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Abstract. The SPEED project addresses the problem of computing
symbolic computational complexity bounds of procedures in terms of
their inputs. We discuss some of the challenges that arise and present
various orthogonal/complementary techniques recently developed in the
SPEED project for addressing these challenges.

1 Introduction

As processor clock speeds begin to plateau, there is an increasing need to focus on
software performance. One of the performance metrics is (worst-case) symbolic
computational complexity bounds of procedures (expressed as a function of their
inputs). Such automatically generated bounds are useful in early detection of
egregious performance problems in large modular codebases that are constantly
being changed by multiple developers who make heavy use of code written by
others without a good understanding of their implementation complexity. These
worst-case bounds also help augment the traditional performance measurement
process of profiling, which is only as good as the set of test inputs.

The SPEED project develops static program analysis techniques for com-
puting symbolic computational complexity bounds. Computing such bounds is
a technically challenging problem since bounds for even simple sequential pro-
grams are usually disjunctive, non-linear, and involve numerical properties of
heaps. Sometimes even proving termination is hard in practice, and computing
bounds ought to be a harder problem.

This paper briefly describes some techniques that enable existing off-the-shelf
linear invariant generation tools to compute non-linear and disjunctive bounds.
These techniques include: (i) program transformation (control-flow refinement
to transform loops with sophisticated control flow into simpler loops [7]), and
(i) monitor instrumentation (multiple counter variables whose placement is de-
termined dynamically by the analysis [9]). This paper also briefly describes some
specialized invariant generation tools (based on abstract interpretation) that en-
able bound computation. These can compute invariants that describe (i) numer-
ical properties of memory partitions [8], (ii) relationships involving non-linear
operators such as logarithm, exponentiation, multiplication, square-root, and
Max [6]. These techniques together enable generation of complexity bounds that



are usually precise not only in terms of the computational complexity, but also
in terms of the constant factors.

The hard part in computing computational complexity bound for a procedure
is to compute bounds on the number of iterations of various loops inside that
procedure. Given some cost measure for atomic statements, loop iteration bounds
can be composed together in an easy manner to obtain procedure bounds (for
details, see [9,7].) This paper is thus focused on bounding loop iterations, and
is organized by some of the challenges that arise in bounding loop iterations.

2 Loops with Control-flow

Loops with non-trivial control flow inside them often have (iteration) bounds
that are non-linear or disjunctive, i.e., they involve use of the Max operator (which
returns the maximum of its arguments). For example, the loop in Figure 1(a)
has a disjunctive bound: 100 4+ Max(0,m), while the loop in Figure 2(a) has a
non-linear bound: n x (m + 1). Such bounds can be computed using one of the
following three techniques.

2.1 Single Counter Instrumentation

This technique involves instrumenting a counter ¢ that is initialized to 0 at the
beginning of the loop, and is incremented by 1 inside the loop. An invariant
generation tool is then used to compute invariants that relate the loop counter
i with program variables. Existential elimination of temporary variables (all
variables except the counter variable i and the inputs) yields a relation between
i and the inputs, from which an upper bound « on 7 may be read. Max(0, u) then
provides a bound on the number of loop iterations.

For the loop in Figure 1(a), single counter instrumentation results in the
loop in Figure 1(b). Bound computation now requires computing the disjunctive
inductive invariant i < x +y+1 A y < Max(0,m) A x < 100 at program
point 5 (i.e., at the location immediately before the statement at that point) in
Figure 1(b). Existential elimination of temporary variables z and y from this
inductive invariant yields the invariant ¢ < 100 + Max(0,m), which implies a
bound of Max(0,100 + Max(0,m)) = 100 + Max(0,m) on the number of loop
iterations.

For the loop in Figure 2(a), single counter instrumentation results in the
loop in Figure 2(b). Bound computation now requires computing the non-linear
inductive invariant t <z xm+x+y+1 A x <n A y <m at program point 5
in Figure 2(b). Existential elimination of temporary variables x and y from this
inductive invariant yields the invariant ¢ < n x (m + 1), which implies a bound
of n x (m+ 1) on the number of loop iterations.

One (semi-automatic) technique to compute such disjunctive and non-linear
invariants is to use the numerical abstract domain described in [6]. The numeri-
cal abstract domain is parametrized by a base linear arithmetic abstract domain
and is constructed by means of two domain lifting operations that extend the
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Fig.1. (a) Loop with a disjunctive bound 100 + Max(0,m). (b) Single Counter In-
strumentation requires computing disjunctive invariants for bound computation. (c)
Multiple Counter Instrumentation enables computation of disjunctive bounds using
linear invariants on individual counters. (d) Control-flow Refinement enables bound
computation by reducing original loop to a code-fragment with simpler loops.

base linear arithmetic domain to reason about the max operator and other op-
erators whose semantics is specified using a set of inference rules. One of the
domain lifting operation extends the linear arithmetic domain to represent lin-
ear relationships over variables as well as max-expressions (an expression of the
form Max(es,...,e,) where ¢;’s are linear expressions). Another domain lifting
operation lifts the abstract domain to represent constraints not only over pro-
gram variables, but also over expressions from a given finite set of expressions
S. The semantics of the operators (such as multiplication, logarithm, etc.) used
in constructing expressions in S is specified as a set of inference rules. The ab-
stract domain retains efficiency by treating these expressions just like any other
variable, while relying on the inference rules to achieve precision.

2.2 Multiple Counter Instrumentation

This technique (described in [9]) allows for using a less sophisticated invariant
generation tool at the cost of using a more sophisticated counter instrumentation
scheme. In particular, this technique involves choosing a set of counter variables
and for each counter variable selecting the locations to initialize it to 0 and the
locations to increment it by 1. The counters and their placement are chosen such
that (besides some completeness constraints) a given invariant generation tool
can compute bounds on the counter variables at appropriate locations in terms
of the procedure inputs. (There is a possibility that no such counter placement is
possible, but if there is one, then the algorithm described in Section 4 in [9] will
compute one.) The bounds on individual counter variables are then composed
together appropriately to obtain a (potentially disjunctive or non-linear) bound
on the total number of loop iterations (For details, see Theorem 1 in Section 3
in [9]).
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Fig. 2. uint denotes an unsigned (non-negative) integer. (a) Loop with a non-linear
bound nx (m+1). (b) Single Counter Instrumentation requires computing non-linear in-
variants for bound computation. (¢) Multiple Counter Instrumentation enables compu-
tation of non-linear bounds using linear invariants on individual counters. (d) Control-
flow Refinement enables bound computation by reducing original multi-path loop to a
code-fragment in which path-interleaving has been made more explicit.

An advantage of this technique is that in most cases (including the loops
in Figure 1(a) and Figure 2(a)), it allows use of off-the-shelf linear invariant
generation tools to compute disjunctive and non-linear bounds.

For the loop in Figure 1(a), the multiple counter instrumentation technique
instruments the loop with two counters i; and i3, both of which are initialized
to 0 before the loop and are incremented by 1 on either sides of the conditional
resulting in the loop shown in Figure 1(b). Now, consider the following (a bit
subtle) argument with respect to computing bounds after this instrumentation.
(All of this is automated by techniques described in [9].)

— If the then-branch is ever executed, it is executed for at most m iterations.

This bound m can be obtained by computing a bound on counter variable

i1 at program point 6, which has been instrumented to count the number of
iterations of the then-branch.

Similarly, if the else-branch is ever executed, it is executed for at most 100

iterations. This bound can be obtained by computing a bound on counter

variable io at program point 9, which has been instrumented to count the

number of iterations of the else-branch.

This implies that the total number of loop iterations is bounded by Max (0, m)+
Max(0, 100) = 100 + Max (0, m).

For the loop in Figure 2(a), the multiple counter instrumentation technique
instruments the loop with two counters i; and i that are initialized and in-
cremented as shown in Figure 2(c). Now, consider the following argument with
respect to computing bounds after this instrumentation.

— The else-branch is executed for at most n iterations. This bound n can be
obtained by computing a bound on counter variable io at program point 9,



which has been instrumented to count the number of iterations of the else-
branch.

— The number of iterations of the then-branch in between any two iterations of
the else-branch is bounded by m. This bound can be obtained by computing
a bound on counter variable ¢; at program point 6, which is incremented by
1 in the then-branch, but is re-initialized to 0 in the else-branch.

— This implies that the total number of loop iterations is bounded by Max(0, n) x
(1 +Max(0,m)) =n x (m+1).

2.3 Control-Flow Refinement

This technique (described in [7]) allows for using a less sophisticated invariant
generation tool, but in a two phase process. The first phase consists of performing
control-flow refinement, which is a semantics-preserving and bound-preserving
transformation on procedures. Specifically, a loop that consists of multiple paths
(arising from conditionals) is transformed into a code fragment with one or more
simpler loops in which the interleaving of paths is syntactically explicit. For the
loops in Figure 1(a) and in Figure 2(a), the control-flow refinement leads to the
code-fragments in Figure 1(d) and Figure 2(d) respectively.

The second phase simply consists of performing the analysis on the refined
procedure. The code-fragment with transformed loops enables a more precise
analysis than would have been possible with the original loop. The additional
program points created by refinement allow the invariant generator to store more
information. The invariants at related program points (which map to the same
program point in the original loop) in the refined code-fragment correspond to
a disjunctive invariant at the corresponding program point in the original loop.
For the loops in Figure 1(d) and Figure 2(d), the desired bounds can now be
easily computed using simple techniques for bound computation such as pattern
matching, or single counter instrumentation.

Even though the goals of the multiple counter instrumentation and control-
flow refinement techniques are the same (that of enabling bound computation
with a less sophisticated invariant generation tool), there are examples for which
one of them is preferable than the other. (See the motivating examples in the
respective papers [9,7].) An interesting strategy that leverages the power of
both techniques would be to use multiple counter instrumentation technique
after applying control-flow refinement.

3 Loops in a Nested Context

We now consider the case of a loop nested inside another loop. If our goal is
to only prove termination of the outer loop, we can perform the process in
a modular fashion: prove that the number of iterations of the outer loop is
bounded, and prove that the number of iterations of the inner loop, in between
any two iterations of the outer loop, is bounded. However, such a modular scheme
would not work well for bound computation since it may often yield conservative
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Fig. 3. * denotes non-deterministic choice. (a) Nested Loop with a bound of n on the
total number of iterations. (b) Counter Instrumentation methodology can be used to
compute precise bounds for nested loops by instrumenting counters in an appropriate
manner. (¢) Transition system of the nested loop in the context of the outer loop, as
well as when lifted out of the context of its outer loop. The latter can be used to obtain
a precise bound on the total number of loop iterations of the nested loop.

bounds, as is illustrated by the example in Figure 3(a). The bound for the inner
loop (in terms of the inputs), for each iteration of the outer loop, is n. However,
the interesting part to note is that the bound for the total number of iterations
of the inner loop is also n. It is quite often the case that the nesting depth of a
procedure is not indicative of the precise computational complexity.

Both the counter instrumentation and control-flow refinement techniques in-
troduced in Section 2 can be extended to deal with the challenge of computing
precise bounds for loops in a nested context.

Appropriate Counter Instrumentation

The single counter instrumentation methodology can be easily extended to nested
loops by using a counter that is incremented by 1 in the nested loop (as before),
but is initialized to 0 at the beginning of the procedure (as opposed to imme-
diately before the loop). The idea of multiple counter instrumentation can be
similarly extended to address nested loops by having appropriate constraints on
the positioning of multiple counters. (For more details, see the notion of a proof
structure in Section 3 in [9].) In either case, the loop in Figure 3(a) is instru-
mented as shown in Figure 3(b). The bound of n on the total number of iterations
of the nested loop now follows from the inductive invariant is <y A y < n at
program point 8 in Figure 3(b).

Appropriate Loop Re-structuring

Alternatively, the nested loop can be re-structured as a non-nested loop in a
bound-preserving transformation. This is easier illustrated by working with a



Inputs: bit-vector a

; %).:fg; Inputs: List of lists of nodes L
T . e := L.Head();
3 while (_BitScanForward(&:idl,b)) .
P i1 while (e # null)
4 L ! f = eHead(;

// set all bits before idil
b:=0b]((1<<idl)—1);
6 if (_BitScanForward(&id2,~ b)) break;
// reset all bits before id2
7 b:=b& (~ ((1 << id2) —1));
(a) (b)

while (f # null)
f = e.GetNext(f);
e := L.GetNext(e);

Fig. 4. Loops whose bound cannot be expressed using scalar program variables, and in-
stead require reference to quantitative functions of the data-structures over which they
iterate. (a) Loop (instrumented with a counter variable 7) that iterates over bit-vectors.
_BitScanForward returns the bit position of the first set bit in the first parameter (if
any, which is signaled by the return value) (b) Loop that iterates over a list of lists.

transition system representation of the loop. A transition system can be de-
scribed by a relation ¢@yext representing relations between loop variables y and
their values 9,14 in the previous iteration, and a relation ¢1,;¢ representing the
initial value of the loop variables.

For the nested loop in Figure 3(a), the transition system representation before
and after this transformation is illustrated in Figure 3(c). The interesting part
to note is that the relation y = yo14 + 1 is transformed into y > 914 + 1 when
we compare any two successive states inside the nested loop, but not necessarily
inside the same iteration of the outer loop. (Observe that the value of y increases
monotonically inside the nested loop.) The desired precise bound of n for the
nested loop can now be easily computed from the transformed transition system
(by using simple techniques for bound computation such as pattern matching,
or single counter instrumentation.)

The above-mentioned transformation of the transition system can be carried
out by making use of progress invariants as described in Section 5 in [7].

4 Loops iterating over Data-structures

We now consider loops that iterate over data-structures such as lists, trees, bit-
vectors, etc. In such cases, it may not be possible to express bounds using only
scalar program variables. However, bounds may be expressible in terms of some
quantitative functions of these data-structures (such as length of a list, or height
of a tree, or number of bits in a bit-vector).

[9] proposes the notion of user-defined quantitative functions, wherein the
user specifies the semantics of the quantitative functions by annotating each
method of an abstract data-structure with how it may affect the quantitative



attributes of the input data-structures, and how it determines the quantita-
tive attributes of the output data-structures. Bounds can then be obtained by
computing invariants that relate the instrumented loop counter with the quan-
titative functions of data-structures. Such invariants can be obtained by using
a numerical invariant generation tool that has been extended with support for
uninterpreted functions [10] and aliasing.

The loop in Figure 4(a) iterates over a bit-vector by masking out the least
significant consecutive chunk of 1s from b in each loop iteration. Bit-vectors
have quite a few interesting quantitative functions associated with them. E.g.,
Bits(a): total number of bits, Ones(a): total number of 1 bits, One(a): position of
the least significant 1 bit, etc. Using these quantitative functions, it is possible to
express relationships between the instrumented loop counter ¢ and the bit-vectors
a and b. In particular, it can be established that 2i < 1+ One(b) —One(a) A i <
1+ Ones(a) — Ones(b) at program point 5. This implies bounds of both Ones(a)
as well as (Bits(a) — One(a))/2 on the number of loop iterations.

The loop in Figure 4(b) iterates over a list of lists of nodes. The outer loop
iterates over the top-level list, while the inner loop processes all nodes in the
nested lists. The iterations of the outer loop are bounded above by the length of
the top-level list, while the total iterations of the nested loop are bounded above
by the sum of the lengths of all the nested lists. These bounds can be expressed
using appropriate quantitative functions Len(L) and TotalNodes(L) with the
expected semantics. However, computation of these bounds requires inductive
invariants that require a few more quantitative functions. (For more details, see
Section 5.2 in [9].)

5 Loops with Complex Progress Measure

There are loops with simple control flow (and hence simplification techniques like
multiple counter instrumentation or control-flow refinement do not help reduce
the complexity of bound computation) that require computing sophisticated in-
variants for establishing bounds. We discuss below two such classes of invariants.

Invariants that relate sizes of memory partitions

Consider the BubbleSort procedure shown in Figure 5(a) that sorts an input
array A of length n. The algorithm works by repeatedly iterating through the
array to be sorted, comparing two items at a time and swapping them if they are
in the wrong order (Line 8). The iteration through the array (Loop in lines 6-9) is
repeated until no swaps are needed (measured by the change boolean variable),
which indicates that the array is sorted.

Notice that establishing a bound on the number of iterations of the outer
while-loop of this procedure is non-trivial; it is not immediately clear why the
outer while-loop even terminates. Note that in each iteration of the while-loop,
at least one new element “bubbles” up to its correct position in the array (i.e.,



Inputs: integer array A of size n
; f:hange 7= true; Inputs: int yp, uint n

=4 —0: v o— un:
8 while (change) lx_—(;), Y= yos

s s X =0
4 1=1+1 while (x <n) do
5 change := false; . .
i=1i+1;
6 for(z =0,z <n—lz:=x+1) 41
7 if (Afz] > Az +1]) LA
8 Swap(A[z], Az + 1]); - ys
9 change := true;
(a) (b)

Fig. 5. Loops where multiple counter instrumentation and control-flow refinement do
not help reduce the complexity of bound computation, and instead sophisticated invari-
ants are required to relate the instrumented counter variable ¢ with program variables.
(a) BubbleSort procedure (instrumented with a counter variable i to bound the number
of iterations of the outer loop) whose bound computation requires computing numeric
invariants over sizes of appropriate memory partitions. (b) Loop (instrumented with
a counter variable i) whose bound computation requires computing invariants with
non-linear operators, in particular, multiplication and square-root.

it is less than or equal to all of its successors). Hence, the outer while-loop ter-
minates in at most n steps. The set cardinality abstract domain described in [8]
can be used to automatically establish this invariant by computing a relation-
ship between the instrumented loop counter ¢ and the number of elements that
have been put in the correct position. In particular, the set cardinality analysis
computes the invariant that 7 is less than or equal to the size of the set of the
array indices that hold elements at their correct position (provided the parame-
trized set cardinality analysis is constructed from a set analysis whose base-set
constructor can represent such a set).

Invariants with non-linear operators

Counsider the loop shown in Figure 5(b) (taken from [3], which uses the principle
of second-order differences to establish a lexicographic polyranking function for
proving termination). This loop illustrates the importance of using non-linear
operators like multiplication and square-root for representing timing bounds as
well as computing the invariants required to establish timing bounds. In partic-
ular, it is possible to compute a bound of v/2n +max(0, —2y,) + 1 on the counter
variable i after establishing the inductive loop invariant i = y—yo A y? < y2+2z.
Such invariants can be computed by the numerical abstract domain [6] briefly
described in Section 2.1.



6 Related Work

WCET Analysis: There is a large body of work on estimating worst case execu-
tion time (WCET) in the embedded and real-time systems community [20, 21].
The WCET research is largely orthogonal, focused on distinguishing between
the complexity of different code-paths and low-level modeling of architectural
features such as caches, branch prediction, instruction pipelines. For establish-
ing loop bounds, WCET techniques either require user annotation, or use simple
techniques based on pattern matching [13] or some relatively simple numerical
analysis (e.g., relational linear analysis to compute linear bounds on the de-
lay or timer variables of the system [12], interval analysis based approach [11],
symbolic computation of integer points in a polyhedra [14]). These WCET tech-
niques cannot compute precise bounds for several examples considered in this

paper.

Termination Techniques: Recently, there have been some new advances in the
area of proving termination of loops based on discovering disjunctively well-
founded ranking functions [17] or lexicographic polyranking functions [4]. [5,
2] have successfully applied the fundamental result of [17] on disjunctively well-
founded relations to prove termination of loops in real systems code. It is possible
to obtain bounds from certain kind of ranking functions given the initial state
at the start of the loop. However, the ranking function abstraction is sometimes
too weak to compute precise bounds. In contrast, computation of any (finite)
bound for a loop is a proof of its termination.

Symbolic Bound Computation using Recurrence Solving: A common approach to
bound analysis has been that of generating recursive equations from programs
such that a closed form solution to the recursive equations would provide the
desired bounds. The process of generating recursive equations is fairly standard
and syntactic; the challenging part lies in finding closed-form solutions. Various
techniques have been proposed for finding closed-form solutions such as rewrite
rules [15, 18], building specialized recurrence solvers using standard mathemat-
ical techniques [19], or using existing computer algebra systems. Recently, [1]
have proposed a new technique based on computing ranking functions, loop in-
variants, and partial evaluation to more successfully solve recurrence relations
that arise in practice. This recurrence relation approach does not directly ad-
dress the challenges of dealing with loops with complicated progress measure or
loops that iterate over data-structures. It would however be interesting to com-
pare this approach with the techniques mentioned in this paper over numerical
loops with non-trivial control-flow and those that occur in a nested context.

7 Conclusion and Future Work

Computing symbolic complexity bounds is a challenging problem, and we have
applied a wide variety of static analysis techniques to address some of the in-
volved challenges: new invariant generation tools (for computing invariants that



are disjunctive, non-linear, and can express numerical properties of heap par-
titions), monitor instrumentation (multiple counter instrumentation), program
transformation (control-flow refinement), and user annotations (user-defined quan-
titative functions of data-structures).

The techniques described in this article are applicable for computing bounds
of sequential procedures. Computing bounds of procedures in a concurrent set-
ting is a more challenging problem: it requires modeling the scheduler, and
bounds would be a function of the number of processors.

It would also be interesting to extend these techniques to compute bounds
on other kind of resources (besides time) used by a program, such as memory
or network bandwidth, or some user-definable resource [16]. Computing memory
bounds is more challenging since unlike time its consumption does not monoton-
ically increase with program execution because of de-allocation.
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