
'

&

$

%

Constraint-based Approach for

Analysis of Hybrid Systems

Sumit Gulwani (MSR)

Ashish Tiwari (SRI)

CAV 2008

July 11, 2008

Ashish Tiwari Constraint-based Analysis of Hybrid Systems: 1



'

&

$

%

Analysis of Hybrid Systems

Hybrid systems = continuous dynamics + finite automata

= control theory + computer science

Analysis techniques combine approaches from the two fields:

• Extension of Lyapunov analysis – for proving stability

• Forward symbolic reachability

• Abstraction and model checking

• CEGAR

• Invariant generation

Ashish Tiwari Constraint-based Analysis of Hybrid Systems: 2



'

&

$

%

Inductive Invariant for Safety

The main inference rule for deductive verification:

Init : ∀~x : Init(~x) ⇒ Inv(~x)

Ind : ∀~x, ~x′ : Inv(~x) ∧ t(~x, ~x′) ⇒ Inv(~x′)

Safe : ∀~x : Inv(~x) ⇒ Safe(~x)

G(Safe(~x))

How to modify this rule to handle continuous dynamics?

How to generate Inv?

Ashish Tiwari Constraint-based Analysis of Hybrid Systems: 3



'

&

$

%

How to handle continuous dynamics?

Inductiveness for continuous dynamics:

If the system is in Inv at time t, then it stays in Inv at t+ ε as per the

dynamics ~̇x = f(~x).

Continuity is on our side

If we are in the interior, then there is no fear of going out.

Only need to worry about when we are on the boundary.

If Inv := (p ≥ 0)

Indc : ∀~x : p = 0 ⇒
dp

dt
≥ 0

where
dp

dt
:=

∑

k

(
∂p

∂xk

dxk

dt
)

Ashish Tiwari Constraint-based Analysis of Hybrid Systems: 4



'

&

$

%

Illustrations

p >= 0

p = 0

p >= 0

p = 0

q >= 0

q=0

p ≥ 0 p ≥ 0 ∨ q ≥ 0

Ashish Tiwari Constraint-based Analysis of Hybrid Systems: 5



'

&

$

%

Inductive Rule for Continuous Dynamics

If Inv := (p1 ≥ 0 ∨ p2 ≥ 0)

Indc : ∀~x : p1 < 0 ∧ p2 = 0 ⇒ dp2

dt
≥ 0

∀~x : p1 = 0 ∧ p2 < 0 ⇒ dp1

dt
≥ 0

∀~x : p1 = 0 ∧ p2 = 0 ⇒ dp1

dt
≥ 0 ∨ dp2

dt
≥ 0

If Inv :=
∧

i

∨

j

(pij ≥ 0)

Indc : ∀~x : Inv ∧
∧

j′∈J′

pij′ = 0 ∧
∧

j′ 6∈J′

pij′ < 0 ⇒
∨

j′∈J′

dpij′

dt
≥ 0

for all i and non-empty J ′ ⊆ J

Ashish Tiwari Constraint-based Analysis of Hybrid Systems: 6



'

&

$

%

Deductive Verification of Hybrid Systems

Hybrid System is a collection of Q continuous dynamical systems:

Let Inv := 〈Inv q〉q ∈ Q, where Inv q :=
∧

i

∨

j

pij ≥ 0

Initq : Initq(~x) ⇒ Inv q(~x)

Indq,q′ : Inv q(~x) ∧ t(~x, ~x′) ⇒ Inv q′(~x′)

Indq : Inv q(~x) ∧
∧

j′∈J′

pij′ = 0 ∧
∧

j′ 6∈J′

pij′ < 0 ⇒
∨

j′∈J′

(
dpij′

dt
)q ≥ 0∀i, ∅ 6= J ′ ⊆ J

Safeq : Inv q(~x) ⇒ Safeq(~x)

G(Safe(~x))

Technical detail: Incorporate state invariants in the antecedents

Background theory is the theory of reals

Ashish Tiwari Constraint-based Analysis of Hybrid Systems: 7



'

&

$

%

How to Generate Inv?

Applying the above inference rule

= proving ∃Inv : ∀~x : φ(Inv , ~x)

• Guess a template I(~u, ~x) for Inv

~u: template variables, ~x: state variables

Assuming Inv is I(~c)

• Now we need to prove

∃~u : ∀~x : φ(~u, ~x)

Bounded Falsification (BMC) vs. Bounded Verification

Ashish Tiwari Constraint-based Analysis of Hybrid Systems: 8



'

&

$

%

Solving ∃∀

Restrict to polynomial systems

⇒

φ contains only polynomial expressions

⇒

Validity of ∃~u : ∀~x : φ is decidable

More practically, use heuristics to decide ∃~u : ∀~x : φ

1. Eliminate ∀: ∃~u : ∀~x : φ 7→ ∃~u : ∃~λ : φ′

2. Search for ~u and ~λ over a finite domain using SMT (bit vector) solver

Ashish Tiwari Constraint-based Analysis of Hybrid Systems: 9



'

&

$

%

Step 1: ∃∀ to ∃

For linear arithmetic, Farkas’ Lemma eliminates ∀

∀~x : p1 ≥ 0 ∧ p2 ≥ 0 ⇒ p3 ≥ 0, iff

∃~λ : p3 = λ1p1 + λ2p2 ∧ λ1 ≥ 0 ∧ λ2 ≥ 0

For nonlinear, we can still use this and be sound

In theory, we can preserve completeness by using Positivstellensatz

Ashish Tiwari Constraint-based Analysis of Hybrid Systems: 10



'

&

$

%

Step 2: ∃ to Bit-Vectors

Search for solutions in a finite range using bit-vector decision procedures

∃u ∈ R : (u2 − 2u = 3 ∧ u > 0)

⇐ ∃u ∈ Z : (u2 − 2u = 3 ∧ u > 0)

⇐ ∃u ∈ Z : (−32 ≤ u < 32 ∧ u2 − 2u = 3 ∧ u > 0)

⇐ ∃~b ∈ B
6 : (u ∗ u− 2 ∗ u = 3 ∧ u > 0)

We use Yices to search for finite bit length solutions for the original nonlinear

constraint
~b = 000011

Ashish Tiwari Constraint-based Analysis of Hybrid Systems: 11



'

&

$

%

Overall Approach

Given hybrid system HS and optionally property Safe:

• Guess a template I(~u, ~x)

• Generate the verification condition: ∃~u : ∀~x : φ

• Eliminate ∀ using Farkas’ Lemma: ∃~u : ∃~λ : ψ

• Guess sizes for ~u, ~λ: ∃ ~bvu : ∃ ~bvλ : ψ′

• Ask Yices to search for solutions

• If Yices returns a satisfying assignment, system proved safe

Ashish Tiwari Constraint-based Analysis of Hybrid Systems: 12



'

&

$

%

Synthesis

• Approach is oblivious to what is unknown: system or invariant

• The unknown part of the system expressed as a template (first-order

unknown variables)

• Existentially quantify the unknowns

∃~v, ~u : ∀~x : φ

• Example: switching logic between modes: x ≤ v

• Enforces safety locally: Can return zeno/ trivial/ systems

Ashish Tiwari Constraint-based Analysis of Hybrid Systems: 13



'

&

$

%

Experimental Results

Example Dim Vars Bits Assertions Time

disjunction 2 14 6 50 7ms

delta-notch 4 34 8 120 30ms

plankton 3 31 8 110 56ms

thermostat 1 29 20 126 .45s

thermostat synthesis 1 21 20 75 1.2s

ACC 5 28 12 95 1.3s

acc-transmission 4 35 24 122 4.7s

insulin 7 66 18 180 18s

Table 1: The size of the Yices formulas and the time (Time) taken by Yices.

Ashish Tiwari Constraint-based Analysis of Hybrid Systems: 14



'

&

$

%

Why is the technique so effective?

• There are only so many templates

Just one p ≥ 0 suffices for continuous systems

• Systems have several invariants

• Correct systems have simple invariants

• SMT solvers are fast

• Robust technique does not require any careful tuning or a smart user

• Like BMC, SMT solver provides scalability

Ashish Tiwari Constraint-based Analysis of Hybrid Systems: 15



'

&

$

%

Conclusions

• Bounded Verification – search for bounded-size inductive invariants

• Effective for safety verification of hybrid system

• Also applicable to synthesis

• Relies on satisfiability of nonlinear constraints

• At present uses an SMT/SAT solver to search for solutions

Ashish Tiwari Constraint-based Analysis of Hybrid Systems: 16


