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ABSTRACT
Students have enthusiastically taken to online programming lessons
and contests. Unfortunately, they tend to struggle due to lack of
personalized feedback when they make mistakes. The overwhelm-
ing number of submissions precludes manual evaluation. There is
an urgent need of program analysis and repair techniques capable
of handling both the scale and variations in student submissions,
while ensuring quality of feedback.

Towards this goal, we present a novel methodology calledsemi-
supervised verified feedback generation. We cluster submissions
by solution strategy and ask the instructor to identify or add a cor-
rect submission in each cluster. We then verify every submission
in a cluster against the instructor-validated submission in the same
cluster. If faults are detected in the submission then feedback sug-
gesting fixes to them is generated. Clustering reduces the burden on
the instructor and also the variations that have to be handled during
feedback generation. The verified feedback generation ensures that
only correct feedback is generated.

We have applied this methodology to iterative dynamic program-
ming (DP) assignments. Our clustering technique uses features of
DP solutions. We have designed a novelcounter-example guided
feedback generationalgorithm capable of suggesting fixes to all
faults in a submission. In an evaluation on2226 submissions to
4 problems, we could generateverified feedback for1911 (85%)
submissions in1.6s each on an average. Our technique does a good
job of reducing the burden on the instructor. Only one submission
had to be manually validated or added for every16 submissions.

1. INTRODUCTION
Programming has become a much sought-after skill for superior

employment in today’s technology-driven world [1]. Students have
enthusiastically taken to online programming lessons and contests,
in the hope of learning and improving programming skills. Unfor-
tunately, they tend to struggle due to lack of personalized feedback
when they make mistakes. The overwhelming number of student
submissions precludes manual evaluation. There is an urgent need
of automated program analysis and repair techniques capable of
handling both the scale and variations in student submissions, while
ensuring quality of feedback.

A promising direction is to cluster submissions, so that thein-
structor provides feedback for a representative from each cluster
which is then propagated automatically to other submissions in
the same cluster [20, 41]. This provides scalability while keep-
ing the instructor efforts manageable. Many novel solutions have
been proposed in recent times to enable clustering of programs.
These include syntactic or test-based similarity [15, 44, 20, 13, 12],
co-occurrence of code phrases [36] and vector representations ob-
tained by deep learning [40, 41, 33]. However, clustering can be
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Figure 1: Semi-supervised verified feedback generation:✓ is a
submission verified to be correct,✗ is a faulty submission for
which feedback is generated and ? is an unlabeled submission
for which feedback is not generated.

correct only in aprobabilisticsense. Thus, these techniques cannot
guarantee that the feedback provided manually by the instructor,
by looking only at some submissions in a cluster, would indeed be
suitable to all the submissions in that cluster. As a result,some
submissions may receive incorrect feedback. Further, if submis-
sions that have similar mistakes end up in different clusters, some
of them may not receive the suitable feedback. Instead of helping,
these drawbacks can cause confusion among the students.

To overcome these drawbacks, we propose a novel methodology
in which clustering of submissions is followed by an automated
feedback generation phase grounded in formal verification.Fig-
ure 1 shows our methodology, calledsemi-supervised verified feed-
back generation. Given a set of unlabeled student submissions,
we first cluster them by similarity of solution strategies and ask
the instructor to identify1 a correct submission in each cluster. If
none exists, the instructor adds a correct solution similarto the
submissions in the cluster; after which we do clustering again. In
the next phase, each submission in a cluster isverified against the
instructor-validated submissionin the same cluster. If any faults
are detected in the submission then feedback suggesting fixes to
them is generated. Because program equivalence checking isan un-
decidable problem, it may not be possible to generate feedback for
every submission. We let the instructor evaluate such submissions
manually. This is better than propagating unverified or incorrect
feedback indiscriminately.

The proposed methodology has several advantages. First, ituses
unsupervised clustering to reduce the burden on the instructor. The
supervision from the instructor comes in the form of identifying
a correct submission per cluster. Second, the verification phase

1To minimize instructor’s efforts further, we discuss strategies to
suggest potentially correct submissions to the instructor.
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1 void main() {
2 int i, j, n, max;
3 scanf("%d", &n); // Input
4 int m[n][n], dp[n][n]; // dp is the DP array
5 for (i = 0; i < n; i++)
6 for (j = 0; j <= i; j++)
7 scanf("%d", &m[i][j]); // Input
8 dp[0][0] = m[0][0]; // Initialization
9 for (i = 1; i < n; i++) {

10 for (j = 0; j <= i; j++) {
11 if (j == 0)
12 dp[i][j] = dp[i-1][j] + m[i][j]; // Update
13 else if (j == i)
14 dp[i][j] = dp[i-1][j-1] + m[i][j]; // Update
15 else if (dp[i-1][j] > dp[i-1][j-1])
16 dp[i][j] = dp[i-1][j] + m[i][j]; // Update
17 else dp[i][j] = dp[i-1][j-1] + m[i][j]; // Update
18 }
19 }
20 max = dp[n-1][0];
21 for (i = 1; i < n; i++)
22 if (dp[n-1][i] > max) max = dp[n-1][i];
23 printf("%d", max); // Output
24 }

Figure 2: A correct submission for the matrix path problem.

complements clustering by providingcertainty about correctness
of feedback. Clustering helps by reducing the variations required
to be handled during feedback generation. It would be difficult to
check equivalence of very dissimilar submissions,e.g., an iterative
solution against a recursive solution. Since only submissions that
are similar (i.e., belong to the same cluster) are compared, there is
a higher chance of making equivalence checking work in practice.
Third, feedback is generated for each submission separately so it
is personalized. This is superior to propagating a manually-written
feedback indiscriminately to all the submissions in a cluster.

To demonstrate the effectiveness of this methodology, we apply
it to iterative dynamic programming assignments. Dynamic pro-
gramming (DP) [8] is a standard technique taught in algorithms
courses. Shortest-path and subset-sum are among the many prob-
lems that can be solved efficiently by DP. We design features that
characterize the DP strategy and extract them from student submis-
sions by static analysis and pattern matching. The featuresinclude
the types of the DP arrays used for memoizing solutions to sub-
problems, and how the sub-problems are solved and reused iter-
atively. The set of features we need is small and all featuresare
discrete valued. Therefore, our clustering approach is very simple
and works directly by checking equality of feature values.

We also propose a novel feedback generation algorithm called
counter-example guided feedback generation. The equivalence be-
tween two submissions is checked using syntactic simplifications
and satisfiability-modulo-theories (SMT) based constraint solving.
If an equivalence check fails, our algorithm uses the counter-example
generated by the SMT solver to refine the equivalence query. This
process terminates when our algorithm proves the equivalence, or
is unable to refine the query. A trace of refinements leading toa
logically valid equivalence query constitutes the feedback.

As an example, consider the matrix path problem2 taken from
a popular programming contest site CodeChef. A lower triangular
matrix of n rows is given. Starting at a cell, a path can be traversed
in the matrix by moving either directly below or diagonally below
to the right. The objective is to find the maximum weight amongthe
paths that start at the cell in the first row and first column, and end in
any cell in the last row. The weight of a path is the sum of all cells

2http://www.codechef.com/problems/SUMTRIAN

1 int max(int a, int b) {
2 return a > b ? a : b;
3 }
4 int max_arr(int arr[]) {
5 int i, max;
6 max = arr[0];
7 for (i = 0; i < 100; i++)
8 if (arr[i] > max) max = arr[i];
9 return max;

10 }
11 int main() {
12 int n, i, j, A[101][101], D[101][101]; // D is the DP array
13 scanf("%d", &n);// Input
14 for (i = 0; i < n; i++)
15 for (j = 0; j <= i; j++)
16 scanf("%d", &A[i][j]); // Input
17 D[0][0] = A[0][0] ; // Initialization
18 for (i = 1; i < n; i++)
19 for (j = 0; j <= i; j++)
20 D[i][j] = A[i][j] + max(D[i-1][j], D[i-1][j-1]); // Update
21 int ans = max_arr(D[n-1]);
22 printf("%d", ans); // Output
23 return 0;
24 }

Figure 3: A faulty submission belonging to the same cluster as
the correct submission in Figure 2.

In the declaration: 1) Types ofA andD should beint[n][n]
In the update:
2) Under guardj == 0,

computeD[i][j] = D[i-1][j] + A[i][j]
instead ofD[i][j] = A[i][j] + (D[i-1][j]>D[i-1][j-1] ?

D[i-1][j] : D[i-1][j-1]).
3) Under guard(j != 0 && j == i),

computeD[i][j] = D[i-1][j-1] + A[i][j]
instead ofD[i][j] = A[i][j] + (D[i-1][j]>D[i-1][j-1] ?

D[i-1][j] : D[i-1][j-1]).
In the output: 4) Under guardtrue, compute maximum

overD[n-1][0],...,D[n-1][n-1] instead ofD[n-1][0],...,D[n-1][99].

Figure 4: The auto-generated feedback for the submission in
Figure 3 by verifying it against the submission in Figure 2.

along that path. Figure 2 shows an example correct submission
to this problem and Figure 3 shows a faulty submission. The two
programs are syntactically and structurally quite different but both
use 2D integer arrays for memoization and iterate over them in the
same manner. Our clustering technique therefore puts them into the
same cluster. This avoids unnecessarily creating many clusters but
requires a more powerful feedback generation algorithm that can
handle stylistic variations between submissions,e.g., Figure 3 uses
multiple procedures whereas Figure 2 uses only one.

Our algorithm automatically generates the feedback in Figure 4
for the faulty submission by verifying it against the correct submis-
sion. The first correction suggests that the submission should use
array sizes asint[n][n] instead of hardcoded value ofint[101][101].
The update to the DP arrayD at line 20 in Figure 3 misses some cor-
ner cases for which our algorithm generates corrections #2 and #3
above. The computation of output at line 22 should use the correct
array bounds as indicated by correction #4. This is a comprehen-
sive list of changes to correct the faulty submission.

We have implemented our technique for C programs and evalu-
ated it on2226 student submissions to4 problems from CodeChef.
On1911 (85%) of them, we could generate feedback by either ver-
ifying them to be correct, or identifying faults and fixes forthem.
In addition to faults in wrong answers, we also found faults in
265 submissions accepted by CodeChef as correct answers! Like
most online contest sites, CodeChef uses test-based evaluation. Our



static verification technique has a qualitative advantage over the
test-based approach of online judges. The submissions comefrom
1860 students from over250 different institutes and are therefore
representative of diverse backgrounds and coding styles. Even then,
the number of clusters ranged only from2–80 across the problems.
Our technique does a good job of reducing the burden on the in-
structor. On an average, using one manually validated or added
submission, we generated verified feedback on16 other submis-
sions. We had to add only7 correct solutions manually. While our
technique generated feedback automatically for1911 submissions,
the remaining315 (15%) submissions require manual evaluation.
Our technique is fast and on an average, took1.6s to generate feed-
back for each submission.

Work on feedback generation so far has focused onintroductory
programmingassignments [46, 17, 47, 21]. In comparison, we ad-
dress the challenging class ofalgorithmicassignments, in particu-
lar, that of dynamic programming. The program repair approaches
for developers [27, 37, 24, 31, 29] deal with one program at a time.
We work with all student submissions simultaneously. To do so, we
propose a methodology inspired by both machine learning andveri-
fication. Unlike the developer setting, we have the luxury ofcalling
upon the instructor to identify or add correct solutions. Weexploit
this to give complete and correct feedback but then our technique
must solve the challenging (and in general, undecidable) problem
of checking semantic equivalence of programs.

The salient contributions of this work are as follows:

• We present a novel methodology of clustering of submissions
followed by program equivalence checking within each clus-
ter. This methodology can pave way for practical feedback
generation tools capable of handling both the scale and vari-
ations in student submissions, while minimizing the instruc-
tor’s efforts and ensuring quality of feedback.
• We demonstrate that this methodology is effective by apply-

ing it to the challenging class of iterative DP solutions. We
design a clustering technique and a counter-example guided
feedback generation algorithm for DP solutions.
• We experimentally evaluate the technique on2226 submis-

sions to4 problems and generateverified feedback for85%

of them. We show that our technique does not require many
inputs from the instructor and runs efficiently.

2. DETAILED EXAMPLE
We now explain in details how our technique handles the moti-

vating example from the previous section.

2.1 Clustering Phase
The two submissions in Figure 2 and Figure 3 are syntactically

and structurally quite different. Our technique extracts features of
the solution strategy in a submission. These features are more ab-
stract than low-level syntactic or structural features andput the su-
perficially dissimilar submissions into the same cluster.

The solution strategy of a DP program is characterized by the
DP recurrence being solved [8]. The DP recurrence for the correct
submission in Figure 2 is as follows:

dp[i][j] =



















m[0][0] if i=0, j=0

dp[i-1][j]+m[i][j] if i 6=0, j=0

dp[i-1][j-1]+m[i][j] if j= i 6=0

max(dp[i-1][j],dp[i-1][j-1])+m[i][j] otherwise

wheredp is the DP array,m is the input matrix ofn rows, andi goes
from 0 to n-1, j goes from0 to i andmax returns the maximum of

the two numbers. The DP recurrence of the submission in Figure 3
is similar but misses the second and third cases above.

Comparing the recurrences directly would be ideal but extracting
them is not easy. Students can implement a recurrence formula in
different imperative styles. They may use multiple procedures (as
in Figure 3) and arbitrary temporary variables to hold intermediate
results. Rather than attempting to extract the precise recurrence,
we extract some features of the solution to find submissions that
use similar solution strategies. For this, our analysis identifies and
labels the DP arrays used in each submission. It also identifies and
labels key statements that 1) read inputs, 2) initialize theDP array,
3) update the DP array elements using previously computed array
elements, and 4) generate the output. The comments in Figure2
and Figure 3 identify the DP arrays and key statements.

We call a loop which is not contained within any other statement
as atop-level loop. For example, the loop at lines 9–19 in Figure 2
is a top-level loop but the loop at lines 10–18 is not. More gener-
ally, a statement which is not contained within any other statement
is a top-level statement. The features extracted by our technique
and their values for the submission in Figure 2 are as follows:

1. Type and the number of dimensions of the DP array:〈int, 2〉
2. Whether the input array is reused as the DP array: No
3. The number of top-level loops which contain update state-

ments for the DP array:1
4. For each top-level loop containing updates to the DP array,

(a) The loop nesting depth:2

(b) The direction of loop indices:〈+,+〉 (indicating that
the respective indices are incremented by one in each
iteration of the corresponding loops)

(c) The DP array element updated inside the loop:dp[i][j]

Extracting these features requires static analysis and syntactic
pattern matching. The most challenging part is identifyingwhich
array serves as a DP array. An array which is defined in terms of
itself is identified as a DP array since in the DP recurrence, the
DP array appears on both sides. However, a student may use some
temporary variables to store intermediate results of DP computation
and pass values across procedures. As explained in Section 3.1, we
track data dependences inter-procedurally. In Figure 3, the array
elementsD[i-1][j] andD[i-1][j-1] are passed to the proceduremax.
Through inter-procedural analysis, our technique infers that the re-
turn value ofmax is indeed defined in terms of these arguments
and hence,D is defined in terms of itself at line 20. Thereby, it
discovers thatD is a DP array.

The submission in Figure 3 yields similar feature values andis
clustered along with the submission in Figure 2. Note that our ob-
jective is not to use clustering to distinguish between correct and
incorrect submissions. We therefore do not encode the exactna-
ture of the initialization or update of the DP array in the features.
Analyzing these is left to the verification and feedback phase.

2.2 Verification and Feedback Phase
After clustering, suppose the instructor identifies the submission

in Figure 2 as correct. Our objective is to verify the submission in
Figure 3 against it and suggest fixes if any faults are found. For
brevity, we will refer to the submission in Figure 2 as thereference
and the submission in Figure 3 as thecandidate.

By analyzing the sequence in which inputs are read, our tech-
nique infers that the candidate uses two input variables: aninteger
variablen and a 2D integer arrayA, wheren is read first (line 13)
andA second (line 16). Their types respectively match the types
of the input variablesn andm of the reference except that the can-
didate uses a hardcoded array size forA. Both submissions use 2D
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Is ψ2

valid?

Is ψ3

valid?

a) Successive equivalence queries and results

Counter-exampleE1

Counter-exampleE2

Counter-example Yes

Yes

Yes

Using the counter-exampleE1, the algorithm dis-
covers that whenj = 0, ϕ2 computes statement
s1 (line 20 in Figure 3) but according toϕ1, it
should computes2: D[i][j] = D[i-1][j]+A[i][j].

Let ϕ′2 ≡ (j 6= 0 =⇒ s1) ∧ (j = 0 =⇒ s2).

Using the counter-exampleE2, the algorithm dis-
covers that whenj = i ∧ j 6= 0, ϕ′2 computes
s1 but according toϕ1, it should computes3:
D[i][j] = D[i-1][j-1]+A[i][j].

Let ϕ′′2 ≡ (j 6= 0 ∧ j 6= i =⇒ s1) ∧ (j 6= 0∧ j =
i =⇒ s3) ∧ (j = 0 =⇒ s2).

Correction #2

Correction #3

ψ1 ≡ pre ∧ ϕ1 ∧ ϕ2 =⇒ post

ψ2 ≡ pre ∧ ϕ1 ∧ ϕ′2 =⇒ post

ψ3 ≡ pre ∧ ϕ1 ∧ ϕ′′2 =⇒ post

b) Refinement steps and corrections suggested

Figure 5: Steps of the verified feedback generation algorithm for the DP update in the faulty submission in Figure 3.

integer DP arrays but the candidate hardcodes array size of the DP
array D also. While the reference can handle arbitrarily large in-
put matrices, the candidate can handle input matrices only up to
size101× 101. For smaller input matrices, the reference is more
space efficient than the candidate. Our technique thereforeemits
correction #1 in Figure 4 suggesting size declarations forA andD.

We check equivalence of matching code fragments of the two
submissions one-by-one. The matching code fragments are easy to
identify given the statement labels computed during feature extrac-
tion. For our example, line 20 of the candidate is an “update”state-
ment and lines 12, 14, 16 and 17 of the reference are also “update”
statements. Therefore, the top-level loop (sayL2) at lines 18–20 of
the candidate matches the top-level loop (sayL1) at lines 9–19 of
the reference. The question is whether they are equivalent.

We check equivalence of the loop headers first. The input vari-
ablesn in both submissions correspond to each other and are not
re-assigned before they are used in the respective loop headers.
Therefore, the loop headers ofL1 and L2 are equivalent. Thus,
the corresponding loop indices are equal in each iteration.

To check equivalence of loop bodies, our algorithm formulates
anequivalence queryψ1 which asserts that in an (i,j)th iteration, if
the two DP arrays are equal at the beginning then they are equal at
the end of the iteration. The equivalence query is of the form:

ψ1 ≡ pre ∧ ϕ1 ∧ ϕ2 =⇒ post

where 1)pre encodes the equality of DP arrays, loop indices and
input variables at the beginning of the iteration, and the lower and
upper bounds on the loop index variables in the reference, 2)post
encodes the equality of DP arrays at the end of the iteration (we
syntactically check that input variables are not changed),3) ϕ1 is a
formula encoding the statements in the loop body of the reference,
and 4)ϕ2 is a formula encoding the statements in the loop body of
the candidate. Converting a loop-free sequence of statements into
a formula is straightforward. For example, anif-statement such
as if(p) x = e is converted to a guarded equality constraintp :

x′ = e wherex′ is a fresh variable. The predicates in anif-else

statement are propagated so as to make the guards mutually disjoint
and finally, the conjunction of all guarded equality constraints is
taken. We defer other technical details to Section 3.2.

As shown in Figure 5.a, the algorithm checks whetherψ1 is
a logically valid formula. The SMT solver finds the following

counter-exampleE1 which shows that the formula is not valid:

j = 0, dp[i][j] = 1, D[i][j] = 2, m[i][j] = A[i][j] = 1,
dp[i-1][j] = D[i-1][j] = 0, dp[i-1][j-1] = D[i-1][j-1] = 1

Following the usual convention, we use= as equality in formulae
and use == as equality in code. Similarly,6= and != denote dise-
quality symbols in formulae versus code.

Our algorithm, calledcounter-example guided feedback genera-
tion algorithm, usesE1 to localize the fault in the candidate. It first
identifies which guards are satisfied by the counter-examplein the
candidate and the reference, and whether they are equivalent. The
guardj = 0 is satisfied inϕ1 and the implicit guardtrue for line 20
is satisfied inϕ2. Since they are not equivalent, the algorithm infers
that the faulty submission is missing a condition. On the contrary, if
the guards turn out to be equivalent, the fault is localized to the as-
signment statement. It then derives a formulaϕ′2 given in Figure 5.b
which lets the candidate compute line 20 under the guardj!=0 and
makes it computeD[i][j] = D[i-1][j]+A[i][j] underj==0. This
assignment statement is obtained from the assignment at line 12
under the guardj==0 of the reference in Figure 2 by substituting
the variables from the candidate. The algorithm records this refine-
ment in the form of correction #2 of Figure 4.

As shown in Figure 5.a, it checks validity ofψ2 ≡ pre ∧ ϕ1 ∧
ϕ′2 =⇒ post obtained by replacingϕ2 (the encoding of candi-
date’s loop body) byϕ′2 (defined in Figure 5.b). This results in a
counter-exampleE2 using which the algorithm discovers the miss-
ing case ofj==i and generates correction #3 of Figure 4. For
brevity, we do not show the counter-exampleE2. A refined equiv-
alence queryψ3 shown in Figure 5.b is computed. As shown in
Figure 5.a, this formula is valid and establishes that the faults in the
candidate can be fixed using the synthesized feedback.

The input and initialization parts of the two submissions are found
to be equivalent. In our experiments, we observed certain repeat-
ing iterative patterns. The computation of a maximum over an
array in lines 6–8 in Figure 3 is one such example. We encode
syntactic patterns to lift these to certain predefined functions. We
define_max which takes the first and the last elements of a con-
tiguous array segment as arguments and returns the maximum over
the array segment. In Figure 3, the output expression in terms of
_max is _max(D[n-1][0], D[n-1][99]) and in Figure 2, the output
is _max(dp[n-1][0], dp[n-1][n-1]). A syntactic comparison between
the two leads to correction #4 in Figure 4.



3. TECHNICAL DETAILS
We now explain our approach for clustering submissions, andthe

algorithm for verified feedback generation.

3.1 Clustering by Solution Strategy
The first phase of our technique is to cluster submissions by the

solution strategy so that each cluster can be analyzed separately.

3.1.1 Feature Design
Section 2.1 has already introduced the features of a submission

that we use. Typically, in machine learning, a large number of fea-
tures are obtained and then the learning algorithm finds the impor-
tant ones (called feature selection). In our case, since thedomain
is well-understood, we design a small number of suitable features
that provide enough information about the solution strategy.

In particular, we cluster two submissions together if 1) they use
the same type and dimensions for the DP arrays, 2) either bothuse
DP arrays distinct from the input arrays or not, and 3) there is a
one-to-one correspondence between top-level loops which contain
DP update statements — the loops should have the same depth, di-
rection and the DP array element being updated. Two submissions
in the same cluster can differ in all other aspects.

The rationale behind these features is simple: Checking equiv-
alence of two submissions which use the same types of DP arrays
and similar DP update loops is easier than if they do not sharethese
properties. For example, the subset-sum problem can be solved by
using either a boolean DP array or an integer DP array, but thetwo
implementations are hard to compare algorithmically. Recall the
matrix path problem stated in the Introduction. Consider a sub-
mission which traverses the matrix from top-to-bottom and another
which traverses it from bottom-to-top. Using one to validate the
other is difficult and perhaps, even undesirable. The features of DP
update loops will prevent these submissions from being partof the
same cluster. Imposing further restrictions (by adding more fea-
tures) can make verification simpler but will increase the burden on
the instructor by creating additional clusters.

The feature 4.c described in Section 2.1 requires a bit more ex-
planation. We want to get the DP array element being updated
inside each loop containing a DP update statement. If two sub-
missions use different names for DP arrays and loop indices,we
cannot compare them. To compare them across submissions, our
technique uses canonical names for them:dp for the DP array and
loop indicesi, j, k, etc. from the outer to inner loops. If a submis-
sion uses multiple DP arrays then we assign subscripts todp.

3.1.2 Feature Extraction
Identifying input statements and variables is simple. We look

for the common C library functions likescanf. The case of out-
put statements is similar. A variablex is identified as a loop index
variable if 1) x is a scalar variable, 2)x is initialized before the
loop is entered, 3)x updated inside the loop and 4)x is used in
the loop guard. Identifying DP arrays requires more subtle analy-
sis discussed below. We call DP arrays, input variables and loop
indices in a submission asDP variables. All other variables are
called temporary variables.

To eliminate the use of a temporary variablex at a control loca-
tion l, we compute a set of guarded expressions

{g1 : e1, . . . , gn : en}

where the guards and expressions are defined only over DP vari-
ables, and the guards are mutually disjoint. We denote this set by
Σ(l, x) and callΣ thesubstitution store. Semantically, ifgk : ek ∈
Σ(l, x) thenx andek evaluate to the same value atl whenevergk

evaluates to true atl. The substitution storeΣ is lifted in a nat-
ural manner to expressions and statements. For instance, for an
assignment statements ≡ x = e, Σ(l, s) = {g1 : x = e1, . . . , gn :

x = en} where{g1 : e1, . . . , gn : en} = Σ(l, e).
Gulwani and Juvekar [16] developed aninter-proceduralback-

ward symbolic execution algorithm to compute symbolic bounds
on values of expressions. While we are not interested in the bounds,
the equality mode of their algorithm suffices to compute substitu-
tion stores. We refer the reader to [16] for the details.

To determine whether a statements at locationl is an initial-
ization or an update statement, we perform pattern matchingover
Σ(l, s). If the same array appears on both sides of an assignment
statement then the array is identified as a DP array and the statement
is labeled as an update statement. A statement where the LHS is a
DP array and RHS is an input variable or a constant is labeled as
an initialization statement. InΣ(l, s), the temporary variables ins
are replaced by the guarded expressions from the substitution store.
This makes the labeling part of our tool robust even in presence of
temporaries and procedure calls. For example, suppose we have t

= x[i-1]; x[i] = t;. The second statement can be identified as an up-
date statement through pattern matching only if we substitutex[i-1]

in place oft on the RHS of the statement. In general,Σ(l, s) may
contain multiple guarded statements. IfΣ(l, s) = {s1, . . . , sn}, we
require that all ofs1, . . . , sn satisfy the same pattern and get the
same label. Extracting the feature values is now straightforward.

3.1.3 Clustering and Identifying Correct Submissions
All our features are discrete valued. Therefore, our clustering al-

gorithm is very simple and works directly by checking equality of
feature values. Once the clustering is done, we ask the instructor to
identify a correct submission from each cluster. To reduce instruc-
tor’s efforts, we can employ some heuristics to rank candidates in a
cluster and present them one-by-one to the instructor. For example,
we can use a small set of tests or majority voting on some other
features of submissions like the loop bounds of update loops.

The instructor can accept a submission as correct or add a mod-
ified version of an existing submission. If none of this is possible,
the instructor can write a correct solution similar to the solutions
in the cluster. If a new submission is added, we perform clustering
again. The instructor may have correct solutions from a previous
offering of the course if the assignment is repeated from a previous
offering. The instructor can add them to the dataset even before we
apply clustering to the submissions.

3.2 Verified Feedback Generation
Once the submissions are clustered and the instructor has identi-

fied a valid submission for each cluster, we proceed to the verified
feedback generation phase. We check semantic equivalence of a
submission from a cluster (called thecandidate) with the instructor-
validated submission from the same cluster (called thereference).

3.2.1 Variable and Control Correspondence
Program equivalence checking is an undecidable problem. In

practice, a major difficulty is establishing correspondence between
variables and control locations of the two programs [34]. Weex-
ploit the analysis information computed during feature extraction
to solve this problem efficiently.

Let σ be a one-to-one function, called avariable map. σ maps
the input variables and DP arrays of the reference to the corre-
sponding ones of the candidate. To obtain a variable map, thein-
put variables of the two submissions are matched by considering
the order in which they are read and their types. The DP arrays
are matched based on their types. If there are multiple DP arrays



with the same type in both submissions then all type-compatible
pairs are considered. This generates a set of potential variable maps
and equivalence checking is performed for each variable mapsepa-
rately. The one which succeeds and produces the minimum number
of corrections is used for communicating feedback to the student.
In equivalence checking, we eliminate the occurrences of tempo-
rary variables using the substitution store computed during feature
extraction. We therefore do not need to derive correspondence be-
tween temporary variables – which simplifies the problem greatly.

The feature extraction algorithm labels the input, initialization,
update and output statements of a submission. We refer to these
statements aslabeled statements. The labeled statements give an
easy way to establish control correspondence between the submis-
sions. We now use the notion of top-level statements defined in
Section 2.1. LetR̂ = [s1

1
, . . . , sk

1
] be the list of all top-level state-

ments of the reference such that 1) each statement inR̂ contains at
least one labeled statement and 2) the order of statements inR̂ is
consistent with their order in the reference submission. Itis easy to
see that the top-level statements in a submission are totally ordered.
Let Ĉ = [s1

2, . . . , sn
2 ] be the similar list for the candidate submis-

sion. Without loss of generality, from now on, we assume thatthere
is only one DP array in a submission and the top-level statements
are (possibly nested) loops.

A (top-level) loop in R̂ or Ĉ may contain multiple statements
which have different labels. For example, a loop may read thein-
put and also update the DP array. We call it aheterogeneousloop.
If a loop reads two different input variables then also we call it
a heterogeneous loop. Heterogeneous loops make it difficultto es-
tablish control correspondence between the statement lists R̂ andĈ.
Fortunately, it is not difficult to canonicalize the statement lists us-
ing semantics-preservingloop transformations, well-known in the
compilers literature [3]. Our algorithm first does loop splitting to
split a heterogeneous loop into different homogeneous loops. It
then does loop merging to coalesce different loops operating on the
same variable. Specifically, it merges two loops reading thesame
input array. It also merges loops performing initialization to the
same DP array. During merging, we ensure that there is no loop
in between the merged loops such that it reads from or writes to
the same variable or array as the merged loops. In our experience,
in most cases, these transformations work because loops reading
inputs or performing initialization of DP arrays donot have loop-
carried dependences or ad-hoc dependences between loops.

In contrast, by definition, loops performing DP updates do have
loop-carried dependences. We therefore do not attempt loopmerg-
ing for such loops. The feature3 in Section 2.1 tracks the number
of loops containing DP updates. Therefore, two submissionsin the
same cluster already have the same number of loops containing DP
updates. Thus, clustering helps in reducing the variants that need
to be considered during feedback generation.

Let R andC be the resulting statement lists for the reference and
candidate submissions respectively. If they have the same length
and at each indexi, the ith loops in the two lists 1) operate on the
variables related by a variable mapσ, 2) the statements operating
on the variables carry the same labels and 3) the loops have the
same nesting depth and directions then we get thecontrol corre-
spondenceπ : R → C. If our algorithm fails to compute variable
or control correspondence for the candidate then it exits without
generating feedback, implicitly delegating it to the instructor.

3.2.2 Equivalence Queries
Let s′

1
ands′2 be the top-level loops from the reference and the

candidate such thatπ(s′
1
) = s′2. We first use the substitution map

computed during feature extraction to eliminate temporaryvari-

ables and procedure calls ins′
1

and s′2 by equivalent guarded ex-
pressions over only DP arrays, loop indices and input variables.
Let s1 = Σ(l1, s′1) ands2 = Σ(l2, s′2) wherel1 and l2 are control
locations ofs′1 ands′2.

We formulate an equivalence queryΦ for the iteration spaces
of s1 and s2. Let corr be the correspondence between the input
variables, DP arrays, and loop indices ofs1 ands2 at the matching
nesting depths. We defineiter1 to be the range of the loop indices
in s1 andguards1 to be the disjunction of all guards present in the
loop body ofs1. Similarly, we haveiter2 andguards2 for s2. The
equivalence queryΦ is defined as follows:

Φ ≡ corr =⇒ (iter1 ∧ guards1 ⇐⇒ iter2 ∧ guards2)

This query provides more flexibility than using direct syntactic
checking between the loop headers. For example, supposes1 is
for(i=1, i<=n, i++){true: s} and s2 is for(i′=0, i′<=n, i′++){i′

> 0: s′}. s1 executess for 1 ≤ i ≤ n ands2 also executess′ for 1 ≤
i′ ≤ n. A syntactic check will end up concluding thats2 executes
one additional iteration wheni′ is 0. But our equivalence query
establishes equivalence between the iteration spaces as desired.

The formulation of the queryΨ to establish equivalence between
loop bodies ofs1 ands2 is as discussed in Section 2.2. Even though
the submissions use arrays, we eliminate them from the queries. A
loop body makes use of only a finite number of symbolic array ex-
pressions. We substitute each unique array expression in a query by
a scalar variable while encoding correspondence between the scalar
variables in accordance with the variable mapσ. We overcome
some stylistic variations when the order of operands of a commu-
tative operation differs between the two submissions. For example,
says1 usesx[i+j] ands2 usesy[b+a] such thatσ(x) = y, σ(i) = a

andσ(j) = b. The expressionsi+j andb+a are not identical under
renaming but are equivalent due to commutativity. To take care of
this, we force a fixed ordering among variables in the two submis-
sions for commutative operators. Sometimes, the instructor may
include some constraints over input variables as part of theprob-
lem statement. In the equivalence queries, our algorithm takes in-
put constraints into account and also adds array bounds checks. We
omit these details due to space limit.

3.2.3 Counter-Example Guided Feedback Generation
Algorithm 1 is our counter-example guided feedback generation

algorithm. Its input is a listQ of equivalence queries where each
query(Φi, Ψi) corresponds to theith statements in the two submis-
sions.Φi encodes the equivalence of iteration spaces andΨi of the
loop bodies. If theith statements are not loops,Φi is true andΨi
just checks equivalence of the loop-free statements. The output of
the algorithm is a list of corrections to the candidate submission.

Algorithm 1 iterates over the query list (line 1). For a query
(Φi, Ψi), it first checks whetherΦi is (logically) valid or not. If it
is not then the algorithm suggests a correction to make the iteration
spaces of theith statements (loops) of the two submissions equal
(lines 2-4). It then enters a refinement loop forΨi at lines 7-23.

During each iteration of the refinement loop, it checks whether
Ψi is valid. If yes, it exits the loop (line 9). Otherwise, it gets
a counter-exampleα from the SMT solver and finds the guarded
statements that are satisfied byα. Let g1 : s1 ∈ ϕ1 and g2 :

s2 ∈ ϕ2 be those statements (line 11). The formulaeϕ1 and ϕ2

correspond to the encodings of the loop bodies of the reference and
the candidate respectively. Note that the conversion of statements
to guarded equality constraints (Section 2.2) ensures thatthe guards
within ϕ1 and withinϕ2 are pairwise disjoint.

Let σ̂ be the variable map which is same as the variable corre-
spondenceσ but augmented with the correspondence between loop



Algorithm 1: Algorithm GENFEEDBACK

Input : A list Q = [(Φ1, Ψ1), . . . , (Φk, Ψk)] of equivalence queries
Output : A list of corrections to the candidate submission

1 foreach (Φi, Ψi) ∈ Q do
2 if ∃α 6|= Φi then
3 Suggest corrections to make the iteration spaces of theith

statements of the two submissions equal
4 end
5 Let Ψi ≡ pre ∧ ϕ1 ∧ ϕ2 =⇒ post
6 k← 0

7 repeat
8 k← k + 1

9 if |= Ψi then break else
10 Let α 6|= Ψi be a counter-example
11 Let g1 : s1 ∈ ϕ1 andg2 : s2 ∈ ϕ2 s.t. α |= g1 andα |= g2

12 if |= pre =⇒ (g1 ⇐⇒ g2) then
13 ϕ′2 ← ϕ2[g2 : s2/g2 : σ̂(s1)]
14 Ψi ← Ψi[ϕ2/ϕ′2]
15 Suggest computation ofσ̂(s1) instead ofs2 underg2

16 else
17 h2 ← g2 ∧ σ̂(g1); h′2 ← g2 ∧ σ̂(¬g1)
18 ϕ′2 ← ϕ2[g2 : s2/h2 : σ̂(s1) ∧ h′2 : s2]
19 Ψi ← Ψi[ϕ2/ϕ′2]
20 Suggest computation ofσ̂(s1) instead ofs2 underh2

21 end
22 end
23 until k < δ
24 if k = δ then Suggest a correction to replaceϕ2 by σ̂(ϕ1)
25 end

indices at the same nesting depths for theith statements. The func-
tion σ̂ is lifted in a straightforward manner to expressions and as-
signments. The algorithm checks whether the guardsg1 andg2 are
equivalent (line 12). If they are then the fault must be in theas-
signment statements2. It therefore definesϕ′2 by substitutings2 by
σ̂(s1) in ϕ2 (line 13) and refinesΨi by replacingϕ2 by ϕ′2 (line 14).
It suggests an appropriate correction for the candidate submission
(line 15). The other case when the guards are not equivalent leads
to the other branch (lines 16-21). The algorithm now splits the
guarded assignmentg2 : s2 to make it conform to the reference
underh2 ≡ g2 ∧ σ̂(g1), whereas, forh′2 ≡ g2 ∧ σ̂(¬g1), the can-
didate can continue to performs2 (line 17). It computesϕ′2 by
replacingg2 : s2 by h2 : σ̂(s1) andh′2 : s2 (line 18). It then refines
Ψi by replacingϕ2 by ϕ′2 (line 19) and suggests an appropriate cor-
rection for the candidate submission (line 20). The refinement loop
terminates when no more counter-examples can be found (line9)
and thus, progressively findsall semantic differences betweenith
statements of the two submissions.

Each iteration of the refinement loop eliminates a semantic dif-
ference between a pair of statements from the two submissions and
the loop terminates after a finite number of iterations. In practice,
giving a long list of corrections might not be useful to the student if
there are too many mistakes in the submission. A better alternative
might be to stop generating corrections after a threshold isreached.
We use a constantδ to control how many refinements should be
attempted (line 23). If this threshold is reached then the algorithm
suggests a total substitution ofσ̂(ϕ1) in place ofϕ2 (line 24). In
our experiments, we usedδ = 10.

Due to the explicit verification of equivalence queries, ouralgo-
rithm only generates correct feedback. The feedback for thedec-
larations of the candidate are obtained by checking dimensions of
the corresponding variables according toσ.

4. IMPLEMENTATION

Table 1: Summary of submissions and clustering results.

Problem Total Clusters with Clusters with
subs. correct sub. manually added

correct sub.

SUMTRIAN 1983 78 2

MGCRNK 144 23 3

MARCHA1 58 4 2

PPTEST 41 2 0

Total 2226 107 7

We consider C programs for experimental evaluation. We have
implemented the source code analysis using the Clang front-end of
the LLVM framework [26] and use Z3 [10] for SMT solving. We
presently do not support pointer arithmetic.

In the pre-processing step, our tool performs some syntactic trans-
formations. It rewrites compound assignments into regularassign-
ments. For example,x += y is rewritten tox = x + y. A code
snippet of the form:scanf("%d", &a[0]); for (i = 1; i < n; i++)

scanf("%d", &a[i]);, where the input array is read in multiple state-
ments is transformed to use a single read statement. The above
snippet will be rewritten tofor (i = 0; i < n; i++) scanf("%d",

&a[i]);. Sometimes, students read a scalar variable and then assign
it to an array element. Our tool eliminates the use of the scalar vari-
able and rewrites the submission so that the input is read directly
into the array element. Another common pattern is to read a se-
quence of input values into a scalar one-by-one and then use it in
the DP computation. For example, consider the code snippet:for (i

= 0; i < n; i++) for (j = 0; j < n; j++) { scanf("%d", &x); dp[i][j]

= dp[i-1][j] + x; }. It does not use an array to store the sequence
of input values. We declare an array and rewrite the snippet to use
it. When feedback is generated for the submission, an explanatory
note about the input array is added. In each of the syntactic trans-
formations, we ensure that the program semantics is not altered.

Many students, especially beginners, write programs with con-
voluted conditional control flow, and unnecessarily complex ex-
pressions. In addition, the refinement steps of our counter-example
guided feedback generation algorithm may generate complexguards.
To present clear and concise feedback even in the face of these pos-
sibilities, in the post-processing step, our tool simplifies guards in
the feedback using the SMT solver. We use Z3’s tactics to remove
redundant clauses, evaluate sub-expressions to Boolean constants
and simplify systems of inequalities.

5. EXPERIMENTAL EVALUATION
To assess the effectiveness of our technique, we collected sub-

missions to the following4 DP problems3 on CodeChef:

1. SUMTRIAN – Described in the Introduction section.
2. MGCRNK – Find a path from (1,1) to (N,N) in an N× N

matrix, so that the average of all integers in cells on the path,
excluding the end-points, is maximized. From each cell, the
path can extend to cells to the right or below.

3. MARCHA1 – The subset sum problem.
4. PPTEST – The knapsack problem.

We selected submissions to these problems that implementedan
iterative DP strategy in the C language. A user can submit solu-
tions any number of times. We picked the latest submissions from
individual users. These represent their best efforts and can benefit

3http://www.codechef.com/problems/<problem-name>



Table 2: Results of feedback generation.
Problem Verified as Corrections Average Unlabeled

correct (X) suggested (✗) corrections (?)

SUMTRIAN 1049 659 3.3 275

MGCRNK 61 66 6.8 17

MARCHA1 9 35 10.3 14

PPTEST 3 29 12.7 9

Total 1122 789 4.3 315

from feedback. We do not consider submissions that either donot
compile or crash on CodeChef’s tests. To enable automated test-
ing on CodeChef, the submissions had an outermost loop to iterate
over test cases – we identified and removed this loop automatically
before further analysis.

Table 1 shows the number of submissions for each problem.
SUMTRIAN had the maximum number of submissions (1983) and
PPTEST had the minimum (41). There were a total of2226 sub-
missions from1860 students representing over250 institutions.
These submissions employ a wide range of coding idioms and many
possible solution approaches, both correct and incorrect.This is a
fairly large, diverse and challenging set of submissions.

5.1 Effectiveness of Clustering
Our features were quite effective in clustering submissions by

their solution strategies. Since we do not include featuresrepre-
senting low-level syntactic or structural aspects of submissions, the
clustering resulted in only a few clusters for each problem,without
compromising our ability to generate verified feedback. Table 1
gives the number of clusters. The number of clusters increased
gracefully from the smallest problem (by the number of submis-
sions) to the largest one. The smallest problemPPTEST yielded
only 2 clusters for41 submissions, whereas, the largest problem
SUMTRIAN yielded80 clusters for1983 submissions. Our manual
evaluation revealed that in each cluster, the solutions were actually
following the same DP strategy.

The small number of clusters reduces the burden on the instruc-
tor significantly. Instead of evaluating2226 submissions separately,
the instructor is required to look at representatives from only 114

clusters. CodeChef uses test suites to classify problems into cor-
rect and incorrect. As a simple heuristic, we randomly picked one
of the submissions marked as correct by CodeChef in each cluster
and manually validated it. As shown in Table 1, this gave us cor-
rect representatives for107/114 clusters across the problems. The
remaining7 clusters seemed to follow some esoteric strategies and
we manually added a correct solution to each of them.

Clustering also helps the instructor get a bird’s eye view ofthe
multitude of solution strategies. For example, it can be used to
find the most or least popular strategy used in student submissions.
In SUMTRIAN, the most popular strategy (with677 submissions)
was the one that traverses the matrix rows bottom up, traverses the
columns left to right and updates the element(i, j).

5.2 Effectiveness of Feedback Generation
Our tool verifies a submission from a cluster against the manu-

ally validated or added correct submission from the same cluster.
Table 2 shows the number of 1) submissions verified as correct
(X), 2) submissions for which faults were identified and correc-
tions suggested (✗) and 3) submissions which our algorithm could
not handle (?). Across the problems,1122 submissions amounting
to 50% were verified to be correct, with the maximum at53% for
SUMTRIAN and the minimum at7% for PPTEST. For a total of
789 submissions amounting to35%, some corrections were sug-
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Figure 6: Distribution of submissions in a cluster of SUM-

TRIAN by the type of feedback.

gested by our tool. The maximum percentage of submissions with
corrections were forPPTEST at 71% and the minimum was33%
for SUMTRIAN. Many submissions had multiple faults. Table 2
shows the average number of corrections over faulty submissions
for each problem.PPTEST required the maximum number of cor-
rections of12.7 on average. In all, our tool succeeded in either
verifying or generating verified feedback for85% submissions.

For the remaining315 (15%) submissions, our tool could neither
generate feedback nor verify correctness. These submissions need
manual evaluation.MARCHA1 had the maximum percentage of
unlabeled submissions at24% andMGCRNK had the minimum
at 12%. These arise either because the SMT solver times out (we
kept the timeout of3s for each equivalence query), or due to the
limitations of the verification algorithm or the implementation.

These results on the challenging set of DP submissions are en-
couraging and demonstrate effectiveness of our methodology and
technique. Even if we assume that all315 unhandled submissions
are faulty, we could generate verified feedback for71% faulty sub-
missions. In comparison, on a set ofintroductoryprogramming as-
signments, Singh et al. [46] report that64% of faulty submissions
could be fixed usingmanually provided error models. Our counter-
example guided feedback generation technique guarantees correct-
ness of the feedback. In addition, we would have liked to com-
municate the feedback to the students and assess their responses.
Unfortunately, their contact details were not available tous.

Diversity of Feedback and Personalization.
The feedback propagation approaches [20, 41] suggest that the

same feedback text written by the instructor can be propagated to
all submissions within a cluster. We found that this is not practical
and the submissions within the same cluster require heterogeneous
feedback. Figure 6 shows the distribution of submissions ina clus-
ter ofSUMTRIAN by the type of feedback. We only highlight feed-
back over the logical components of a submission: initialization (I),
update (U) and output (O). Feedback related to type declarations
and input statements (possibly, in conjunction with feedback on the
logical components) is summarized under the category “Others”.

While only 7.9% submissions were verified to be correct,20%
submissions had faults in one of the logical components of the DP
strategy: initialization (0.7%), update (16.4%) and output (2.9%).
As shown in Figure 6, a large percentage of submissions had faults
in two logical components, and7.9% had them in all three compo-
nents.30% of the submissions were in the others category. Clearly,
it would be difficult for the instructor to predict faults in other sub-
missions in a cluster by looking only at some submissions in the
cluster and write feedback applicable to all. We do admit that Fig-
ure 6 is based on our clustering approach and other approaches may
yield different clusters. Even then, the clusters would be correct



Table 3: Submissions by faulty components.
Faulty comp. SUMTRIAN MGCRNK MARCHA1 PPTEST

I only 36 15 0 0

U only 229 7 5 2

O only 31 1 6 0

I&U 29 18 2 8

I&O 10 0 1 0

U&O 97 1 2 0

I&U&O 30 0 11 0

Others 197 24 8 19

Total 659 66 35 29
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Figure 7: Effect of simplification on feedback size forMGCRNK

only in aprobabilisticsense and the verification phase, we suggest,
would addcertaintyabout correctness of feedback.

Our technique generated personalized feedback depending on
which components of a submission were faulty. Table 3 shows
the number of submissions by the faulty components. Across the
problems,PPTEST had the maximum percentage53.7% of sub-
missions requiring corrections to multiple logical components and
SUMTRIAN had the minimum percentage17.5%. The most com-
mon faulty components varied across problems.

Types of Faults Found and Corrected.
Our tool found a wide range of faults and suggested appropriate

corrections for them. This is made possible by availabilityof a cor-
rect submission to verify against and the ability of our verification
algorithm to refine the equivalence queries to find all faults. The
faults found and corrected include: incorrect loop headers, initial-
ization mistakes including missing or spurious initialization, miss-
ing cases in the DP recurrence, errors in expressions and guards,
incorrect dimensions, etc.

Conciseness of Feedback.
To reduce the size of formulae in the generated feedback, we

perform simplifications outlined in Section 4. We measure the ef-
fectiveness of the simplifications by disabling them and using the
sum of AST sizes (#nodes in the AST) of the guards in our feed-
back text asfeedback size. Figure 7 shows the impact of the sim-
plifications on feedback size in the case ofMGCRNK by plotting
submission IDs versus feedback size. The figure excludes cases
where simplification had no impact on feedback size. Simplifica-
tions ensured that the feedback size was at most150, and42.1 on
average. Without simplifications, the maximum feedback size was

599. Simplifications, where applicable, reduced feedback sizeby
63.1% on an average across the problems.

5.3 Comparison with CodeChef
Our tool was able to verify12 submissions as correct that were

tagged by CodeChef as incorrect. This was surprising because
CodeChef uses tests which should not produce suchfalse positives.
On investigation, we found that the program logic was indeedcor-
rect, as verified by our tool. The faults were localized to output
formatting, or in custom input/output functions. Understandably,
black-box testing used by CodeChef cannot distinguish between
formatting and logical errors. However, being able to distinguish
between these types of faults would save time for the students. Our
tool finds logical faults but not formatting errors.

Due to the incompleteness of testing, CodeChef did not iden-
tify all faulty submissions (false negatives). This can hurt students
since they may not realize their mistakes. We checked the cases
when CodeChef tagged a submission as correct but our tool is-
sued some corrections. For64 submissions, our tool identified that
the submissions were making spurious initializations to the DP ar-
ray. For112 submissions, our tool identified that the DP udpate
was performed for additional iterations than required and generated
feedback to fix the bounds of loops containing update statements.
Importantly, our tool detectedout-of-bounds array accessesin 99

submissions, and suggested appropriate corrections. In265 distinct
submissions, our tool was able to identify one or more of the faults
described above, whereas CodeChef tagged them as correct! Thus,
our static technique has a qualitative advantage over the test-based
approach of online judges.

5.4 Performance
We ran our experiments on an Intel Xeon E5-1620 3.60 GHz ma-

chine with 8 cores and 24GB RAM. Out tool runs only on a single
core. On an average, our tool generated feedback in1.6s includ-
ing the time for clustering and excluding the time for identifying
correct submissions manually.

5.5 Limitations and Threats to Validity
Our technique fails for submissions that have loop-carriedde-

pendencies over scalar variables apart from the loop index vari-
ables, submissions that use auxiliary arrays and submissions for
which pattern matching fails to label statements. We inherit the lim-
itations of SMT solvers in reasoning about non-linear constraints
and program expressions with undefined semantics, such as divi-
sion by 0. Most of the unhandled cases arise from these limitations.

Our approach cannot suggest feedback for errors in custom in-
put/output functions, output formatting, typecasting, etc. Our ap-
proach may provide spurious feedback enforcing stylistic confor-
mance with the instructor-validated submission. For example, if
a submission starts indexing into arrays from position1 but the
instructor-validated submission indexes from position0, our tool
generates feedback requiring the submission to follow0 based in-
dexing. This may correct some misconception about array index-
ing that the student may have. Nevertheless, these differences can
be either compiled away during pre-processing or through SMT
solving with additional annotations. We will investigate these in
future. Finally, our implementation currently handles only a fre-
quently used subset of C constructs and library functions.

There can be faults in our implementation that might have af-
fected our results. To address this threat, we manually checked the
feature values and feedback obtained, and did not encounterany
error. Threats to external validity arise because our results may not
generalize to other problems and submissions. We mitigatedthis



threat by drawing upon submissions from more than1860 students
on4 different problems. While our technique is able to handle most
constructs that introductory DP coursework employs, further stud-
ies are required to validate our findings in the case of other prob-
lems. In Section 5.3, we compared our tool with the classification
available on CodeChef. The tests used by CodeChef are not public
and hence, we cannot ascertain their quality. By improving the test
suites, some false negatives of CodeChef may disappear but black-
box testing will not be able to distinguish between logical faults
and formatting errors (discussed in Section 5.3).

6. RELATED WORK

Program Representations and Clustering.
In order to cluster submissions effectively, we need strategies to

represent both the syntax and semantics of programs. Many clus-
tering approaches use only edit distance between submissions [15,
44], while others use edit distance along with test-based similar-
ity [20, 36, 12]. We use neither of these. Glassman et al. [13]
advocate a hierarchical technique where the submissions are first
clustered using high-level (abstract) features and then using low-
level (concrete) features. An interesting recent direction is to use
deep learning to compute and use vector representations of pro-
grams [40, 41, 33]. Peng et al. [40] propose a pre-training tech-
nique to automatically compute vector representations of different
AST nodes which is then fed to a tree-based convolution neural net-
work [33] for a classification task. Piece et al. [41] proposea recur-
sive neural network to capture both the structure and functionality
of programs. The functionality is learned using input-output exam-
ples. But the class of programs considered in [41] is very simple.
It only handles programs which do not have any variables.

Since our experiments were focused on iterative DP solutions,
we designed features that capture the DP strategy. The aboveap-
proaches are more general but unlike us, they may not put the sub-
missions in Figure 2 and 3 in the same cluster. Our algorithm ex-
tracts features in the presence of temporary variables and proce-
dures, and might be useful in other contexts as well.

Feedback Generation and Propagation.
The idea of comparing instructor provided solutions with student

submissions appears in [2]. It uses graph representation and trans-
formations for comparison of Fortran programs. Xu and Chee [49]
use richer graph representations for object-oriented programs. Rivers
and Koedinger [44] use edit distance as a metric to compare graphs
and generate feedback. Gross et al. [15] cluster student solutions
by structural similarity and perform syntactic comparisons with a
known correct solution to provide feedback. Feedback generated
by pattern matching may not always be correct. In contrast, we
generateverifiedfeedback but for the restricted domain of DP.

Alur et al. [4] develop a technique to automatically grade au-
tomata constructions using a pre-defined set of corrections. Singh
et al. [46] apply sketching based synthesis to provide feedback for
introductory programming assignments. In addition to a reference
implementation, the tool takes as input an error model in theform
of correction rules. Their error model is too restrictive tobe adapted
to our setting that requires more sophisticated repairs andthat too
for a more challenging class of programs. Gulwani et al. [17]ad-
dress the orthogonal issue of providing feedback to addressperfor-
mance issues, while Srikant and Aggarwal [47] use machine learn-
ing to assess coding quality of prospective employees and donot
provide feedback on incorrect solutions.

The idea of exploiting the common patterns in DP programs

has been used by Pu et al. [43] but for synthesis of DP programs.
The clustering-based approaches [20, 41] propagate the instructor-
provided feedback to all submissions in the same cluster, whereas
we generate personalized and verified feedback for each submis-
sion in a cluster separately. OverCode [12] also performs clustering
of submissions and provides a visualization technique to assist the
instructor in manually evaluating the submissions.

Program Repair and Equivalence Checking.
Genetic programming has been used to automatically generate

program repairs [5, 11, 27]. These approaches are not directly ap-
plicable in our setting as the search space of mutants is verylarge.
Further, GenProg [27] relies on redundancy present in otherparts
of the code for fixing faults. This condition is not met in our set-
ting. Software transplantation [18, 6] transfers functionality from
one program to another through genetic programming and slicing.
Prophet [30] learns a probabilistic, application independent model
of correct code from existing patches, and uses it to rank repair
candidates from a search space. These are generate-and-validate
approaches which rely on a test suite to validate the changes. In
comparison, we derive corrections for a faulty submission by pro-
gram equivalence checking with a correct submission.

Konighopher et. al. [25] present a repair technique using ref-
erence implementations. Their fault model is restrictive and only
considers faulty RHS. Many approaches rely on program specifi-
cations for repair, including contracts [39, 48], LTL [23],asser-
tions [45] and pre-post conditions [14, 28, 19]. Recent approaches
that use tests to infer specifications and propose repairs include
SemFix [37], MintHint [24], DirectFix [31] and Angelix [32]. These
approaches use synthesis [22], symbolic execution [9] and partial
MaxSAT [10] respectively. Both DirectFix and Angelix use partial
MaxSAT but Angelix extracts more lightweight repair constraints
to achieve scalability. SPR [29] uses parameterized transformation
schemas to search over the space of program repairs. In contrast,
we use instructor-validated submissions and a combinationof pat-
tern matching, static analysis and SMT solving.

Automated equivalence checking between a program and its op-
timized version has been studied in translation validation[42, 35,
7]. Partush and Yahav [38] design an abstract interpretation based
technique to check equivalence of a program and its patched ver-
sion. In comparison, our technique performs equivalence check
between programs written by different individuals independently.

All these approaches are designed for developers and deal with
only one program at a time. Our tool targets iterative DP solutions
written by students and works on a large number of submissions
simultaneously. It combines clustering and verification tohandle
both the scale and variations in student submissions.

7. CONCLUSIONS AND FUTURE WORK
We presented semi-supervised verified feedback generationto

deal with both scale and variations in student submissions,while
minimizing the instructor’s efforts and ensuring feedbackquality.
We also designed a novel counter-example guided feedback gener-
ation algorithm. We successfully demonstrated the effectiveness of
our technique on2226 submissions to4 DP problems.

Our results are encouraging and suggest that the combination
of clustering and verification can pave way for practical feedback
generation tools. There are many possible directions to improve
clustering and verification by designing sophisticated algorithms.
We plan to investigate these for more problem domains.
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