occasion where cluster size upgrades trigger

migrations, the bandwidth can become critical: only 10% of

the requests can guarantee more then 1Gbps of bandwidth for

the migrations. In such settings, one may have to resort to a

separate management network for migration.

VI. DISCUSSION

This paper presented the Kraken system which allows to

dynamically scale up and down the bandwidth and compute

resources allocated to a cloud application at runtime. Thus,

Kraken overcomes the weaknesses of existing solutions, in

which resource reservations either cannot be changed [5],

[11], [20], in which the entire resource schedule has to be

computed at job submission time [7], or in which either only

the bandwidth or the compute resources can be adapted, but

not both [7], [18], [23].

We described algorithms to find a configurable and optimal

tradeoff between embedding and reconfiguration costs, and

complemented the formal guarantees by simulation.

While we have motivated our approach (and are currently

implementing a prototype) for batch-processing applications

such as MapReduce, we believe that our solution is of more

general interest. It also complements nicely the recent work

on time malleable systems like Amoeba [2] and Natjam [6] or

scheduling frameworks such as Jokey [8]. Kraken can also

be applied to systems such as Bazaar [12] that provide a

job-centric interface and allow the provider to select the best

combination of CUs and network resources. The ability of

reallocating CUs and network resources at runtime can expand

the range of scheduling opportunities.

Acknowledgments. Research supported by the German

BMBF Software Campus grant 01IS12056, by the German-

Israeli Foundation for Scientific Research and Development

(GIF No I-1245-407.6/2014), and by the German Ministry for

Education and Research (Berlin Big Data Center, BBDC).

REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data
center network architecture. In ACM SIGCOMM, 2008.

[2] G. Ananthanarayanan, C. Douglas, R. Ramakrishnan, S. Rao, and
I. Stoica. True elasticity in multi-tenant data-intensive compute clusters.
In ACM SOCC, 2012.

[3] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica. Effective
straggler mitigation: Attack of the clones. In USENIX NSDI, 2013.

[4] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu,
B. Saha, and E. Harris. Reining in the outliers in map-reduce clusters
using mantri. In USENIX OSDI, 2010.

[5] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards
predictable datacenter networks. In ACM SIGCOMM, 2011.

[6] B. Cho, M. Rahman, T. Chajed, I. Gupta, C. Abad, N. Roberts, and
P. Lin. Natjam: Design and evaluation of eviction policies for supporting
priorities and deadlines in mapreduce clusters. In ACM SOCC, 2013.

[7] D. Xie et al. The only constant is change: incorporating time-varying
network reservations in data centers. In ACM SIGCOMM, 2012.

[8] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca.
Jockey: guaranteed job latency in data parallel clusters. In 7th ACM
EuroSys, 2012.

[9] C. Fuerst, M. Pacut, P. Costa, and S. Schmid. How hard can it be? un-
derstanding the complexity of replica aware virtual cluster embeddings.
In Proc. 23rd IEEE International Conference on Network Protocols
(ICNP), 2015.

[10] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta. VL2: a scalable and flexible
data center network. In ACM SIGCOMM, 2009.

[11] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang. SecondNet: A data center network virtualization architecture
with bandwidth guarantees. In ACM CoNEXT, 2010.

[12] V. Jalaparti, H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron.
Bridging the tenant-provider gap in cloud services. In SOCC, 2012.

[13] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. Skewtune in action:
Mitigating skew in mapreduce applications. VLDB Endow., 5(12), 2012.

[14] L. Popa et al. FairCloud: Sharing the Network in Cloud Computing. In
SIGCOMM, 2012.

[15] K. LaCurts, J. C. Mogul, H. Balakrishnan, and Y. Turner. Cicada:
Introducing predictive guarantees for cloud networks. In 6th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 14), Philadel-
phia, PA, June 2014. USENIX Association.

[16] M. Chowdhury et al. Managing Data Transfers in Computer Clusters
with Orchestra. In ACM SIGCOMM, 2011.

[17] J. C. Mogul and L. Popa. What we talk about when we talk about cloud
network performance. SIGCOMM CCR, 42(5):44–48, 2012.

[18] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds: managing
performance interference effects for qos-aware clouds. In EuroSys, 2010.

[19] L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul, Y. Turner, and J. R.
Santos. Elasticswitch: Practical work-conserving bandwidth guarantees
for cloud computing. In ACM SIGCOMM, pages 351–362, 2013.

[20] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and D. Guedes. Gate-
keeper: Supporting bandwidth guarantees for multi-tenant datacenter
networks. In 3rd Conference on I/O Virtualization (WIOV), 2011.

[21] M. Rost, C. Fuerst, and S. Schmid. Beyond the stars: Revisiting virtual
cluster embeddings. In ACM SIGCOMM CCR, 2015.

[22] A. Shieh, S. Kandula, A. Greenberg, and C. Kim. Seawall: Performance
isolation for cloud datacenter networks. In USENIX HotCloud, 2010.

[23] K. C. Webb, A. Roy, K. Yocum, and A. C. Snoeren. Blender: Upgrading
Tenant-based Data Center Networking. In ANCS, 2014.

[24] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica.
Improving mapreduce performance in heterogeneous environments. In
USENIX OSDI, 2008.

[25] Measuring EC2 system performance. http://goo.gl/V5zhEd.

