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Semi-Supervised Verified Feedback Generation

Shalini Kaleeswaran Anirudh Santhiar

ABSTRACT

Students have enthusiastically taken to online programeissons
and contests. Unfortunately, they tend to struggle duedk ¢d
personalized feedback when they make mistakes. The ovenahe
ing number of submissions precludes manual evaluationreTise
an urgent need of program analysis and repair techniquesbleap
of handling both the scale and variations in student subamiss
while ensuring quality of feedback.

Towards this goal, we present a novel methodology caltedi-
supervised verified feedback generatioe cluster submissions
by solution strategy and ask the instructor to identify ait actor-
rect submission in each cluster. We then verify every sukions
in a cluster against the instructor-validated submisgiothé same
cluster. If faults are detected in the submission then faeklisug-
gesting fixes to them is generated. Clustering reduces tidebwn
the instructor and also the variations that have to be hdrdileing
feedback generation. The verified feedback generatiorrensat
only correct feedback is generated.

We have applied this methodology to iterative dynamic paogr
ming (DP) assignments. Our clustering technique usesrieatf
DP solutions. We have designed a nowelinter-example guided
feedback generatioalgorithm capable of suggesting fixes to all
faults in a submission. In an evaluation 2226 submissions to
4 problems, we could generaterified feedback forl911 (85%)

submissions ifl.6s each on an average. Our technique does a goo

job of reducing the burden on the instructor. Only one subiois
had to be manually validated or added for evefysubmissions.

1. INTRODUCTION

Programming has become a much sought-after skill for soperi
employment in today’s technology-driven world [1]. Stutiehave
enthusiastically taken to online programming lessons andests,
in the hope of learning and improving programming skills.fan
tunately, they tend to struggle due to lack of personalizediback
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Figure 1: Semi-supervised verified feedback generation:! is a
submission verified to be correct,[Jis a faulty submission for
which feedback is generated and ? is an unlabeled submission
for which feedback is not generated.

correct only in gorobabilisticsense. Thus, these techniques cannot
guarantee that the feedback provided manually by the ictsiru
by looking only at some submissions in a cluster, would indee
suitable to all the submissions in that cluster. As a resaime
submissions may receive incorrect feedback. Further,bfres+
sions that have similar mistakes end up in different clssteome
of them may not receive the suitable feedback. Instead giiriggl

d these drawbacks can cause confusion among the students.

To overcome these drawbacks, we propose a novel methodology
in which clustering of submissions is followed by an autosdat
feedback generation phase grounded in formal verificatiig-
ure 1 shows our methodology, callsemi-supervised verified feed-
back generation Given a set of unlabeled student submissions,
we first cluster them by similarity of solution strategies] aask
the instructor to identify a correct submission in each cluster. If
none exists, the instructor adds a correct solution simdathe
submissions in the cluster; after which we do clusteringragin
the next phase, each submission in a clustgeiffied against the

when they make mistakes. The overwhelming number of student instructor-validated submissioim the same cluster. If any faults

submissions precludes manual evaluation. There is an unged
of automated program analysis and repair techniques bl
handling both the scale and variations in student subnrissiehile
ensuring quality of feedback.

A promising direction is to cluster submissions, so thatithe
structor provides feedback for a representative from eha$ter
which is then propagated automatically to other submission
the same cluster [20, 41]. This provides scalability whiée-
ing the instructor efforts manageable. Many novel sol&ibave
been proposed in recent times to enable clustering of progra
These include syntactic or test-based similarity [15, #4413, 12],
co-occurrence of code phrases [36] and vector represamsabib-
tained by deep learning [40, 41, 33]. However, clustering loa

are detected in the submission then feedback suggestirg téixe
them is generated. Because program equivalence checlingiis
decidable problem, it may not be possible to generate feddioa
every submission. We let the instructor evaluate such ssgiaris
manually. This is better than propagating unverified or irect
feedback indiscriminately.

The proposed methodology has several advantages. Firsest
unsupervised clustering to reduce the burden on the iretruthe
supervision from the instructor comes in the form of ideytiy
a correct submission per cluster. Second, the verificattas@

1To minimize instructor’s efforts further, we discuss stgies to
suggest potentially correct submissions to the instructor
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1 void main() {
2 int i, j, n, max;
3 scanf("%d", &n); // Input
4 int m[n][n], dplnlln]; // dp is the DP array
5 for i =0;i<n;i++)
6 for (j = 0; j <= i; j++)
7 scanf("%ad", &mlillj); // Input
8 dpl0][0] = m[0][0]; // Initialization
9 for (i = 1;i < mn; i++) {
for G = 0;j <=1i; j++) {
if g ==0)
dplilljl = dpli-11[j1 + mlil[jl; // Update
else if (j == 1)
dplil[jl = dpli-11[j-1] + mlill[jl; // Update
else if (dpli-11[j] > dpli-11[-1D
dplilljl = dpli-11[j] + mlilljl; // Update
else dplill[j] = dpli-11[j-1] + mlil[jl; // Update

10
11

12

13

14

15

16

17

18
19}
20 max = dp[n-1][0];

21 for (i = 1;1i < n; i++)

22 if (dpln-1][i] > max) max = dpln-1][il;
23 printf("%d", max); // Output

2 }

Figure 2: A correct submission for the matrix path problem.

complements clustering by providingertainty about correctness

of feedback. Clustering helps by reducing the variationmired

to be handled during feedback generation. It would be difficu
check equivalence of very dissimilar submissiang, an iterative
solution against a recursive solution. Since only subroissthat

are similar {.e., belong to the same cluster) are compared, there is
a higher chance of making equivalence checking work in fract
Third, feedback is generated for each submission separsteik

is personalized. This is superior to propagating a manwadiften
feedback indiscriminately to all the submissions in a @ust

To demonstrate the effectiveness of this methodology, vetyap
it to iterative dynamic programming assignments. Dynan p
gramming (DP) [8] is a standard technique taught in algorith
courses. Shortest-path and subset-sum are among the nadmy pr
lems that can be solved efficiently by DP. We design featuras t
characterize the DP strategy and extract them from studentis-
sions by static analysis and pattern matching. The feainchsde
the types of the DP arrays used for memoizing solutions te sub
problems, and how the sub-problems are solved and reused ite
atively. The set of features we need is small and all featares
discrete valued. Therefore, our clustering approach ig senple
and works directly by checking equality of feature values.

We also propose a novel feedback generation algorithmctalle
counter-example guided feedback generatibne equivalence be-
tween two submissions is checked using syntactic simgiifica
and satisfiability-modulo-theories (SMT) based constrsatving.

If an equivalence check fails, our algorithm uses the catexample
generated by the SMT solver to refine the equivalence quéng T
process terminates when our algorithm proves the equisejesr

is unable to refine the query. A trace of refinements leading to
logically valid equivalence query constitutes the fee#tbac

As an example, consider the matrix path prodiesaken from
a popular programming contest site CodeChef. A lower tridarg
matrix of n rows is given. Starting at a cell, a path can be traversed
in the matrix by moving either directly below or diagonallglow
to the right. The objective is to find the maximum weight amtrey
paths that start at the cell in the first row and first columml, e&md in
any cell in the last row. The weight of a path is the sum of dlkce

2http://WWW.codechef.com/probIems/SUMTRIAN

1 int max(int a, int b) {
2 returna >b 7 a: b;
3}
4 int max_ arr(int arr[]) {
5 int i, max;
6 max = arr[0];
7 for (i = 0; i < 100; i++)
8 if (arrli] > max) max = arrlil;
9 return max;
10 }
int main() {
int n, i, j, A[101][101], D[101][101]; // D is the DP array
scanf("%d", &n);// Input
for G = 0; i < n; i++)
for (j = 0; j <=i; j++)
scanf("%d", &Alilljl); // Input
D[o][0] = A[0I[0] ; // Initialization
for (i = 1;1i < n; i++)
for (j = 0; j <=1i; j++)
DIil[jl = Alil[j] + max(DI[i-11[j], D[i-11[-11); // Update
int ans = max_ arr(D[n-1]);
printf("%d", ans); // Output

23 return O;

2}

Figure 3: A faulty submission belonging to the same clusters&
the correct submission in Figure 2.

In the declaration: 1) Types ofA andD should bent[n][n]
In the update:
2) Under guard == 0,
computeDli][jl = D[i-11[j] + Alillj]
instead ofDlil[j] = Alil[j] + (D[i-11[1>D[i-11j-11 7
DIi-11[] : DIi-11[5-1D.
3) Under guardj != 0 && j == 1),
computeDlil[j] = DIi-11(j-1] + Alil[j]
instead ofDlil[j] = Alil[j] + (Dli-11[1>D[i-11j-11 7
Dli-11(j] : DIi-11{j-1D.
In the output: 4) Under guardrue, compute maximum
overD[n-1][0],...,DI[n-1][n-1] instead ofD[n-1][0],...,D[n-1][99].
Figure 4: The auto-generated feedback for the submission in
Figure 3 by verifying it against the submission in Figure 2.

along that path. Figure 2 shows an example correct submissio
to this problem and Figure 3 shows a faulty submission. The tw
programs are syntactically and structurally quite differdeut both
use 2D integer arrays for memoization and iterate over timetie
same manner. Our clustering technique therefore puts thienttie
same cluster. This avoids unnecessarily creating manyeckibut
requires a more powerful feedback generation algorithrh ¢ha
handle stylistic variations between submissiang, Figure 3 uses
multiple procedures whereas Figure 2 uses only one.

Our algorithm automatically generates the feedback inreigu
for the faulty submission by verifying it against the cotregbmis-
sion. The first correction suggests that the submissionldhme
array sizes ast[n][n] instead of hardcoded value ®f:[101](101].
The update to the DP arrayat line 20 in Figure 3 misses some cor-
ner cases for which our algorithm generates correctiong2#8
above. The computation of output at line 22 should use thescor
array bounds as indicated by correction #4. This is a congpreh
sive list of changes to correct the faulty submission.

We have implemented our technique for C programs and evalu-
ated it on2226 student submissions tbproblems from CodeChef.
On 1911 (85%) of them, we could generate feedback by either ver-
ifying them to be correct, or identifying faults and fixes them.

In addition to faults in wrong answers, we also found faufts i
265 submissions accepted by CodeChef as correct answers! Like
most online contest sites, CodeChef uses test-based gwaluaur



static verification technique has a qualitative advantags the
test-based approach of online judges. The submissions frome
1860 students from ovel50 different institutes and are therefore
representative of diverse backgrounds and coding stylem then,
the number of clusters ranged only fr@+80 across the problems.
Our technique does a good job of reducing the burden on the in-
structor. On an average, using one manually validated oechdd
submission, we generated verified feedbacklérother submis-
sions. We had to add onl¥correct solutions manually. While our
technique generated feedback automaticallylfdrl submissions,
the remaining315 (15%) submissions require manual evaluation.
Our technique is fast and on an average, tbék to generate feed-
back for each submission.

Work on feedback generation so far has focuseatmductory
programmingassignments [46, 17, 47, 21]. In comparison, we ad-
dress the challenging class afjorithmic assignments, in particu-
lar, that of dynamic programming. The program repair apgiea
for developers [27, 37, 24, 31, 29] deal with one program ahe.t
We work with all student submissions simultaneously. Toalomge
propose a methodology inspired by both machine learningaried
fication. Unlike the developer setting, we have the luxurgaifing
upon the instructor to identify or add correct solutions. &ploit
this to give complete and correct feedback but then our fgaken
must solve the challenging (and in general, undecidabla)lpm
of checking semantic equivalence of programs.

The salient contributions of this work are as follows:

e We present a novel methodology of clustering of submissions
followed by program equivalence checking within each clus-
ter. This methodology can pave way for practical feedback
generation tools capable of handling both the scale and vari
ations in student submissions, while minimizing the instru
tor’s efforts and ensuring quality of feedback.

We demonstrate that this methodology is effective by apply-
ing it to the challenging class of iterative DP solutions. We

the two numbers. The DP recurrence of the submission in Eigur
is similar but misses the second and third cases above.

Comparing the recurrences directly would be ideal but ekitrg
them is not easy. Students can implement a recurrence farimul
different imperative styles. They may use multiple proceduas
in Figure 3) and arbitrary temporary variables to hold imediate
results. Rather than attempting to extract the precisermence,
we extract some features of the solution to find submissibat t
use similar solution strategies. For this, our analysistifies and
labels the DP arrays used in each submission. It also ides&fid
labels key statements that 1) read inputs, 2) initializelRearray,

3) update the DP array elements using previously compured ar
elements, and 4) generate the output. The comments in Figure
and Figure 3 identify the DP arrays and key statements.

We call a loop which is not contained within any other statetne
as atop-level loop For example, the loop at lines 9—-19 in Figure 2
is a top-level loop but the loop at lines 10-18 is not. Moreagen
ally, a statement which is not contained within any othetestent
is atop-level statementThe features extracted by our technique
and their values for the submission in Figure 2 are as follows

1. Type and the number of dimensions of the DP ar(ayt, 2)

2. Whether the input array is reused as the DP array: No

3. The number of top-level loops which contain update state-
ments for the DP arrayt
For each top-level loop containing updates to the DP array

(a) The loop nesting deptk:

(b) The direction of loop indices{+, +) (indicating that
the respective indices are incremented by one in each
iteration of the corresponding loops)

(c) The DP array element updated inside the ladypti] [j]
Extracting these features requires static analysis anthalyn

pattern matching. The most challenging part is identifyivigich
array serves as a DP array. An array which is defined in terms of

design a clustering technique and a counter-example guideditself is identified as a DP array since in the DP recurrenice, t

feedback generation algorithm for DP solutions.

We experimentally evaluate the technique2226 submis-
sions to4 problems and generaterified feedback foi85%

of them. We show that our technique does not require many
inputs from the instructor and runs efficiently.

2. DETAILED EXAMPLE

We now explain in details how our technique handles the moti-
vating example from the previous section.

2.1 Clustering Phase

The two submissions in Figure 2 and Figure 3 are syntagficall
and structurally quite different. Our technique extraeatfires of
the solution strategy in a submission. These features are ain
stract than low-level syntactic or structural features putthe su-
perficially dissimilar submissions into the same cluster.

The solution strategy of a DP program is characterized by the
DP recurrence being solved [8]. The DP recurrence for theecor
submission in Figure 2 is as follows:

m/[0][0] if i=0,j=0
. dpli-1](j]-+mlil[j] ifi£0,j=0
dplilfj] = .
PET= Y apli- -1 +mii () if j=i£0
max(dpli-1][jl,dpli-11[j-1D+mlil[jl otherwise

wheredp is the DP arraym is the input matrix oh rows, and goes
from 0 to n-1, j goes from0 to i andmax returns the maximum of

DP array appears on both sides. However, a student may uge som
temporary variables to store intermediate results of DPpdation
and pass values across procedures. As explained in Sectione3
track data dependences inter-procedurally. In Figure & atihay
elementsDli-1](j] and D[i-11[j-1] are passed to the procedutax.
Through inter-procedural analysis, our technique infeas the re-
turn value ofmax is indeed defined in terms of these arguments
and hencep is defined in terms of itself at line 20. Thereby, it
discovers thab is a DP array.

The submission in Figure 3 yields similar feature values iand
clustered along with the submission in Figure 2. Note thatofu
jective is not to use clustering to distinguish betweenexirand
incorrect submissions. We therefore do not encode the ewact
ture of the initialization or update of the DP array in thetiges.
Analyzing these is left to the verification and feedback phas

2.2 \Verification and Feedback Phase

After clustering, suppose the instructor identifies thensigsion
in Figure 2 as correct. Our objective is to verify the subimissn
Figure 3 against it and suggest fixes if any faults are founat. F
brevity, we will refer to the submission in Figure 2 as taerence
and the submission in Figure 3 as ttendidate

By analyzing the sequence in which inputs are read, our tech-
nigue infers that the candidate uses two input variablesntager
variablen and a 2D integer array, wheren is read first (line 13)
and A second (line 16). Their types respectively match the types
of the input variablea andm of the reference except that the can-
didate uses a hardcoded array sizeAoBoth submissions use 2D



lwl = pre N @1 N\ ¢ — post

Using the counter-examplg;, the algorithm dis-
covers that wheg = 0, ¢, computes statement

Counter-exampleE: 7
plesq (Yes

s1 (line 20 in Figure 3) but according tg, it
should compute,: DIil[j] = DI[i-1][jl4+Alil[j].

Letg)=(#0 = s1)A(j=0 = sp).

Py = pre A1 A ¢y = post

Counter-exampleE; Z_ Yes

Counter-example )

Using the counter-examplE,, the algorithm dis-
-~ covers that when = i Aj # 0, ¢, computes
s but according tapy, it should computes:
Dlil[j] = DIi-11[j-11+Alil[j].

Letgy = (#AONj#1 = s1)A(J#OAj=
i= s3)AN(G=0 = sp).

Yes

‘/

a) Successive equivalence queries and results

l%zpr@/\q)lA(p’z’ = post

b) Refinement steps and corrections suggested

Figure 5: Steps of the verified feedback generation algoritin for the DP update in the faulty submission in Figure 3.

integer DP arrays but the candidate hardcodes array sire &P
array D also. While the reference can handle arbitrarilgdan-
put matrices, the candidate can handle input matrices gmliou
size101 x 101. For smaller input matrices, the reference is more
space efficient than the candidate. Our technique therefoits
correction #1 in Figure 4 suggesting size declarations\fandp.

counter-examplé&; which shows that the formula is not valid:
j=0,dplillj] = 1, DIllj] = 2, m[i]{j] = Afil{] = 1,
dpli-11[j] = Dli-11[j] = 0, dpli-11(j-1] = Dli-1]j-1]1 =1
Following the usual convention, we useas equality in formulae
and use == as equality in code. Similardy, and != denote dise-

We check equivalence of matching code fragments of the two quality symbols in formulae versus code.

submissions one-by-one. The matching code fragments aya@a
identify given the statement labels computed during featutrac-
tion. For our example, line 20 of the candidate is an “updatate-
ment and lines 12, 14, 16 and 17 of the reference are also teipda
statements. Therefore, the top-level loop (Eayat lines 18-20 of
the candidate matches the top-level loop (gyat lines 9-19 of
the reference. The question is whether they are equivalent.

We check equivalence of the loop headers first. The input vari

Our algorithm, callectounter-example guided feedback genera-
tion algorithm, use£; to localize the fault in the candidate. It first
identifies which guards are satisfied by the counter-exaingiee
candidate and the reference, and whether they are equivdlea
guardj = 0 is satisfied inp; and the implicit guardrue for line 20
is satisfied inp,. Since they are not equivalent, the algorithm infers
that the faulty submission is missing a condition. On thetieoy, if
the guards turn out to be equivalent, the fault is localizethé as-

ablesn in both submissions correspond to each other and are notsignment statement. It then derives a formplayiven in Figure 5.b

re-assigned before they are used in the respective loopetead
Therefore, the loop headers bf and L, are equivalent. Thus,
the corresponding loop indices are equal in each iteration.

To check equivalence of loop bodies, our algorithm formadat
anequivalence query; which asserts that in am;jth iteration, if
the two DP arrays are equal at the beginning then they ard atjua
the end of the iteration. The equivalence query is of the form

1 = pre N o1\ ¢ — post

where 1)pre encodes the equality of DP arrays, loop indices and
input variables at the beginning of the iteration, and theeloand
upper bounds on the loop index variables in the referencpy&)
encodes the equality of DP arrays at the end of the iteratien (
syntactically check that input variables are not chang@dp; is a
formula encoding the statements in the loop body of the eefes,
and 4)¢, is a formula encoding the statements in the loop body of
the candidate. Converting a loop-free sequence of statsnrgo
a formula is straightforward. For example, grstatement such
asif(p) x = e is converted to a guarded equality constraint
' = e wherex’ is a fresh variable. The predicates in iawlse
statement are propagated so as to make the guards mutisidindi
and finally, the conjunction of all guarded equality coristisais
taken. We defer other technical details to Section 3.2.

As shown in Figure 5.a, the algorithm checks whetfpgris
a logically valid formula. The SMT solver finds the following

which lets the candidate compute line 20 under the giia+d and
makes it comput®lil[jl = DIi-1][jl+Alillj] underj==0. This
assignment statement is obtained from the assignmenteafliin
under the guarg==0 of the reference in Figure 2 by substituting
the variables from the candidate. The algorithm recordsréfine-
ment in the form of correction #2 of Figure 4.

As shown in Figure 5.a, it checks validity ¢h = pre A @1 A
@5 == post obtained by replacing, (the encoding of candi-
date’s loop body) by, (defined in Figure 5.b). This results in a
counter-examplé&, using which the algorithm discovers the miss-
ing case ofj==i and generates correction #3 of Figure 4. For
brevity, we do not show the counter-examplg A refined equiv-
alence queryps shown in Figure 5.b is computed. As shown in
Figure 5.a, this formula is valid and establishes that th&gan the
candidate can be fixed using the synthesized feedback.

The input and initialization parts of the two submissioresfaund
to be equivalent. In our experiments, we observed certgieate
ing iterative patterns. The computation of a maximum over an
array in lines 6-8 in Figure 3 is one such example. We encode
syntactic patterns to lift these to certain predefined fonst We
define__max which takes the first and the last elements of a con-
tiguous array segment as arguments and returns the maxivem o
the array segment. In Figure 3, the output expression inge&ifm
_max iS _max(D[n-1][0], D[n-11[99]) and in Figure 2, the output
iS _max(dpln-11(0], dpln-1][n-1]). A Syntactic comparison between
the two leads to correctiondfin Figure 4.



3. TECHNICAL DETAILS

We now explain our approach for clustering submissionstlaad
algorithm for verified feedback generation.

3.1 Clustering by Solution Strategy

The first phase of our technique is to cluster submissionsiby t
solution strategy so that each cluster can be analyzedaepar

3.1.1 Feature Design

Section 2.1 has already introduced the features of a sulomiss
that we use. Typically, in machine learning, a large numliéea
tures are obtained and then the learning algorithm findsntipeii-
tant ones (called feature selection). In our case, sincedh®ain
is well-understood, we design a small number of suitableufea
that provide enough information about the solution stnateg

In particular, we cluster two submissions together if 1)ythee
the same type and dimensions for the DP arrays, 2) eitherdsath
DP arrays distinct from the input arrays or not, and 3) there i
one-to-one correspondence between top-level loops whictam
DP update statements — the loops should have the same depth, d
rection and the DP array element being updated. Two sulonissi
in the same cluster can differ in all other aspects.

The rationale behind these features is simple: Checkingiequ
alence of two submissions which use the same types of DPsarray
and similar DP update loops is easier than if they do not ghase
properties. For example, the subset-sum problem can bedsbiy
using either a boolean DP array or an integer DP array, butthe
implementations are hard to compare algorithmically. Reba
matrix path problem stated in the Introduction. Consideula s
mission which traverses the matrix from top-to-bottom amother
which traverses it from bottom-to-top. Using one to valaéte
other is difficult and perhaps, even undesirable. The feataf DP
update loops will prevent these submissions from beinggdfate
same cluster. Imposing further restrictions (by adding erfea-
tures) can make verification simpler but will increase theba on
the instructor by creating additional clusters.

The feature 4.c described in Section 2.1 requires a bit more e
planation. We want to get the DP array element being updated
inside each loop containing a DP update statement. If twe sub
missions use different names for DP arrays and loop indises,

evaluates to true dt The substitution stor& is lifted in a nat-
ural manner to expressions and statements. For instancanfo
assignment statement=x = e, X(I,s) = {g1 :x =e1,....8n :

x =en}Where{g; :e1,..., 8y :en} = Z(l,e).

Gulwani and Juvekar [16] developed amer-proceduralback-
ward symbolic execution algorithm to compute symbolic kdsin
on values of expressions. While we are not interested indhadis,
the equality mode of their algorithm suffices to compute 8tibs
tion stores. We refer the reader to [16] for the details.

To determine whether a statemenat location! is an initial-
ization or an update statement, we perform pattern mataheg
%(l,s). If the same array appears on both sides of an assignment
statement then the array is identified as a DP array and tieerstat
is labeled as an update statement. A statement where thed &S i
DP array and RHS is an input variable or a constant is labeded a
an initialization statement. I&(l,s), the temporary variables in
are replaced by the guarded expressions from the substitstibre.
This makes the labeling part of our tool robust even in preserf
temporaries and procedure calls. For example, suppose wee ha
= x[i-1]; x[i] = t;. The second statement can be identified as an up-
date statement through pattern matching only if we sulbetii+1]
in place oft on the RHS of the statement. In gene&(/,s) may
contain multiple guarded statementsZifl,s) = {s1,...,sn }, We
require that all ofs, ..., s, satisfy the same pattern and get the
same label. Extracting the feature values is now straightid.

3.1.3 Clustering and Identifying Correct Submissions

All our features are discrete valued. Therefore, our chrggeal-
gorithm is very simple and works directly by checking eqtyatif
feature values. Once the clustering is done, we ask thaigistrto
identify a correct submission from each cluster. To redusétic-
tor’s efforts, we can employ some heuristics to rank caridilam a
cluster and present them one-by-one to the instructor. &omple,
we can use a small set of tests or majority voting on some other
features of submissions like the loop bounds of update loops

The instructor can accept a submission as correct or add a mod
ified version of an existing submission. If none of this isgbke,
the instructor can write a correct solution similar to théusons
in the cluster. If a new submission is added, we perform etirgg
again. The instructor may have correct solutions from aiptev

cannot compare them. To compare them across submissians, ouoffering of the course if the assignment is repeated fronegipus

technigue uses canonical names for thamfor the DP array and
loop indices, j, k, etc. from the outer to inner loops. If a submis-
sion uses multiple DP arrays then we assign subscriptg.to

3.1.2 Feature Extraction

Identifying input statements and variables is simple. Waklo
for the common C library functions likecanf. The case of out-
put statements is similar. A variabieis identified as a loop index
variable if 1)x is a scalar variable, 2} is initialized before the
loop is entered, 3} updated inside the loop and 4)is used in
the loop guard. Identifying DP arrays requires more subikdya
sis discussed below. We call DP arrays, input variables aog |
indices in a submission &3P variables All other variables are
called temporary variables.

To eliminate the use of a temporary variaklat a control loca-
tion [, we compute a set of guarded expressions

{gliel,...,gn:en}

where the guards and expressions are defined only over DP vari
ables, and the guards are mutually disjoint. We denote #tibys
%(1,x) and callX the substitution storeSemantically, ifs;. : ex €

% (I,x) thenx andey evaluate to the same valuelavheneverg,

offering. The instructor can add them to the dataset everrbeie
apply clustering to the submissions.

3.2 Verified Feedback Generation

Once the submissions are clustered and the instructor éas-id
fied a valid submission for each cluster, we proceed to thfiegr
feedback generation phase. We check semantic equivaldérace o
submission from a cluster (called tbandidate with the instructor-
validated submission from the same cluster (calledeference.

3.2.1 Variable and Control Correspondence

Program equivalence checking is an undecidable problem. In
practice, a major difficulty is establishing correspondehetween
variables and control locations of the two programs [34]. &ie
ploit the analysis information computed during featureraotion
to solve this problem efficiently.

Let o be a one-to-one function, calledvariable map ¢ maps
the input variables and DP arrays of the reference to thes€orr
sponding ones of the candidate. To obtain a variable magnthe
put variables of the two submissions are matched by consgler
the order in which they are read and their types. The DP arrays
are matched based on their types. If there are multiple Daysrr



with the same type in both submissions then all type-corhfaati
pairs are considered. This generates a set of potentiablannaps
and equivalence checking is performed for each variablesapp-
rately. The one which succeeds and produces the minimumemumb
of corrections is used for communicating feedback to thdesit
In equivalence checking, we eliminate the occurrencesmpte
rary variables using the substitution store computed dueature
extraction. We therefore do not need to derive corresparelba-
tween temporary variables — which simplifies the problenatye
The feature extraction algorithm labels the input, inizafion,
update and output statements of a submission. We refer e the
statements akbeled statementsThe labeled statements give an
easy way to establish control correspondence between kimeisu
sions. We now use the notion of top-level statements defined i
Section 2.1. LeR = [s},...,s!] be the list of all top-level state-

ments of the reference such that 1) each statemeRtciontains at
least one labeled statement and 2) the order of statemeiitssin
consistent with their order in the reference submissiois. éasy to
see that the top-level statements in a submission areytotaléred.
LetC = [s},...,sh] be the similar list for the candidate submis-
sion. Without loss of generality, from now on, we assumettierte

is only one DP array in a submission and the top-level statésne
are (possibly nested) loops.

A (top-level) loop inR or € may contain multiple statements
which have different labels. For example, a loop may readrthe
put and also update the DP array. We call itederogeneoukop.

If a loop reads two different input variables then also wd ital
a heterogeneous loop. Heterogeneous loops make it diffacek-
tablish control correspondence between the statemesiRlEndC.
Fortunately, it is not difficult to canonicalize the staterlists us-
ing semantics-preservinipop transformations, well-known in the
compilers literature [3]. Our algorithm first does loop pig to
split a heterogeneous loop into different homogeneousslodp
then does loop merging to coalesce different loops opeyatirthe
same variable. Specifically, it merges two loops readingstmae
input array. It also merges loops performing initializatim the

ables and procedure calls szjl ands), by equivalent guarded ex-
pressions over only DP arrays, loop indices and input vegb
Lets; = X(I4,s7) andsy = X(I,s5) wherel; and!; are control
locations ofs} ands).

We formulate an equivalence quedy for the iteration spaces
of s; ands,. Let corr be the correspondence between the input
variables, DP arrays, and loop indicesspfands, at the matching
nesting depths. We definéer; to be the range of the loop indices
in s; andguards, to be the disjunction of all guards present in the
loop body ofs;. Similarly, we haveter, andguards, for s;. The
equivalence querg is defined as follows:

® = corr = (iter) A guards) <= itery A\ guardsy)

This query provides more flexibility than using direct sytia
checking between the loop headers. For example, suppose
for(i=1, i<=n, i++){true: s} ands, is for(i’=0, i'<=n, i'++){i’
> 0: s'}. s executes for 1 < i < n ands, also executes for 1 <
i’ < n. A syntactic check will end up concluding that executes
one additional iteration whetf is 0. But our equivalence query
establishes equivalence between the iteration spacesiasdie

The formulation of the query to establish equivalence between
loop bodies o8, ands; is as discussed in Section 2.2. Even though
the submissions use arrays, we eliminate them from the epiehi
loop body makes use of only a finite number of symbolic array ex
pressions. We substitute each unique array expressioruerst Qy
a scalar variable while encoding correspondence betweesttiar
variables in accordance with the variable map We overcome
some stylistic variations when the order of operands of ansom
tative operation differs between the two submissions. kamgple,
says; usesxli+j] ands; usesylb+al such that(x) =y, 0(i) = a
ando(j) = v. The expressionstj andb+a are not identical under
renaming but are equivalent due to commutativity. To take o
this, we force a fixed ordering among variables in the two ssbm
sions for commutative operators. Sometimes, the instruotry
include some constraints over input variables as part optbb-
lem statement. In the equivalence queries, our algorittestan-

same DP array. During merging, we ensure that there is no loop pyt constraints into account and also adds array bound&shase

in between the merged loops such that it reads from or writes t
the same variable or array as the merged loops. In our experie
in most cases, these transformations work because loogsgea
inputs or performing initialization of DP arrays dmt have loop-
carried dependences or ad-hoc dependences between loops.

In contrast, by definition, loops performing DP updates deeha
loop-carried dependences. We therefore do not attemptreog-
ing for such loops. The featufein Section 2.1 tracks the number
of loops containing DP updates. Therefore, two submissiotise
same cluster already have the same number of loops corgdifn
updates. Thus, clustering helps in reducing the variamtsrieed
to be considered during feedback generation.

Let R andC be the resulting statement lists for the reference and
candidate submissions respectively. If they have the samgth
and at each indek theith loops in the two lists 1) operate on the
variables related by a variable map?2) the statements operating
on the variables carry the same labels and 3) the loops have th
same nesting depth and directions then we getctrol corre-
spondencer : R — C. If our algorithm fails to compute variable
or control correspondence for the candidate then it exithoui
generating feedback, implicitly delegating it to the instor.

3.2.2 Equivalence Queries

Let sﬁ ands/, be the top-level loops from the reference and the
candidate such that(s}) = s5. We first use the substitution map
computed during feature extraction to eliminate temponaasi-

omit these details due to space limit.

3.2.3 Counter-Example Guided Feedback Generation

Algorithm 1 is our counter-example guided feedback gerarat
algorithm. Its input is a lisf) of equivalence queries where each
query(®;, ¥;) corresponds to thith statements in the two submis-
sions.®; encodes the equivalence of iteration spacesBmaf the
loop bodies. If thath statements are not loop¥; is true and'¥;
just checks equivalence of the loop-free statements. Ttpubof
the algorithm is a list of corrections to the candidate sigsion.

Algorithm 1 iterates over the query list (line 1). For a query
(®;,Y¥;), it first checks whethe®; is (logically) valid or not. If it
is not then the algorithm suggests a correction to make énation
spaces of théth statements (loops) of the two submissions equal
(lines 2-4). It then enters a refinement loop fgrat lines 7-23.

During each iteration of the refinement loop, it checks weeth
¥, is valid. If yes, it exits the loop (line 9). Otherwise, it get
a counter-example from the SMT solver and finds the guarded
statements that are satisfied by Letg; : s; € ¢ andgy :
sy € ¢y be those statements (line 11). The formujaeand ¢,
correspond to the encodings of the loop bodies of the referand
the candidate respectively. Note that the conversion ¢éstants
to guarded equality constraints (Section 2.2) ensureshbafuards
within ¢, and withing, are pairwise disjoint.

Let & be the variable map which is same as the variable corre-
spondence but augmented with the correspondence between loop



Algorithm 1: Algorithm GENFEEDBACK

Input: Alist Q = [(P1,¥1), ..., (P, ¥i)] of equivalence queries
Output: A list of corrections to the candidate submission
1 foreach (®;,¥;) € Qdo
2 if Ju [~ P; then
3 Suggest corrections to make the iteration spaces athhe
statements of the two submissions equal
4 end
5 LetY;=preANoi ANgs = post
6 k<« 0
7 repeat
8
9

k+—k+1
if =¥, then break else
Leta [~ ¥; be a counter-example
Letg) :s1 € prandgy : sy € ¢ S.t.a = g1 anda =
if = pre = (g1 <= g2) then
@) < P2(82 1 52/82 : 0(s1)]
¥« Yilg2/ 9]
Suggest computation 6f(s; ) instead of, underg,
else
hy <= g2 NO(g1); hy < &2 ANG(—g1)
@b < @2[g2 152/ hp 1 5 (s1) A 2 sy
¥i < Yilpa/ g5
Suggest computation &f(s; ) instead o, underh;
end
end
until k <0
if k = then Suggest a correction to replage by &(¢1)
25 end

indices at the same nesting depths forithestatements. The func-
tion ¢ is lifted in a straightforward manner to expressions and as-
signments. The algorithm checks whether the gugfdmdg, are
equivalent (line 12). If they are then the fault must be in &ise
signment statemenss. It therefore defineg), by substitutings, by
(s1) in @7 (line 13) and refine¥; by replacingp, by ¢} (line 14).

It suggests an appropriate correction for the candidatenssion
(line 15). The other case when the guards are not equivaads|
to the other branch (lines 16-21). The algorithm now splis t
guarded assignmenb : sp to make it conform to the reference
underh, = g, A(g1), whereas, fol}, = g» A &(—g7), the can-
didate can continue to perforsm (line 17). It computesp) by
replacinggy : sy by hp : 6(s1) andhj : s, (line 18). It then refines
'¥; by replacingg, by ¢} (line 19) and suggests an appropriate cor-
rection for the candidate submission (line 20). The refingrteop
terminates when no more counter-examples can be foundqJine
and thus, progressively finddl semantic differences betweéth
statements of the two submissions.

Each iteration of the refinement loop eliminates a sematitic d
ference between a pair of statements from the two submissiot
the loop terminates after a finite number of iterations. lkacfice,
giving a long list of corrections might not be useful to thedsnt if
there are too many mistakes in the submission. A bettemnaltiee
might be to stop generating corrections after a threshaiebished.
We use a constant to control how many refinements should be
attempted (line 23). If this threshold is reached then tigerithm
suggests a total substitution &f¢; ) in place ofg, (line 24). In
our experiments, we used= 10.

Due to the explicit verification of equivalence queries, algo-
rithm only generates correct feedback. The feedback fodéwe
larations of the candidate are obtained by checking dinoessbf
the corresponding variables accordingrto

4. IMPLEMENTATION

Table 1: Summary of submissions and clustering results.

Problem Total Clusters with Clusters with
subs. correct sub. manually added
correct sub.
SUMTRIAN 1983 78 2
MGCRNK 144 23 3
MARCHA1 58 4 2
PPTEST 41 2 0
Total 2226 107 7

We consider C programs for experimental evaluation. We have
implemented the source code analysis using the Clang é&athof
the LLVM framework [26] and use Z3 [10] for SMT solving. We
presently do not support pointer arithmetic.

In the pre-processing step, our tool performs some synottatis-
formations. It rewrites compound assignments into regagaign-
ments. For example; += y is rewritten tox = x + y. A code
snippet of the formiscanf("%d", &al0]); for G = 1; i < n; i++)
scanf("%d", &alil);, where the input array is read in multiple state-
ments is transformed to use a single read statement. Thes abov
snippet will be rewritten tdor (i = 0; i < n; i++) scanf("%d",
&alil);. Sometimes, students read a scalar variable and then assign
it to an array element. Our tool eliminates the use of theascalri-
able and rewrites the submission so that the input is readttiir
into the array element. Another common pattern is to read a se
quence of input values into a scalar one-by-one and thent urse i
the DP computation. For example, consider the code snippet
= 0;i<m;i++) for G =0;j<n; j++) { scanf("%d", &x); dplillj]
= dpli-11[j] + x; }. It does not use an array to store the sequence
of input values. We declare an array and rewrite the snigpese
it. When feedback is generated for the submission, an eafdan
note about the input array is added. In each of the syntaetist
formations, we ensure that the program semantics is noedlte

Many students, especially beginners, write programs woti ¢
voluted conditional control flow, and unnecessarily compda-
pressions. In addition, the refinement steps of our colexample
guided feedback generation algorithm may generate congplasds.

To present clear and concise feedback even in the face @& oss
sibilities, in the post-processing step, our tool simpdifiiards in
the feedback using the SMT solver. We use Z3's tactics to vemo
redundant clauses, evaluate sub-expressions to Boolemtaots
and simplify systems of inequalities.

5. EXPERIMENTAL EVALUATION

To assess the effectiveness of our technique, we collected s
missions to the following DP problem3 on CodeChef:

1. SUMTRIAN — Described in the Introduction section.

2. MGCRNK - Find a path from (1,1) to (N,N) in an & N
matrix, so that the average of all integers in cells on thh,pat
excluding the end-points, is maximized. From each cell, the
path can extend to cells to the right or below.

3. MARCHA1 — The subset sum problem.

4, PPTEST — The knapsack problem.

We selected submissions to these problems that implemanted
iterative DP strategy in the C language. A user can submit-sol
tions any number of times. We picked the latest submissimm f
individual users. These represent their best efforts andeaefit

3http://www.codechef.com/problems/< problem-name>



Table 2: Results of feedback generation. 1&U&O

Problem Verified as Corrections Average  Unlabeled U only

correct () suggested{) corrections ?
SUMTRIAN 1049 659 3.3 275 Correct
MGCRNK 61 66 6.8 17
MARCHA1 9 35 10.3 14 O only
PPTEST 3 29 12.7 9 [ —79% | only
Total 1122 789 4.3 315

u&O

from feedback. We do not consider submissions that eitherotlo
compile or crash on CodeChef’s tests. To enable automastd te
ing on CodeChef, the submissions had an outermost loopraiéte
over test cases — we identified and removed this loop autoatigti
before further analysis.

Table 1 shows the number of submissions for each problem. gested by our tool. The maximum percentage of submissioths wi

Others

Figure 6: Distribution of submissions in a cluster of suM-
TRIAN by the type of feedback.

SUMTRIAN had the maximum number of submissiof8§3) and corrections were foPPTEST at71% and the minimum wa33%
PPTEST had the minimum41). There were a total d226 sub- for SUMTRIAN. Many submissions had multiple faults. Table 2
missions from1860 students representing ov@b0 institutions. shows the average number of corrections over faulty suloniss
These submissions employ a wide range of coding idioms amg ma  for each problempPPTEST required the maximum number of cor-
possible solution approaches, both correct and incoriigs is a rections of12.7 on average. In all, our tool succeeded in either
fairly large, diverse and challenging set of submissions. verifying or generating verified feedback f86% submissions.
. . For the remaining15 (15%) submissions, our tool could neither

5.1 Effectiveness of CIUSte”ng generate feedback nor verify correctness. These subméssEed

Our features were quite effective in clustering submissibp manual evaluationMARCHA1 had the maximum percentage of
their solution strategies. Since we do not include featuegse- unlabeled submissions at% and MGCRNK had the minimum
senting low-level syntactic or structural aspects of susions, the at12%. These arise either because the SMT solver times out (we
clustering resulted in only a few clusters for each probleithout kept the timeout oBs for each equivalence query), or due to the
compromising our ability to generate verified feedback. |&db limitations of the verification algorithm or the implemetiden.

gives the number of clusters. The number of clusters inerkas These results on the challenging set of DP submissions are en
gracefully from the smallest problem (by the number of sidmi  couraging and demonstrate effectiveness of our methogalad
sions) to the largest one. The smallest probleRTEST yielded technique. Even if we assume that &b unhandled submissions
only 2 clusters for4l submissions, whereas, the largest problem are faulty, we could generate verified feedbackAtho faulty sub-
SUMTRIAN yielded80 clusters forl983 submissions. Our manual  missions. In comparison, on a setisfroductoryprogramming as-
evaluation revealed that in each cluster, the solutiong wetually signments, Singh et al. [46] report that% of faulty submissions
following the same DP strategy. could be fixed usingnanually provided error model®©ur counter-
The small number of clusters reduces the burden on the @stru example guided feedback generation technique guararteest
tor significantly. Instead of evaluati®@26 submissions separately, ness of the feedback. In addition, we would have liked to com-
the instructor is required to look at representatives fraty d14 municate the feedback to the students and assess theinsespo
clusters. CodeChef uses test suites to classify probletoscor- Unfortunately, their contact details were not availableso
rect and incorrect. As a simple heuristic, we randomly pickae
of the submissions marked as correct by CodeChef in eacteclus Diversity of Feedback and Personalization.
and manually validated it. As shown in Table 1, this gave us co The feedback propagation approaches [20, 41] suggesthidat t
rect representatives fa07/114 clusters across the problems. The same feedback text written by the instructor can be propalgat
remaining? clusters seemed to follow some esoteric strategies and all submissions within a cluster. We found that this is natggical
we manually added a correct solution to each of them. and the submissions within the same cluster require hezaemys
Clustering also helps the instructor get a bird’s eye viewhef feedback. Figure 6 shows the distribution of submissiorsdhus-
multitude of solution strategies. For example, it can beduse ter of SUMTRIAN by the type of feedback. We only highlight feed-
find the most or least popular strategy used in student ssbmis back over the logical components of a submission: initéien (1),
In SUMTRIAN, the most popular strategy (witiY7 submissions)  update (U) and output (O). Feedback related to type deiast
was the one that traverses the matrix rows bottom up, trese¢ne and input statements (possibly, in conjunction with feettn the

columns left to right and updates the elem@n). logical components) is summarized under the category 1Gthe
. . While only 7.9% submissions were verified to be correz1%
5.2 Effectiveness of Feedback Generation submissions had faults in one of the logical componentseif

Our tool verifies a submission from a cluster against the manu strategy: initialization {.7%), update 16.4%) and outputZ.9%).
ally validated or added correct submission from the samstetu As shown in Figure 6, a large percentage of submissions hétd fa
Table 2 shows the number of 1) submissions verified as correct in two logical components, arfd9% had them in all three compo-
(v), 2) submissions for which faults were identified and correc nents.30% of the submissions were in the others category. Clearly,
tions suggested ) and 3) submissions which our algorithm could it would be difficult for the instructor to predict faults irtteer sub-
not handle (?). Across the problemg422 submissions amounting  missions in a cluster by looking only at some submissionién t
to 50% were verified to be correct, with the maximumbags for cluster and write feedback applicable to all. We do admit Eig-
SUMTRIAN and the minimum a¥% for PPTEST. For a total of ure 6 is based on our clustering approach and other approathe
789 submissions amounting 5%, some corrections were sug-  yield different clusters. Even then, the clusters would beext



Table 3: Submissions by faulty components.

Faulty comp. SUMTRIAN MGCRNK MARCHAl1 PPTEST
| only 36 15 0 0
U only 229 7 5 2
O only 31 1 6 0
1&U 29 18 2 8
1&0 10 0 1 0
u&O 97 1 2 0
1&U&O 30 0 11 0
Others 197 24 8 19
Total 659 66 35 29
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Figure 7: Effect of simplification on feedback size fomMmGCRNK

only in aprobabilisticsense and the verification phase, we suggest,
would addcertaintyabout correctness of feedback.

Our technique generated personalized feedback depending o
which components of a submission were faulty. Table 3 shows
the number of submissions by the faulty components. Actoss t
problems,PPTEST had the maximum percenta8.7% of sub-
missions requiring corrections to multiple logical compots and
SUMTRIAN had the minimum percentad@.5%. The most com-
mon faulty components varied across problems.

Types of Faults Found and Corrected.

Our tool found a wide range of faults and suggested apprapria
corrections for them. This is made possible by availabdftg cor-
rect submission to verify against and the ability of our fieaition
algorithm to refine the equivalence queries to find all faultbe
faults found and corrected include: incorrect loop headaital-
ization mistakes including missing or spurious initiatina, miss-
ing cases in the DP recurrence, errors in expressions amdsggua
incorrect dimensions, etc.

Conciseness of Feedback.

599. Simplifications, where applicable, reduced feedback kjze
63.1% on an average across the problems.

5.3 Comparison with CodeChef

Our tool was able to verif§2 submissions as correct that were
tagged by CodeChef as incorrect. This was surprising becaus
CodeChef uses tests which should not produce falsh positives
On investigation, we found that the program logic was indemd
rect, as verified by our tool. The faults were localized topaoitit
formatting, or in custom input/output functions. Undenstably,
black-box testing used by CodeChef cannot distinguish e&etw
formatting and logical errors. However, being able to digtiish
between these types of faults would save time for the stedénir
tool finds logical faults but not formatting errors.

Due to the incompleteness of testing, CodeChef did not iden-
tify all faulty submissionsfélse negatives This can hurt students
since they may not realize their mistakes. We checked thescas
when CodeChef tagged a submission as correct but our tool is-
sued some corrections. F&t submissions, our tool identified that
the submissions were making spurious initializations e ar-
ray. For112 submissions, our tool identified that the DP udpate
was performed for additional iterations than required agmkbgated
feedback to fix the bounds of loops containing update stat&sne
Importantly, our tool detectedut-of-bounds array accesses99
submissions, and suggested appropriate correctio2s5ldistinct
submissions, our tool was able to identify one or more of Hudt$
described above, whereas CodeChef tagged them as corredt! T
our static technique has a qualitative advantage over stédtsed
approach of online judges.

5.4 Performance

We ran our experiments on an Intel Xeon E5-1620 3.60 GHz ma-
chine with 8 cores and 24GB RAM. Out tool runs only on a single
core. On an average, our tool generated feedbadkém includ-
ing the time for clustering and excluding the time for id@rtig
correct submissions manually.

5.5 Limitations and Threats to Validity

Our technique fails for submissions that have loop-carded
pendencies over scalar variables apart from the loop index v
ables, submissions that use auxiliary arrays and submisdar
which pattern matching fails to label statements. We irtliegilim-
itations of SMT solvers in reasoning about non-linear c@ists
and program expressions with undefined semantics, suctvias di
sion by 0. Most of the unhandled cases arise from these tionis

Our approach cannot suggest feedback for errors in custom in
put/output functions, output formatting, typecasting;. eéDur ap-
proach may provide spurious feedback enforcing stylisticfar-
mance with the instructor-validated submission. For examip
a submission starts indexing into arrays from positiobut the
instructor-validated submission indexes from positiorour tool
generates feedback requiring the submission to foldvased in-
dexing. This may correct some misconception about arragxind

To reduce the size of formulae in the generated feedback, weing that the student may have. Nevertheless, these diffesecan

perform simplifications outlined in Section 4. We measuréf
fectiveness of the simplifications by disabling them andgishe
sum of AST sizes (#nodes in the AST) of the guards in our feed-
back text adeedback sizeFigure 7 shows the impact of the sim-
plifications on feedback size in the casenofsiCRNK by plotting
submission IDs versus feedback size. The figure excludesscas
where simplification had no impact on feedback size. Sinualifi
tions ensured that the feedback size was at me&tand42.1 on
average. Without simplifications, the maximum feedback sias

be either compiled away during pre-processing or throughl SM
solving with additional annotations. We will investigateese in
future. Finally, our implementation currently handlesyoal fre-
quently used subset of C constructs and library functions.

There can be faults in our implementation that might have af-
fected our results. To address this threat, we manuallyketethe
feature values and feedback obtained, and did not encoanter
error. Threats to external validity arise because our tesuhy not
generalize to other problems and submissions. We mitigiied



threat by drawing upon submissions from more thés0 students
on4 different problems. While our technique is able to handlsimo
constructs that introductory DP coursework employs, &rgiud-
ies are required to validate our findings in the case of othabp
lems. In Section 5.3, we compared our tool with the clasditioa
available on CodeChef. The tests used by CodeChef are nlit pub
and hence, we cannot ascertain their quality. By improuirgtést
suites, some false negatives of CodeChef may disappeatduolt b
box testing will not be able to distinguish between logicallfs
and formatting errors (discussed in Section 5.3).

6. RELATED WORK

Program Representations and Clustering.

In order to cluster submissions effectively, we need sjiateto
represent both the syntax and semantics of programs. Masy cl
tering approaches use only edit distance between submskis,
44], while others use edit distance along with test-basetlas
ity [20, 36, 12]. We use neither of these. Glassman et al. [13]
advocate a hierarchical technique where the submissi@nérat
clustered using high-level (abstract) features and thamguew-
level (concrete) features. An interesting recent directfto use
deep learning to compute and use vector representationsoef p
grams [40, 41, 33]. Peng et al. [40] propose a pre-trainich-te
nique to automatically compute vector representationsffefrant
AST nodes which is then fed to a tree-based convolution haata
work [33] for a classification task. Piece et al. [41] propasecur-
sive neural network to capture both the structure and fanatity
of programs. The functionality is learned using input-atitgxam-
ples. But the class of programs considered in [41] is verypkm
It only handles programs which do not have any variables.

Since our experiments were focused on iterative DP solsition
we designed features that capture the DP strategy. The amsve
proaches are more general but unlike us, they may not puttie s
missions in Figure 2 and 3 in the same cluster. Our algorithkin e
tracts features in the presence of temporary variables evckep
dures, and might be useful in other contexts as well.

Feedback Generation and Propagation.

The idea of comparing instructor provided solutions witidgnt
submissions appears in [2]. It uses graph representatibirans-
formations for comparison of Fortran programs. Xu and CH&¢ [
use richer graph representations for object-orientedrprog. Rivers
and Koedinger [44] use edit distance as a metric to compafehgr
and generate feedback. Gross et al. [15] cluster studeuticas
by structural similarity and perform syntactic comparisavith a
known correct solution to provide feedback. Feedback geedr
by pattern matching may not always be correct. In contrast, w
generateverifiedfeedback but for the restricted domain of DP.

Alur et al. [4] develop a technique to automatically grade au
tomata constructions using a pre-defined set of correctiSirgh
et al. [46] apply sketching based synthesis to provide faekitior
introductory programming assignments. In addition to aneice
implementation, the tool takes as input an error model irfohe
of correction rules. Their error model is too restrictivdbtoadapted
to our setting that requires more sophisticated repairstiatctoo
for a more challenging class of programs. Gulwani et al. HA
dress the orthogonal issue of providing feedback to adgeser-
mance issues, while Srikant and Aggarwal [47] use machirale
ing to assess coding quality of prospective employees ambtio
provide feedback on incorrect solutions.

The idea of exploiting the common patterns in DP programs

has been used by Pu et al. [43] but for synthesis of DP programs
The clustering-based approaches [20, 41] propagate ttradtw-
provided feedback to all submissions in the same clustegreds

we generate personalized and verified feedback for eachisubm
sion in a cluster separately. OverCode [12] also perforunstefing

of submissions and provides a visualization technique $stkhe
instructor in manually evaluating the submissions.

Program Repair and Equivalence Checking.

Genetic programming has been used to automatically generat
program repairs [5, 11, 27]. These approaches are not l¢filgget
plicable in our setting as the search space of mutants islaegg.
Further, GenProg [27] relies on redundancy present in gihgs
of the code for fixing faults. This condition is not met in oat-s
ting. Software transplantation [18, 6] transfers funcaiity from
one program to another through genetic programming anihglic
Prophet [30] learns a probabilistic, application indep@rtdnodel
of correct code from existing patches, and uses it to rankirep
candidates from a search space. These are generate-atateval
approaches which rely on a test suite to validate the chaniges
comparison, we derive corrections for a faulty submissipmpio-
gram equivalence checking with a correct submission.

Konighopher et. al. [25] present a repair technique usitfig re
erence implementations. Their fault model is restrictind anly
considers faulty RHS. Many approaches rely on program 8peci
cations for repair, including contracts [39, 48], LTL [23sser-
tions [45] and pre-post conditions [14, 28, 19]. Recent apphes
that use tests to infer specifications and propose repaitade
SemFix [37], MintHint [24], DirectFix [31] and Angelix [32]These
approaches use synthesis [22], symbolic execution [9] amtiap
MaxSAT [10] respectively. Both DirectFix and Angelix userpal
MaxSAT but Angelix extracts more lightweight repair coagtts
to achieve scalability. SPR [29] uses parameterized toamsttion
schemas to search over the space of program repairs. Irasgntr
we use instructor-validated submissions and a combinatiqat-
tern matching, static analysis and SMT solving.

Automated equivalence checking between a program and-its op
timized version has been studied in translation validafitiy 35,

7]. Partush and Yahav [38] design an abstract interpretdtased
technique to check equivalence of a program and its patcaed v
sion. In comparison, our technique performs equivalen@zich
between programs written by different individuals indegbemtly.

All these approaches are designed for developers and ddal wi
only one program at a time. Our tool targets iterative DPtgmhs
written by students and works on a large number of submission
simultaneously. It combines clustering and verificatiorhémdle
both the scale and variations in student submissions.

7. CONCLUSIONS AND FUTURE WORK

We presented semi-supervised verified feedback generttion
deal with both scale and variations in student submissiahde
minimizing the instructor’s efforts and ensuring feedbaiality.
We also designed a novel counter-example guided feedba-ge
ation algorithm. We successfully demonstrated the effengss of
our technique 02226 submissions td DP problems.

Our results are encouraging and suggest that the combinatio
of clustering and verification can pave way for practicakfesck
generation tools. There are many possible directions tadauegp
clustering and verification by designing sophisticatecbatgms.
We plan to investigate these for more problem domains.
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