
Recursive Program Synthesis

Aws Albarghouthi1, Sumit Gulwani2, and Zachary Kincaid1

1University of Toronto
2Microsoft Research

Abstract. Input-output examples are a simple and accessible way of
describing program behaviour. Program synthesis from input-output ex-
amples has the potential of extending the range of computational tasks
achievable by end-users who have no programming knowledge, but can
articulate their desired computations by describing input-output be-
haviour. In this paper, we present Escher, a generic and efficient algo-
rithm that interacts with the user via input-output examples, and syn-
thesizes recursive programs implementing intended behaviour. Escher
is parameterized by the components (instructions) that can be used in
the program, thus providing a generic synthesis algorithm that can be
instantiated to suit different domains. To search through the space of
programs, Escher adopts a novel search strategy that utilizes special
data structures for inferring conditionals and synthesizing recursive pro-
cedures. Our experimental evaluation of Escher demonstrates its ability
to efficiently synthesize a wide range of programs, manipulating integers,
lists, and trees. Moreover, we show that Escher outperforms a state-of-
the-art SAT-based synthesis tool from the literature.

1 Introduction

Program synthesis from specifications is a foundational problem that crosses the
boundaries of formal methods, software engineering, and artificial intelligence.
Traditionally, specifications written in logics (such as first-order and temporal
logics) have been used to synthesize programs, e.g., [16, 17]. More recently, we
have witnessed renewed interest in the program synthesis question, and a shift
from the traditional logical specifications to specifications presented as input-
output examples, e.g., [8, 13, 11, 15, 12]. One of the main advantages of synthesis
from input-output examples is that it extends the user base of synthesis tech-
niques from algorithm and protocol designers to end-users who have no program-
ming knowledge, but can articulate their desired computational tasks as input-
output examples. For instance, recent work on synthesizing string manipulation
programs from examples in spreadsheets [8] has already made the transition from
research into practice, as seen in the latest release of Microsoft Excel [1]. These
synthesis techniques capitalize on the fact that end-users are often interested
in performing simple operations within specific domains (e.g., string manipula-
tion), and can easily supply the synthesizer with examples demonstrating the
tasks they wish to perform.

2 Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid

In this paper, our goal is to provide a generic and efficient synthesis algorithm
that interacts with users via input-output examples, and allows for synthesis of a
wide range of programs. To that end, we present Escher, an inductive synthesis
algorithm that learns a recursive procedure from input-output examples provided
by the user. Escher is parameterized by the set of components (instructions)
that can appear in the synthesized program. Components can include basic in-
structions like integer addition or list concatenation, API calls, and recursive
calls (i.e., instructions calling the synthesized program). This allows Escher to
be instantiated with different sets of components and applied to different do-
mains (e.g., integer or list manipulation). Escher assumes the existence of an
oracle, simulating the user, which given an input returns an output. By interact-
ing with the oracle, Escher is able to synthesize recursive programs comprised
of a given set of components.

To search through the space of programs, Escher adopts an explicit search
strategy that alternates between two phases: (1) Forward Search: in the for-
ward search phase, Escher enumerates programs by picking a synthesized pro-
gram and augmenting it with new components. For example, a program f(x),
which applies a component f to the input x, can be extended to g(f(x)). (2)
Conditional Inference: in the conditional inference phase, Escher utilizes a
novel data-structure, called a goal graph, which enables detecting when two pro-
grams synthesized by the forward search have to be joined by a conditional
statement. For example, two programs f(x) and g(x) can be used to construct
if c(x) then f(x) else g(x).

The power of our search strategy is two-fold: (1) By alternating between
forward search and conditional inference, we generate conditionals on demand,
i.e., when the goal graph determines they are needed. This is in contrast to
other component-based techniques, e.g., [10, 13], that use an explicit if-then-
else component. (2) By adopting an explicit search strategy, as opposed to an
SMT encoding like [23, 10], we do not restrict the range of synthesizable pro-
grams by the supported theories. Moreover, our explicit search strategy allows
us to easily apply search heuristics, e.g., biasing the search towards synthesizing
smaller programs. We have used Escher to synthesize a wide range of pro-
grams, manipulating integers, lists, as well as trees. Our experimental results
indicate the efficiency of Escher and the power of our design choices, including
the goal graph data structure for conditional inference. Furthermore, we com-
pare Escher with Sketch [23], a state-of-the-art synthesis tool, and show how
Escher’s search technique outperforms Sketch’s SAT-based technique for syn-
thesizing programs from components.

Contributions. We summarize our contributions as follows: (1) Escher: a
novel algorithm for synthesizing recursive programs that (a) interacts with users
via input-output examples to learn programs; (b) is parameterized by the set of
components allowed to appear in the program, thus providing a generic synthesis
technique; and (c) uses new techniques and data structures for searching through
the space of programs. (2) An implementation and an evaluation of Escher on a
set of benchmarks that demonstrate its effectiveness at synthesizing a wide range

Recursive Program Synthesis 3

of recursive programs. Moreover, our results highlight the power of our goal graph
data structure for conditional inference. (3) A comparison of Escher with a
state-of-the-art synthesis tool from the literature which demonstrates Escher’s
superiority in terms of efficiency and scalability.

2 Overview

In this section, we illustrate the operation of Escher on a simple example.
Suppose the user would like to synthesize a program that counts the number of
elements in a list of integers (procedure length with input parameter i). Suppose
also that Escher is instantiated with the following set of components: inc, takes
an integer and returns its successor; isEmpty, takes a list and returns T (true) if
the list is empty and F (false) otherwise; tail, takes a list and returns its tail;
zero, a nullary component representing the constant 0; and length, a component
representing the function that we would like to synthesize. The existence of
length as a component allows the synthesized function to be recursive, by using
length to simulate the recursive call.

Escher alternates between a forward search phase and a conditional in-
ference phase. We assume that Escher’s alternation is guided by a heuristic
function h that maps a program to a natural number, where the lower the num-
ber the more desirable the program is. For the sake of illustration, we assume
that the value of h is always the size of the program, except when a program
uses the same component more than once, in which case it is penalized.

Initially, the user supplies Escher with input-output values on which to
conduct the search. Suppose the input values are the lists [], [2], and [1,2].
We represent input values as a value vector 〈[],[2],[1,2]〉. The desired goal
value vector (outputs) corresponding to the input values is 〈0,1,2〉, where 0, 1,
and 2 are the lengths of the lists [], [2], and [1,2], respectively.

First Alternation. First, in the forward search phase, Escher creates pro-
grams that are composed of inputs or nullary components (i.e., programs of size
1). In our case, as shown in Figure 1, these are programs P1 (the program that
returns the input i – the identity function), and P2 (the program that always re-
turns 0 for all inputs). Note that each program is associated with a value vector
representing its valuation, for example, the value vector of P1 is 〈[],[2],[1,2]〉.
Obviously, neither P1 nor P2 satisfy our goal 〈0,1,2〉. But notice that the value
vector of P2, 〈0,0,0〉, overlaps with our goal 〈0,1,2〉 in the first position, i.e.,
produces the correct output for the input []. Therefore, the conditional inference
phase determines that one way to reach our goal is to synthesize a program Pr of
the form if Pcond then P2 else Pelse, where Pcond is a program that evaluates
to T on the input [], and F on the inputs [2] and [1,2]; and Pelse is a pro-
gram that evaluates to 〈1,2〉 on the inputs 〈[2],[1,2]〉. Intuitively, conditional
inference determines that we can return 0 (program P2) for the input [], and
synthesize another program to deal with inputs [2] and [1,2].

Escher represents this strategy for synthesizing length by creating a goal
graph, as shown in Figure 2(a). The goal graph is a novel data structure em-
ployed by Escher that specifies how to reach the goal 〈0,1,2〉 by synthesizing

4 Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid

h Program Pi

1
P1 = i→ 〈[],[2],[1,2]〉
P2 = zero→ 〈0,0,0〉

2
P3 = tail(P1)→ 〈err,[],[2]〉
P4 = inc(P2)→ 〈1,1,1〉
P5 = isEmpty(P1)→ 〈T,F,F〉

3
P6 = length(P3)→ 〈err,0,1〉
P7 = tail(P3)→ 〈err,err,[]〉

4 P8 = inc(P7)→ 〈err,1,2〉

Fig. 1. Synthesized programs Pi organized by heuristic value h.

Pr

�0,1,2�

�T,F,F� �?,1,2��0,?,?�
cond then else

goal

P2

Pr

�0,1,2�

�T,F,F� �?,1,2��0,?,?�
cond then else

goal

P2P5 P8

Pr

�0,1,2�

�T,F,F� �?,1,2��0,?,?�
cond then else

goal

P2P5

if isEmpty(i)

then 0
else inc(length(tail(i)))

(a) (b) (c)

P5

P8

P2

Fig. 2. Goal graph after (a) first, (b) second and third, and (c) final alternations.

a program Pr. Specifically, we need a program Pcond that returns 〈T,F,F〉 for
inputs 〈[],[2],[1,2]〉, and a program Pelse that returns 〈?,1,2〉 for inputs
〈[],[2],[1,2]〉, where ‘?’ denotes a “don’t care” value, since the first input []
will not enter the else branch. Note that the then branch is already solvable
using P2, and is therefore annotated with it.

Second Alternation. The forward search now synthesizes programs by apply-
ing components to programs found for the heuristic value 1. Note that Escher
can apply length (the recursive call) on the input values (program P1), but
this obviously results in a non-terminating program (namely, the program let

length(i) = length(i)). Escher employs a termination argument that de-
tects and discards non-terminating programs. Next, by applying tail to P1, we
get the program P3 that computes 〈err,[],[2]〉, where err is a special symbol
representing an error value, since tail is undefined on the empty list. Program P4
results from applying inc to P2 and generates the value vector 〈1,1,1〉. Program
P5 is generated by applying isEmpty to P1, resulting in the value vector 〈T,F,F〉.
Now, the conditional inference phase discovers that P5 solves the 〈T,F,F〉 subgoal
in the goal graph, and annotates it with P5 (see Figure 2(b)).

In the third alternation, new programs are generated, but none of our goals
are solved.

Final Alternation. Finally, forward search applies inc to P6 and generates
P8 with the value vector 〈err,1,2〉. Conditional inference recognizes that this

Recursive Program Synthesis 5

program solves the subgoal 〈?,1,2〉. Since all subgoals of our main goal 〈0,1,2〉
are now solved, we can synthesize the final program if P5 then P2 else P8.
Figure 2(c) shows the result produced by Escher, which satisfies the given
input-output values, and extrapolates to the behaviour intended by the user.

It is important to note that each program is associated with a value vector
representing its execution on the given inputs. This allows us to restrict the
search space by treating programs with equivalent value vectors as equivalent
programs. This observational equivalence property can reduce the search space
drastically, as will be demonstrated experimentally in Section 4. Moreover, our
use of goal graphs allows us to efficiently synthesize programs that contain con-
ditionals. Other component-based techniques like [10, 13] approach this problem
by using an if-then-else component; in Section 4, we demonstrate the advantages
of the goal graph over this approach experimentally.

3 The Escher algorithm
In this section, we provide the basic definitions required for the rest of the
paper, present the Escher algorithm and discuss its properties and practical
considerations.

3.1 Definitions
Synthesis Task. We define a synthesis task S as a pair (Ex ,Comps), where Ex
is a list of input-output examples, and Comps is the set of components allowed
to appear in the synthesized program. We assume that Comps contains a special
component self which is treated as a recursive call to the synthesized program.
Every component c is associated with an arity a(c) ∈ [0,∞), indicating the
number of input parameters c accepts. We define a(self) to be the number of
input parameters in the examples in Ex . We assume, without loss of generality,
that each component returns one value.

We use V to denote the set of values (which may include integers, Booleans,
lists of integers, etc.). We make three assumptions about V: equality must be
decidable on V, there is a well-founded relation ≺⊆ V × V, and V must contain
a distinguished err value that denotes the result of an erroneous computation
(e.g., a run-time exception, a type error, or a non-terminating computation), as
well as the Boolean values T and F. We assume the existence of a total function
eval that takes a component c and an a(c)-tuple of values I ∈ Va(c), and returns
a value representing the result of applying c to I. For example, if c is integer
division, then eval(c, (6, 3)) = 2 and eval(c, (4, 0)) = err. For recursive program
synthesis, we treat the evaluation of the target component self as a call to the
Oracle (that is, self is evaluated by the user). We memoize such calls to avoid
making repeated queries to the Oracle for the same input.

Programs. Given a synthesis task (Ex ,Comps), we define a program P over
Comps using the following grammar:

P ∈ Program ::= if Pcond then Pthen else Pelse

| c(P1, . . . , Pa(c)) if a(c) > 0
| c if a(c) = 0
| xj 1 ≤ j ≤ a(self)

6 Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid

where xj is an input parameter, and c is a component. We use Vars to denote
the set of all input parameters.

Note that our programming language is untyped (programs encountering
a run-time type error evaluate to err), first order (although the components
themselves may be higher-order), and purely functional.

3.2 Algorithm Description

Problem Definition. We start by formalizing the synthesis problem as fol-
lows. We use (ini, outi) to denote the ith input-output example in Ex (where
ini, outi ∈ V), v[j] to denote the jth element of a value vector v, and define a
function evalv : Program→ V |Ex | as follows:

evalv(xj)[i] = ini[j]
evalv(c)[i] = eval(c, ())
evalv(c(P1, . . . , Pn))[i] = eval(c, (evalv(P1)[i], . . . , evalv(Pn)[i]))
evalv(if Pcond then Pthen else Pelse)[i] =

evalv(Pthen)[i] if evalv(Pcond)[i] = T

evalv(Pelse)[i] if evalv(Pcond)[i] = F

err otherwise

A (sub)goal is a vector whose values range over program values V and a
distinguished “don’t care” value ?. The root goal is a goal consisting of the desired
outputs from the given examples, namely root = 〈out1,· · · , out|Ex |〉. For a value
vector v and a (sub)goal g, we say that v matches g (and write match(v, g)) if
for every i, either v[i] = g[i] or g[i] = ?.

The program synthesis problem can be formalized as follows: find a program
P such that evalv(P) matches root.

Escher Formalized. The synthesis procedure of Escher is pictured in Figure 3
as a nondeterministic transition system. Escher takes as input a synthesis task
(Ex ,Comps) and synthesizes a program that matches the input-output examples
given in Ex . In the following, we first give a high-level overview of Escher, and
then describe the system more formally.

A configuration of Escher is a triple 〈syn, goalGraph, ex〉 consisting of a set
of synthesized programs syn, a goal graph goalGraph, and a list of input-output
examples ex. The procedure begins by applying the Init rule, which initializes syn
to be the set of input variables Vars and goalGraph to be the goal graph consisting
only of a single goal node root (representing the desired outputs obtained from
the examples Ex) and initializes ex to be Ex .

The rule Forward implements the forward search part of Escher: a new
program is added to syn by applying a component to a vector of programs that
have already been synthesized (members of syn). The rules SplitGoal and Re-
solve implement the conditional inference part of the search by manipulating
the goal graph – we will explain these rules further in the following. The Sat-
urate rule adds new input-output examples to ex; if Escher synthesizes a
recursive program, we must check that the program also produces the correct

Recursive Program Synthesis 7

〈Vars, ({{root}, ∅, ∅, root),Ex 〉
Init

c ∈ Comps P1 ∈ syn · · · Pa(c) ∈ syn
P = c(P1, . . . , Pa(c))

〈syn, goalGraph, ex〉 → 〈syn ∪ {P}, goalGraph, ex〉
Forward

cond ∈ B|ex| g ∈ G r is fresh
bthen = g|cond belse = g|¬cond

G′ = G ∪ {cond, bthen, belse} R′ = R ∪ {r}
E′ = E ∪ {(r, g), (cond, r), (bthen, r), (belse, r)}

〈syn, (G,R,E, root), ex〉 → 〈syn, (G′, R′, E′, root), ex〉
SplitGoal

P1, P2, P3 ∈ syn r ∈ R (r, g1), (r, g2), (r, g3) ∈ E
match(evalv(P1), g1) match(evalv(P2), g2) match(evalv(P3), g3)

P = if P1 then P2 else P3

〈syn, (G,R,E, root), ex〉 → 〈syn ∪ {P}, (G,R,E, root), ex〉
Resolve

P ∈ syn match(evalv(P), root) ex↓P* ex

〈syn, (G,R,E, root), ex〉 → 〈syn, ({root′}, ∅, ∅, root′), ex ∪ ex↓P 〉
Saturate

P ∈ syn match(evalv(P), root) ex↓P⊆ ex

〈syn, (G,R,E, root), ex〉 → P
Terminate

Fig. 3. Escher synthesis algorithm

results for all the recursive calls in order to ensure that the synthesized program
is a solution to the synthesis task. Finally, the Terminate rule terminates the
algorithm when a program matching the root goal has been synthesized.

The Goal Graph We now describe the data structure and technique used
for synthesizing conditionals. A goal graph is a bipartite graph (G,R,E, root),
where:

– G is a set of value vectors representing goals that need to be achieved,
– R is a set of resolvers connecting goals to subgoals,
– E ⊆ G×R ∪R×G is a set of edges connecting goals and resolvers, and
– root ∈ G is a distinguished root goal.

We assume that each resolver r ∈ R has a single outgoing edge (r, g) ∈
E, the target of which is called the parent of r, and three incoming edges
(g1, r), (g2, r), (g3, r), denoting the cond, then, and else goals that need to be
synthesized to synthesize a program solving goal g. We call g1, g2, and g3, sub-
goals of r and g. We also assume that, with the exception of the root goal root
(which has no outgoing edges), every goal has at least one outgoing edge (i.e., it
is a subgoal of at least one resolver).

Example 1. Consider the goal graph in Figure 2. The set of goals G =
{〈0,1,2〉, 〈T,F,F〉, 〈0,?,?〉, 〈?,1,2〉}, the set of resolvers R = {Pr}, and root

8 Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid

of the graph is 〈0,1,2〉. The graph specifies that in order to synthesize a pro-
gram for 〈0,1,2〉, one could synthesize three programs satisfying the three other
vectors in G. ut

At a high-level, a goal graph goalGraph can be viewed as an AND-OR graph.
That is, the goal graph specifies that to synthesize a program satisfying a goal
g, then programs satisfying all subgoals g1, g2, g3 of one of the resolvers r (s.t.
(r, g) ∈ E) have to be synthesized.

The rule SplitGoal updates a goal graph by including a new resolver for a
given goal. This is accomplished by selecting an arbitrary Boolean vector cond ∈
B|ex| and a goal g. From cond and g, we compute a pair of residual goals bthen =
g|cond and belse = g|¬cond, which agree with g on positions where cond is true
(or false, in the case of belse), and otherwise have don’t-care values. Formally,

(g|cond)[i] =

{
g[i] if cond[i]

? otherwise
(g|¬cond)[i] =

{
g[i] if ¬cond[i]

? otherwise

SplitGoal creates a new resolver for g with three new sub-goals: one for cond,
one for bthen, and one for belse, and adds them to the goal graph.

Termination Argument. The procedure described in the preceding is suitable
for synthesizing non-recursive programs, but a termination argument is required
to synthesize recursive functions. To see why a termination argument is required,
consider that (in its absence) the program self(x1, . . . , xa(self)) is always a solu-
tion (since this program always matches the root goal). This solution should be
excluded from the search space because it does not terminate.

We remove non-terminating programs from the search space by redefining the
evalv on the recursive component self so that an error is produced on arguments
that are not decreasing, according to the well-founded relation ≺ on V. Formally,
we define

evalv(self(P1, . . . , Pa(self)))[i] =

{
eval(self, arg) if arg ≺∗ ini

err otherwise

where arg = (evalv(P1)[i], . . . , evalv(Pa(self))[i]) and≺∗ indicates the well-founded

relation ≺ on V extended to the lexicographic well-founded relation on Va(self).

Example 2. Recall the example from Section 2. To ensure termination of the
resulting program for computing list length, Escher enforced that the list with
which the recursive call to length is made follows the common well-founded
order for the list data type: the length of the list is decreasing. For exam-
ple, suppose we synthesize the program length(i) (where i is the only input
variable) using Forward. Then we may not apply the Terminate rule, since
evalv(length(i)) = 〈err,err,err〉, which does not match the root goal 〈0,1,2〉.

Saturation. Finally, we discuss our Saturate rule. The reason for including
this rule is illustrated by the following example:

Recursive Program Synthesis 9

Example 3. Consider the length synthesis task introduced in Section 2, and
suppose that our examples are ([],0) and ([1,2],2), such that root is 〈0, 2〉.
Let P be the program

if isEmpty(i) then 0

else if isEmpty(tail(i)) then 0

else inc(length(tail(i)))

Then match(P, root), but P is not a solution to the synthesis task. ut

The problem with the above example is that evalv uses the Oracle to evalu-
ate recursive calls rather than the synthesized program. This is required because
Escher constructs programs in a bottom-up fashion, so evalv must be able to
evaluate self before a candidate solution is fully constructed. So, on the above
example, P returns 1 result on input [1,2], but match(P, root) holds because
it uses the Oracle to evaluate length(tail(i)). The Saturate rule (and the
ex↓P⊆ ex side-condition of Terminate) resolves this problem, as we will de-
scribe in the following.

We define ex↓P to be the set of all input-output examples (I,O) such that
there is some recursive call in P that evaluates self(I) for one of the input-output
examples in ex. On our example, ex↓P = {([2],1)}. So Saturate adds this new
example to ex. For completeness, we formally define ex↓P in [4].

Intuitively, the ex ↓P is the set of input-output examples upon which the
examples in ex depend. A saturated set of examples (one in which ex↓P⊆ ex) does
not depend on anything – so if a program P is correct on a saturated example
set, then it is guaranteed to be correct for all the examples. The Saturate rule
simply adds such “dependent examples” to the set of examples for which we are
obligated to prove correctness.

Completeness We conclude this section with a statement of the completeness
of our synthesis algorithm. Escher is complete in the sense that if there exists
a solution to the synthesis task within the search space, it will eventually find
one. Theorem 1 states this property formally.

Theorem 1 (Relative Completeness). Given a synthesis task (Ex ,Comps),
suppose there exists a program P ∈ Program such that match(evalv(P), goal),1

where goal = 〈out1, . . . , out|Ex |〉 Then for all reachable configurations
〈syn, goalGraph, ex〉 of Escher, there exists a run of the algorithm ending in
a solution to the synthesis problem.

Assuming a natural fairness condition on sequences of Escher rule applica-
tions, we have an even stronger result: if a solution to the synthesis task exists,
Escher will find one.

1 Note that this condition implies that P terminates according to the argument above.

10 Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid

3.3 Search guidance

In this section, we discuss techniques we use to guide the search procedure used
in Escher. These techniques are essential for turning the näıve transition system
presented in Figure 3 into a practical synthesis algorithm.

Heuristic search. In a practical implementation of Escher, we require a
method for choosing which rule to apply in any given configuration. In par-
ticular, Forward has a large branching factor, so it is necessary to determine
which component to apply to which subprograms at every step.

Our method is based on using a heuristic function h : Program → N that
maps programs to natural numbers. The lower the heuristic value of a program,
the more it is desired.

A simple example of a heuristic function is the function mapping each pro-
gram to its size. When Escher is instantiated with this heuristic function, the
search is biased towards smaller (more desirable) programs. The design of more
sophisticated heuristic functions for program synthesis is an important and in-
teresting problem, but is out of the scope of this paper. A promising approach
based on machine learning is presented in [18].

Observational Equivalence Reduction. The synthesis problem solved by
Escher requires a program to be synthesized that matches a given list of input-
output examples. Programs that evaluate to the same outputs for the inputs
given in ex are indistinguishable from the perspective of this task. This idea yields
a technique for reducing the size of search space, which we call observational
equivalence reduction.

We define an equivalence relation ≡ on programs such that P ≡ Q iff
evalv(P) = evalv(Q). Whenever a new program P is synthesized, Escher checks
whether a program Q has already been synthesized such that P ≡ Q: if such a
program Q exists, the program P is discarded. This ensures that at most one
representative from each equivalence class of ≡ is synthesized. The correctness
of observational equivalence reduction is implied by the following proposition.

Proposition 1. Let P,Q,Q′ be programs such that Q ≡ Q′, and that P is a
solution to the synthesis task (i.e., match(evalv(P), root)). Let P ′ be the program
obtained from P by replacing every instance of Q with Q′. Then P ′ is also a
solution to the synthesis task.

A corollary of this proposition is that our completeness theorem (Theorem 1)
still holds in the presence of observational equivalence reduction.

Rule scheduling. We now briefly comment on some practical considerations
involved in scheduling the rules presented in Figure 3.

In our implementation of Escher, the Forward rule is applied in a dynamic
programming fashion, as demonstrated in Section 2. Whenever a new program
P is synthesized, we apply Saturate/Terminate to check if P is a solution
to the synthesis problem. If not, we apply Resolve eagerly to close as many
goals as possible. We then apply SplitGoal if P matches some positions of an
open goal. For example, if 〈0,0,2,2〉 is an open goal and P computes 〈0,1,2,3〉,
then we apply SplitGoal with the Boolean condition 〈T,F,T,F〉 (i.e., for each

Recursive Program Synthesis 11

let hbal_tree n =

if leq0(div2(n)) then createLeaf(0)

else createNode(0, hbal_tree(div2(dec(n))), hbal_tree(div2(n)))

let stutter l =

if isEmpty(x) then emptyList

else cons(head(x), cons(head(x), stutter(tail(x))))

Fig. 4. Output by Escher for height balanced binary tree hbal tree, assuming n >

0, and stutter.

position i, the condition at position i is T if P matches the goal at i and F

otherwise).
Since the Saturate burdens the user by requiring them to provide additional

input/output examples, it may be desirable to schedule rules so that Saturate
is rarely applied. To accomplish this goal, we may assign high heuristic values
to programs which require additional user input to bias the search away from
applying the Saturate rule.

4 Implementation and Evaluation

We have implemented an OCaml prototype of Escher in a modular fashion, al-
lowing heuristic functions and components written as OCaml functions to easily
be plugged in. Our goal in evaluating Escher is as follows: (1) Study the effec-
tiveness of Escher on a broad range of problems requiring recursive solutions.
(2) Evaluate the performance impact of Escher’s key goal graph concept and
its observational equivalence search guidance heuristic. (3) Evaluate Escher
against SAT/SMT-based techniques by comparing it to the state-of-the-art tool
Sketch [23].

Benchmarks. Our benchmark suite consists of a number of recursive integer,
list, and tree manipulating programs, which were drawn from functional pro-
gramming assignments, standard list and tree manipulation examples, and clas-
sic recursive programming examples. The types of programs we have synthesized
with Escher include tail recursive, divide-and-conquer, as well as mutually re-
cursive programs, thus demonstrating the flexibility and power of the algorithm
in this setting. For example, Figure 4 shows two functions synthesized by Es-
cher. The first one, hbal tree, constructs a height-balanced binary tree of a
given size n using a divide-and-conquer recursive strategy to construct the left
and right subtrees of each node in the tree separately. The second function,
stutter, duplicates each element in a list. Due to lack of space, we describe our
benchmark set in detail in [4].

In order to synthesize these programs, we supplied Escher with a base
set of components shown in Figure 5. For all synthesis tasks, this same set of
components was used. Our goal with this decision is two-fold: (1) Model a user-
friendly environment where the user is not forced to provide a different focused
set of components for different tasks, since this requires non-trivial thinking on

12 Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid

Component Type Supplied Components

Boolean and, or, not, equal, leq0, isEmpty

Integer plus, minus, inc, dec, zero, div2

List tail, head, cat, cons, emptyList

Tree isLeaf, treeVal, treeLeft, treeRight

createNode, createLeaf

Fig. 5. Base set of components used in experiments.

Program EscherS ObsEqOff GGOff AllOff EscherD

Tree Programs

1 collect leaves 0.044 0.092 68.928 81.813 0.036

2 count leaves 0.056 0.200 9.345 12.317 0.044

3 hbal tree 1.520 MEM TIME MEM TIME

4 nodes at level 10.741 MEM TIME MEM 0.544

List Programs

5 compress 0.060 0.520 176.419 MEM 0.440

6 concat 0.060 0.144 3.460 5.340 0.284

7 drop 0.016 0.044 0.708 0.876 0.024

8 insert 2.108 MEM TIME MEM 14.993

9 last 0.020 0.100 0.292 0.452 0.264

10 length 0.008 0.040 0.128 0.220 0.328

11 reverse 0.224 10.513 7.792 12.489 0.352

12 stutter 0.552 67.332 24.698 42.039 TIME

13 sum 0.064 0.432 0.904 1.548 0.204

14 take 0.248 7.012 20.925 27.406 1.620

Integer Programs

15 fib 0.120 1.212 40.091 68.232 TIME

16 gcd 0.020 0.016 TIME MEM 0.024

17-1 iseven 0.016 0.020 0.012 0.020 TIME

17-2 isodd 0.024 0.040 0.020 0.048 0.056

18 modulo 0.044 0.460 0.524 0.752 0.080

19 mult 0.108 4.168 8.849 12.905 9.461

20 square 0.124 1.308 6.296 13.141 0.116

21 sum under 0.004 0.012 1.456 2.824 0.088

Fig. 6. Synthesis time of Escher instantiations using the 22 components indicated
in Figure 5. Time is in seconds. TIME denotes a timeout, where the time limit is 5
minutes; MEM denotes that the synthesis process exceeded the 1GB memory limit.

the part of the user. (2) Demonstrate Escher’s ability to synthesize non-trivial
programs in the presence of superfluous components.

Our base components cover most basic Boolean, integer, list, and tree oper-
ations. For example, Boolean components supply all logical connectives as well
as equality checking.

#Comps mult modulo sum under iseven isodd

0 0.705 0.025 24.339 0.011 0.012
1 12.001 0.069 36.810 0.016 0.015
2 12.570 0.081 42.909 0.018 0.021
3 16.703 0.119 40.952 0.017 0.025
4 16.681 0.188 59.905 0.017 0.028
5 36.269 0.129 66.622 0.020 0.026

Fig. 7. Sketch evaluation.

Experimental Setup and Results.
We will use EscherS to refer to an
instantiation of Escher with the size
heuristic for search guidance, and Es-
cherD to refer to an instantiation
with the program depth heuristic (i.e.,
h(P) is program depth). To study the
effects of the goal graph, we imple-
mented a configuration of Escher called GGOff that synthesizes conditionals
using the technique employed by [10, 13], where an if-then-else component is used

Recursive Program Synthesis 13

to synthesize conditionals and the goal graph is disabled. To study the effects
of observational equivalence, we implemented a configuration of Escher called
ObsEqOff, where observational equivalence is not checked and all programs are
considered. Additionally, AllOff represents a configuration of Escher where
both observational equivalence and the goal graph are not used. Except for Es-
cherD, all aforementioned configurations use the size of the program heuristic
to guide the search.

We started all configurations of Escher with a minimal number of input-
output tuples required to synthesize a correct program for each benchmark (i.e.,
without having to ask the Oracle). Figure 6 shows the number of seconds re-
quired by each configuration of Escher to synthesize a correct implementation
of the given synthesis task. For example, row 3 shows that EscherS synthe-
sizes the tree manipulating program hbal tree in 2 seconds, whereas ObsE-
qOff,GGOff, AllOff, as well as EscherD fail to produce a result in the
allotted time and memory.

Our results demonstrate the ability of Escher to synthesize non-trivial pro-
grams in a very small amount of time, typically less than a second. Moreover, for
a large number of programs, not using the goal graph causes the tool to timeout
(e.g., gcd) or spend a considerable amount of time in synthesis (e.g., compress).
This demonstrates the power of our technique for synthesizing conditionals in
comparison with the näıve method of using an if-then-else component. A similar
effect is observed in ObsEqOff, where all synthesized programs are considered.
We also observe that on our suite of benchmarks, the program size heuristic
outperforms the depth heuristic.

Comparison with Sketch. Sketch [23] is a state-of-the-art synthesis tool
that accepts as input a sketch (partial program) and a reference implementation
(oracle). The sketch is written in a C-like programming language that includes
the construct “??”, denoting an unknown constant value. Sketch then uses
SAT-solving to find constants to replace each occurrence of ?? with an integer
such that the resulting program is equivalent to a reference implementation.
In [10], the authors compare their SMT component-based synthesis technique
for straight line programs against Sketch. This is done by encoding the task
for searching for a straight line program composed of a set of components as
a sketch. For example, given a choice of two components, one can encode the
choice as if (??) then comp1() else comp2()

To evaluate Escher’s heuristic search approach against SAT-based tech-
niques, we encoded our component-based synthesis tasks as sketches in a similar
fashion to [10], with the addition that a reference specification was also encoded
as a component (in order to simulate a recursive call). To ensure termination of
the synthesized program, we encoded the same termination argument used by
Escher (Section 3). Our encoding produces sketches of size linear in the number
of components.

There are two limitations to applying Sketch to our suite of benchmarks:
(1) Sketch can only be applied to the integer benchmarks, since it does not
support tree and list data structures; and (2) in order to successfully synthesize

14 Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid

programs with Sketch, we had to supply it with the top level conditional in
each benchmark, thus aiding Sketch by restricting the search space.

On fib, gcd, and sum under, Sketch exhausted the allotted 2GB of mem-
ory. On square, Sketch returned an error. Figure 7 shows the time taken by
Sketch2 on the rest of the integer benchmarks where it successfully synthesized
a program. The column #Comps denotes the number of superfluous components
provided in the sketch (i.e., components not required for synthesizing the task
in question). For example, for mult, when the number of components is exactly
what is required for synthesis, Sketch generated a program in 0.71 seconds,
but when the number of extra components is 3, Sketch required 16.7 seconds
to synthesize a solution. We observe that the time taken by Sketch steadily
increases in mult and sum under as we increase the number of superfluous com-
ponents. In contrast, Escher’s results in Figure 6 were obtained by supplying
Escher with all the 22 components, demonstrating the scalability of Escher
in the presence of superfluous components.

In summary, our results demonstrate the efficiency of Escher at synthe-
sizing a broad range of programs, and emphasize the power of our goal graph
data structure at synthesizing conditionals. Moreover, we show that our proto-
type implementation of Escher can outperform a state-of-the-art SAT-based
synthesis tool at synthesizing recursive programs from components.

5 Related Work

For a recent survey of various techniques and interaction models for synthesis
from examples, we refer the reader to [9].

In version-space algebras, the idea is to design data structures that suc-
cinctly represent all expressions/programs that are consistent with a given set
of examples. Mitchell [19] pioneered this technique for learning Boolean func-
tions. Lau et al. [15] adapted the concept to Programming By Demonstration
(PBD) [2], where the synthesizer learns complex functions for text editing tasks.
More recently, version-space algebras have been used for data manipulation in
spreadsheets, e.g., string transformations [8], number transformations [22], and
table transformations [12]. These techniques are limited to domain-specific lan-
guages, and different synthesis algorithms are required for different domains.
In contrast, Escher is parameterized by the components used, thus offering a
flexible domain-agnostic synthesis solution.

Explicit search techniques enumerate the space of programs until a program
satisfying the given examples is found. This appears in the context of AI plan-
ning [20, 5], where the search is directed by a goal-distance heuristic. Machine
learning techniques have also been used for guiding the search using textual fea-
tures of examples [3]. These techniques have been mostly limited to synthesizing
straight line programs, whereas Escher can discover recursive programs.

SAT and SMT solvers have also been used for synthesis. Sketching [23] is the
most prominent technique in this category. It accepts a program with holes, and
uses a SAT solver to fill the holes with constants to satisfy a given specification

2 Only synthesis time is reported – verification time is not counted.

Recursive Program Synthesis 15

(represented as a program). This is performed by bit-blasting the program and
encoding it as a formula. In [13], SMT solvers are used to synthesize straight line
bit-manipulating programs by interacting with the user via input-output exam-
ples. In contrast to these techniques, Escher is not restricted by the theories
supported by the SMT solver. Also, as we have shown experimentally, sketching
is highly sensitive to superfluous components, and even required the top-level
conditional in the program to be supplied for successful synthesis. Moreover,
Escher’s heuristic search strategy provides a direct way of adding search pref-
erences/guidance.

The field of inductive logic programming (ILP) was spawned by the work
of Shapiro on the Model Inference System (MIS) [21] and by the work of Sum-
mers on LISP synthesis [24], among others. Flener and Yilmaz [7] present a nice
survey of this rich area. MIS performs synthesis in an interactive manner using
search (like Escher). However, it scales by fixing errors in a current (incorrect)
program. We do not fix incorrect programs but build one from scratch. The idea
in Summer’s work and its recent incarnation [14] is to start by synthesizing a
non-recursive program for the given examples. Then, by looking for syntactic pat-
terns in the synthesized program, the non-recursive program is generalized into
a recursive one. Escher’s approach differs significantly from these techniques,
since the whole synthesis algorithm is based on search, and there is no distinction
between finding non-recursive programs and generalization. Moreover, Escher
does not require a “good” set of examples to successfully synthesize a program.
Instead, Escher can interactively query the user/oracle for more examples (if
the initial set does not suffice) until it finds a solution. Summer’s line of work
was also extended by Flener in his DIALOGS system [6], which is also interac-
tive and features abduction as well (like Escher, which abduces conditions of
if-then-else statements). However, Escher is based on heuristic search to make
the process efficient, while DIALOGS uses a non-deterministic algorithm in order
to also synthesize alternative programs. DIALOGS can also handle non-ground
I/O tuples and can additionally (heuristically) detect the need to invent a help
function that is itself recursively defined.

6 Conclusion and Future Work

We have presented Escher, a generic and efficient algorithm that interacts with
the user via input-output examples, and synthesizes recursive programs imple-
menting intended behaviour. Our work presents a number of interesting questions
for future consideration. On the technical side, we would like to extend Escher
to synthesize loops, alongside recursion. To improve Escher’s ability to synthe-
size constants, it would be interesting to combine Escher’s heuristic search with
an SMT-based search. For example, Escher can heuristically decide to use an
SMT solver to check if there is a solution that uses synthesized constants within
n steps for a given input-output example. On the application side, it would be in-
teresting to study the applicability of Escher as an intelligent tutoring system,
where students can learn recursion as a programming paradigm by interacting
with the synthesizer, e.g., for suggesting different solutions or providing hints for
completing student solutions.

16 Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid

References

1. Flash Fill (Microsoft Excel 2013 feature).
http://research.microsoft.com/users/sumitg/flashfill.html.

2. Your wish is my command: programming by example. Morgan Kaufmann Publish-
ers Inc., 2001.

3. S. G. B. L. Aditya Menon, Omer Tamuz and A. Kalai. A machine learning frame-
work for programming by example. In ICML’13, 2013.

4. A. Albarghouthi, S. Gulwani, and Z. Kincaid. Recursive program synthesis.
http://www.cs.toronto.edu/~aws/papers/cav13a.pdf.

5. B. Bonet and H. Geffner. Planning as heuristic search. Artificial Intelligence,
129(1-2):5–33, 2001.

6. P. Flener. Inductive logic program synthesis with dialogs. In Inductive Logic
Programming Workshop, pages 175–198, 1996.

7. P. Flener and S. Yilmaz. Inductive synthesis of recursive logic programs: Achieve-
ments and prospects. J. Log. Program., 41(2-3):141–195, 1999.

8. S. Gulwani. Automating string processing in spreadsheets using input-output ex-
amples. In Proc. of POPL’11, pages 317–330.

9. S. Gulwani. Synthesis from examples: Interaction models and algorithms. Proc. of
SYNASC’12. Invited talk paper.

10. S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis of loop-free programs.
In Proc. of PLDI’11, pages 62–73.

11. S. Gulwani, V. A. Korthikanti, and A. Tiwari. Synthesizing geometry construc-
tions. In Proc. of PLDI’11, pages 50–61.

12. W. R. Harris and S. Gulwani. Spreadsheet table transformations from examples.
In Proc. of PLDI’11, pages 317–328.

13. S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari. Oracle-guided component-based
program synthesis. In Proc. of ICSE’10, pages 215–224.

14. E. Kitzelmann and U. Schmid. Inductive synthesis of functional programs: An
explanation based generalization approach. JMLR, 7:429–454, 2006.

15. T. Lau, S. A. Wolfman, P. Domingos, and D. S. Weld. Programming by demon-
stration using version space algebra. JMLR, 53(1-2):111–156, Oct. 2003.

16. Z. Manna and R. J. Waldinger. A deductive approach to program synthesis. ACM
TOPLAS, 2(1):90–121, 1980.

17. Z. Manna and P. Wolper. Synthesis of communicating processes from temporal
logic specifications. ACM Trans. Program. Lang. Syst., 6(1):68–93, Jan. 1984.

18. A. Menon, O. Tamuz, S. Gulwani, B. Lampson, and A. Kalai. A machine learning
framework for programming by example. In ICML, 2013. To appear.

19. T. M. Mitchell. Generalization as search. Artif. Intell., 18(2):203–226, 1982.
20. D. Nau, M. Ghallab, and P. Traverso. Automated Planning: Theory & Practice.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.
21. E. Y. Shapiro. Algorithmic Program DeBugging. MIT Press, Cambridge, MA,

USA, 1983.
22. R. Singh and S. Gulwani. Synthesizing number transformations from input-output

examples. In Proc. of CAV’12, pages 634–651.
23. A. Solar-Lezama, L. Tancau, R. Bod́ık, S. A. Seshia, and V. A. Saraswat. Combi-

natorial sketching for finite programs. In Proc. of ASPLOS’06, pages 404–415.
24. P. D. Summers. A methodology for lisp program construction from examples. J.

ACM, 24(1):161–175, Jan. 1977.

