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Abstract. This paper defines the cover of a formula φ with respect to a
set of variables V in theory T to be the strongest quantifier-free formula
that is implied by ∃V : φ in theory T . Cover exists for several useful
theories, including those that do not admit quantifier elimination. This
paper describes cover algorithms for the theories of uninterpreted func-
tions and linear arithmetic. In addition, the paper provides a combination
algorithm to combine the cover operations for theories that satisfy some
general condition. This combination algorithm can be used to compute
the cover a formula in the combined theory of uninterpreted functions
and linear arithmetic. This paper motivates the study of cover by de-
scribing its applications in program analysis and verification techniques,
like symbolic model checking and abstract interpretation.

1 Introduction

Existential quantifier elimination is a core primitive used in several program
analysis and verification techniques. Given a quantifier-free formula φ and a set
of variables V , existentially quantifying away V involves computing a quantifier-
free formula that is logically equivalent to ∃V : φ. This operation is useful in
practice to eliminate variables that are no longer necessary from a formula.
For instance, the image computation in symbolic model checking [14] involves
computing the quantifier-free formula equivalent to ∃V : R(V ) ∧ T (V, V ′). Here,
R(V ) represents the current set of reachable states and T (V, V ′) represents the
transition relation between the current values of the state variables V and their
new values V ′.

Existential quantifier elimination can be performed, albeit with exponential
complexity, for propositional formulas. However, this operation is not defined
for formulas containing interpreted symbols from certain theories. For example,
consider the formula F (x) = 0 in the theory of uninterpreted functions. There is
no quantifier-free formula that is equivalent to ∃x : F (x) = 0 as it is not possible
to state that 0 is in the range of function F without using quantifiers. This limits
the application of techniques like symbolic model checking to systems described
by formulas in these theories.

To address this problem, we introduce the notion of cover. Given a quantifier-
free formula φ containing interpreted symbols from theory T and a set of vari-
ables V , we define CT V : φ (called the cover of φ with respect to V in T ) as the
strongest quantifier-free formula in T that is implied by ∃V : φ. Formally, the
cover operation satisfies the following constraints.
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(∃V : φ) ⇒T (CT V : φ)
((∃V : φ) ⇒T γ) iff ((CT V : φ) ⇒T γ) , for all quantifier-free formulas γ

When the theory T is obvious from context, we drop the subscript T from the
notation and refer to the cover simply as CV : φ.

Intuitively, applying the cover operation on a formula with respect to V elim-
inates all variables in V from the formula. However, the resulting formula only
retains quantifier-free facts pertaining to other variables in the formula. For an
example, let φ be the formula y = Mem(a + x) − Mem(b + x), where Mem is an
uninterpreted function. Using cover to eliminate the variable x, we get

(Cx : y = Mem(a + x) − Mem(b + x)) ≡ (a = b ⇒ y = 0)

Note that ∃x : φ implies the right hand side of the above equation. The results
in this paper show that this is the most precise quantifier-free formula that
is implied by φ and that does not involve x. Example 3 in Section 4 provides
an algorithm to compute the cover of this formula, and Section 2.2 describes
an application that requires computing the cover of such formulas. Finally, the
reader should also note that applying cover does not retain quantified facts. For
example, Cx : φ does not imply the fact (∀x : Mem(a + x) = Mem(b + x)) ⇒ y = 0,
while ∃x : φ does.

This distinguishing fact of cover allows us to define this operation even for theo-
ries that do not admit existential quantifier elimination. In Section 3, we describe
the cover algorithm for the theory of uninterpreted functions. Note that cover is
trivially defined for propositional formulas and theoryof linear arithmetic, as cover,
by definition, reduces to existential quantifier elimination when it exists.

In Section 4, we present a combination algorithm for computing cover for
union of two theories that individually support cover operations and satisfy
some general condition. Our combination algorithm is based on extension of
Nelson-Oppen methodology for combining decision procedures [16]. However,
in our combination framework, we also need to exchange conditional variable
equalities (of the form γ ⇒ v1 = v2) and variable-term equalities (of the form
γ ⇒ v = t) between component theories. Our combination algorithm works
for theories that are convex, stably infinite, disjoint, and have a finite set of
simple terms (Definition 1 in Section 4). The theories of linear arithmetic and
uninterpreted functions, for example, satisfy these constraints.

We also describe how the cover operation can be used in program analysis
and verification techniques that otherwise depend on existential quantifier elim-
ination. In particular, this paper presents a modified symbolic model checking
algorithm (Section 2.1) using the cover operation in the image computation step.
This new algorithm can be used to reason about transition systems involving
operations from the rich set of theories for which the cover operation is defined.
Moreover, when the transition system can be described using quantifier-free for-
mulas, we show that the symbolic model checking algorithm using cover is not
only sound, but also precise (Theorem 1). In other words, when the checking
algorithm terminates, any error reported is guaranteed to be a real error in
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the system. This is in stark contrast with other over-approximation based tech-
niques [1,3,15], which only guarantee soundness. Precision is very important for
falsification techniques. A similar application is in performing abstract interpre-
tation of programs over abstractions whose elements are quantifier-free formulas
describing program states.

In summary, this paper has the following main contributions.

– We introduce the notion of cover as the most precise quantifier-free over-
approximation to existential quantifier elimination. We study this operation
and present its useful properties.

– As a practical application, we present a new symbolic model checking al-
gorithm using cover. This algorithm is both sound and precise, and can be
used to reason about transition systems described using formulas in a rich
set of theories.

– We show how to do a precise analysis of programs by performing abstract
interpretation over abstract domains that describe program states using
quantifier-free formulas.

– We show that cover can be computed for the theory of uninterpreted func-
tions.

– We present an extension to the Nelson-Oppen combination framework that
can be used to combine the cover operation of theories satisfying a general
condition. We show that useful theories such as the theory of uninterpreted
functions and linear arithmetic satisfy these conditions.

2 Applications of Cover

Before presenting cover algorithms for some theories, and a methodology for
combining cover algorithms in the following sections, we first motivate the study
of cover by describing some useful applications for the cover operation.

2.1 Symbolic Model Checking

Our main motivation for cover is to apply symbolic model checking to reason
about transition systems that involve rich operations from the theory of un-
interpreted functions, which naturally arise in program analysis and software
verification.

A transition system can be described by the tuple (V, I(V ), T (Vold, Vnew),
E(V )), where V represents the set of state variables, I(V ) is a formula describing
the set of initial states, T (Vold, Vnew) is a formula describing the transition relation
between the old values Vold and new values Vnew of the variables in V , and E(V )
is a formula describing the set of error states. For clarity, if φ(V ) is a formula with
variables from V , we will use φ(V ′) to be the formula obtained from φ by renaming
each variable in V with the corresponding variable in V ′.

Given a transition system, the symbolic model checking algorithm computes
the set of reachable states R(V ) iteratively as follows.
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R0(V ) ≡ I(V )
Ri(V ) ≡ Ri−1(V ) ∨ (∃Vold : Ri−1(Vold) ∧ T (Vold, V )) for i > 0

This iteration reaches a fix point at n if and only if Rn(V ) ⇒ Rn−1(V ). At
this point, Rn(V ) is an inductive invariant of the transition system. Also, if
Rn(V ) ⇒ ¬E(V ) then the system does not reach an error state.

A transition system (V, I(V ), T (Vold, Vnew), E(V )) is quantifier-free when the
formulas I(V ), T (Vold, Vnew), and E(V ) are all quantifier-free. In practice, transi-
tion systems arising from many software verification applications are quantifier-
free. For such systems, we propose a new symbolic model checking algorithm that
uses the cover operation instead of existential quantification. Also, we show that
this new algorithm is sound and precise. Moreover, this algorithm terminates
whenever the original model checking algorithm terminates.

In the discussion below, we assume that the transition system uses operations
from a theory T , such as the union of the theory of reals and uninterpreted
functions. We assume that the cover operations are performed with respect to
this theory. (See Section 3 for the actual cover algorithms.)

The symbolic model checking algorithm using cover is as follows.
SMC-Cover Algorithm:

CR0(V ) ≡ I(V )
CRi(V ) ≡ CRi−1(V ) ∨ (CVold : CRi−1(Vold) ∧ T (Vold, V )) for i > 0

In the equations above, CRi(V ) determines the set of reachable states deter-
mined using the cover operation after i iterations. The fix point is reached, as
before, at point n when CRn(V ) ⇒ CRn−1(V ).

Lemma 1. Given a quantifier-free transition system (V, I(V ), T (Vold, Vnew),
E(V )), CRn(V ) ⇒ φ if and only if Rn(V ) ⇒ φ for all quantifier-free formulas
φ.

Proof. The proof is by induction. The base case is trivial as CR0(V ) ≡ I(V ) ≡
R0(V ). For the induction, assume the lemma holds for all iterations up to n− 1.
Note, that by definition

Rn(V ) ≡ ∃Vold : Rn−1(Vold) ∧ T (Vold, V ) ∨ Rn−1(V )

CRn(V ) ≡ CVold : CRn−1(Vold) ∧ T (Vold, V ) ∨ CRn−1(V )

Consider a quantifier-free formula φ that does not contain, without loss of
generality, variables from Vold.1 Now, if Rn(V ) ⇒ φ, then the following are true

Rn−1(V ) ⇒ φ

∃Vold : Rn−1(Vold) ∧ T (Vold, V ) ⇒ φ

1 The variables from Vold, if present, can be renamed.
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From the first equation, we have CRn−1(V ) ⇒ φ by induction. Moreover from
the second equation, we have

Rn−1(Vold) ∧ T (Vold, V ) ⇒ φ as φ does not contain variables in Vold

Rn−1(Vold) ⇒ (T (Vold, V ) ⇒ φ)
CRn−1(Vold) ⇒ (T (Vold, V ) ⇒ φ) by induction, as T (Vold, V ) is quantifier-free

CRn−1(Vold) ∧ T (Vold, V ) ⇒ φ

CVold : CRn−1(Vold) ∧ T (Vold, V ) ⇒ φ by definition

Thus, we have CRn(V ) ⇒ φ, proving the if direction of the lemma. Proving
the other direction is similar and follows from the property that cover over-
approximates existential quantification.

Using Lemma 1 and the following properties of cover, we can prove the desired
result stated in Theorem 1.

Property 1. CV : CW : φ(V, W ) ≡ CV, W : φ(V, W )

Property 2. CV : ∃W : φ(V, W ) ≡ CV : CW : φ(V, W )

Theorem 1. Given a transition system (V, I(V ), T (Vold, Vnew), E(V )), where
both T (Vold, Vnew) and E(V ) are quantifier-free, then the symbolic model checking
algorithm using cover is sound and precise.

Proof. The proof follows from Lemma 1. Since E(V ) is quantifier-free, Rn(V ) ⇒
¬E(V ) if and only if CRn(V ) ⇒ ¬E(V ). Thus, the symbolic model checking
algorithm using cover proves the absence of error whenever the original symbolic
model checking algorithm proves the same. Also, when the former algorithm
reports an error, the latter reports the error.

Theorem 2. Given a transition system (V, I(V ), T (Vold, Vnew), E(V )), where
both T (Vold, Vnew) and E(V ) are quantifier-free, then the symbolic model check-
ing algorithm using cover terminates whenever the symbolic model checking al-
gorithm terminates.

Proof. Say, the symbolic model checking algorithm terminates at step n, then
Rn(V ) ⇒ Rn−1(V ). Thus, by Lemma 1, we have Rn(V ) ⇒ CRn−1(V ). Since
CRn−1(V ) is a quantifier-free formula we have CRn(V ) ⇒ CRn−1(V ). Thus the
symbolic model checking algorithm using cover terminates.

Checking Infinite State Systems. The algorithm mentioned above is, in
general, not guaranteed to terminate when the transition system describes an
infinite state systems. To guarantee termination, this algorithm has to be com-
bined with appropriate abstraction [15] or widening techniques [4] to selectively
lose facts regarding the set of reachable states. Designing such algorithms is be-
yond the scope of this paper. However, the cover operation, as opposed to a less
precise approximation to existential quantification, is still useful in this setting
because it greatly simplifies the design of subsequent refinement [1,3] algorithms.
In particular, refinement needs to be performed only at the ’widen’ points where
information is lost [6].
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void foo(int a[], int b[]) {
int y = 0; int x = ?;
while(*) { y = y + a[x] - b[x]; x = ?; }
if (y �= 0) { assert(a �= b); }

}

Fig. 1. An example program whose loop invariant (required to prove the assertion) can
be generated using cover operation

2.2 Abstract Interpretation over Precise Abstractions

Abstract Interpretation is a well-known methodology to analyze programs over a
given abstraction [4]. An abstract interpreter performs a forward analysis on the
program computing invariants (which are elements of the underlying abstract
lattice over which the analysis is being performed) at each program point. The
invariants are computed at each program point from the invariants at the preced-
ing program points in an iterative manner using appropriate transfer functions.

Most of the abstract interpreters that have been described in literature operate
over an abstraction whose elements are usually conjunction of atomic predicates
in some theory, e.g., linear arithmetic [5], uninterpreted functions [8,9]. These
abstractions cannot reason about disjunctive invariants in programs and there
is a loss of precision at join points in programs.

Abstractions whose elements are boolean combinations of atomic predicates in
an appropriate theory can reason about disjunctive invariants in programs. The
join operation (required to merge information at join points) for such an abstrac-
tion is simply disjunction, while the meet operation (required to gather informa-
tion from conditional nodes) is simply conjunction. However, the strongest post-
condition operation (required to compute invariants across assignment nodes) is
non-trivial. In fact, it is exactly the cover operation for the underlying theory.
Hence, a cover operation for a theory can be used to perform abstract interpreta-
tion of programs over an abstraction whose elements are quantifier-free formulas
over that theory.

Consider, for example, the program shown in Figure 1. We do not know of any
existing abstract interpreter that can prove the assertion in the program. For
this, we need to do abstract interpretation over the abstraction of quantifier-
free formulas in the combined theory of linear arithmetic and uninterpreted
functions. Analyzing the first loop iteration involves computing the strongest
postcondition of y = 0 with respect to the assignment y := y + a[x] − b[x] (in
the abstraction of quantifier-free formulas), which is equivalent to computing
Cx′, y′ : (y′ = 0 ∧ y = y′ + Mem(a + x′) − Mem(b + x′) ∧ x = ∗), where Mem denotes
the deference operator and can be regarded as an uninterpreted function. This
yields the formula a = b ⇒ y = 0, which also turns out to be the loop invariant
and hence fixed point is reached in the next loop iteration.

Furthermore, the invariant computed at the end of the procedure can be
turned into a procedure summary by eliminating the local variables of the pro-
cedure, again by using the cover operation. Procedure summaries are very useful
in performing a context-sensitive reasoning of a program in a modular fashion.
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2.3 Computation of Interpolants

Finally, the cover operation can be used to compute quantifier-free interpolants.
Let φ1(V1, V ) and φ2(V2, V ) be quantifier-free formulas, such that φ1 contains
variables in V1 ∪V , φ2 contains variables in V2 ∪V , V1 ∩V2 = ∅, and φ1(V1, V ) ⇒
φ2(V2, V ). A quantifier-free interpolant I(V ) is a quantifier-free formula that
contains only variables from V and satisfies (φ1(V1, V ) ⇒ I(V )) ∧ (I(V ) ⇒
φ2(V, V2)). We can see that CV1 : φ1(V, V1) and ¬(CV2 : ¬φ2(V, V2)) are (respec-
tively the strongest and weakest) quantifier-free interpolants. Such interpolants
have recently been used in fix point computations [15] and to refine abstrac-
tions [11].

3 Cover Algorithm for the Theory of Uninterpreted
Functions

The cover algorithm for theory of uninterpreted functions is given in Figure 3.
The algorithm assumes that there are only binary uninterpreted functions, but
it can be easily extended to handle uninterpreted functions of any arity.

Property 3. The cover operation distributes over disjunctions, i.e.,

(CV : (φ1 ∨ φ2)) ≡ (CV : φ1) ∨ (CV : φ2)

Hence, without loss of any generality, the algorithm assumes that the input
formula φ is a conjunction of atomic facts, where each atomic fact is either a
positive or negative atom.

The reasoning behind the cover algorithm is as follows. Suppose φ(U, V ) ⇒
γ(U, W ) such that U = Vars(φ) ∩ Vars(γ), U ∩ V = ∅, and W ∩ U = ∅.
We require CV : φ ⇒ γ. By Craig’s interpolant theorem, there exists a δ(U)
such that (φ(U, V ) ⇒ δ(U)) ∧ (δ(U) ⇒ γ(U, W )). The fact that one can find a
quantifier-free interpolant for formulas in the theory of uninterpreted functions
follows from [15]. Without loss of generality, one can represent δ(U) (in conjunc-
tive normal form) as a conjunction of clauses where each clause is of the form
(s1 = t1∧. . .∧sa = ta) ⇒ (s′1 = t′1∨. . .∨s′b = t′b), where the terms si, ti, s

′
j , t

′
j only

contain variables from U . Therefore, φ(U, V ) implies each of the clauses individ-
ually. Finally, from the convexity of the theory of uninterpreted functions [16],
whenever φ(U, V ) implies (s1 = t1∧. . .∧sa = ta) ⇒ (s′1 = t′1∨. . .∨s′b = t′b), there
exists some 1 ≤ i ≤ b such that φ(U, V ) implies (s1 = t1∧. . .∧sa = ta) ⇒ s′i = t′i.
Lines 12 and 15 in the function ComputeCoveruf(φ) compute all such implied
equalities. While there could be infinite such implied equalities, one only needs
to consider equalities of the form sj = tj , 1 ≤ j ≤ a where sj and tj are terms
in the congruence closure graph of φ. This is because equalities can only propa-
gate “upwards” during congruence closure. Similarly, one only needs to consider
the case in which s′i and t′i are in the congruence closure graph of φ. The formal
correctness of the cover algorithm is presented in the full version of the paper [7].

Line 1 involves computing a congruence closed graph G that represents the
equalities implied by φ. G is a set of congruence classes, and each congruence
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Formula φ : s1 = F (z1, v) ∧ s2 = F (z2, v) ∧ t = F (F (y1, v), F (y2, v))

Cv : φ : z1 = z2 ⇒ s1 = s2 ∧
∧

i,j∈{1,2}

y1 = zi ∧ y2 = zj ⇒ t = F (si, sj)

Fig. 2. An example of cover operation for the theory of uninterpreted functions

class is a set of nodes n, where a node is either a variable y, or a F -node F (c1, c2)
for some congruence classes c1 and c2. Note that two nodes n1 and n2 in G are
in the same congruence class iff φ implies n1 = n2. The function Rep(c) returns
a representative term for class c that does not involve any variables in V , if any
such term exists; otherwise it returns ⊥.

Line 2 calls procedure Mark that takes a congruence closed graph G and a
set of variables V as inputs, and sets M [n] to 1 for F -nodes n iff node n in G
becomes undefined if variables V are removed from G. An F -node F (c1, c2) is
undefined iff classes c1 or c2 are undefined. A class c is undefined iff it contains
all undefined nodes. The function AllMark takes a congruence class c as an input
and returns true iff all nodes in c are marked.

Lines 5 through 8 compute W [n1, n2], which denotes the weakest constraint
not involving variables in V and which along with φ implies n1 = n2. W [n1, n2] is
first initialized to Init(n1, n2), which returns a constraint not involving variables
in V and which along with φ implies n1 = n2. W [n1, n2] is then updated in a
transitive closure style.

Line 4 initializes result to all equalities and disequalities that are implied
by φ and that do not involve any variables in V . Lines 12 and 15 then update
result by conjoining it with all implied equalities that are implied by φ and
that do not involve any variable from V . Lines 11-12 can be treated as a special
case of lines 13-15 when the context Z does not contain any holes (i.e., k = 0).

Example 1. Figure 2 shows an example of the cover operation over the theory
of uninterpreted functions. For the formula φ in Figure 2, let n1 be the node
F (y1, v), n2 be the node F (y2, v), and n be the node F (n1, n2). The procedure
Mark marks all the nodes in the congruence closed graph G, as every node de-
pends on the variable v that needs to be eliminated. After executing lines 5
through 8, the algorithm computes W [s1, n1], for instance, to be the constraint
z1 = y1. Note, that an equality between z1 and y1 results in an equality be-
tween the nodes s1 and n1, and this is the weakest constraint to do so. Similarly,
W [s1, n2] is the constraint z2 = y1, and so on. For this example, the set Ne in
Line 9 contains all the nodes in G. Consider the context Z[n1, n2] = F (n1, n2).
By choosing the node m1 to be s1 and m2 to be s1 in line 13, we obtain the
formula z1 = y1 ∧ z2 = y1 ⇒ t = F (s1, s1) in line 15, and so on. The result
returned by the algorithm is shown in Figure 2.

Complexity: The complexity of the algorithm described in Figure 3 can be ex-
ponential in the size of the input formula φ. This is because there can be an
exponential number of ways of choosing an appropriate sequence of k nodes
m1, . . . , mk in line 13. Hence, the size of the cover can itself be exponential in
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ComputeCoveruf(φ, V ) =
1 Let G be the congruence closure of φ.
2 Mark(G,V );
3 let G′ be the graph obtained from G after removing all nodes n s.t. M [n] = 1;
4 result ← all equalities and disequalities implied by G′;

// Compute W [n1, n2]
5 forall nodes n1, n2 ∈ G: W [n1, n2] ← Init(n1, n2);
6 forall nodes n ∈ G:
7 forall nodes n1, n2 ∈ G:
8 W [n1, n2] ← W [n1, n2] ∨ (W [n1, n] ∧ W [n, n2]);

// Compute result
9 let Ne = {n | n ∈ G, M [n] = 1, CRep(n) �= ⊥};

10 forall nodes n ∈ Ne

11 forall nodes m ∈ G s.t. W [m, n] �= false:
12 result ← result ∧ (W [n, m] ⇒ CRep(n) = CRep(m));
13 forall contexts Z[n1, . . , nk] s.t. n = Z[n1, . . , nk], Vars(Z) ∩ V = ∅, ni ∈ Ne for 1 ≤ i ≤ k
14 forall nodes m1, . . , mk ∈ G s.t. W [ni, mi] �= false and CRep(mi) �= ⊥ for 1 ≤ i ≤ k:

15 result ← result ∧
((

k∧
i=1

W [ci, di]
)

⇒ CRep(n) = Z[CRep(m1), . . . , CRep(mk)]
)
;

16 return result;

// Marks those nodes n (M[n] = 1) which become undefined when variables in V are removed
Mark(G,V) =

forall nodes n ∈ G: M [n] ← 1;
forall variables y �∈ V : M [y] ← 0;
while any change

forall nodes F (c1, c2): if ¬AllMark(c1) ∧ ¬AllMark(c2), M [F (c1, c2)] ← 0;

// Returns true if every node in the equivalence class c is marked
AllMark(c) =

forall nodes n in class c: if M [n] = 1, return true;
return false;

// Initial candidate for the weakest constraint that implies n1 = n2

Init(n1,n2) =
if Class(n1) = Class(n2), return true;
if n1 ≡ F (c1, c2) and n2 ≡ F (c′

1, c
′
2)

if Rep(c1) �= ⊥ ∧ Rep(c′
1) �= ⊥ ∧ c2 = c′

2, return Rep(c1) = Rep(c′
1);

if Rep(c2) �= ⊥ ∧ Rep(c′
2) �= ⊥ ∧ c1 = c′

1, return Rep(c2) = Rep(c′
2);

return Init(c1, c
′
1) ∧ Init(c2, c

′
2);

return false;

// Find a term in the equivalence class not containing a variable in V
Rep(c) =

if AllMark(c) return ⊥;
if c has a variable y s.t. M [y] = 0, return y;
let F (c1, c2) be the node s.t. M [F (c1, c2)] = 0. return F (Rep(c1), Rep(c2));

// Find a representative term for n that does not contain a variable in V
CRep(n) =

return Rep(Class(n));

Fig. 3. Cover Algorithm for Theory of Uninterpreted Functions
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size of the input formula φ. The formula φ in Figure 2 can be easily generalized
to obtain a formula of size O(n) whose cover is of size O(2n).

Special Case of Unary Uninterpreted Functions. For the special case when
the formula φ involves only unary uninterpreted functions, the cover algorithm
simply involves erasing variables in V from congruence closure of φ. Equivalently,
the algorithm only involves Lines 1 through 4 in the ComputeCover procedure de-
scribed in Figure 3. The complexity of the cover algorithm for unary uninterpreted
functions is thus O(n log n), where n is the size of the input formula.

4 Combination Algorithm for Cover

In this section, we show how to obtain a cover algorithm for combination of
two theories T1 ∪ T2 from the cover algorithms for the individual theories T1
and T2. Our combination methodology is based on extension of Nelson-Oppen
methodology for combining decision procedures for two theories. As a result,
the restrictions on theories that allow for efficient combination of their decision
procedures (namely, convexity, stably infiniteness, and disjointness) also transfer
to the context of combining cover algorithms for those theories.

The Nelson-Oppen methodology for combining decision procedures involves
sharing variable equalities v = u between the formulas in the two theories. For
combining cover algorithms, we also need to share variable-term equalities (i.e.,
equalities between variables and terms) apart from variable equalities. Further-
more, these equalities may also be conditional on any predicate. More formally,
the general form of equalities that we share between the two formulas in the two
theories is γ ⇒ v = t, where γ is a formula that does not involve any variable to
be eliminated, and either v and t are both variables (in which case we refer to it
as a conditional variable equality) or v is a variable that needs to be eliminated
and t is a term that does not involve any variable to be eliminated (in which case
we refer it to as a conditional variable-term equality). The terms t are restricted
to come from a set that we refer to as set of simple terms (Definition 1).

We now introduce some notation that is needed to describe the cover algorithm
for combination of two theories.

Definition 1 (Set of Simple Terms). A set S is a set of simple terms for
variable v with respect to a formula φ in theory T (denoted by SSTT (v, φ)), if for
all conjunctions of atomic predicates γ such that v �∈ Vars(γ), and all terms t
that are distinct from v:

v �∈ Vars(S) and Vars(S) ⊆ Vars(φ)
(γ ∧ φ ⇒T v = t) ⇒ ∃t′ ∈ S s.t.(γ ∧ φ ⇒T v = t′) ∧ (γ ∧ φ ⇒T t = t′)

We refer to t′ as ST (S, γ, t).

The theories of linear arithmetic and uninterpreted functions admit a finite set of
simple terms for their formulas. The following theorems describe how to compute
a set of simple terms for a formula in the corresponding theory.
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Theorem 3 (Set of Simple Terms for Linear Arithmetic). Let φ be the

formula
n∧

i=1
v ≤ ai∧

m∧
i=1

v ≥ bi∧
n′∧

i=1
v < a′

i∧
m′∧
i=1

v > b′i∧φ′. where v �∈ Vars(φ′), v �∈

Vars(ai) and v �∈ Vars(bi)). Then, {ai}n
i=1 is SST�a(v, φ).

Theorem 4 (Set of Simple Terms for Uninterpreted Functions). Let φ
be a formula over the theory of uninterpreted functions. Let G be the congruence
closure of φ. Let t be any term in the congruence class of v in G that does
not involve v (if any such term exists). Then, the singleton set containing t is
SSTuf(v, φ) (if any such term exists). If no such term exists then, SSTuf(v, φ) = ∅.

The proofs of Theorem 3 and Theorem 4 are given in the full version of the
paper [7].

We use the notation WCT (φ, δ, V ) to denote ¬CT V : φ ∧ ¬δ. Intuitively,
WCT (φ, δ, V ) denotes the weakest constraint that together with φ implies δ and
that does not involve any variable from set V .

The following property is useful in describing CoverT1∪T2(φ, V ) in terms of
CoverT1 and CoverT2 .

Property 4. Let φ and φ′ be quantifier-free formulas in theory T such that

φ ⇒T φ′

V ∩ Vars(φ′) = ∅
(V ∩ Vars(γ) = ∅ ∧ φ ⇒T γ) ⇒ (φ′ ⇒T γ) , for all quantifier-free formulas γ

Then, φ′ ≡ CoverT (φ, V ).

We use the notation Num(T ) for any theory T to denote the maximum number
of variables that may occur in any atomic predicate in theory T . For example,
Num(T ) = 2 for difference logic (theory of linear arithmetic with only difference
constraints) as well as for theory of unary uninterpreted functions.

The procedure ComputeCoverT1∪T2
in Figure 4 takes as input a formula φ

and a set of variables V to be eliminated and computes CT1∪T2V : φ using
the cover algorithms for theories T1 and T2. Line 1 performs purification of φ,
which involves decomposing φ (which is a conjunction of atomic predicates in
the combined theory T1 ∪ T2) into conjunctions of atomic predicates that are
either in theory T1 or in T2 by introducing a fresh variable for each alien term in
φ. The set of all such fresh variables is referred to as U , while V ′ denotes the set
of all variables that we need to eliminate from φ1 ∧ φ2. Lines 4 to 11 repeatedly
exchange conditional variable equalities and conditional variable-term equalities
between φ1 and φ2. Lines 13 and 14 call the procedure ComputeSimpleCoverT,
which takes as inputs a set of variables V , a formula φ in theory T , and a formula
F of the form

∧
γi ⇒T ′ vi = ti (where vi ∈ V and T ′ is any theory) such that

V ∩ (Vars(γi) ∪ Vars(ti)) = ∅, and computes CT∪T ′V : φ ∧ F .
The proof of correctness (including termination) of the combination algorithm

in Figure 4 is non-trivial and is given in the full version of the paper [7]. We give
a brief sketch of the proof here. Let γi’s be some atomic predicates that do not
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ComputeCoverT1∪T2
(V, φ) =

1 φ1, φ2 = Purify(φ); let U be the variables introduced during Purify(φ);
2 let V ′ = V ∪ U;
3 F1 ← true; F2 ← true;
4 repeat until no change:
5 for j = 1, 2:

6 let
n∧

i=1
γi ⇒ vi = ui be some conditional variable equalities implied by F3−j;

7 let
m∧

i=1
δi ⇒ wi = ti be some conditional variable-term equalities implied by F3−j;

8 let ψ =
n∧

i=1
γi ∧

m∧
i=1

δi; let E =
k∧

i=1
vi = ui; let W = V ′ − {wi | 1 ≤ i ≤ m};

9 let Sv ≡ SSTTj (v, CTj W − {v} : φj ∧ E) for any variable v;
10 Fj ← Fj ∧

∧
v1,v2∈V ′

ψ ∧ WCTj (φj ∧ E, v1 = v2, W )[ti/wi] ⇒ v1 = v2

11 ∧
∧

v∈V ′,t∈Sv

ψ ∧ WCTj (φj ∧ E, v = t, W )[ti/wi] ⇒ v = t

12 let F ′
j be the conjunction of all implied variable-term equalities γi ⇒ vi = ti

implied by Fj s.t. Vars(γi) ∩ V ′ = ∅ (for j = 1, 2);
13 let α1 = ComputeSimpleCoverT1

(V ′, φ1, F
′
2);

14 let α2 = ComputeSimpleCoverT2
(V ′, φ2, F

′
1);

15 return α1 ∧ α2;

ComputeSimpleCoverT(V, φ, F ) =
result ← ComputeCover(V, φ);

forall collections
m∧

i=1
γi ⇒ wi = ti of conditional variable-term equalities implied

by F s.t. m ≤ Num(T ) and wi are all distinct variables:

let γ =
n∧

i=1
γi; let W = V − {wi | 1 ≤ i ≤ m};

result ← result ∧ (γ ⇒ ComputeCover(W, φ)[ti/wi]);
return result;

Fig. 4. Cover algorithm for combination of two theories T1 ∪ T2

involve variables in V and furthermore φ ⇒ γ1 ∨ . . . ∨ γk. We show that the
formula ComputeCoverT1∪T2

(V, φ)∧¬γ1 ∧ . . .∧¬γk is unsatisfiable by simulating
the decision procedure for theory T1 ∪T2 based on Nelson-Oppen’s combination
methodology (with the knowledge of the Nelson-Oppen proof of unsatisfiability
of the formula φ ∧ ¬γ1 ∧ . . . ∧ ¬γk).

The complexity of the cover algorithm for combination of two theories is an
exponential (in size of the input formula φ and cardinality of its set of simple
terms) factor of the complexity of the cover algorithms for individual theories.
For combination of difference logic (theory of linear arithmetic with only differ-
ence constraints) and unary uninterpreted functions, which is a useful combina-
tion that occurs in practice, the cover algorithm can be simplified and it runs in
time polynomial in size of the input formula φ.

We now present some examples of computation of cover for the combined
theory of linear arithmetic (�a) and uninterpreted functions (uf). Example 2
demonstrates the importance of sharing variable-term equalities, while Exam-
ple 3 demonstrates the importance of sharing conditional equalities.

Example 2. Compute C�a∪uf{v1, v2} : φ, where φ is (a ≤ v1+1∧v1 ≤ a−1∧v2 ≤
b ∧ v1 = F (v3) ∧ v2 = F (F (v3))), for some uninterpreted function F .

We first decompose φ into pure formulas φ1 and φ2:
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φ1 = (a ≤ v1 + 1 ∧ v1 ≤ a − 1 ∧ v2 ≤ b)
φ2 = (v1 = F (v3) ∧ v2 = F (F (v3)))

We then share variable-term equalities between φ1 and φ2 as follows:

φ1
v1=a−1−−−−−→ φ2

v2=F (a−1)−−−−−−−→ φ1

We then compute C�a{v1, v2} : φ1∧v2 = F (a−1) to obtain the result F (a−1) ≤ b.
Note that the cover algorithm for linear arithmetic does not need to understand
the term F (a − 1) and can just treat it as some fresh variable.

Example 3. Compute C�a∪ufx : φ, where φ is (y = Mem(a + x) − Mem(b + x)) for
some uninterpreted function Mem.
Purifying φ, we obtain φ1 and φ2 by introducing new variables u1, u2, u3, u4.

φ1 = (y = u1 − u2 ∧ u3 = a + x ∧ u4 = b + x)
φ2 = (u1 = Mem(u3) ∧ u2 = Mem(u4))

We then share conditional equalities between φ1 and φ2 as follows:

φ1
a=b⇒u3=u4−−−−−−−−→ φ2

a=b⇒u1=u2−−−−−−−−→ φ1

We then compute C�a{x, u1, u2, u3, u4} : φ1 ∧ a = b ⇒ u1 = u2 to obtain the
result a = b ⇒ y = 0.

5 Related Work

5.1 Discovering Invariants over Combination of Linear Arithmetic
and Uninterpreted Functions

There has been some work on generating conjunctive invariants that involve
combination of linear arithmetic and uninterpreted functions. [10] discovers in-
variants over a given set of terms, while generates invariants over programmer
specified templates [2]. Our approach (extended with a suitable widening oper-
ation) can be used to discover (possibly disjunctive) invariants over the combi-
nation of theories without the need to provide any terms/templates.

5.2 Abduction

An important key idea used in the cover algorithms described in this paper is that
of abduction. Abduction is reasoning from an observation to its best explanation.
More formally, an abductive explanation of observation ψ given environment E
in language L is a formula ψ′ = Abduct(E, ψ, L) such that ψ′ ∧ E ⇒ ψ, ψ′ is
in L, and ψ′ is the weakest such formula. The notion of abduction is widely
used in the artificial intelligence community [17] and in the logic programming
community [12].

The array W [n1, n2] (computed in lines 5 through 8 in Figure 3) used in
the algorithm for computing cover of a formula φ with respect to variables
V in the theory of uninterpreted functions is essentially Abduct(φ, n1=n2, L),
where L is the language of formulas over variables other than V . Similarly,
the formula WC(φ, δ, V ) used in the combination cover algorithm is essentially
Abduct(δ, φ, L).
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5.3 Predicate Cover

The notion of cover discussed in this paper is similar to the predicate cover [13]
operation used in predicate abstraction algorithms. For a formula φ, predicate
cover is the weakest Boolean formula over a set of given predicates that implies
φ. In contrast, the cover of φ is defined over a much richer language — the set
of all quantifier-free formulas.

6 Conclusion and Future Work

This paper defines cover as the most precise quantifier-free over-approximation
to existential quantifier elimination, and describes algorithms to compute the
cover of formulas in the theories of uninterpreted functions and linear arith-
metic. In addition, this paper provides a combination algorithm to combine the
individual cover algorithms for these theories. This paper also describes how the
cover operation can be used in program analysis and verification techniques that
otherwise require existential quantifier elimination.

We hope to extend this study in future work. We are currently exploring the
implementation of the symbolic model checking algorithm described in this pa-
per. Also, the notion of cover can be parameterized by types of formulas that one
is interested in. Instead of generating the most precise quantifier-free formula, one
may be interested in formulas that are conjunctions of, say, atomic predicates, or
at most k disjunctions of atomic predicates, or implications of the form φ1 ⇒ φ2,
where φ1 and φ2 are conjunctions of atomic predicates in variables V1 and V2 re-
spectively. The latter may be useful in computing procedure summaries, where V1
and V2 denote the set of input and output variables respectively.
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