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Abstract

Planar pose measurement from images is an impor-
tant problem for automated assembly and inspection. In
addition to accuracy and robustness, ease of use is very
important for real world applications. Recently, Murase and
Nayar have presented the “parametric eigenspace” for
object recognition and pose measurement based on training
images. Although their system is easy to use, it has potential
problems with background clutter and partial occlusions. We
present an algorithm that is robust in these terms. It uses ’
several small features on the object rather than a monolithic
template. These “‘eigenfeatures” are matched using a
median statistic, giving the system robustness in the face of
background clutter and partial occlusions. We demonstrate
our algorithm’s pose measurement accuracy with a con-
trolled test, and we demonstrate its detection robustness on
cluttered images with the objects of interest partially
occluded.

1. Why Work on Planar Pose Measurement?

Planar pose measurement is an important part of auto-
mated assembly and inspection. In this paper, we are envi-
sioning a workcell of the type illustrated in Figure 1. An
overhead camera is pointed down at objects resting on a flat
surface. The task is to measure the pose, (x,y, 68) ,ofa
given object in the image.

Although there are several solutions available to the pose
measurement problem, both commercially and academically,
none of the solutions have yet to win widespread appeal.
One of the main barriers to increased use of computer vision
in automated manufacturing is that the vision systems are
difficult to tune. Pose measurement is intended to function as
part of an automated manufacturing line. But this advantage
is lost when the vision system requires reprogramming from
a skilled operator to account for changes in illumination,
optics, and objects. Current commercially available solutions
typically require a training phase in which an operator manu-
ally helps the vision system identify important features of
the objects of interest. These features must be carefully cho-
sen based on their consistency and their ability to indicate
the pose of the object. This requirement leads to heuristic
rules for the operator to follow such as “specular highlights
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Figure 1: A typical pose measurement station with an
overhead camera and lights pointed down at a
conveyor belt carrying objects to be assembled or
inspected.

are bad features because they shift based on the orientation
of the object, lights, and camera,” and “line segment features
are not good for localizing the object along the line.” Given
the cost of computer vision experts, it often appears less
expensive to find less flexible or more labor intensive solu-
tions to the pose measurement problem.

In this paper, we present a new solution to the pose mea-
surement problem. It is based on Murase and Nayar’s “para-
metric eigenspace” idea[2], which uses principle component
templates based on training irnages. We show how to apply
this idea to multiple, automatically detected features on the
object. We match features using a median distance measure,
which gives the algorithm robustness. Using features instead
of monolithic templates, our algorithm overcomes problems
of segmentation, background clutter, and partial occlusions,
while retaining the automatic programming advantage of the
original system.

2. Parametric Eigenspace

A new technique for pose measurement, called “paramet-
ric eigenspace”, has been developed by Murase and Nayar
[2]. Their work is related to earlier eigenface research by
Turk and Pentland [7]. The method is used to recognize
objects and measure their orientation based on training
images of the objects in different orientations. This solution
is attractive because it requires no expert human assistance
for picking features. A brief explanation of parametric
eigenspace follows.

In its full form, as explained in [2], the parametric eigens~
pace method works on a presegmented image to identify an
object and give its orientation around one axis under a few



Figure 2: Training images are taken with an overhead
camera looking down at the object which rests on a
motorized rotation table.

different lighting conditions. The method is based on a series
of training images of the object taken at different orienta-
tions. In our implementation, we use 90 or 180 training
images of the object (four degrees or two degrees apart)
taken from a camera directly overhead while the object is
rotated on a motorized table below. This setup is illustrated
in Figure 2.

For training, the object is first segmented from each train-
ing image into a rectangular image patch. Segmentation in
the training phase is normally easy because the scene can be
carefully controlled. We use a backlit table to make a binary
mask of the object. The segmented patches must be the same
size for each training image. This equal size requirement
means the patches must include significant parts of the back-
ground if the object is elongated or has significant concavi-
ties, as illustrated in Figure 3.

Each segmented training patch is normalized in intensity
by dividing each pixel by the sum of the squares of the pixels
in the unnormalized patch. While Murase and Nayar also
normalize for size, we do not since we assume the camera
will always be the same distance from the object. Finally, the
mean of the entire normalized set of training patches is com-
puted and subtracted from each normalized patch. Each of
these processed patches is scanned in raster order to form a
column vector containing all the pixels in the patch. All the
column vectors are placed side by side into a matrix X . The
sample covariance matrix is formed as

0= xx".

The eigenvectors of Q form an orthogonal basis set for
the normalized, zero mean training patches. These eigenvec-
tors are called eigenimages when they are scanned from col-
umn vectors back into images. The normalized, zero mean
training patches can be expressed as a weighted linear sum
of the eigenimages. Moreover, the patches can be accurately
approximated by only the first few eigenimages. In equation
form, this is
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Figure 3: In previous approach, segmented image
patch must be large enough to contain all trained
orientations of object, which could include large
parts of background.
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The simple computation of the weighting coefficients comes
from the fact that the eigenvectors are orthogonal. For our
experiments, we used / = 10.

Equation (1) implies that each training patch p; can be
represented by [ coefficients (¢, o, ¢, 1, .-y ¢;y-1) - These
coefficients are a point in an [ -dimensional space, and each
training patch projects to such a point. Since the training
images represent an ordered progression of angles (6 in Fig-
ure 2), the coefficients plotted in /-dimensional space nor-
mally fall on a smooth curve. Each point represents a
different training image and thus represents a different orien-
tation of the object. This curves resides in “parametric
eigenspace”, because it can be parameterized by the angle 6.

Pose measurement in Murase and Nayar’s formulation
consists of first segmenting an input image by some means
to find the object. This rectangular image patch is then nor-
malized and the mean of the training patches is subtracted
(same processing as training images). This processed patch
is projected into the parametric eigenspace by taking dot
products with the [ previously computed eigenimages. To
find the angle 0, the parametric curve is interpolated to find
the closest point. More details can be found in [2], which
also discusses a similar approach to object recognition and
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Figure 4: It is difficult to make good templates from
the overlapping regions of these objects’
silhouettes.

training under different illumination.

The advantage to the eigenspace approach is that the train-
ing is automatic. One disadvantage is that the object must
first be segmented in the run-time image, which can be diffi-
cult in any image without a uniform background. Another
disadvantage is that the basic parametric eigenspace method
works on rectangular image patches that contain the whole
object. Thus, for optimum matching, none of the object can
be occluded, and the background of the object to be detected
in an image cannot be different from the background in the
training images. Rectangular image patches become a prob-
lem when the object does not have a generally rectangular
shape, because other objects can intrude in the background.
Our algorithm addresses all these problems.

Recently, Murase and Nayar have modified their approach
to address the problems of segmentation and background
clutter{3]. Their “image spotting” algorithm scans the image
for the object, which solves the segmentation problem. (This
assumes that the object’s appearance is invariant with respect
to translation in the image, which is approximately true
when using a long focal length lens.) The algorithm uses
training images that are reduced in size to the area of com-
mon overlap between the object’s silhouettes in the training
images at different angles, thus eliminating the background
from the training images. Some objects do not have much
overlap in their silhouettes, so the image spotting algorithm
can sometimes split the training images into subsets that
have sufficient overlap. Thus, the reduced size training tem-
plates solve the problems of background clutter for some
objects, but not all. Some objects defy this splitting, as their
silhouettes have virtually no overlap that could be contained
in a bounding box without background as the object rotates
in discrete increments. Three illustrations of such shapes are
given in Figure 4. The problem of partial occlusions still
remains, too.

57

3. Eigenfeatures for Pose Measurement

We have developed a new way of using parametric eigens-
pace that avoids the problem of segmentation, background
clutter, and partial occlusions. We avoid the segmentation
requirement by applying our method at every offset in the
image, using the fast Fourier transform to speed up the pro-
jections into eigenspace. We solve the problem of back-
ground clutter and partial occlusions by using several small,
rectangular image patches on each object rather than one
large patch. In addition, using features means our algorithm
does not use large, uniform regions of the object for match-
ing, which often leads to false matches. Our method retains
the advantages of the original algorithm in that it works
entirely based on training images and requires no program-
ming from a skilled operator. The remainder of this section
explains our method in detail.

3.1 Gathering Training Features

We gather training images using an overhead camera
pointed down at a backlit table mounted on a motorized rota-
tor. We take images every two or four degrees using over-
head lighting, giving a total of 180 or 90 training images per
object. We take another set of images at the same set of
angles with the overhead lights off and the backlit table on.
The backlit images are thresholded to form masks for seg-
menting the training images. This backlit segmentation is
used only for training and is not part of the on-line system.

Features consist of small, rectangular image patches. We
use a feature size of 15 x 15 pixels along with a feature-
finder developed by Shi and Tomasi[6]. Given an image,
their algorithm produces a list of rectangular image patches
of a prespecified size that is ranked based on the features’
ability to be tracked through image sequences. We find their
features to be good for pose measurement, too, because they
are good al localizing position, e.g. points and corners. Shi
and Tomasi’s recipe for finding good features is to first com-
pute partial derivatives at every pixel in the image. If the
image is I (x, y) , then the partial derivatives are 7, (x, y)
and 7, (x, y) . For the numerical derivatives, we use Sav-
itzky-Golay filters as described in Numerical Recipes {4}
with the derivative filter size equal to the window width (15
x 15). At each pixel, a matrix is formed whose elements are
sums of the products of the partial derivatives taken in the
feature windows. The matrix is

Sy

L{unl(xy)

S (xy)

PIHES)

where the sums are taken over the pixels in the feature win-
dow. The second eigenvalue of this matrix is used to rank the
feature - the higher the better. The top 30 features of a wire
connector at different angles are shown in Figure 5.

Shi and Tomasi’s algorithm is especially convenient, since
the only parameters it takes are the size and number of fea-
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Figure 5: Features automatically selected on wire
connector training images.

tures. We constrain the features to have no overlap, and to be
centered somewhere within the mask computed from the
backlit images.

Every training image has its own set of features - there is
no tracking of features from image to image. Thus, features
on certain parts of the object, such as specular highlights,
could come and go as the object rotated. In a more general
3D orientation problem, rotating the object could cause parts
of the object to come into and out of view, making feature
correspondence impossible. Since we do not require feature
continuity from angle to angle, this would not be a problem
for our algorithm.

3.2 Training

The training for our method begins in the same way as
described for the image patches in Section 2, except it uses
small features instead of image patches. For n training
images and m feature per image, we have mn total features.
Since we do not track features through the training images,
we must have some other way to account for the changing
appearance of a given feature due to rotation. We do this by
noting how the pixels in each feature window change as the
object rotates slightly beneath them. For a given feature in
training image i, we take out a feature in the same (x, y)
location in training images i — 1 and i+ 1 (with circular
wrap-around of the indices on the first and last training
images). This gives a total of 3mn features for each object.
Each of these features is processed as described for the
image patches in Section 2 (normalizing and subtracting
aggregate mean).

The 3mn processed features are scanned in raster order
into column vectors. We designate the pixels from the k th
feature from image i to be v, , where i € [0,1,...,n=1]
indexes the n training images (and therefore the orientations
6,),and ke [0,1,...,m~1] indexes the m features. The
two features in the same location from images / — 1 and
i+ 1 are designated 7;, and v:’k respectively. If the dimen-
sions of the features is w x w pixels, then each feature vec-
tor will be w” x 1.

The processed feature vectors are assembled into the col-
umns of matrices:

X = [0 | Pgy 1o U0y 1 190y (o]
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Figure 6: Parametric eigenspace for one eigenimage
of one feature ar one angle. We compute the
distances between the parametric curves and actual
eigenvector weights a;, 1o find the best angle.

[17_0() | 17"0] [ Vij [ 17_(,,_1)(,,,_1)]

-+ -t
Y ij [ ) (n—l)(m—l)] .

The order of the vectors in these matrices is irrelevant. (The
bars in the matrices above represent matrix partitioning and
not absolute value.) The dimensions of X, X, and X" are
w” x mn . The sample covariance matrix of all 3mn fea-
tures is formed as

0= [XIXIXT[XIX1x7,

whose dimensions are w” x w’ . In our implementation,
w = 15, so the size of @ is a relatively modest 225 x 2251
We compute the eigenvectors of O and designate them as
g, where je [0, 1,...,1—~1] indexes the [ eigenvectors
that we use. In our implementation we use 10 eigenvectors.
We call the &, “‘eigenfeatures”.

Each feature can be approximated as a weighted linear
sum of the first few eigenvectors. These weights are
Cijk éj’ C',‘jk = 17-,'1( . éj* and C+,‘jk = f’+,'k . éj. With
these coefficients, we form small parametric eigenspaces as
quadratics fit through sets of three parameterized points
(8,_,, c;jk ), (8, ¢;y ), and (8, , c;k ) for all images i,
eigenvectors j, and features k . Figure 6 shows a sample
quadratic for one eigenvector of one feature in one image.
We call this function c,.jk(e) .

= Vi

3.3 Detection and Pose Estimation

Our algorithm scans the input image in order to find the
features on the object. An image to be analyzed must be pro-
cessed in the same way as the features in the training image.

1. There is a technique outlined in [1] that shows how to compute
the e%genvectors of XX by instead computing the eigenvectors
of X X .If X is tall and narrow, this leads to a smaller eigenvec-
tor problem. In our case, however, X tends to be wider than it is
tall, so we compute the eigenvalues of XX directly.



In order to normalize each feature-sized patch, we compute
the local power at every point in the image in w x w win-
dows by convolving a w x w, unit-height rectangle function
with an image where each pixel has been squared. Each pixel
in the image is considered as the center of a feature. Overlap-
ping w x w, feature-sized windows in the image are pro-
jected onto the eigenimages. The projections are computed
as correlations between the normalized input image and the
eigenvectors. Both the convolution and correlations are done
in the Fourier domain for speed. We also subtract the mean
of all the training features as appropriate. This processing
leaves us with an image where each pixel contains / eigen-
vector coefficients a; .

To find the object and estimate its pose, we scan through
the image in small increments (increments of one to five pix-
els) looking for the appropriate features in the appropriate
spatial configuration. At each point we check all n training
angles. For a given image point and a given training angle
8,, we consider the point to be centered on the first feature
(k = 0) of the m features for that angle. The centers of the
other features are picked up in the image at the appropriate
offsets with respect to the first feature. The eigenvector coef-
ficients at these feature points are called a;, where
je [0,1,.., [~ 1] indexes the [ eigenvectors and
ke [0, 1, .., m—1] indexesthe m features. To get arough
estimate of quality of the match at 8, , we compare the image
features to the trained features with no interpolation between
angles. We compute a squared distance for each feature as

-1

2
dy = 2 leju—anl™s
j=0

where the sum is taken over the [ eigenvectors. If we have
the approximate correct location in the image and the
approximate correct angle index i, then all the d;; will be
small. If we have the approximate pose but the object is par-
tially occluded, then only some of the d;, will be small,
because only some of the features will be visible. Therefore,
we use the median to combine the d;, into a single distance
measure:

d; = median, (d;;) .

The rough pose estimate is the position and angle that give
the minimum d, . The resolution of this estimate is limited to
the pixel resolution of the image scan in location and the
angle increment of the training images in orientation. We
designate the best angle index as i .

Given the rough pose estimate, we refine the position and
orientation with a gradient descent search. We form a dis-
tance function d .(0) that combines the distances between
the Im eigenvec’tor coefficients and the corresponding para-
metric eigenspace quadratics for the rough training angle
estimate 9[_. :
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Figure 7: Shiny metal valve used for testing.
Automatically found features are shown in
rectangles. Specular highlights change depending
on the valve’s angle, meaning that consistent
Sfeatures are difficult to find.

m-11-1

d®) = 3 3 [, O-a,]",

k=0j=0

where the sums are taken over the m features and [ eigen-

vectors. One of the addends in the sum is illustrated in Fig-

ure 6. Since ¢, ,k(G) is a quadratic in 6, d .(6) is a quartic,
iy 4

and

dd .(0)
a6

is a cubic. One of the solutions to the cubic minimizes the
sum of squared distances to give the best angle 8. We wrap
this closed form minimization in a gradient descent over
pixel location to give the final subpixel pose estimate. We do
not use a detection threshold since we assume the object is
present somewhere in the image.

We were recently made aware of a similar approach to this
problem developed by Ohba and Ikeuchi. Like us, they use a
principle component analysis of features taken from the
object. The major differences are that they employ a step to
eliminate similar-looking features, and they use a voting
scheme to find the object rather than the image scanning that
we use.

4. Results

We tested our algorithm for both accuracy and robustness.
For accuracy, we used a shiny, metal valve as the object,
shown in Figure 7. The mirror finish on this object meant
that the features consisted mostly of specular highlights,
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Figure 8: Histograms of position and angle errors for
90 test images of valve.

which changed dramatically as the object rotated. This
would confuse any algorithm that depended on tracking fea-
tures. We took 90 training images four degrees apart and
used five features. We tested the algorithm on 90 test images
taken at orientations halfway between each training image.
We scanned the image in one-pixel increments. Our algo-
rithm found the object in every image, with an average error
in position of 1.4 pixels with a standard deviation of 0.8 pix-
els, and an average absolute value error in angle of 0.6
degrees with a standard deviation of 0.3 degrees. Histograms
of the errors are in Figure 8.

Our test for robustness used two different objects - a long,
thin wire connector and a shiny, metal pipe connector shaped
like a “T”. The wire connector has very little overlap
between its silhouettes as it rotates, making a single template
nearly impossible to use for this object. The “T” connector’s
shininess makes it difficult to track features on it. For both
these objects, we used 180 training images taken two
degrees apart and 30 features. We scanned the image first in
increments of three pixels and then increased the search res-
olution to one pixel centered around the best result from the
first pass. We tested the algorithm on images with back-
ground clutter and partial occlusions. The algorithm cor-
rectly found the object in about 80% of the test images.
Successful results are shown in Figure 9.

5. Conclusion

We have shown how to use eigenfeatures for pose mea-
surement in the plane. The use of training images to find
good features makes the algorithm work without a skilled
operator. The eigenvalue decomposition makes the algo-
rithm more efficient than raw pixel matching. By scanning
the image for the object, we avoid the problem of segmenta-
tion. The innovative use of features rather than monolithic
templates allows the algorithm to work in spite of back-
ground clutter and partial occlusions. The combination of
eigenspace analysis and features provides for a simple, accu-
rate, and robust solution to the planar pose measurement
problem.
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Figure 9: Results of object detection on images of partially occluded wire connector (top row) and “T" connector.
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