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Abstract 
Understanding the molecular basis for gene expression regulation is an important 

problem in biology.  A fundamental sub-problem is understanding how DNA sequence 

information allows for the molecular control of regulation.  With the increasing 

availability of fully sequenced genomes, we can begin to look directly at DNA for the 

answers.  We have created a database that catalogs the position of every 9-mer in close 

proximity to every gene in the Arabidopsis thaliana genome.  This allows us to search for 

motifs that are non-randomly distributed throughout the genome and so may serve some 

biological function.  We have also created a website to serve as an interface.  Here we 

discuss the structure and design of the database and website and how they can enable a 

biologist to identify putative cis-acting regulatory motifs.  We show specific methods that 

can be used to identify non-random motifs on the genomic level that are likely to be 

involved in basal regulation or the regulation of large sets of genes.  We also describe 

methods that are specific for sets of co-regulated genes.  Using our database and website, 

we have easily detected a number of known cis-acting regulatory motifs, as well as a 

number of motifs that may represent novel elements.  Introns were also analyzed, and 

known splicing elements were easily found.  A group of co-regulated phase-0 clock genes 

has been analyzed as well.  Known regulatory motifs were analyzed with a genomic 

perspective, and a potentially novel motif was identified.   

 

Availability: The website can be accessed at 

https://gargoyl.dartmouth.edu/genomes/login.html.  Please contact Bob Gross at 

rhg@dartmouth.edu for a guest account.
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Introduction 

What is bioinformatics? 

The April 24th, 2003 issue of Nature was dedicated to the Genomic Revolution.  2003 

marks not only the 50th anniversary of Watson and Crick’s description of the double 

helix, it also marks the completion of the Human Genome Project, formally announced 

by the International Human Genome Sequencing Consortium this April, and the official 

declaration of the “Era of the Genome” by the Nation Human Genome Research Institute 

(“International Consortium”, 2003).  As the sequencing technology developed to meet the 

goals set forth for this project, a number of other smaller genomes were fully sequenced; 

among them, Arabidopsis thaliana, the model plant organism, finished in December of 

2000 (Arabidopsis, 2000). 

 

The vast amount of raw sequence information represents a largely untapped source of 

potential knowledge.  An organism’s genome contains the hereditary information that 

makes that organism what it is, and we now have this in the form of millions, or for some 

organisms, billions, of A’s, C’s, G’s and T’s.  While the early stages of the Human 

Genome Project focused on efficient sequencing methods, the latter stages have begun to 

focus more on how we can make sense of this sequence data.  Bioinformatics is the 

relatively young interdisciplinary field that combines biology with the computational 

sciences in an effort to extract knowledge from this raw information.  

 

 Much of the bioinformatics research thus far has focused on the prediction of protein-

encoding genes from DNA and algorithms that take an unknown sequence and search 
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databases of known sequences for similarities.  Other algorithms use the properties of 

known proteins to predict various properties of an unknown protein.  While the search for 

identifying protein function has always been of much interest, the problem this thesis 

focuses on is a newer problem that is drawing much attention: How can we use genomic 

sequence information to learn about gene regulation? 

 

Public databases 

The basis of bioinformatics lies in the databases that store the sequenced genomes.  Many 

of these genomes, generally sequenced by various consortiums, end up in the GenBank 

databases of the National Center for Biotechnology Information (NCBI), a division of the 

National Institutes of Health (NIH).  The raw DNA sequences alone are of little use, so 

the consortiums annotate the DNA in a common format with whatever information they 

have available to them.  This annotation generally focuses on genes that code for 

proteins, including exon and intron data, protein function, untranslated regions, and 

alternative splicing patterns.  Many of the genes in these databases are predicted solely on 

the basis of various gene-finding algorithms and so are purely hypothetical and lack any 

information beyond putative exon and intron definitions.  Sometimes hypothetical 

functions are proposed on the basis of primary amino acid sequence similarity to better 

characterized proteins.  The rest of the proteins usually have been identified in various 

labs and so often have exons confirmed by cDNAs and may have defined functions.   

 

Genomic databases are complimented by various other databases that hold functional 

information.  These databases include various protein databases, transcription factor 
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databases, restriction enzyme databases, and many other protein databases that specialize 

in specific types of proteins.  Of particular interest to the study of gene regulation are the 

relatively new microarray databases (Devaux et al, 2001; Planet et al, 2001).  Microarray 

technology is a powerful technique that allows us to quickly identify co-regulated genes 

at the genomic level by identifying all of the genes that are expressed under certain 

conditions.  The databases that store this information provide a valuable resource for 

identifying genes whose patterns of regulation are profoundly similar.  The availability of 

both expression data and raw sequence information presents us with the unprecedented 

opportunity to study how genes are regulated at the sequence level. 

What is known about gene regulation? 

Promoters 

Gene regulation begins with regulating transcription, the process by which a sequence of 

DNA is transcribed into RNA, which is later translated into a protein.  The cell usually 

regulates transcription by the sequences that are immediately upstream of each gene.  For 

the purposes of this paper, we will define these proximal upstream regions as promoters.  

While regulation can also be influenced by the action of distal enhancers, the wide 

variation in location of these elements, which have been demonstrated to act up to 10,000 

bases away from the target gene, makes them extremely difficult to study 

computationally.  Promoters work through the action of transcription factors (TFs), which 

bind to certain regions in promoters, interact with other proteins, and ultimately regulate 

transcription. Each promoter typically contains a number of transcription factor binding 

sites, a subset of which are recognized by the basal transcription factors that act on most 
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promoters.  These transcription factors function in localizing RNA polymerase, thereby 

defining the start of transcription.  The basal transcription factors and the RNA 

polymerase are collectively referred to as the basal machinery. 

 

While basal transcription factors are necessary for the expression of most genes, they are 

not sufficient to regulate genes in response to changes in the internal and external 

environment.  Other transcription factors provide the specificity required to selectively 

turn on specific sets of genes while leaving others off.  These transcription factors may 

recruit polymerase or certain basal transcription factors, thereby increasing the 

probability that the basal machinery will begin transcribing the gene.  Other transcription 

factors act as repressors and block the recruitment or action of the basal machinery.   

 

The fact that transcription factors bind to DNA and simultaneously interact with other 

proteins places some physical constraints on where they can bind.  While DNA is flexible 

enough to allow non-adjacent DNA-bound proteins to interact, if a transcription factor is 

bound too far away from the protein with which it interacts, the odds of interaction are 

greatly reduced.  Similarly, if a transcription factor is too close to another protein, it may 

physically prevent the binding of that protein to the DNA.  This is how some repressors 

work.  Finally, the orientation of the transcription factor when it binds may or may not be 

important.  If the transcription factor is asymmetric, binding the DNA such that the 

amino-terminal end is facing downstream may result in different protein-protein 

interactions than if the amino-terminal end is facing upstream. 
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Often the presence of one transcription factor is not enough to significantly increase the 

probability of basal machinery binding, but two or more transcription factors will work 

synergistically to initiate transcription.  Thus, it is generally a combination of 

transcription factors working together that leads to transcription initiation.  Coordinated 

regulation therefore depends largely on what sets of genes are acted upon by the same set 

of transcription factors.  Further specificity may be achieved based on the relative binding 

locations of these transcription factors.  This allows a cell to control which genes are 

turned on by regulating which transcription factors are present and active in the nucleus. 

 

In order to allow this kind of gene-specific control, each gene’s promoter must be able to 

specify exactly which transcription factors may bind to it and where.  This is made 

possible by the binding specificity of the transcription factors, each of which typically 

binds with the highest affinity to a single consensus sequence.  Transcription factors 

usually do not require exact matches, but will often bind preferentially to those sequences 

that are closer to the consensus.  Often times the consensus will require that certain bases 

be exact matches, while the others can vary to some extent. 

 

While some transcription factors and their consensus sequences have been identified, the 

majority are unknown.  Because of this, the transcription factors involved in the 

regulation of expression of most protein coding genes are unknown.  The ability to 

predict the binding sites of transcription factors is an important step towards 

understanding the control of specific subsets of genes as well as basal control at the 

genomic level. 
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Introns 

The next stage in protein regulation through gene expression occurs after the gene has 

been transcribed into RNA.  In eukaryotic organisms, including plants, the introns are 

spliced out of the RNA soon after transcription.  While many genes have the same introns 

spliced out all the time, there are a number of genes that can be alternatively spliced, such 

that the same gene can encode different proteins.  The molecular mechanisms for splicing 

are well understood, with specific ribonucleoprotein complexes recognizing certain 

sequences within the transcript that mark the ends of the introns.  Two of these 

sequences, called splice sites, occur at the 5’ and 3’ ends of the introns, while the 

branchpoint occurs around 60bps upstream of the 3’ splice site. While consensus 

sequences for each of these have been identified in A. thaliana, these sequences are 

extremely short and occur frequently throughout the genome (Brown et al, 1996).  It is 

not clear how the important ones are differentiated from the background noise, nor is it 

clear whether or not the rest of the intron sequence serves a biological purpose.  Some 

studies in other organisms have indicated that mutations in introns can have adverse 

affects, but the mechanisms for these are not well understood.  As such, there is much 

research that still needs to be conducted on these regions.  

How can we use what is known to predict the binding sites of 

regulatory proteins? 

While DNA replication is generally very accurate, random errors do occur.  Natural 

selection suggests that mutations which have a profoundly negative effect will be 

eliminated from the population.  If a section of DNA has little biological impact, then 
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mutations will not be eliminated but will instead accumulate, eventually leading to 

random sequences in that section.  This suggests that if a sequence within a generally 

random section is statistically non-random, then there is a high probability that it confers 

some selective advantage, and so likely serves some biological function.  So how can we 

identify non-random sequences, or motifs, from promoters, which may or may not be 

random over all? 

 

We can extract the promoter region of all known and predicted genes from the public 

GenBank database.  Thus, for each gene we can find every motif that lies in its promoter. 

Furthermore, we can store each motif’s position relative to the start of that gene.  If we do 

this for the entire genome, then we can look at each motif individually and find every 

gene that it lies in front of as well as every position in which it lies.  We can then analyze 

the distribution of each motif’s positions and determine if that motif is randomly 

distributed throughout the promoter region.   

 

This can also be done for the transcriptional units, the regions of DNA that are 

transcribed, as well as exons, introns and any other region that is stored in the public 

databases.  We can therefore compute ratios that compare how often a motif occurs in 

two different regions.  Similarly, we can compute ratios that compare how often a motif 

occurs in the promoter region in one set of coordinately regulated genes versus the rest of 

the genes.  These ratios can be normalized against an expected ratio given a random 

distribution of motifs throughout the genome.  This allows us to identify motifs that occur 
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in one region or set of genes far more often than would be expected given a random 

distribution.  

 

The non-randomness of a motif suggests one of two causes: 

(a) The motif serves a biological function that requires it to be in certain locations; or 

(b) There are so many other motifs that have to be in a certain functional location that 

this useless motif was effectively pushed away from the functional region and into 

a region that does not matter.  That is, the presence of the non-functional motif in 

the functional region is detrimental because it doesn’t allow functional motifs in.  

The distribution would then give the appearance of being pushed away from the 

functional region, and so would be non-random.  In this case, non-randomness 

would not imply functionality. 

 

It is likely that both happen to some extent.  However, the high number of possible motifs 

suggests that (b) is not a very likely scenario.  For a sequence of n nucleotides, there are 

4n possible motifs of that length.  Thus, for any functional region of significant length and 

complexity (that is, non-repetitive), it is highly unlikely that all the motifs in that region 

strictly serve a purpose and do not appear simply due to chance.  It should be noted, 

however, that non-coding DNA is known to contain highly repetitive sequences.  Long 

runs of low-complexity repeats will not only make that repeated motif appear less 

random, it will also skew the computed randomness of truly random motifs.  It is not 

unreasonable to assume, however, that the size of the genome (approximately 28,000 
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genes in the January 2002 TIGR release of the Arabidopsis genome) will minimize this 

effect. 

 

If (a) is the reason for a motif’s non-randomness, then we can begin to infer some 

biological function for that motif.  From what is known about DNA, functional regions 

generally serve in specifying either (i) chromatin structure, (ii) a protein binding site, or 

(iii) something involving codons.  If the region we’re examining is not in an exon, then 

the motif is likely to be involved either in chromatin structure or to serve as a protein 

binding site.  If the regions we are analyzing are promoter regions, and the motif is a 

protein binding site, then it is likely a transcription factor binding site, and so may be 

directly involved in gene expression.  Chromatin structure involvement can rarely be 

ruled out, however, especially given how little is known about the mechanisms of 

chromatin structure.  But even if this is the case, chromatin structure often plays an 

important role in gene regulation (for example, see Riechmann, 2002), and so the non-

random motif is still likely to be indirectly involved in gene expression and regulation.  

The generic term for DNA sequences that act in some way in gene regulation is cis-acting 

regulatory motifs.  This term encompasses the fact that a motif may aid in gene regulation 

by binding a transcription factor, or may work in some other unidentified way.  If the 

non-random motif lies primarily in intron regions, its putative function is not as clear.  

The protein that likely binds to it may be involved in splicing patterns, or may serve some 

other, as yet unknown function. 
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It is therefore possible for us to identify potential regulatory sites by identifying 

significantly non-random motifs in various regions.  In the case of promoters, these 

motifs are likely to be transcription factor binding sites.  This can only be confirmed 

through wet lab experiments.  The value of bioinformatic approaches is in suggesting wet 

lab experiments and pointing researchers in directions that are likely to yield interesting 

results.  If we can identify potential functional motifs quickly, we can significantly 

reduce the amount of time required for a lab to identify the regulatory sequences of their 

gene(s) of interest.  

 

In the case of introns, it is not as clear what we will be identifying.  A functional motif 

located in an intron may serve as a binding site for a distal enhancer or somehow enhance 

the efficiency of splicing.  It may also serve some as yet unidentified role.  In any case, a 

significantly non-random intron motif will lend itself to further study in a lab, with the 

goal of better understanding the roles and definitions of introns. 

Current Algorithms 

There are a number of current approaches to the problem of finding cis-acting regulatory 

motifs.  Most of these are available for public use at The Arabidopsis Information 

Resource (TAIR) website (Huala et al, 2001).   

Searching for known motifs 

The simplest method available is to search an unknown upstream region for known 

transcription factor binding sites.  This approach is implemented by plantCARE and 

PLACE, both linked to from TAIR.  While it is intuitively pleasing to know that the sites 
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identified by this approach have been implicated in other genes, there are some major 

problems that limit the usefulness of these approaches.   

 

Cis-acting regulatory motifs are typically short sequences, usually ranging in length from 

five to ten bases.  If the upstream regions were truly random, we would expect any given 

5-mer to occur once every 45 = 1024 bases, or once every one or two promoters in the 

entire genome!  When you factor in mismatches, the rate of occurrence jumps even more.  

To look for these motifs without knowing how they are distributed throughout the 

genome therefore leaves us with little useful information.  As is discussed below, while 

these searches by themselves are not very useful, it is possible that combining these 

approaches with motif position information will yield informative results. 

Multiple sequence alignments 

Hertz and Stormo (1999) describe a method for finding consensus motifs out of a set of 

sequences using local multiple sequence alignments.  Approaches like these allow a user 

to input a set of upstream regions that are likely to be coordinately regulated.  A multiple 

sequence alignment is done to find conserved regions in all the sequences.  The 

conserved regions are then statistically summarized as a weight matrix, which represents 

the frequency of occurrence for each base in each position in the conserved region.  A p-

value can be calculated from the weight matrix that essentially reflects the probability 

that the weight matrix is random.   

 

This approach is well suited for finding consensus sequences for cis-acting elements and 

for quantifying the statistical accuracy of those sequences.  This can be particularly useful 
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when a set of motifs is known to be functionally important and a best consensus sequence 

is needed.  However, in the case where little is known about the upstream regions being 

compared, the multiple sequence alignment approach has some serious drawbacks.  One 

such problem is that position information is not taken into account.  While this is not 

necessarily relevant, as discussed above it is likely that motifs’ functions are often 

dependant on position and even orientation, which is represented in the DNA by reverse-

compliment sequences and is therefore entirely missed by alignment programs.  Another 

problem is that this approach looks only at the subset of genes and ignores the rest of the 

genome.  Thus, the “significant” motifs identified may not be unique to the set of genes at 

all.  A motif that occurs in 10,000 genes is not likely to be of much functional relevance 

to a set of 20, even if it occurs in all of them.  The exception to this may be if position is 

important or the set of other motifs it occurs with is important.  But as we discussed, the 

alignment program detects neither of these.  This issue of failing to look at genomic 

information is an important recurring problem in many of these approaches. 

Searching for over-represented motifs 

A number approaches currently exist that look for over-represented motifs in the 

upstream regions of a set of co-regulated genes as compared to a background set of either 

random genes or the entire genome (Ohler and Niemann, 2001).  These methods have an 

advantage over sequence alignment methods in that they take into account the 

background noise that may produce false positives.  This allows these approaches to 

eliminate common motifs such as TATA boxes and other motifs that serve as binding 

sites for the basal transcription factors.  Often times, the background set takes into 

account base distributions. Since most organisms have an unequal number of each of the 
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four bases on the primary strand, the expected number of occurrences for each motif is 

not the same.   

 

Over-represented motif searching algorithms can be divided into two classes (Thijs et al., 

2001).  Word counting techniques typically examine motifs of a set size, counting the 

number of occurrences of each motif in a subset of co-regulated genes.  Over-

representation is determined by comparing the observed frequency of each motif of a set 

size against the expected frequency.  The second class is the probabilistic methods.  In 

these algorithms, position probability matrices are created for different motif models and 

analyzed statistically, usually using either expectation maximization, as implemented by 

MEME, or Gibbs sampling (Bailey and Elkan, 1995; Thijs et al., 2001).  Like word-

finding, these methods usually choose a set size of motif to look for, as it is 

computationally impossible at this point to analyze all possible motif lengths. 

 

These approaches have met with varying success, and often the best approach is to 

analyze unknown promoter sequences with a number of different methods.  Nonetheless, 

there are some major shortcomings in all of these methods that lead to a high number of 

false positives as well as false negatives.   

 

First, while over-representation methods address the genomic-scale issues of multiple 

sequence alignments, the models constructed are typically summaries of the genome that 

often miss the specifics.  That is, while a given motif may not be statistically significant 

in regards to its base composition, it is still possible that the particular sequence of bases 
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is unique to a given set.  Similarly, the opposite often occurs, in which a particular motif 

that is statistically non-random on the genomic level is not unique to the set of genes 

being analyzed.  The non-random distribution on the genomic level still causes these 

motifs to be flagged as significant in the subset.  

 

Second, over-representation methods suffer from a lack of position information.  The 

position matrices used in the statistical methods refer to the position of bases within a 

motif, not the position of motifs within a promoter.  As discussed above, the position and 

orientation of a motif may profoundly influence its ability to act as a cis-acting regulatory 

element.  By excluding this information, a number of false positives may creep into the 

analysis.  Motifs that only function in one area may also occur randomly outside that 

area.  Thus, detecting “functional” motifs in positions that render them ineffective is not 

very useful.  The reverse can also be true.  A motif may occur frequently in the genome 

as a whole, but only selectively occur in a unique range of positions.  In this case, the 

frequency of genomic occurrence will hide them from over-representation methods.  

Even if these methods identify such a motif, the problem will merely switch from that of 

false negatives to one of false positives. 

 

Finally, these methods are not very good at identifying unique sets of motifs that work 

together to regulate a set of genes.  This is a very difficult problem that no algorithm has 

adequately solved.  The reason for this is the computational complexities of analyzing all 

the permutations of possible motif combinations.  Unfortunately, since much of the 

specificity of control comes from the unique combinations of motifs, there is a lot of 
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background noise that can be generated.  That is, a motif may be involved in the control 

of a set of genes, but also occur throughout the genome.  The specificity in this case may 

be the other motifs that it occurs with.  

 

A novel approach 

We have designed and implemented a relational database and web-based user interface 

that attempts to resolve the issues related to position distribution of motifs.  This includes 

the position information for all motifs in a number of different regions, including 

promoters, transcriptional units, exons, introns, and untranslated regions.  This allows a 

new genomic approach that is based both on over-representation at the genomic regional 

level and positional information with respect to genes.  That is, instead of focusing solely 

on what motifs are over-represented in the promoters of what genes, we can look for 

potential basal elements by finding motifs that are significantly over-represented in 

promoters versus transcriptional units.   

 

We have chosen Arabidopsis thaliana as the prototype organism.  This model plant has a 

workably small genome, with 28,000 genes in the January, 2002 version released by The 

Institute of Genomic Research (TIGR).   Despite this modest size, it has moderate 

complexity that allows us to study both promoters and introns, which are often 

significantly shorter in the genes of lower eukaryotes.  In general, plant genomics are not 

as well understood as yeast or flies, which have been intensively studied for a number of 

years.  This means that co-regulated pathways and basal transcriptional elements are not 

as well defined in Arabidopsis as in these other organisms, leaving much room for 
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additional research and bioinformatics tools that can guide it.  Unfortunately, this also 

means that a number of the genes annotated for Arabidopsis are not experimentally 

supported, making their definitions uncertain.  This can potentially lead to more noise 

than would exist for organisms that are better understood. 

 

We have chosen to focus on motifs of 9 nucleotides in length.   With 49 = 262,144 

possible DNA 9-mers, each motif occurs often enough to compute meaningful statistics 

and rarely enough to minimize the background noise.  For each motif, the database holds 

the gene, region, and position of every occurrence of that motif.  This information can be 

quickly queried to yield various interesting information: 

��Ratios can be computed of the number of times each motif occurs in a subset of 

genes versus the rest of the genes.  When done in promoter regions, this approach 

is essentially a word-finding approach to identifying over-represented motifs.  

This database allows the extension of this to introns and exons.  It is not yet clear 

what purpose over-represented intron motifs in a subset of genes serve.  These 

are questions that may be further explored in a lab and may or may not yield 

useful information.   

��Ratios can be computed at the genomic level, comparing the number of times 

each motif occurs in one region versus another.  We have used this to compare 

promoter regions to transcriptional units and have identified novel motifs that 

appear to be involved in the control of large numbers of genes.  We have also 

compared motifs in introns versus exons and have identified known splicing-
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related sites, as well as unknown, non-repetitive motifs that prefer introns to 

exons.  It is not clear what biological function these may serve.   

��Position statistics have been computed at the genomic level for each region.  This 

allows us to quickly mine the vast amounts of data for motifs that have a 

potentially non-random distribution.  This approach has yielded several known 

splice sites in introns and transcription factor binding sites in promoters, as well 

as novel motifs in both regions. 

��These same statistics can also be computed for subsets of genes and compared to 

the rest of the genome.  That is, given a subset of genes, we can quickly find 

motifs that are significantly more localized in the subset than in the genome as a 

whole.  This suggests that these motifs serve a specific function for the given 

subset. 

��Individual 9-mers, sets of 9-mers describing consensus sequences, and any n-mer 

that’s shorter than 9 can be graphed as a histogram and statistically analyzed.  

This can be done at the genomic level or for a subset of genes, and can include a 

specific region or a range or positions relative to the start of transcription.  This 

allows us to quickly visualize the distribution of a motif or set of motifs.  We can 

also use this to compare the distribution of a motif with its reverse-compliment, 

and so gain some insight into the necessity of orientation for that motif. 

 

Thus, this database, and the corresponding user interface, represents a novel approach in 

identifying potential functional elements in Arabidopsis thaliana.  These functional 

elements are likely to be regulatory elements of some kind, though the interpretation of 
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function depends on the circumstances in which the motif is found.  Ultimately, function 

can only be confirmed by wet-lab approaches.  As such, this is intended for use as a 

bioinformatics tool that can guide a researcher towards motifs of interest.  The methods 

this database uses are by no means organism-specific.  While we have chosen to use 

Arabidopsis as a prototype, other organisms have recently been loaded into the database 

as well and are currently being analyzed.
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Methods 

The purpose of this section is to provide a detailed account of how the database was 

created and the information therein generated.  For a high level description of the 

contents of the database and website, as well as a discussion of the biological 

implications, please see Results. 

Information source 

The sequences and annotations were sequenced and compiled by The Institute for 

Genomic Research (TIGR).  The five chromosomes were submitted to GenBank on 

January 10, 2002, under the version numbers NC_003070.2, NC_003071.1, 

NC_003074.2, NC_003075.1, and NC_003076.2, for chromosome 1 through 5, 

respectively.  These GenBank flatfiles were parsed with bio-perl scripts, written by Dan 

Simola ’03, into files that could be loaded directly into the database.  These files were 

loaded into the following tables: Identifiers, Descriptions, BlockInfo, BlockSequence, 

and the various RegionInfo tables.  This included the information for all regions except 

the upstream region.  Please see Appendix A for a description of how we interpreted the 

GenBank flatfile tags, what was included in each of the files that were loaded into the 

database, and the definitions of the various regions.  GeneIDs were created during the 

parsing that identified each unique gene.  Model numbers identified different alternative 

splicing variations of the same gene.   
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Creating the tables 

The database used was Sybase Adaptive Server Anywhere, version 8.0.  The ASA 

database management system (DBMS) includes the 1.3.1 Java Virtual Machine and a 

limited version of the corresponding Java libraries.  We used this embedded Java 

capability extensively in creating new tables. 

 

Once loaded into the database, private and foreign keys were placed on each table to 

insure basic data integrity (see the database schema in figure 1).  These keys make sure 

that no gene is represented twice and that all genes in the Description, Identifiers, 

BlockSequence, or RegionInfo tables also occur in the BlockInfo table.  In this way, 

BlockInfo serves as the gene definition table central to gene-related integrity. 

 

Once the initial integrity was established, RegionSequence views were created (one for 

each region) that used the RegionInfo start and stop positions as pointers into the 

sequences stored in the BlockSequence table.  Each sequence was made 8 bps longer than 

the start and stop suggest, allowing for a 9-mer that starts in the last position.  These 

views serve as a means of direct lookup for the sequences corresponding to any region of 

any gene. 

 

With the sequence views in place, a number of manual integrity tests were performed.  

The sequences of all the regions for each gene were checked to make sure they 

constituted a continuous, non-overlapping block that matched the BlockSequence record 

for that gene.  For the fixed-length regions up1500 and down500, every gene was 
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checked to make sure it was the appropriate length.  Finally, for each region, the 

sequences of all the genes were compared to ensure there were no duplicate sequences 

that had different gene names.  An exception was made for alternative splicing models 

that may have portions that are identical between models.  This was accounted for by the 

different model numbers. 

 

Once the integrity of the initial data was established, the upstream regions were created.  

These are defined as the region upstream of each gene that extends 1500 bases or to the 

previous transcriptional unit (TU), whichever is shorter.  In the case of overlapping 

genes, the upstream region is defined as 1500 bases upstream of the gene start.  The TU 

regions were defined as the continuous block of DNA extending from the 5’ end of the 

most 5’ exon to the 3’ end of the most 3’ exon.  To determine the upstream regions, 

overlapping TU regions were grouped into continuous blocks of transcribed DNA 

(CBTs), and these blocks were sorted by the block starts.  Each upstream stop site was 

then set to the corresponding up1500 stop site.  By definition, this stop site must be 1 bp 

upstream of the TU region of the same gene.  Thus, every upstream stop site was either in 

a CBT, or 1 bp upstream of a CBT. 

 

To determine the upstream start sites, we had to look at the locations of the corresponding 

stop sites in relation to the CBTs.  For each gene, if the upstream stop site was in a CBT, 

the upstream start site was set to 1500 bps upstream of the stop site.  If not, the stop site 

must lay one base upstream of a CBT.  In this case, the upstream start site is dependant 

on the relative location of the previous CBT.  If the CBT immediately upstream of the 
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stop site is less than 1500 bases away, the upstream start site is set to be one base 

downstream of that CBTs end.  Otherwise, it is set to 1500 bases upstream of the 

upstream stop site.  In the case of genes that are on the complimentary strand, this logic 

must be reversed to take into account the fact that all positions refer to bases on the 

primary strand.  The logic for this was carried out by embedded Java, which created an 

UpstreamInfo text file in the same format as the other RegionInfo files.  This file was 

then uploaded into the database and a corresponding UpstreamSequence view was 

created.  

 

The motif tables were created from the sequence views, with a separate motif table for 

each region.  For each sequence, a sliding window of 9 bps took each motif and created a 

record that included the motif, the geneID and model number of the sequence’s gene, and 

the position relative to the start or stop (depending on the region) of the sequence that the 

motif was found.  This logic was carried out by embedded Java.  Indexes were placed on 

the Motif and geneID fields to allow for fast lookups and grouping. 

 

The statistics tables were generated by embedded Java from the motif tables.  For each 

motif in a given region, all the instances of that motif were pulled out of the 

RegionMotifs table and ordered by position.  The specific statistics were calculated from 

this ordered list and the results were compiled into a single entry in the statistics table.  

This was done for each motif.  In the case of exons and introns, it was done twice, once 

for positions calculated from the 5’ end of the sequence, and once for positions calculated 

from the 3’ end of the sequence. 
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Statistical equations used 

The following equations were used to calculate the statistics.  For each statistic, let  

n = number of instances of that motif in the given region, and 

pos[1..n] = the ordered list of positions in the given region 

Standard Deviation 

The population standard deviation was used in accordance with the conventions of the 

microarray community.  The reason for this is that the statistic is a population statistic, 

since we have all instances of a given motif in the given region.  The equation used was:  

Expected Distribution 

The expected distribution was used to calculate both the χ2 and the Kolmogorov-Smirnov 

statistics.  In the former, it was further binned, while in the latter it was converted into a 

cumulative probability function. 

 

For each region, let Len(seq) be the length of any sequence seq in that region, and 

Count(len) be the number of sequences in that region such that Len(seq) ≤ Count(len).  

Let MAX_LEN be the length of the longest sequence in the genome of that region.  Then 

any motif can occur in any position in the interval [1..MAX_LEN].  The probability 

prob[i] that a motif will occur in position i is determined by the distribution of sequence 

lengths in the region and is given by the equation 

 

σ = SQRT( �(mean(pos[1..n]) – pos[i])2 / n ) 
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 Prob[i] = Count(i)/MAX_LEN. 

 

This probability array is easily converted into binned probabilities and cumulative 

probabilities. 

χχχχ2 

χ2 values were computed using a bin size of 50.  For each motif, the position array was 

binned and compared to the binned expected probability array.  For each motif, let 

bin_pos[i] be the number of positions that are in bin i, and bin_exp[i], be the expected 

number of positions in bin i.  The χ2 statistic is given by the equation  

The degrees of freedom associated with each χ2 value is equal to ν-1, where 
 ν = number of bins 
    = � MAX_LEN / bin_size � 

Kolmogorov-Smirnov 

The Kolmogorov-Smirnov (KS) statistic requires that the position and expected 

probability arrays be converted to cumulative distribution functions.  In our case, the 

cumulative distribution function defines for each position x the percent of all n positions 

whose values are less than x.  To convert the prob[] array into a cumulative probability 

array, we use the recursive equation 

 

    cum_prob[i] = cum_prob[i-1] + prob[i], for i between 1 and n and cum_prob[1] = 0. 

 

χ2 =� (bin_pos[i] – bin_exp[i])2 

bin_exp[i] 
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The pos[] array is converted into an unbiased estimate of the cumulative distribution 

function by the equation 

 

   cum_pos[i] = i/n 

 

Note that these two arrays are not of the same size.  Length(cum_prob[]) = MAX_LEN 

and Length(cum_pos) = n (see above for notation).  Moreover, cum_pos[i] = the unbiased 

estimate of the actual probability that a given motif’s position will be upstream of pos[i], 

and cum_prob[pos[i]] = the expected probability that a given motif’s position will be 

upstream of pos[i].  Thus, given a random distribution, we expect  

 

cum_pos[i] = cum_prob[pos[i]] 

 

The KS statistic is defined to be D = MAX( | cum_pos[i] – cum_prob[pos[i]] | ) taken 

over 1 ≤ i ≤ n. 

 

To compute the significance of a D value, we use the equation  

 

which has the limiting values of Q(0) = 1 and Q(1) = 0.  From this, the p-value giving the 

significance of a D value is given by 

 

 p = probability( D > observed) = Q( [√n + 0.12 + 0.11/√n] * D) 

Q(λ) = 2�(-1) j-1 e    , summed from 1 to infinity, 
 

-2j2λ2 
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(KS equations taken from Press et al., 2002, pp 623 – 624). 

Ratios 

Group-to-other ratios were computed by comparing the motifs found in the given region 

in the group of genes versus all the other genes.  The calculations were done using the 

same formulas as region-to-region ratios.  We will therefore look only at group-to-other 

ratios. 

 

For each motif in a given region, let count(motif, group) = the total number of instances 

of that motif in the group of genes, and count(motif, other) be the total number of 

instances of that motif in all other genes.  The group-to-other ratio is defined to be 

 

 Ratio(motif) = count(motif, group) / count(motif, other). 

 

The ratio can be hard to interpret, since there may be many more motifs in one set than in 

another.  To normalize for this, we calculate the normalized ratio as 

 

 Norm_ratio(motif) = Ratio(motif) * Total(other)/Total(group), 

 

where Total(group) = total number of motifs in group in the region of interest, and 

Total(other) = total number of motifs not in the group in the region of interest. 
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Website specifics 

The website is powered by an Allaire® JRun webserver, which implements version 1.3.1 

of the Java Virtual machine and can connect to the database using the Java Database 

Connectivity (JDBC) API.  The website is written using Java Servlets, Java Server Pages 

(JSP) scripting, and standard Java objects.  The general flow of information on the 

website begins with HTML forms that collect user input.  This information is passed by 

the servlets to Java objects that process the information and generate SQL queries.  These 

queries are submitted to the database over a JDBC connection.  The results of the queries 

are sent back to the calling Java objects, which may further transform the data before 

sending it back to the servlets, where it is finally encoded in HTML and sent to the 

client’s browser.  

 

For a complete description of how to use the website, please see Appendix B.  For a 

general overview of what can be done with the website, please see Results.
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Results 

This section is divided into three parts.   

1. The Database: Describes the general setup of the database and how the information 

was obtained and generated.  This is generally a high-level discussion intended to 

describe how the design of the database can be used to identify non-randomly 

distributed motifs.  For a detailed description of how the database was built and 

tested, please refer to Methods. 

2. The Website: Describes the general setup of the website, emphasizing how the 

website serves as an interface that adds functionality to the database and enables 

efficient identification and analysis of non-randomly distributed motifs 

3. Applications of the database and website: Describes a number of approaches that use 

the database and website to identify non-randomly distributed motifs.  This serves as 

both a demonstration of how the database and website can be used and a biological 

discussion of the significance of the motifs we identified.  Both experimentally 

confirmed and novel motifs are identified and discussed.  

Part 1: The Database 

Source of genomic data 

GenBank serves as a central location where various researchers and consortiums can deposit 

partial sequences and entire genomes.  This database is provided free to the public, allowing 

anyone to download any genome that has been entered.  These genomes have a standardized 

format that includes gene-specific information for each gene.  This information includes the 
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start and stop positions for regions that are transcribed, called transcriptional units, or simply 

TU regions, the start and stop positions for exons and introns, various unique identifiers, and 

various descriptions of what is known about each gene.  If a gene is known to be alternatively 

spliced, all of this information is stored for each method of splicing, which we refer to as a 

“model”.   

 

We have taken this GenBank information for Arabidopsis thaliana and loaded it directly into 

our Sybase® database in a relational format.  This means that we have a number of two-

dimensional tables that contain specific information.  Each column of each table holds a 

certain type of information, and each row represents a separate record.  While the number of 

columns and type of data allowed in each columns remains static for each table, the number 

of rows and specific information in each row can be easily changed.  The power of a 

relational database lies in the way these tables are linked together.  To link the records in the 

tables, we defined our own databaseID and modelNumber for each gene and model.  Thus, 

every record in the database that has something to do with gene information has geneID and 

modelNumber columns.  The relational format of the database allows for easy retrieval of 

both the original data and emergent information that reveals itself when the data is combined 

and grouped in clever ways.  This is made possible by the querying capabilities of the 

Structured Query Language (SQL) and the efficient indexing and optimizing capabilities of 

Sybase. 

 

The information in the database can be segregated into three general categories: 

1. Gene-specific information from GenBank 
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2. Region-specific information from GenBank 

3. Motif-related tables we generated from gene and region tables 

 

We shall examine each in turn.  Throughout this discussion, please refer to Figure 1, which 

shows the structure of the database in the form of an entity-relationship (E-R) diagram. 

Gene-specific tables 

Gene-specific tables store information that relates to entire genes and their flanking 

sequences.  This information includes the raw sequence, which we call the blockSequence, 

that covers from 1.5kb upstream of the gene to 0.5kb downstream of the gene, as well as 

descriptions and identifiers for each gene.  General gene location information is stored in the 

blockInfo table, which includes the chromosome the gene is found on, the number of 

alternative splicing models the gene has, and the 5’ and 3’ ends of the blockSequence.  The 

positions of the 5’ and 3’ ends are computed relative to the 5’ end of the chromosome.  

 

The identifiers table stores all available identifiers for each gene and model combination and 

relates them to the gene and model that they represent.  Each entry in the table has the ID, the 

type of ID, and the corresponding databaseID and modelNumber.  For Arabidopsis, available 

IDs include the pub_locus ID, the GI number, and an “NM” Accession number, which is the 

GenBank accession for the representative entry of a given section of DNA.  Since these 

identifiers do not overlap, a user need not identify what type of ID he is looking up to find 

the corresponding databaseID.  This allows for a great deal of flexibility and for quick 

updates as new types of IDs become available. 
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We have taken a similar approach in storing all the available descriptors. Each description for 

each gene is stored as an entry in the descriptors table, along with the type of information 

GenBank identifies it as and the geneID and modelNumber that the description is about.  

Unfortunately, the information provided in GenBank is often sparse and is not peer-reviewed, 

making for often out of date or even wrong information.  The lack of reliability in the gene 

descriptions is important to keep in mind as we begin to examine cis-regulatory motifs and 

the genes they are associated with.  The format of this table does, however, allow for easy 

updates as more and better information becomes available. 

Region-specific tables 

The GenBank format lends itself to easy identification of discrete regions, as these are 

flagged by the various GenBank tags.  For example, the GENE flag marks out the full 

transcriptional unit of a protein-coding gene, from the 5’ end of the most 5’ exon to the 3’ 

end of the most 3’ exon.  mRNA  tags identify the start and stop positions of the sequences 

that make up the final mRNA, as would be found in a cDNA, and so define exons and 

introns.  CDS tags identify the coding sequences and differ from mRNA tags only in that the 

CDS constructs lack the untranslated regions (UTRs).  Thus, the UTRs can be deduced by 

the difference between a CDS and mRNA construct.  Finally, proximal promoters can be 

deduced by taking the regions immediately upstream of the mRNA constructs.  For a 

complete description of how we interpreted the GenBank file format, please see Appendix A. 
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It is important to note that full-length cDNAs are difficult to generate and rarely include the 

entire 5’ UTR.  Furthermore, gene-finding programs are often best at finding open reading 

frames (ORFs), and define exons and introns based on these.  This means that such programs 

may miss UTRs entirely.  While recent advances in cDNA technology have allowed high 

throughput sequencing efforts to identify many full-length cDNAs, only 33.5% of the 

protein-coding genes in the Arabidopsis genome have defined UTRs.  The problem is that the 

GenBank gene start definitions are supposed to be transcriptional start sites.  In those genes 

that contain UTR info, this is probably the case.  For the genes that lack UTR info, however, 

this cannot be true.  More likely, the gene-start defined for these genes is probably the 

translation start site.  This introduces a slight amount of noise in the position data, which 

tends to elongate the humps in the distributions that represent preferred motif locations.  This 

problem is discussed in more detail below. 

 

The actual size of promoters varies from gene to gene, so it is important that we take a large 

enough region that we include the entire proximal promoter of all genes.  Various motif-

finding programs define the size of these differently, but typically take 500 to 1000 bases 

upstream of the transcription start site.  We have chosen to take 1500 bases upstream to try to 

ensure that we have the entire proximal promoter.  This has the advantage of highlighting 

motifs that have biological preferences for positions in ranges that include several hundred 

bases, as the relative absence of such motifs in the other positions will make it more likely 

that these motifs are flagged as non-random.  This also means that for a smaller genome like 

Arabidopsis, most of the intergenic region is included within 1500 bases of the start of the 

gene.  We have called this region the up1500 region.   



33 

 

The downside of this is that, in the case where two neighboring genes are within 1500 bases 

of each other, the up1500 regions often extend into the previous gene.  Since coding regions 

are known to have a different base composition, and so different expected numbers of each 

motif, than intergenic regions (indeed, this is how many gene finders work), this fact may 

skew statistics that assume uniform randomness.  To get around this, we have defined 

“upstream” regions to include 1500 bases upstream of the transcription start site, or to the 

previous gene, whichever is closer.  Approximately 50% of the up1500 regions were 

truncated in the upstream regions.  Interestingly, there were 369 instances where two 

transcriptional units overlapped, and in every one of those cases, the overlap was caused by 

two genes that are transcribed from different strands of DNA.  In these cases, the upstream 

region defaulted to 1500 bases. 

 

For each of these regions, we keep a table that stores the start and stop (5’ and 3’) positions 

of that region for each gene and model, as well as the exon or intron number, if applicable.  

The start and stop positions are relative to the 5’ end of the chromosome the gene is on.  

Since the blockInfo table includes the start and stop positions of the block sequence, the 

relative start and stop position of each region within the block can be computed.  These 

numbers can then be used as indexes into the blockSequence table.  We can therefore quickly 

extract the sequence of each region in each gene without storing the sequences redundantly.  

These lookup definitions are stored in database views, which act to the user as tables but 

contain only the logic necessary to lookup the desired information.  
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The motif tables 

One of the major goals of the database is to enable fast analysis of motifs with respect to the 

regions they lie in, the genes they’re associated with, and the positions in which they’re 

found.  To accomplish this, we have created motif tables, with a separate table for each 

region.  Each table has fields (columns) that keep track of the 9-mer sequence, the geneID, 

modelNumber, and intron/exon number (if applicable), and the position in which it’s found.  

There is a separate record (row) for each instance of every motif. 

 

To generate the motif tables, we use the gene and region specific sequences.  To do this, we 

simply scan along each sequence, using a sliding window of 9 bps, and insert each motif into 

the motif table.  Each entry in the table consists of the motif, the databaseID and 

modelNumber of the gene, and the position relative to a given start site.  In the upstream and 

TU motif tables, the start site is the gene start specified by GenBank, which is either the start 

of transcription or the start of translation.  For exons and introns, we store the position of 

each motif relative to both the 5’ end and the 3’ end of the exon or intron. The reason for this 

is that motifs that favor one end of the exon/intron will not appear to have a preferred 

location due to the varying lengths of the given region.  In each region, the start site is 1 and 

all positions upstream of that site are negative, starting with –1.  Since the motif length is 9, 

each sequence has an extra 8 bases on the 3’ end so that we can store the 9-mer that begins in 

the last position of the region. 

 

For the Arabidopsis thaliana genome of 28,000 genes, these five motif tables store a total of 

186.6 million records, ranging from 18.6 million records in the IntronMotifs table to 58.0 
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million records in the TUMotifs tables.  Indexing allows for extremely fast lookups despite 

these large table sizes.  Furthermore, the motifs are stored in alphabetical order based on their 

sequences, which allows for quick lookups of all instances of a motif, as well as all instances 

of alphabetically adjacent motifs.  This means that a n-mer, where n < 9, can be looked up 

very quickly simply by looking up all 9-mers whose first n bases match the n-mer. For 

example, to look up a 8-mer, we need only look up the 4 adjacent 9-mers whose first 8 

positions match that of the 8-mer.  This allows us to analyze individual motifs that are shorter 

than 9 nts. 

Statistical information 

The purpose of running statistics on the motifs is to find non-random motifs.  This involves 

first identifying potentially interesting motifs, and then statistically determining whether or 

not these motifs are randomly distributed.  Identifying interesting motifs within a set of 

262,000 is a data mining problem.  Ideally, statistics should be run only under human control, 

first looking at the distribution of a motif, then determining the appropriate statistics to run, 

but this is obviously not practical in this case.  The purpose of data mining then is to scan the 

entire search space and identify motifs that should be analyzed further.  We do this with a 

number of statistical analyses that are run on each of the 262,000 motifs and identify those 

motifs whose distributions differ from genomic trends. 

Number of Occurrence and Mean. 

For each motif and each region, we first count how many times the motif occurs in that 

region, as well as the mean position.  This information is always helpful for later analysis. 
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Standard Deviation 

Standard deviation is a measure of how spread a normal distribution is around the mean.  

Unfortunately, we have no reason to expect a normal distribution.  Rather, for the up1500 

region, in which every sequence is the same length, the uniform distribution is expected, 

while the expected distributions of the other regions depend on the lengths of the component 

sequences.  Nevertheless, comparing all standard deviations reveals a general trend towards 

some mean standard deviation as the number of occurrence increases.  This mean standard 

deviation varies among regions due to the varied lengths, but in upstream regions it is 413.59 

bps.  We can therefore generate a scatterplot of standard deviation versus the number of 

positions for all motifs to get an estimate of the expected standard deviation (see Figure 6).  

The standard deviation data mining technique exposes those motifs whose standard deviation 

represents an outlier when compared to the rest of the motifs.  Such motifs will have either 

unusually localized distributions (low standard deviations) or unusually spread out 

distributions (high SDs).  Specific analyses of such outliers are discussed below. 

χχχχ2 test of significance. 

The χ2 test is a common biological statistical test used to determine if an observed 

distribution is significantly different from the expected distribution.  It has the advantage that 

no assumption of normality is required for accurate results.  Conceptually, the χ2 value is a 

measure of the total amount of area in the difference of two distributions. 

 

This statistic requires the grouping of observations into bins and has a number of 

assumptions that must be met in order for it to be statistically valid.  The most relevant of 
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these for our purposes is the requirement that there be a sufficient number of expected 

occurrences for each bin, as small numbers will artificially inflate the probability of non-

randomness.  This is a problem for us since the number of occurrences for each motif ranges 

from 0 to 43,000.  Nevertheless, χ2 analyses can be used as a data mining technique in much 

the same way as standard deviation.  By creating a scatterplot of the entire set of motifs, 

comparing number of occurrence against χ2 values, we can find outliers that can be further 

analyzed (see Figure 10).  Furthermore, this statistic can be converted into a p-value used to 

determine with some confidence whether or not the motif distribution is random.  This must 

be used with caution due to the assumptions noted above.  Due to the computational 

complexity of computing the p-value, and the lack of robustness of this test, we have not yet 

implemented the automatic calculation of the p-value from the χ2 statistic.  If a particular 

motif is being analyzed, this value can be looked up in a table.  At this point, the χ2 statistics 

is used primarily for the identification of outliers. 

Kolmogorov-Smirnov test  

The Kolmogorov-Smirnov (KS) test is the most robust of the tests we perform.  Like the χ2 

test, it is based on comparing an observed distribution with the expected distribution.  To do 

this, a single observed distribution is converted into an unbiased estimate of the cumulative 

distribution function and compared the expected cumulative distribution function.  In our 

case, the cumulative distribution function defines for each position x the percent of all n 

positions whose values are less than x. Since we are analyzing monotonically increasing 

functions, we do not need to bin the data and can therefore analyze the distributions in much 

finer detail.  The KS statistic is defined to be the maximum separation between the observed 
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and expected cumulative distributions.  This means that a distribution that is identical to the 

observed with the exception of a large spike will still be marked as non-random.  A binned 

analysis like the χ2 will often obscure such distributions.  (Press et al., 2002, pp. 623 – 626). 

 

Another advantage of the KS test is that the p-value associated with the KS statistic is 

dependant on the number of observations and is easily computable.  This p-value can be 

directly compared between two distributions with very different counts.  This allows us to 

sort all motifs of a given range for those with distributions that are least likely to be random 

according to the KS test.  It also allows us to compute a KS-derived p-value for any 

combination of motifs, including motifs that are shorter than 9 bps.  Finally, p-values are 

easy for a human to comprehend as they represent the probability that a distribution would 

have a higher KS statistic than what is observed, which means the p-value can be loosely 

defined as the probability that a given distribution is random.  

Summary 

The statistics discussed above were all computed for each region and stored in the statistics 

tables.  These tables are related to the motif tables by the motifs in a many-to-one 

relationship.  This means there is precisely one record in a region’s statistics table that 

summarizes all the information of all the records for that motif in the motifs table, 

irregardless of the genes that motif occurs in.  These statistics tables complete the schema of 

the database (Figure 1).  The central component of the database is the blockInfo table, which 

has a single entry for all 28,129 genes and keeps track of basic information about each gene.  

The descriptors and identifiers tables may each have a number of references for each gene in 
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blockInfo, but cannot reference any gene that is not in blockInfo.  The blockSequence table 

has exactly one entry for each gene consisting of the DNA sequence for the entire gene 

block, extending from 1500 bps upstream of the 5’ most exon to 500 bps downstream of the 

3’ most exon.  The info tables store the start and stop positions for each region in each gene, 

and so reference the blockInfo and blockSequence tables in a many-to-one relationship.  

Information from the blockSequence and info tables is used to determine the DNA sequences 

for each region.  These are stored in the sequence views. The sequences referenced in these 

views are then scanned using a sliding window of 9 bps, and each motif encountered is 

entered into the motif table, along with the gene and position it was found in.  Various 

statistics for the positions of each motif in the motif tables are computed and stored in the stat 

tables.  In the case of introns and exons, this information is stored both for positions that 

count from the 5’ end of the region, and for positions that count from the 3’ end of the 

region. 

 

This schema can easily be duplicated for new organisms.  Each table is owned by the 

organism it is associated with, so as new organisms are loaded, we simply duplicate all the 

tables and make them owned by the new organism.  When querying the database, the 

organism name is appended to the front of the table name.  We have designed these tables in 

such a way that the same format can be used for all organisms that come from GenBank.  

This is particularly important for the descriptions and identifiers, as the format for these 

varies between organisms.  Thus, by giving each gene our own ID, we can assure 

compatibility with all organisms, while keep the conventional identifiers in the identifiers 

table. 
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Part 2: The Website 

The database itself is designed in such away that many different questions can be asked and 

quickly answered.  However, typing SQL commands can be tedious and interesting queries 

often require complicated SQL commands.  Not only that, but often times results are most 

meaningful if viewed as graphics as opposed to tables.  This is especially true when we want 

to look at position information in the form of histograms.  Therefore, to allow easy access to 

the database, we have designed a web interface that takes user input, generates and submits 

SQL queries, and then formats the results of the queries as either tables or graphics 

interpretable by the user.   

 

While the ultimate goal of this website is to allow biologists to use the database to help 

identify regulatory motifs in their search space of interest, an important step in the 

development process is to allow for easy development and quick expansion.  To this end, the 

website is powered by Java Servlets, the Java2 SDK, and Java Servlet Pages (JSP) scripting.  

This combination of scripting and object-oriented languages allows for easy abstraction and 

expansion.  For example, information the user enters is stored in a Javabean, and so easily 

persists and is accessible to all pages on the site.  The combination of this Javabean and the 

object that generates all SQL queries allows us to quickly add functionality to the website as 

new ideas and needs arise. 

 

The layout of the website is optimized both for ease of use and easy expansion.  This site has 

a Results page and a Charts page, but centers around a central Main Query Page, which 
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allows the user to specify a number of parameters that are common to most queries (Figure 

2).  Such parameters allow a user to specify specific motifs, genes, regions, and positions.   

Basic parameters 

The motifs parameter allows a user to specify a list of 9-mers, a consensus 9-mer in the form 

A-CG-T-AC, or any single motif that’s less than 9 bps (Figure 2A).  The user can also define 

a maximum number of mismatches allowed on lowercase characters.  For each of these 

options, the reverse-compliment (that is, the equivalent on the other DNA strand) can also be 

included in the query.  It is important to note that only 9-mers are stored in the database, and, 

with the exception of the charts that are created, none of these motifs are clustered.  This 

means that the set of motifs the user specifies are expanded to all the 9-mers they represent, 

each of which is reported separately.  If no motifs are specified, all motifs in the search space 

are reported. 

 

The region and range parameters allow a user to specify which region should be analyzed, 

with the option of limiting the range of that region (Figure 2B).  Alternatively, only a range 

of positions relative to the start of each gene can be specified.  This combines the motifs from 

the up1500 region and the TU region and selects only those whose positions that fall in the 

specified range.  The default range is wide enough to cover all motifs. 

 

The geneList parameter allows the user to limit the search space to a set of genes (Figure 

2C).  These gene names may simply be pasted in, or can come from a number of saved lists.  

New lists can also be created at any time.  The names of the genes match any ID that is 



43 

currently loaded in the database.  At the time of this writing, the available Arabidopsis IDs 

are pub_locus, GI number, and Accession number.  If no genes are specified, all genes are 

used as part of the search space. 

 

Available Results 

Once the basic parameters have been set, the user can retrieve a number of different types of 

results (Figure 3).  With the exception of charts, all results are displayed in the Query Results 

page in a common format that includes the SQL query used to generate the results, a 

description of the results, and a table that contains the results (Figure 4A).  A number of 

different types of results can be displayed in this format 

Sequences and Descriptions 

The most basic type of query is the retrieval of sequence and description information.  This 

allows the user to retrieve sequences from any region, as well as any descriptions we have on 

the genes of that region.  When looking for specific motifs, retrieving descriptions also 

includes each position that each motif is found in each gene, as well as the exon or intron 

number it’s found in, if applicable.  These types of queries are often useful in looking for 

gene similarities among genes that have a common motif.  Due to the lack of reliability in the 

GenBank descriptions (discussed above), the descriptions must be taken with a word of 

caution.  To help get around this problem we have linked the pub_locus identifiers, which are 

displayed when descriptions are retrieved, directly to the TAIR Locus Detail page on 

www.arabidopsis.org.  This page displays the latest sequence, source, and description data 

available for the given pub_locus, as well as all known protein IDs.  
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Statistics 

Pre-computed genomic-level statistics can quickly be retrieved and sorted in any order 

(Figure 3A).  This allows for the quick lookup of those motifs that are least likely to be 

randomly distributed in a given range.  If specific motifs are identified, then only the 

statistics for those motifs are retrieved.  Thus, if a researcher has a certain motif of interest, 

she can quickly lookup the position statistics of that motif in the region of interest.  

Furthermore, if a set of co-regulated genes is being analyzed, the distribution statistics of 

each motif in only those genes can be computed and stored temporarily for quick retrieval.  

When these results are retrieved, the p-value of the KS statistic for each motif is compared 

against the genomic KS p-value.  This allows the user to quickly find motifs whose 

distributions are significantly less likely to be randomly distributed in the specified group of 

genes than in the genome as a whole.   

Ratios 

Two different types of ratios can quickly be computed (Figure 3B).  Region-to-Region ratios 

compare the number of times each motif occurs in one region versus the number of times it 

occurs in another.  Group-to-Other ratios compare the number of times each motif occurs in a 

given region in the group of genes versus the number of times it occurs in that region in the 

rest of the genes.  Since the search spaces on each side of the ratios are not necessarily the 

same size, and so likely contain different numbers of 9-mers, the straight ratios are presented 

with normalized ratios.  These normalized ratios reflect a linear transformation of the straight 

ratios, and so function only in making the ratios more human-readable.   

User-defined queries 
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The user can also define his own query to be processed (Figure 3C).  While this is primarily a 

development tool, it can also be useful to the general user who has some SQL knowledge by 

allowing him to tweak other queries to his liking.  By presenting each result set with the SQL 

that generated it, a user can easily modify the query to address a specific question not 

answerable with the current setup of the Main Query Page. 

Graphs 

Finally, a user can graph the motifs that correspond to the various basic parameters (Figure 

4B).  Two different graphs are displayed on the graphs page: a cumulative distribution plot 

and a binned histogram.  The cumulative distribution plot is what’s used to calculate the KS 

statistic (see above).  Each point (x,y) represents the percent of the population (y) that lies to 

the left of (x).   The expected distribution is plotted as a green line.  The histogram is a 

binned representation of the distribution, where the bin size is specified by the user from the 

Main Query Page.  In both these plots, the graphs are grouped into two datasets 

corresponding to the two motif parameters (see fig 2A).  This grouping means that data 

representing consensus motifs, for example, truly represent the group of motifs, not the 

individual 9-mers.  Finally, the KS statistic and associated p-value is displayed for each 

group of motifs. 
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Part 3: Applications of the database and website 

With the database in place, and a user-friendly web interface to access the data, we were able 

to identify non-randomly distributed motifs that are likely to be involved in gene regulation.  

Since our primary focus is on gene regulation, most of the results in this section will focus on 

upstream regions.  All of the approaches employed here should, however, work for introns 

and exons as well.  Some results from introns are presented here, but we are only beginning 

to look in depth at these regions. 

Identifying non-random motifs at the genomic level 

We will first look at techniques for finding motifs that are non-randomly distributed at the 

genomic level.  The motifs we find using these methods are likely to be involved either in 

basal transcription or in the regulation of large sets of genes.   

Upstream : TU ratios 

Those motifs which have the highest upstream:TU ratio are shown in Table 1.  Only those 

motifs that occur at least 10 times in upstream regions are reported.  Of the top 25 motifs, 20 

are some variation of the 10-mer AGGCCCATTA.  It is important to note that the sliding 

window creates some artifacts, in that every time a given 9-mer occurs, the first 8 bases will 

make up another 9-mer that includes one of four bases preceding the 8-mer.  There are only 

four such 9-mers, and so these will often be flagged as non-randomly distributed as a result 

of the true 9-mer’s non-randomness.  If we look at these 20 motifs, we can see a general 

consensus of aGGCCCatta, where GGCCC is conserved in all but one of the motifs.  Since 
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the database is designed to analyze motifs that are longer than 9bps, we will focus on 

GGCCCatta and its reverse compliment.   

 

Figure 5 shows the distribution of GGCCCatta with one mismatch allowed in the lowercase 

part of the motif.  The p-value as estimated by the KS-statistic is 1.8x10-125 and 9.4x10-78 for 

this motif and its reverse compliment, respectively.   Both the motif and the reverse 

compliment have a nearly identical distribution (the difference in p-values is due to the 

number of occurrences of each motif), indicating that motif orientation probably does not 

affect the function of this motif.  The motif shows a clear preference to being at least 60 bps 

upstream of the gene start and generally closer than about 200 bps.  This motif is clearly not 

randomly distributed either by region or by position within promoter regions.  A motif search 

on plantCARE revealed three possible matches to GGCCC.  All three were involved with 

light responsiveness in other plants.  The Chs-unit 1 motif included GGCCCAT as part of a 

42 base exact sequence of a light-responsive element experimentally confirmed in one gene 

in Zea mays.  It is possible that GGCCCatta is part of an Arabidopsis version of this light-

responsive element, though the evidence is hardly sufficient to warrant any sort of 

conclusion, especially considering that none of the genes with GGCCCatta  or its reverse 

compliment within the range of –200 to –60 have “light” as part of their description.  No 

matches for the reverse compliment were founding plantCARE. 

 

To look for a possible role for GGCCCatta in gene regulation, we queried the Descriptors 

table for words common to those genes with variations of this motif in their promoter 

regions.  The motifs tested were all motifs included in aGGCCCatt, GGCCCatta, their 
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reverse compliments, and variations with 1 mismatch in a lowercase position.  This 

affectively included all genes that have either one of the 9-mers or the 10-mer aGGCCCatta 

in either orientation, and with at most 1 mismatch, in their promoter region.  Only genes with 

the motifs within the range –400 to –50 were included.  The range corresponds to an 

approximation of the preferred location of GGCCCatta.  The results showed that 91 of 218 

(42%) ribosomal proteins had one of these motifs in the given range of their promoter 

regions.  The other top classifications included RNA polymerase (30%), DNA polymerase 

(21%), splicing factors (15%), and helicases (14%).  Approximately 11% of all genes in the 

genome have one of these motifs in their promoters.  It is hard to draw solid conclusions 

from these data, but it appears aGGCCCatta may serve in regulating the basic gene-

expression machinery. 

Intron:Exon ratios 

Table 2 shows those motifs that have the highest Intron:Exon ratio and occur at least 10 times 

in introns.  Not surprisingly, the motif GTaAtG shows up as the most prevalent motif in the 

top 25 ratios.  This motif is known to be the strong consensus of all 5’ splice sites in 

eukaryotes, with near 100% conservation in the first two positions.  A less conserved 

sequence is the branchpoint, usually located 18-60 nts upstream of the 3’ splice site.  The 

ACTAAc/tTA motif in the table matches the weak consensus for the Arabidopsis 

branchpoint.  Similarly, the TGTAGGc/tTG motif is close to the 3’ splice site consensus of 

TGCAGGT (Brown et al, 1996).  Indeed, 322 of 401 (80%) instances of these two motifs in 

introns occurs at position –5, making the AG the last two bases in the introns.  While none of 

these motifs are novel, it is reassuring to know that we have immediately identified all three 
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splicing-related motifs.  The other motifs in this table are low complexity repeats, which are 

known to be common in introns. 

Standard Deviation 
As discussed above, the purpose of using standard deviation as a data mining technique is to 

identify motifs whose standard deviations represent outliers from the rest of the population.  

Figure 6 shows a scatterplot of all upstream motif standard deviation values versus the 

number of occurrences.  There is clearly a preferred standard deviation that moves towards 

413 as the number of occurrences increases.  If we zoom in, however, we can see that a 

number of motifs lie outside the general trend.  I have chosen two random outliers, along 

with one motif that has an average standard deviation, to evaluate further.  

 

The motif AAAATGGAG has an abnormally large standard deviation.  Surprisingly, the 

distribution is extremely localized (Figure 7).  The high standard deviation is probably due to 

the effect the extreme localization has on the mean.  The internal presence of ATG in this 

motif, along with its clear localization around positions –10 to –1, suggests that this motif is 

involved in translation initiation.  Indeed, a search for this motif reveals that it is very similar 

to the consensus ATG codon context in dicots, which is aaA(A/C)aATGGCt (Joshi et al., 

1997).  This is not surprising, given that Arabidopsis is a dicot.  Interestingly, the monocot 

context consensus of c(a/c)(A/G)(A/C)cATGGCG has the same distribution as 

AAAATGGAG, but occurs three times less (data not shown). 

 

Motifs with abnormally low standard deviations may be interesting as well.  The motif 

ATTACCCCA is one such motif (see Figure 6 for standard deviation relative to the 
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population).  As can be seen from its distribution (Figure 8), this motif has a non-random 

preferred location of –800 to –400 (KS p-value = 5.7x10-4).  Examination of the 88 genes that 

contain this motif revealed that of the 37 genes for which at least a putative function was 

identified, 30 (81%) were retrovirus related, including 25 retroelements, 3 reverse 

transcriptases, and 2 transposons.  The distribution of the reverse compliment is very 

different and randomly distributed (KS p-value = 0.13), suggesting that the orientation of this 

motif is important.  This motif is not in the plantCARE database and is an apparently novel 

sequence.   

 

As a control for the standard deviation data mining technique, we chose, an ATG-containing 

motif with a non-deviant standard deviation.  Its distribution is shown in Figure 9.  This 

distribution clearly shows no preferential location, and is actually more uniformly distributed 

than the expected distribution, as reflected in its KS p-value of 2.7x10-4.  This low p-value is 

due to the peak in bin –525.  It is not clear if this is due to random events.  It should be noted 

that with 262,000 motifs, apparently non-random distributions are likely to happen by 

chance.  A certain amount of biological inference is therefore necessary when analyzing 

these distributions.  This motif is not in the plantCARE database, and while its p-value is 

somewhat low, its generally uniform distribution suggests that it is not likely to serve a 

functional role. 

χχχχ2 Analysis 

Like standard deviation, χ2 analysis is a useful data mining technique despite the assumptions 

many of the motif distributions violate.  The usefulness is due to the fact that the population 
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of motifs shows clear trends in χ2 values that depend on the number of occurrences.  By 

analyzing a scatterplot of χ2 versus number of occurrences, we can quickly see these trends 

and identify motifs that deviate from them.  Figure 10 shows the population χ2 values as well 

as a zoomed in look at where the majority of motifs lie.  CTCTCTCTT and TTCTCTCTC 

represent clear outliers in this scatterplot.  The distributions of both motifs are very similar, 

as are the sequences.  Figure 11 therefore shows the combined distribution of these motifs, as 

well as their reverse compliments.  Remarkably, the reverse-compliments, known as GAGA 

motifs, show a clear preference for being located within 40 bases of the gene start (KS p-

value = 1.3x10-33).  Furthermore, 180 of the 313 (69.0%) distinct genes that contained one of 

the GAGA motifs within 40 bps of the start site did not have defined UTRs, indicating that 

the gene starts in these cases are likely translation start sites.  Thus, it appears that the GAGA 

motif primarily lies in the 5’ untranslated region and functions either in regulating translation 

initiation or mRNA stability.  It may also serve as a transcriptional regulator that operate 

downstream of the basal machinery.  While this motif is not a known plant cis-regulatory 

element, it is known to be involved in the transcriptional regulation of Xenopus (Li et al., 

1998). 

 

The distribution of a motif with a typical χ2 value is shown in Figure 12.  This distribution 

more closely reflects the expected random distribution, which is slightly skewed due to the 

variation in the lengths of the upstream regions.  Low KS p-values of 2.4x10-5 and 8.7x10-4 

reflect the apparent preference of these motifs to not be within 200 bps of the gene start.  Not 

only are these motifs AT-rich, but all motifs whose count and χ2 values are within 50 units of 

these motifs are also AT-rich.  We randomly graphed the distribution of some of these, and 
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all were similar in shape to that of Figure 12.  It is interesting that the apparently typical AT-

rich distribution avoids the very region that is known to be AT-rich.  This may indicate that 

very specific sequences are necessary in the range of –200 to –1 and the presence of random 

AT-rich sequences is therefore detrimental.  Another possibility is that we are seeing an 

artifact of the mixing of transcription and translation start sites.  The average length of 

defined 5’ UTR regions in the database is approximately 100bps, and 66% of the gene start 

sites are translation start sites.  The tendency for the typical AT-rich motif to avoid ranges 

immediately upstream of the gene starts may be due the fact that UTR regions are typically 

not as AT-rich as intergenic regions.  The fact that the general slope of the histogram starts to 

change between –300 and –200, and then accelerates around –100, may suggest that it’s a 

combination of both UTR regions and promoter specificity. 

 

Another motif identified by its relatively high χ2 value was TATAAATAC (Figure 10).  This 

motif matches the Arabidopsis TATA-box consensus, given by plantCARE as TATAAATA.  

The remarkable distribution of the TATA-box (Figure 13) allows us to look more closely at 

the effects of translation and transcription start sites in the database.  The TATA-box is used 

to position the basal machinery in the right location, so the position of this motif is essential.  

Most of the time, this motif is positioned approximately 30 bps upstream of the transcription 

start site.  Note that positions included in the bins range (in negative numbers) from 0-9, 10-

19, 20-30, and so on.  The bin size used to generate Figure 13 was 10, which means the spike 

includes positions –39 to –30.  This means that the TATA-box occurs closer than 30bps less 

often than it occurs 1000 bps away.  This emphasizes the importance of precision in TATA-

box location.  But this distribution has not only a spike in the range –39 to –30, but also a 
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hump in the range –140 to –60.  This hump clearly peaks around –80, then drops sharply 

around –50.  When we look at the genes that have the TATA-box in the range –35 to –30, we 

see that 231 of 254 (90.9%) have defined UTR regions, compared to the 33.6% genomic 

average.  Given the precision of the TATA-box placement, one would expect that the –140 to 

–60 hump represents genes whose upstream regions include UTRs.  In fact, only 152 of 825 

(18.4%) of genes with a TATA-box in this range have defined UTRs.  This suggests that the 

distribution of UTR length is skewed, as the average UTR length of 100bps would predict the 

peak of the hump to be at –130.  More likely, most unidentified UTRs are around 50bps in 

length (the center of the hump), with some longer ones skewing the average.  Note that this 

observation places greater weight on the sequence specificity explanation for the typical AT-

rich motif distributions discussed above, as the base composition argument is dependant on 

longer UTRs whose lengths correspond with the drop in the distribution. 

Base composition 

To further assess the hypothesis that these distributions are the result of UTRs in the first 100 

bases, we plotted the base composition of all genes using the range –500 to +200 and a bin 

size of 10 (Figure 14).  Remarkably, this showed that G and T compositions remain stable 

until the gene start, while A begins to fall around –150 and C begins to rise around –200.  

There is a clear disturbance at the gene start, and base compositions are very different from 

there on.  This corresponds to the change in base composition seen between coding and non-

coding regions that many gene-finding algorithms use.  Interestingly, when we look at our 

example of a motif with a typical χ2 value, we see that the motif is dominated by T’s while 

the reverse compliment is dominated by A’s.  Indeed, few of the typical motifs have an even 
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number of A’s and T’s.  What’s remarkable is the fact that the motif and reverse compliment 

have nearly identical distributions, as was the case with nearly all the typical motifs we 

randomly chose to graph.  This does not correspond to the base composition graph, which 

suggests that AT-rich motifs that are heavily dominated by T’s should have distributions that 

remain random until perhaps the bases within –50 of the gene start.  Furthermore, the drop 

we see in these distributions appears to be more that the drop in the composition of base A.  

This all suggests that perhaps the hypothesis that the non-random distributions of these 

typical motifs are caused by promoter sequence specificity and not UTR base composition is 

correct. 

Kolmogorov-Smirnov 

The final genomic-level statistical test to look at is the KS test.  As discussed above, the p-

values associated with the KS statistics normalize for the number of occurrences.  This 

means that the genomic scatterplot of these values do not show obvious trends the way χ2 

and standard deviation scatterplots do (Figure 15).  One trend that does appear, however, is 

the fact that most motifs that occur over 5000 times have low p-values.  One motif that 

violates this observation, TTTCTTTTT, with a p-value of 0.22, serves as a good example of 

what the expected distribution is, though it should be noted that this distribution drops in the 

range –200 to 0, which is not expected (Figure 16).  This may be related to the reasons 

discussed above.  Nearly all of the other motifs that occur more than 5000 times are 

repetitive AT-rich sequences.  The fact that these all have low p-values reflect the 

observation made above regarding the tendency for these motifs to avoid being within 200 

bps of the gene start.  Remarkably, when we graphed a number of motifs that occur more 
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than 5000 times, we found that those that had a high AT content avoided the first 100 bps, 

while those that had any number of C’s or G’s preferred the first 100 bps.  A typical example 

is shown in Figure 17, which is the distribution for ATATATATA and CTCTCTCTC.  This 

may reflect the genes whose start sites represent translation start sites.  This is supported by 

the fact that the defined UTRs average around 100 bps in length and these distributions cross 

around –100.  This is clearly more than a base composition issue, however, as the 

localization is much more severe than the base composition alone would warrant, and motifs 

with the same base composition as CTCTCTCTC, but with an average number of 

occurrences, do not necessarily show this UTR localization. 

Identifying non-random motifs in co-regulated sets of genes 

Another goal of the database and user interface is to allow researchers to identify new 

regulatory motifs in subsets of co-regulated genes, as well as to evaluate known regulatory 

motifs for group specificity.  As an example, we have analyzed a set of 68 co-regulated 

genes.  These genes are all known to be regulated in response to the circadian clock, and are 

classified as being activated in the first of four phases (Harmer et al. 2000).  Fourty-seven of 

the 68 genes (69%) have defined UTRs, suggesting that their start sites are transcriptional 

start sites.  At least three motifs are suspected to be involved in regulating transcription.  

These include CCA1 (aaaAATCT), which is known to be necessary for circadian regulation 

(Alabadia et al., 2001; Wang et al., 1997), and G-box (CACGTG) and the a G-box like 

element Hex (tgacgtgg), which are both suspected to be involved in circadian regulation 

(Borello et al., 1993; Schindler et al., 1992).  In each of these, point mutations in uppercase 

positions are known to disrupt normal gene regulation.  We will analyze each of these motifs 
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and look for novel motifs using the group-specific approaches outlined above.  It is important 

to note that these genes represent 68 of 454 clock genes from Harmer.  The advantage of this 

is that it focuses on genes that are more closely co-regulated, but it also may allow a certain 

amount of noise to creep in due to the fact that these previously identified motifs do not 

necessarily act only on phase 0 clock genes. 

 

Table 3 shows the top 25 ratios that compare the upstream sequences of clock genes to the 

upstream sequences of the rest of the genome.  The top two entries are clearly related, but are 

not useful for our purposes, since they represent a 10-mer repeat that occurs 5 times in one 

gene.  Another interesting motif that is readily apparent from these ratios is CCACGTGTC.  

This motif occurs in 10 distinct clock genes, appearing as the 11-mer CGCCACGTGC in 

four of those genes.  Interestingly, all motifs that are within one mismatch of this motif have 

normalized ratios of at least two, with a combined normalized ratio of 6.6, and 24 of the 68 

(35%) phase-0 clock genes include at least one of these motifs in their upstream regions.  The 

combined distribution of these motifs shows a clear localization that appears to be the same 

in both clock genes and the entire genome, with hundreds of genomic occurrences in the 

localized area (Figure 18).  This observation, combined with the high ratio of occurrence, 

suggests that this motif is functional not only in phase-0 clock genes, but may also be 

involved in regulating a large pathway, or set of tissue-specific genes, that includes a number 

of genes that are also regulated by the circadian clock.   

 

We can analyze known motifs as well as identify new ones.  While CCA1, Hex, and G-box 

have all been shown to be involved in regulating these genes, they are not necessarily 
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specific to this set.  Table 4 shows the relative frequencies of each of these motifs, with 

mismatches allowed only in lowercase positions.   

 

CCA1 is half as likely to occur in front of phase-0 clock genes as any other gene, though its 

ratio increases as the number of mismatches increase.  Its reverse compliment is actually 

more likely to occur in this set of genes than CCA1 is.  Combined, they occur in 62 of the 68 

genes with up to two mismatches in each, though the low ratios of occurrence suggest this is 

not much better than chance.  This motif has a random distribution (KS p-value = 0.99 with 

two mismatches and 0.68 with one).   

 

The Hex motif has a much higher ratio of occurrence.  While the exact motif only occurs in 

four distinct clock genes, with up to two mismatches this motif occurs in 59 of the genes.  

The fact that this motif is 4.5 times more likely to occur in front of these genes than any other 

indicates this is not likely to be due to chance.  The reverse compliment, while generally 

much more prevalent in the genome, also shows a high ratio of occurrence.  Both the Hex 

motif and its reverse compliment have random distributions with any number of mismatches 

(KS p-value = 0.93 for Hex and 0.043 for reverse compliment, both with one mismatch).  

This is especially remarkable considering CCACGTGTC (discussed above) is within two 

mismatches of the reverse compliment and did show a significantly non-random distribution.   

 

Finally, the G-Box motif was found in 37 of the 68 phase-0 clock genes, with a normalized 

ratio of 5.956.  It occurred exactly once in front of each of those genes.  This motif did show 

a localized distribution, which was very similar to its distribution in the genome as a whole 
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(Figure 19).  As noted above, there is experimental support suggesting this motif is necessary 

for clock gene regulation (Borello et al., 1993).    But while this motif is six times more likely 

to occur in front of these clock genes than other genes, the distribution suggests that the G-

Box motif functions in other roles as well.  These genes may be involved in other pathways 

that the G-Box controls, or G-Box may only function in these genes in conjunction with other 

phase-0 clock regulatory motifs.
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Discussion 

We have designed and implemented a database that catalogs the position of every 9-mer 

that’s in close proximity to genes in the Arabidopsis thaliana genome.  This has allowed 

us to identify motifs that are non-randomly distributed throughout the genome with 

respect to either the regions they’re found in or their positions within those regions.  Such 

motifs are likely to serve some biological function related to gene regulation, though only 

molecular genetic experiments that manipulate those motifs can definitively prove this. 

Overview and strengths of the database 

We have looked at a number of different approaches to identifying non-randomly 

distributed motifs using ratios and data mining statistical approaches.  While none of the 

examples were completely thorough, they indicate the types of approaches that can be 

used with our database, as well as a taste of the knowledge that is available when 

questions are asked in the right way.  Most importantly, they show the value in a database 

that uses position information for identifying potential functional cis-acting elements.   

 

The database and website is particularly effective at the genomic level.  For example, 

region-to-region ratios revealed a number of interesting motifs that warrant further study.  

In particular, the 10mer aGGCCCatta was found to occur far more often in upstream 

regions than transcriptional units, and appears to be localized to positions in the range –

200 to –60 with respect to the gene start.  A cursory look at gene functions indicate this 

motif may be involved in regulating a large set of genes in basic gene expression.  Of 

particular interest is the fact that 42% of identified ribosomal proteins include this motif 
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in their promoter regions.  Analyzing intron-to-exon ratios immediately revealed motifs 

that matched the consensus motifs of the 5’ and 3’ splice sites, as well as the branchpoint 

consensus motif.   

 

Data mining techniques using standard deviation and χ2 scatterplots revealed a number of 

outlier motifs.  Analyzing a few randomly chosen outliers revealed some interesting 

results, including both experimentally known motifs (eg, TATA-box, translation start site 

context, and GAGA), and novel motifs (e.g., ATTACCCCA, which appears in front of a 

number of retroviral-related genes) that warrant further analysis.  The large number of 

outliers observable in these scatterplots suggest that many more interesting motifs can 

quickly be discovered and analyzed, providing potential direction for wet-lab 

experiments.  Furthermore, by analyzing some typical motifs in the χ2 scatterplot and 

comparing them to the distribution of base composition, we have suggested a general 

approach to learning more about the genomic sequence information currently available.  

The typical motifs appear to be AT-rich, but do no appear very often within 200 bps of 

the gene starts.  While this may be due in part to the majority presence of translation start 

sites in the database, the base composition distribution, as well as the TATA-box 

distribution, suggests the more likely cause is the importance of sequence specificity in 

this range.  Clearly more can be learned from analyzing these motifs.  The Kolmogorov-

Smirnov test also proved to be valuable both as a data mining tool and in assessing the 

randomness of various distributions.   
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We also looked at techniques for analyzing sets of co-regulated genes, using phase-0 

clock genes as a test set.  Group-to-other ratios failed to reveal known motifs, but did 

suggest a novel motif that is similar to the reverse compliment of the known regulator 

Hex but has a very different group and genomic upstream distribution.  The similarity of 

this motif in the group’s upstream regions to the genomic upstream regions highlights the 

importance of context in motif functionality and may suggest that the subset of phase-0 

clock genes that contained this motif may be involved in other pathways as well.  Known 

clock-regulator motifs were also analyzed for their specificity to the phase-0 clock genes.  

Hex and G-Box showed a high preference for these genes, while CCA1 did not.  This 

emphasizes the importance of context for CCA1.  None of these motifs had a non-random 

distribution either in this set of genes or in the genome.  

 

From our brief overview of the various techniques made available by the database and 

website, it is clear that much information can be gained by identifying non-random motifs 

based on their position and region localization.  Our database is especially good at 

analyzing motifs at the genomic level, as the high motif counts make for valuable 

statistics and data mining.  Unfortunately, 9-mers do not appear to lend themselves as 

readily to analysis of small sets of genes.  The number of phase-0 clock genes was nearly 

too small to do meaningful statistics.  While including mismatches helped define 

meaningful distributions, it is not helpful in the initial data mining.  The genomic 

strengths of the database do, however, make a valuable asset in analyzing known or 

suspected motifs in the context of how their presence and distribution in a group differs 

from in the genome. 
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We have shown that position and region information can be used by our database and 

web front-end to identify known cis-acting regulatory motifs.  We also have identified 

novel motifs that may serve in a cis-acting regulatory role.  Though not ready for general 

public use, we have demonstrated the potential for our database and web front-end to 

compliment existing programs, none of which incorporate position and region 

information on a genomic level.  While this in no way replaces these programs, it does 

provide a valuable piece that has been missing.  For example, many non-randomly 

distributed motifs and related genes can be identified with our database and further 

analyzed with multiple sequence alignments or Gibbs free sampling programs to be 

further characterized.  Once a good understanding of the functional locations and 

consensus sequences of these motifs has been determined, point-mutation experiments 

can be conducted to test for biological functionality.  The scope of the database’s 

functionality will grow considerably as we add more organisms, thereby allowing 

comparative genomics approaches that can identify motifs whose distributions have been 

conserved among organisms. 

Future directions 
Our various examples of how one might use this database bring to light some suggestions 

for future development.  The scope of this project was such that most of the time and 

energy spent was on creating the database itself as the backbone of future projects.  Once 

completed, we were able to begin making use of its power through the creation of the 

website.  We must acknowledge that this is still in the early stages and a number of 

limitations do still exist.  Some of these limitations are due to the fact that this is not 
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intended to be a comprehensive tool; others highlight approaches we should take in the 

future. 

 

The first obvious development that would be helpful is the ability to statistically cluster 

motifs into consensus sequences.  While the graphing capabilities allowed for plotting 

consensus motifs and determining KS p-values for their distributions, the initial data 

mining strategies did not.  This was especially clear when analyzing the ratios.  While the 

aGGCCCatta motif was observable to the human eye, this appeared to be more the 

exception than the rule.  Implementing a clustering algorithm that would cluster motifs 

based both on their sequence and their statistics or ratios would be very informative.  A 

number of clustering algorithms currently exist and could be used to cluster the top 

results of any table we generate.  In addition to finding consensus sequences, this would 

also help the problem of not having enough instances of any given 9-mer in a small group 

of genes. 

 

One inherent limitation is the fixed size of the 9-mer.  Again, while charts can be made of 

the distributions of motifs that are shorter than 9, all other queries return all the 9-mers 

that make up the shorter motif.  While it would be a small step to consolidate results for 

queries of individual motifs, the data mining approaches outlined above do not lend 

themselves to variable length motifs.  This is an inherent problem in all word-based 

approaches to motif finding.  This emphasizes the fact that this, like all motif-finding 

tools to date, is not a comprehensive tool and so is best used in conjunction with other 

tools whose strengths and limitations are different and complimentary. 
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Finally, the methods outlined above only hint at the issues of motif context and the 

relationship of multiple transcription factors working together.  While we can infer that 

context is important for some motifs by comparing group ratios and distributions to 

genomic ones (for instance, the G-Box), we have not dealt with the problem of 

identifying combinations of motifs that are unique to sets of genes.  The reason for this is 

the size of the search space.  In the case of 9-mers, there are 262,0002 = 6.9x1010 possible 

pairs.  While 2.6x105 is searchable by brute force methods, 6.9x1010 is not.  The 

complexity of this is compounded by the issues of consensus sequences, the possible 

order in which the motifs occur, and the question of whether orientation matters or not, 

and the problem only gets more complex as larger sets of motifs are considered.  This is 

the reason no programs have thus far been able to successfully search for groups of 

motifs on a genomic scale. 

 

While we cannot approach this problem in a brute-force manner, we do have a database 

that allows for rapid querying of all 9-mers.  The next major goal for this project is to 

find a method that will build on the resources of the database and allow us to solve this 

problem.  One approach we will devote a significant amount of attention to is the use of a 

Genetic Algorithm (GA).  The general approach of a GA is modeled after population 

genetics and evolution and is composed of a solution stated in the form of a string, or 

gene, and a population of these genes that are allowed to evolve.  Each generation 

involves the selection of the “fittest” genes (i.e., genes that are closest to an optimal 

solution), crossover from the mating of two fit genes, and random mutation.  The net 
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result is that the population navigates the search space towards optimal solutions.  

Hopefully this approach will allow us to search for sets of variable length motifs that 

occur in combinations, orders, and orientations unique to a given set of co-regulated 

genes.  Initial prototypes have shown some potential, though there is a long way yet to 

go. 

 

A more immediate goal for the project is add other genomes to the database.  We are 

currently loading the Drosophila melanogaster genome and will soon be loading the S. 

cerevisiae, C. elegans, and human genomes as well.  In addition to using the methods 

outlined in this paper on these organisms, we will be able to incorporate comparative 

genomics approaches as well, using the common assumption that important sequences are 

conserved to some degree between species. 

Conclusion 

The database and website described and demonstrated in this paper are a new tool that 

represents a novel approach to the problem of finding cis-acting regulatory motifs.  We 

tested this in Arabidopsis thaliana and have shown it to work well on the genomic level 

and to show promise at the level of small sets of co-regulated genes.  While we have 

primarily focused on promoter regions, a look at the intron-to-exon ratios suggests that 

these approaches hold promise in analyzing introns as well.   While some major 

limitations exist, most serve as challenges for further progress.  In the future, we hope 

this will become a publicly available tool that helps the molecular genetics community 

move towards a better understanding of the cis-acting elements involved in the regulation 

of gene expression. 
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motif upstream 
Count 

TU 
Count ratio normalized 

ratio 

nnnnnnnnn 2722 196 13.888 25.6575898 

ggcccatta 617 72 8.5694 15.8320253 

ggcccaata 510 65 7.8462 14.4957479 

gcccattaa 544 70 7.7714 14.3576932 

aggcccata 377 49 7.6939 14.2144179 

cacgcgccc 23 3 7.6667 14.1641458 

aggcccaat 510 70 7.2857 13.4603374 

gcccaataa 505 71 7.1127 13.1406497 

aggcccatt 625 90 6.9444 12.8298423 

tcggcccac 59 9 6.5556 12.1113711 

taaggccca 402 62 6.4839 11.978934 

taatgggcc 578 92 6.2826 11.6071025 

aagcgcgcg 12 2 6 11.0849837 

aataggccc 151 26 5.8077 10.7296958 

taggcccaa 378 67 5.6418 10.4231936 

agcccaata 439 78 5.6282 10.3980937 

taggcccat 421 75 5.6133 10.3706181 

ataggccca 319 57 5.5965 10.3395023 

aaggcccat 525 94 5.5851 10.3184689 

aatgggcct 607 109 5.5688 10.2883564 

cgcgtagtc 11 2 5.5 10.1612351 

attgggcct 464 86 5.3953 9.96789233 

agcccatta 460 86 5.3488 9.88196222 

ggcccatat 297 56 5.3036 9.79833381 

cggcccatt 212 40 5.3 9.79173561 

 Table 1) upstream:TU ratio of occurrence. 
Top 25 motifs with at least 10 upstream 
occurrences shown.  Green highlights motifs 
what are within two mismatches of 
agGCCCatta.  Yellow highlights motifs that 
are reverse-compliments of this 10-mer. 
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motif intron 
Count 

exon 
Count ratio 

normalized 
ratio 

gtaagtata 366 46 7.957 15.5752877 

gtaagtttt 1020 133 7.669 15.0127881 

atatatata 5639 749 7.529 14.737815 

tatatatat 6126 823 7.443 14.5710209 

gtaattaac 208 28 7.429 14.5417987 

actaattag 163 22 7.409 14.5036646 

gttagttag 249 34 7.324 14.3361737 

gtaagtctt 456 63 7.238 14.1689321 

gtaagtact 249 35 7.114 13.9265687 

taactaact 300 43 6.977 13.6573244 

atttttttt 4001 575 6.958 13.6211423 

ttttttttt 20952 3069 6.827 13.3641525 

tttttttta 3370 498 6.767 13.2468733 

tttttttat 2458 364 6.753 13.2188392 

ttaaatagg 121 18 6.722 13.1590849 

actaactaa 208 31 6.71 13.1345278 

ttttgtagg 762 114 6.684 13.0846751 

gtaagtttc 672 101 6.653 13.0244899 

taattaaat 525 79 6.646 13.0090336 

tgtaggttg 287 44 6.523 12.7685636 

ttaattagg 250 39 6.41 12.5483963 

taattaact 344 54 6.37 12.4703174 

aattttttt 1963 309 6.353 12.4358262 

tgtaggctg 114 18 6.333 12.3978155 

gtaagtaat 390 62 6.29 12.3136199 

 
Table 2) Top 25 Intron:Exon ratios 
with >10 occurrences in introns. 
Green highlights 5’ splice site; yellow 
highlights branchpoint motif; orange 
highlights 3’ splice site. 
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motif num In 
Group 

num Not 
In Group Ratio 

normalized 
ratio 

cgttttccc 6 84 0.071 29.5175303 

gttttcccg 6 93 0.065 26.6609951 

cgccaaaac 6 129 0.047 19.2207174 

cacgtgtcc 6 146 0.041 16.9826887 

acgttttcc 6 148 0.041 16.7531929 

accgcaaaa 5 128 0.039 16.1423994 

catttagtc 5 134 0.037 15.4196054 

ccacgtgtc 11 306 0.036 14.8552277 

cgccacgtg 5 142 0.035 14.5508952 

tccgccaaa 5 146 0.034 14.1522406 

gccacgtgt 8 261 0.031 12.6665264 

ccgtaaaat 5 171 0.029 12.0831996 

atctctaag 5 176 0.028 11.7399268 

ggagaaatg 5 183 0.027 11.2908586 

atttagtgg 5 190 0.026 10.8748796 

ttttcccgc 8 316 0.025 10.4619095 

ccgccaaaa 9 383 0.023 9.710728 

tgacgtggc 5 214 0.023 9.65526693 

cttcctttc 6 274 0.022 9.04916988 

cccgccaaa 6 288 0.021 8.60927968 

aggtttggt 5 241 0.021 8.57355653 

atttcgtta 6 293 0.02 8.46236365 

aagatcaca 5 245 0.02 8.4335801 

cagaaacat 5 250 0.02 8.26490849 

 
Table 3) Ratios comparing upstream 
motifs of clock genes versus other genes.  
Top 25 results with at least 5 clock gene 
occurrences are shown.  Orange and yellow 
selections are discussed in the text. 
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Element Exact Match One Mismatch Two Mismatches 

name sequence clock genes 
other 
genes 

distinct 
clock 
genes 

normalized 
ratio (C:O) 

clock 
genes 

other 
genes 

distinct 
clock 
genes 

normalized 
ratio (C:O) 

clock 
genes 

other 
genes 

distinct 
clock 
genes 

normalized 
ratio (C:O) 

CCA1 aaaAATCT 6 4491 6 0.563 46 17163 34 1.130 113 31470 50 1.514 

  AGATTttt 10 3428 9 1.229 55 16509 37 1.405 124 30559 55 1.711 

Hex tgacgtgg 5 214 4 9.851 13 914 11 6.000 159 14726 59 4.552 

  ccacgtca 4 424 4 3.977 28 2117 23 5.576 216 22212 61 4.100 

G-Box CACGTG 37 2619 37 5.956 --- ---   --- --- ---   --- 

     
Table 4) Motif ratios of occurrence for known clock-regulating motifs.  Light green rows are published 
consensus sequences.  Orange rows are reverse compliments.  Mismatches were only allowed in 
lowercase positions.  Note that G-Box is a palindrome with all uppercase letters, so no reverse 
compliment or mismatches were evaluated. 
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FIgures 
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<pk>         primary key 
<fk>          foreign key 

GeneID = GeneID 

GeneID = GeneID 

GeneID = GeneID GeneID = GeneID 

GeneID = GeneID 

GeneID = GeneID 

GeneID = GeneID GeneID = GeneID 

motif = motif 
motif = motif motif = motif 

motif = motif 

blockInfo 
GeneID 
chrID 
strand 
numModels 
blockStart 
TUStart 
TUStop 
blockStop 

integer 
tinyint 
char 
tinyint 
integer 
integer 
integer 
integer 

<pk> 

BlockSequence 
GeneID 
sequence integer 

long varchar <pk,fk> 

descriptors 
GeneID 
modelNumber 
description 
descriptionType 

integer 
tinyint 
long varchar 
varchar(15) 

<fk> 
identifiers 

ID 
IdType 
GeneID 
modelNumber 

varchar(30) 
varchar(15) 
integer 
tinyint <fk> 

IntronInfo 
GeneID 
modelNumber 
intronNumber 
intronStart 
intronStop 

integer 
tinyint 
tinyint 
integer 
integer 

<pk,fk1,fk2> 
<pk> 
<pk> 

intronMotifs 
motif 
modelNumber 
intronNumber 
position 
positionRev 

char(9) 
integer 
integer 
integer 
integer 

<fk1,fk2> 

intronRevStats 
motif 
numOcc 
mean 
SD 
chiSquare 
KSd 
KSprob 

char(9) 
integer 
double 
double 
double 
double 
double 

<pk> intronStats 
motif 
numOcc 
mean 
SD 
chiSquare 
KSd 
KSprob 

char(9) 
integer 
double 
double 
double 
double 
double 

<pk> 

TUMotifs 
motif 
GeneID 
modelNumber 
position 

char(9) 
integer 
integer 
integer 

<fk> 

TUStats 
motif 
numOcc 
mean 
SD 
chiSquare 
KSd 
KSprob 

char(9) 
integer 
double 
double 
double 
double 
double 

<pk> 

upstreamInfo 
GeneID 
modelNumber 
upstreamStart 
upstreamStop 

integer 
tinyint 
integer 
integer 

<pk,fk1,fk2> 
<pk> 

upstreamMotifs 
motif 
GeneID 
modelNumber 
position 

char(9) 
integer 
integer 
integer 

<fk> 

upstreamStats 
motif 
numOcc 
mean 
SD 
chiSquare 
KSd 
KSprob 

char(9) 
integer 
double 
double 
double 
double 
double 

<pk> 

UTRinfo 
GeneID 
modelNumber 
UTR 
UTRstart 
UTRstop 

integer 
tinyint 
tinyint 
integer 
integer 

<fk> 

IntronSequence 
c.GeneID  
c.ModelNumber  
c.IntronNumber  
substring(sequence  
abs (IntronStart-blockstart) +1 
abs (IntronStop-IntronStart) +9) as seq 

BlockInfo as a  
key join blockSequence as b  
key join IntronInfo as c 

TUSequence 
a.GeneID  
substring(sequence  
abs (TUStart-blockstart) +1 
abs (TUStop-TUstart) +9) as seq 

BlockInfo as a key join 
blockSequence as b 

upstreamSequence 
c.GeneID  
c.ModelNumber  
substring(sequence  
abs (upstreamStart-blockstart) +1 
abs (upstreamStop-upstreamStart) +9) as seq 

BlockInfo as a  key join blockSequence  
as b key join upstreamInfo as c 

Table 

View 

x = y One-to-many 
direct 
relationship 

Source of info 

Must occur at 
least once 

May never occur 

Key 

Figure 1) The database schema. This is a basic representation of the database schema, showing 
how all the tables relate to each other.  Lines with equations represent foreign key relationships.  
Branching lines indicate many rows in that table can reference a single row in the linked table.  
Foreign keys are used to enforce integrity by making sure unrelated information is not present.  
They also indicate a direct relationship.  Arrowed lines without equations show how the table the 
arrow points to was derived.  That is, the sequence views are derived from the info and 
blockSequence tables, the motif tables are derived from the sequences, and the stat tables are 
derived from the motif tables.  Only intron- and upstream-related tables are presented, as they are 
representative of exon- and up1500-related tables, respectively.  The TUinfo is contained within 
the blockInfo table, since the definition of TU regions does not allow more than one entry per 
gene. 
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Figure 2) Defining basic parameters on the Main Query Page.  (A) You can define the 
motifs you want to search, either by typing them in directly, or using the popup tool.  
Ambiguous consensus sequences are allowed, as are motifs < 9bps.  Reverse compliment can 
be automatically generated, and minimum number of mismatches in lowercase letters can be 
specified. If left blank, all motifs will be searched. (B) Regions, ranges, or ranges within regions 
can be specified. (C) Sets of genes can be analyzed, saved, and retrieved.  Gene names can be 
pub_locus ids, GI numbers, or Accession numbers.  If left blank, all genes will be searched. 

 

A) Define motif sequence 

B) Define region and range 

C) Specify set of genes 
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Figure 3) Specifying desired results on the Main Query Page.  The last half of the Main 
Query Page lets the user specify what sort of output he or she would like to see.  Most options 
have option-specific parameters as well.  (A) If genes are specified in the genes list, the 
statistics for the subset are looked up, but they are only recalculated if the user requests for that 
to be done.  (B) Either region-to-region or group-to-other ratios can be computed.  Specify the 
minimum number of occurrences to weed out meaningless results.  (C) If familiar with SQL, 
users can type their own queries. (D) Basic sequence information can also be retrieved.  This 
section also allows you to limit the number of results returned.  Users either press “GetInfo” to 
retrieve the results they have requested, or “GetGraph” to graph the motifs.  

 

A) Statistics options 

D) Sequences and Definitions 

C) User-defined query 
) Define motif sequence 

B) Ratio options 
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Figure 4) Results and Graphs pages.  (A) The Query Results Page displays the results of all 
the queries requested from the Main Query Page.  Each result includes a summary of the 
parameters, the SQL used to generate the results, and a table displaying the results. (B) The 
graphs page generates two charts that reflect the basic parameters specified from the Main 
Queries Page.  Each chart will graph up to two motifs, each being a combination of all motifs 
included in one line (see figure 2A).  The first chart is a cumulative distribution plot.  The green 
line is the expected distribution.  The second plot is a histogram with the bin size specified by 
the user on the Main Queries Page.  The KS statistic and p-values are presented as well.  

 

A) The Results Page 

B) The Graphs Page 

 



80 

 

Figure 5) Distribution of GGCCCatta and reverse compliment with up to one mismatch 
in each.  KS p-values are 1.8x10 –125 and 9.4x10 –7, respectively. 
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Figure 6) Scatterplot of Standard Deviation versus number of occurrence.  TOP: all 
data points in the upstream regions.  BOTTOM: Zoomed in to focus on motifs that 
occur no more than 1500 times.  Motifs identified in red have been further analyzed. 
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Figure 7) Distribution of AAAATGGAG shows clear localization to first 10 bases.  
Reverse compliment is randomly distributed.  KS p-values are 2.2x10-33 and 0.02, 
respectively. 
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Figure 8) Distribution of ATTACCCCA shows localization to the range –800 to 
–400. Reverse compliment is randomly distributed.  KS p-values are 5.7x10-4 
and 0.13, respectively. 
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Figure 9) Distributions of ATGATTTCA and reverse compliment show no apparent 
preferential location.  KS p-values are 2.7x10-4 and 0.04, respectively. 
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Figure 10) Scatterplot of χ2 versus number of occurrence.  TOP: all data points in the 
upstream regions.  BOTTOM: Zoomed in to focus on motifs that occur no more than 
5000 times.  Motifs identified in red have been further analyzed. 
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Figure 11) Combined distributions of CTCTCTCTT and TTCTCTCTC show a preferential 
location of < – 100 (KS p-value = 1.3x10-133).  Remarkably, the reverse-compliments show a 
preferential location of < – 40. 
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Figure 12) Distribution of TTAATTTTA and reverse-compliment, showing distribution of 
motifs with typical χ2 value.  KS p-values are 1.3x10-6 and 6.1x10-9, respectively. 
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Figure 13) The distribution of the TATA-box and reverse complement.  Illustrates precision 
location at –30 and effect of UTR regions in genes for which the gene start is the translation start 
site. 
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Figure 14) Base composition of upstream and TU regions in the range –500 to 
+200.  Calculated from all genes using a bin size of 10. 
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Figure 15) Scatterplot of KS p-value versus number of occurrences.  Labeled motifs were 
analyzed further. 
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Figure 16) The distribution of TTTCTTTTT, KS p-value = 0.22, is very similar to the 
expected distribution. 
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Figure 17) Distributions of an AT-rich motif versus a CT-rich motif.  Both have small p-values 
(4.710-91 and 0.0) and high number of occurrences (16487 and 6978). 
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Figure 18) Motif distributions of ccacgtgtc and reverse compliment with one mismatch.  TOP: 
distribution in phase-0 clock genes. . Primary motif KS p-value = 1.1x10-4; reverse compliment 
KS p-value = 2.8x10-2. BOTTOM: distribution in the entire genome. Primary motif KS p-value 
= 1.0x10-46; reverse compliment KS p-value = 1.2x10-17. 
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Figure 19) Upstream distributions of the G-Box motif in the phase-0 clock genes (top) and the 
entire genome (bottom).  KS p-values are 2.7x10 –6 and 1.5x10 –57, respectively. 
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Appendix A: GenBank file format, region definitions, and 
base table definitions 
The contents of this appendix describes the standards we used in interpreting the 

GenBank flatfiles and the requirements for the results of parsing these files.  It includes 

our interpretations of the GenBank tags, our definitions of terms used throughout the 

database, and a definition of the contents of the files that were loaded directly into the 

database.  These files match the basic schema of all non-derived files (figure 1). 

A. GBK format 
Unfortunately, the “Standard” GenBank *.gbk flatfile format is hardly standard from 

genome to genome.  It’s standard only inasmuch as it allows different genomes to store 

whatever information they want in a way that is somewhat parse-able.  Unfortunately, 

that means different genomes store different information, or the same information using 

different labels.  This section standardizes the way we interpret the *.gbk files.  

A.1 Structure 

A.1.1 Heading 
It appears to me that the .gbk “standard” of defining Accession, version, and GI numbers 
in part of a heading for every submitted sequence considers each chromosome to be a 
submitted sequence.  Therefore, we cannot count on this information being available for 
every gene. 

A.1.2 Features 
This will include all the genes, as well as chromosome-wide info (base range, 

chromosome ID, organism, etc.).  The major subentries of FEATURE are as follows: 
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A.1.2.1 Gene 
This will include the range of the gene, which is either the transcription or translation 

start site, depending on the quality of the experimental data.  As with all sequences 

compliment(x..y) means it’s on the ‘-‘ strand. 

A.1.2.2 mRNA 
Of the form [compliment(]join([<]x1..y1, x2..y2, … , [>]xn..yn).  This is defining all the 

exons of the gene.  < implies the 5’ end is incomplete. > implies the 3’ end is incomplete.  

Theoretically, if complete, these exons will include the 5’UTR and 3’UTR 

A.1.2.3 CDS 
Of the form [compliment(]join(x1..y1, x2..y2, … , xn..yn).  This is defining the coding 

sequence.  Therefore, it should be identical to the corresponding mRNA definition, with 

the exception that the first and last exons will be shorter.  If the mRNA definition 

includes > and <, the two definitions will likely be the same.  The difference between 

mRNA and CDS defines the UTRs. 

 

Note: GenBank encourages all genomes to define both CDS and mRNA for each gene, 

but there’s no guarantee that they do. 

 

A.2 Identifiers 
Since all the standard identifiers of GI, Accession, and Version are only defined for 

sequence headings, and these appear to be used only once per chromosome, we’re left 

with no standard for actual gene IDs.  Thus, each organism seems to have come up with 

its own means of identifying the genes.  Here are the ones I’ve seen in a couple 

organisms: 
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A.2.1 /gene=”xxx” 
This is related to the version number in some organisms, completely different in others. 

This looks like the unique identifier that ties mRNA, CDS, and Gene records 

together.  As such, you’ll probably want to use this to keep track of the records, 

especially those that have multiple mRNA entries for one gene.   

A.2.2 /note=”xxx” 
This is a wild card.  In Arabidopsis, this appears to be where they store accession.version, 

but in one version of worms, it appeared to be where they store functional information in 

the form of whole sentences. 

A.2.3 /db_exref=”YY:xxx” 
This is used to define equivalent IDs from other databases.  The important thing is YY 

tells you what type of ID it is.  Here’s a couple examples I saw: 

A.2.3.1 /db_exref=”PID:xxx”: Apparently a protein ID 

A.2.3.2 /db_exref=”GI:xxx”: The GI number 

A.2.4 /protein_id="xxx.y" 
If present, this is supposed to be accession.version 

A.2.5 /product=”xxx” 
The name of the protein this gene encodes.  Unfortunately, for some organisms, this is an 

apparent identifier, while for others it’s a multiple word semi-description. Probably 

depends on how well the proteins of the particular genome have been characterized. 

 

There are probably many others as well, but the important thing to remember is an 

identifier is something that gives an apparently unique ID to the gene. 
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A.3 Descriptors 
There are several other pieces of information that may be kept.  This appears to be either 

functional information, or source information (ie, whether or not the gene is 

experimentally proved or not).  Here’s some I’ve seen: 

A.3.1 /Function=”xxx” 
This will be a sentence describing what the protein does. 

A.3.2 /Note=”xxx” 
Unfortunately, this is used both as an Identifier and as a Descriptor.  We will need to 

change the definition of this based on the genome being parsed. 

A.3.3 /experimental=[not_]experimental 
Describes whether the protein definition was experimentally derived or predicted by a 

program. 

A.3.4 /codon_start=n 
 This is presumably the position in the CDS that translation starts, though we have yet to 

find an instance where it n wasn’t 1. 

A.3.5 /product=”xxx” 
Unfortunately, sometimes this is something like “homologue of protein X”, so we cannot 

classify it as an Identifier. 

A.3.6 /translation=”xxxxxxx” 
This is just the translation from DNA into amino acids. We will ignore this. 
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There are others as well, but the point is, other information is everything that is not likely 

to be unique, and generally contains a highly variable length.  The importance of the 

latter point comes into play with database efficiency issues. 

 

Finally, notice that Identifiers and Descriptors are both specific to a Gene, mRNA, or 

CDS listing. 

B. Our Definitions 
Based on the “Standard” gbk file definitions, the purpose of this section if to clearly 

define certain items. 

B.1 Models 
The /gene=”” identifier is what links CDS, mRNA, and Gene together.  In some 

instances, there are multiple mRNA’s with the same gene name.  Therefore, we define a 

gene to be made up of one or more models where each model is an mRNA entry with the 

same ID as a corresponding Gene entry.  The numbers are arbitrary.  We’ll give them 1, 

2, 3, … 

B.2 Transcription Unit (TU) 
This is the total range of transcription for this gene.  Thus, it extends from the 5’ end of 

the most 5’ exon of any of the models to the 3’ end of the most 3’ exon of any of the 

models.  

B.3 UTRs 

B.3.1 5’UTR 
The range extending from the TU start to the start of the first exon of a given 

CDS. 
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B.3.2 3’UTR 
The range extending from the end of the last exon of a given CDS to the TU stop 

site. 

 

These are defined for a minority of genes (33% in Arabidopsis thaliana) 

B.3 Promoter (up1500) 
This is defined as the region extending from 1500 base pairs upstream of the start of 

the first exon for a given model (not CDS, we want to include UTRs) to 1 base pair 

upstream of this start site.  Thus, if the first exon starts at 10,000 and is on the (+) strand, 

we define an up1500 region to be 8,500 – 9,999. Remember, models are defined based on 

the mRNA entries (if possible).  

B.4 Trailer (down500) 
This is the opposite of a promoter.  That is, it’s the region extending from the last base 

of the last exon for a given model (not CDS, we want to include UTRs), plus 1, to 500 

bases downstream.  That is, if the last exon ends with 10,000 and is on the + strand, we 

want the region 10,001 – 10,500. 

 

B.5 Exons and Introns 
All exons and introns are based on the mRNA entries, unless those do not exist, in 

which case they’ll all be CDS entries.  Now there are two possibilities: there is either 

only one exon, or there is more than one exon.  Thus, you’ll see either: 

B.5.1 mRNA   [compliment(]xx..yy   
This is very unlikely to occur, but if it does, it’s the exon. No introns exist. 
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B.5.2 mRNA   [compliment(]join(xx1..yy1, xx2..yy2, … )   
Most common.  Each xx..yy pair is an exon, with xx and yy being included in the 

definition.  The gaps between exons are introns, and don’t include xx and yy.  

Thus, [xx1..yy1] is an exon, and (yy1..xx2) is an intron.  There must therefore be 

one less intron than exon for each model.  

B.6 Strand Identification 
A sequence is assumed to be on the + strand unless it is enclosed by complement(), in 

which case it’s on the – strand.  Note that if it is on the – strand, you must take the 

reverse compliment of the sequence, where A�T, C�G, G�C, and T�A, and the 

sequence is in reverse.  Also, all arithmetic operators are reversed.  Thus, if you see the 

sequence compliment(10000..5000), the promoter region is 11,500 – 9,992.    

B.7 Our unique ID 
Thus, we finally come to the ID we’ll be giving things.  As is apparent by now, an ID is 

more model-specific than it is gene specific, since things like protein_ID, function, 

exons/intron definitions, UTRs, promoters, etc may vary by model, and are in fact stored 

in the *.gbk file under the various models.  Therefore, the most intuitive way to define 

our ID is to be of the form GENE_ID.MODEL_NO; unfortunately, decimals make it 

difficult to deal with in the database, especially since many (most) “model-specific” 

information is really going to be redundant between models and the easiest way to get rid 

of duplicate info is using the UNIQUE command, which won’t work well with this 

decimal format.  Therefore, we are going to essentially divide the ID into two fields: 

GENE_ID | Model_Number.  Therefore, a unique integer ID for each gene 

encountered must be created and used whenever any aspect of any model of the 

gene is referred to.  In addition, all models must be numbered and included in all 
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model-specific files.  These numbers are essentially arbitrary; ideally though, geneID 

corresponded to the gene’s relative position on the chromosome.  That is, gene i’s 

furthest upstream base will be upstream of gene (i+1)’s furthest upstream base.  The 

genes should already be in this order in the *.gbk file.  If not, don’t worry about it too 

much.  Also, GENE_ID doesn’t take into account chromosome number, so be sure each 

GENE’s ID is unique for all genes in all chromosomes. 

C. File Formats 
Based off this understanding of how the information is currently stored, here’s how we’ll 

do the file formats.   

C.1 File Standards 

C.1.1 File Names:  
Each subentry in section C.2 must be submitted as a separate file named 

organism_subEntryName.txt   

C.1.2 Format of File Contents 
Each file must have attributes separated by tabs and entries separated by newline 

characters.  Every line (including the last) must end with a newline character.  Thus, 

translate anything here in the form attribute1 | attribute 2 | … | attributeN as being what 

each line in the file should look like, where ‘|’ is replaced with a tab. If an attribute is 

null for an entry, leave it null, but keep the surrounding tabs.  Also, quotes are 

taken literally, so don’t add any of your own quotes to any entry. 

C.2 File Contents 
These are all the files each organism needs to submit, with the specified contents. 
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C.2.1 Identifiers 
ID | ID_Type | Gene_ID | Model_Number 

 

ID = the value of some Identifier from section A.2 (or something that is similar to those) 

ID_Type = The type associated with that ID (See A.2).  May be GI, PID, Protein_ID, 

Note, or anything else.   

Gene_ID = the ID you give this gene 

Model_Number = the model number you give this model 

 

Notes: Some identifiers are found only in the CDS entry or mRNA entry, which is why 

they must be associated with both a Gene_ID and a Model_Number. You must 

therefore match each CDS to its corresponding mRNA and pull out all the IDs listed 

under both headings.   If the specific ID is under the Gene heading, just make an entry 

for each model.  Also, for ambiguous types such as “note=”, only include it in ID if it 

looks like your organism uses Note to store ID.  Your discretion, but if there’s 

spaces, it doesn’t belong here. 

C.2.2 Descriptors 
Gene_ID | Model_Number | Description | Description_Type  

 

Description = Anything that looks like a description; that is, anything that fits in A.3 

except translation info. 

Description_Type = again, see A.3.  Whatever type is associated with the description.  

May be Function, Note, Experimental, Product, Codon_Start, etc 

Gene_ID and Model_Number are the same as always. 
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Notes: Once again, you’ll have to glean this info from gene, mRNA, and CDS headings.  

This poses a serious problem of how to match the same mRNA model with CDS 

model, as there’s no specific info matching the two together except the specific exon 

info, which may only differ in one exon (see example in section D) (/gene= might 

serve as a matching field, but that’s not guaranteed).  Somehow, you need to figure 

out a way to do this, because the info we want is in both mRNA and CDS entries.   

C.2.3 GeneInfo 
Gene_ID | Chromosome_Number | Strand | number_of_models | Block_Start | Gene_Start 

| Gene_Stop | Block_Stop 

 

Gene_ID = your ID 

Chromosome_Number = which chromosome is the gene on? 

Strand =  (+ or -)  Assume + unless sequence includes compliment() 

Number_of_models = number of unique models 

Block_Start = the position of the start of the most 5’ up1500 region (see B.3) of all the 

models. 

Gene_Start/Gene_Stop = these correspond to the TU start and stop (See B.2) 

Block_Stop = the position of the end of the most 3’ down500 region (See B.4) of all the 

models. 
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Note: When determining if something is “most 5’ ” or “most 3’ ”, be sure to take into 

account which strand the gene is on.  For (-) strand, most 5’ is the max position, for 

(+) strand, most 5’ is the min position, etc. 

C.1.4 GeneBlock 
Gene_ID | sequence 

 

Sequence = The bases extending from Block_Start to Block_Stop + 8, as described in 

C.2.3.  We need the plus 8 to catch the last 9-mers. Sequences of genes on the (-) strand 

must be reverse compliments of those stored in GenBank. 

C.1.5 up1500 
Gene_ID | Model_Number | up1500_start | up1500_stop 

 

Up1500_start = position of the start of the up1500 region for this model 

Up1500_stop = position of the end of the up1500 region, as described in B.3.  Thus, 

|up1500_stop – up1500_start| = 1499. 

C.1.6 down500 
Gene_ID | Model_Number | down500_Start | down500_stop 

 

Down500_start = the start of the down500 region (ie, end of last exon+1). 

Down500_stop = end of the down500 region as described in B.4.   

|down500_stop-down500_start| = 499. 

C.1.7 Exons 
Gene_ID | Model_Number | Exon_Number | Exon_Start | Exon_Stop 
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Exon_Number = 1, 2, 3, etc, as determined by this exon’s position in this model. 

C.1.8 Introns 
Gene_ID | Model_Number | Intron_Number | Intron_Start | Intron_Stop 

 

(see exons) 

C.1.9 UTRs 
Gene_ID | Model_Number | UTR | UTR_Start | UTR_Stop 

 

These are the Untranslated regions described in B.3 

UTR = 5 or 3 [single digit], corresponding to which UTR this is. 
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Appendix B: Navigating the website 

This appendix is the Help page from the website.  It describes the specifics of how to use 

the Genomes website.  Please refer to figures 2 – 4 for screenshots from the website. 

Database Query Page 

A. Define Motif Sequences 
This section allows you to define which motifs will be searched in your query.  If left 

blank, all motifs in the search space will be queried.  There are two fields that allow you 

to type in distinct motifs.  Each field has a corresponding number of mismatches to be 

included in the query. 

A.1. Motif Fields 
These two fields allow you to type in a list of motifs to be searched.  The rules are as 

follows: 

1) Any comma-separated list of 9-mers is valid.  All will be searched. 

2) Any 9-mer or comma-separated list of 9-mers in the form similar to AC-GTA-

ATG-A-G-CG-AT-ACGT-G is valid.  This format is interpreted as a consensus 

sequence, where any set of adjacent nucleotides between a set of dashes specifies 

the possible nucleotides that may be included in that position.  Internally, this will 

be translated into a list of 9-mers that includes all possible motifs that meet the 

requirements of the strinF.  In the case of this example, 2*3*3*1*1*2*2*4*1 = 

288 motifs will be generated and searched.  Therefore, you should be careful not 

to allow the search space to become too large.  If it does, the query will take 

awhile to return.  As long as you’re patient, this is ok.  One thing to note, if you 
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want to get a 7-mer, all you have to do is end with two ACGT nucleotides: A-C-

G-G-C-T-C-ACGT-ACGT. 

3) A single motif that is less than 9 nts lonF.  This allows you to efficiently search a 

6-mer, or even 2-mer without generating thousands of motifs.  It is very efficient, 

but has some severe limitations:  

a. only one can be efficiently computed at a time.  Indeed, only one per motif 

field can be entered.  Others will be taken literally and therefore match no 

9-mer in the database.   

b. while you can enter a motif that’s less than 9 nts in both motif fields, or 

enter one, and in the other field specify a 9-mer using either of the 

methods in (1) or (2), to do so will nullify the indexes.  A correct answer 

will return, but expect it to take a couple minutes.  Unfortunately, this is 

true even if you have a 6-mer in the first field and want to take the reverse 

compliment in the second field.  It’s a problem with Sybase.   

c. Because of all this, the number of mismatches you specify will be 

ignored. 

d. Efficiency notes: That said, it is probably more efficient to use the method 

noted at the end of point (2) if you’re looking for multiple 7-mers or 8-

mers.  But this method is very efficient if you have only one motif to 

search, and is absolutely preferred if you’re looking for a very short motif 

(even a 3-mer returns in <15sec for a descriptions search). 
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A.2. Define Motif Sequence Buttons 
These buttons launch a form that will generate a motif of the form specified in A.1.2.  It 

includes buttons that will automatically generate n, y, and r.  Using this will erase 

whatever you had in the motif field and replace it with the newly generated motiE. 

A.3. Number of Mismatches 
This allows you to specify the number of mismatches in the corresponding motif field.  

Mismatches will only be generated for lowercase characters.  This allows you to 

specify which characters can be variable.  Note that this also generates all matching 9-

mers.  A 9-mer with all lowercases and 1 mismatch will be transformed into 36 motifs; 

with 2 mismatches, 354.  So don’t ask for more than 2 mismatches unless you’re 

really patient or have several positions marked with uppercase letters. 

A.4. Reverse Compliment 
Simply generates the reverse compliment of motif1 on the motif2 field, whether or not 

the motifs in field 1 are valid. 

B. Define Organism 
Simply defines which organism this query applies to. 

C. Define Genomic Region to Search 
Lets you specify what region to search in.  There’s two main parts of this: the genomic 

region, and the range.   

C.1. The Radio Buttons 
The radio buttons specify how the region and range information will be used.  If “specify 

range” is selected, then only the range is used.  Region information is ignored.  The range 
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in this case is relative to the start of each gene.  If “genome region” is selected, then both 

the region and the range are used. 

C.2. The Genome Range Select Menu 
Let’s you specify the range the query applies to.  Exon and intron use position 

information starting at the 5’ end of the sequence.  All positions are positive.  “Exon from 

3’ end” and “intron from 3’ end” use position information starting from the 3’ end of the 

sequence.  All positions are therefore negative.  “Intron/Exon percent from 5’ ” is a 

calculation for each position that calculates the percent of positions in that exon that lie to 

the left of that position.  Thus, for an exon of length 20, position 5 becomes 25(%).  This 

is valid only for graphinF.  Up1500 refers to the upstream regions that are all 1500 nts in 

length.  Much of this information then includes overlaps with exon and intron 

information.  Upstream region is the same, except those genes whose up1500 regions 

overlap with a transcriptional unit are truncated so that there is no overlap. 

C.3. The Range Parameters 
These fields allow you to specify an upper and lower bound to the region.  They default 

to numbers that are way outside the range of any region, and so have no effect on your 

query.  The fields allow you to specify, though, that you want to look at only a certain 

subset of the region. 

D. Restrict Search to Subset of Genes 
This allows you to narrow your search down to a subset of genes.  If ratios are being 

computed, and the compare genes type is chose (see G), then the genes in this list are 

used as the primary set of genes.  The genes can be specified in one of two ways: as a list 

of databaseIDs (integers) or a list of any of the Identifiers that are in the database for the 
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genome being searched.  This should include GI numbers for all genomes.  For 

Arabidopsis, it includes pubLocus (called “gene” in the database), GI, reference 

Accession number (called “transcript_id” in the database), and rna (which appears to be 

synonymous with transcript_id).  As of now, searching for “other” will search for any 

match in the list of identifiers, except databaseID.  For Arabidopsis, there are currently no 

non-unique identifiers.  Those that aren’t strictly unique refer to the same gene, and so 

are functionally unique.  As of the time of this writing, there were no databaseIDs that 

were also GI numbers, or any other identifier type.  This means if you specify “other” and 

enter geneIDs, an error will be returned. 

 

Note: Be sure the correct radio button is pushed.  If you enter non-integers and look 

for databaseIDs, you will receive an error.  If you enter databaseIDs and look for “other”, 

no results will be returned and you will receive and error.   

 

Delimiters: Acceptable delimiters at this time include, space, comma, tab, and newline or 

any combination thereoE.   

D.1. Using user-defined geneLists 
If you find a list of genes that you like, you can save them using the “Create List” button.  

When you are through, you can delete it using the “Delete List” button.  Lists are 

permanently stored in the database and can be accessed at anytime by any user, from any 

platform (including VXInsight).  Only the lists that were created for the currently selected 

organism are displayed.  Whichever gene type was specified upon creation of the list will 

always be remembered. 
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D.1.1. Selecting a pre-existing list 
The select box under “Gene list to use” includes all the current lists for the selected 

organism, no matter who the creator is.  When you change the selection, the page will be 

reloaded with the new list pasted into the geneList textarea.  All form information will be 

saved. 

D.1.2. Creating new gene lists 
The Create List button allows you to save the current list of genes.  It opens a prompt box 

and asks you to specify a name.  Names can have spaces in them, but the total length 

must be less than 25 characters.  If you submit a longer name, it will complain and ask 

you to enter a new name.  

 

If the name you specify is the same as a name that already exists, you will be asked to 

confirm that you want to overwrite the existing list.  Please note though: you can only 

overwrite lists you created.  If you are not the creator of a list, you cannot overwrite it.  

In this case, you must choose a different name.  Names are not case sensitive. 

 

You will also be prompted for a description of the list.  This is optional, may include 

quotes, and may be up to 500 characters, including spaces. 

D.1.3. Deleting lists 
When you press the “Delete List” button, the list name that is currently selected in the 

select box is deleted.  You are asked to confirm that you want to do this.  Please note: 

you are not allowed to delete lists you didn’t create.  While the webpage starts to act as 
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though it is deleting the list, when it discovers you’re not the creator, it will let you know 

and stop the process. 

E. Get Statistics 
Click the checkbox to retrieve computed statistics for the specified motifs in the specified 

region.  The select menus let you specify which field you would like to sort by, and in 

which order.  If no genes have been entered in the geneList, this will return a sorted list of 

pre-computed, genome-wide statistics.  If genes have been entered in the geneList, then 

statistics are generated for the motifs in that list.   

E.1. With Gene List Empty 
With the geneList empty, the statistics returned reflect those of the entire genome for the 

region you selected. 

E.2. With Genes Specified 
If the geneList is not empty (even if there’s just non-whitespace non-sense characters), 

the statistics for those genes, using the given region, range, and motifs, are calculated and 

stored in a temporary table.  The way Sybase implements global temporary tables, each 

user can see only the data they’ve they’ve entered.  This ensures concurrency.  Also, the 

data lasts only as long as the connection lasts.  Thus, if you log out (or the server is 

restarted), you will lose that data and have to recalculate your statistics.   

 

The statistics calculated are the same as those calculated for the genome, with the 

exception that for each motif, the KS probabilities from the geneList are compared to 

those of the entire genome by the formula LOG10(group.KSprob/genome.KSprob).  The 

final result is sorted in user-defined order, but defaults to this LOG10 value.  Thus, the 
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motifs at the top of the list are those that are less random in the set than they are in the 

whole genome. 

 

E.3. Recalculate Statistics 
This option is only available if you have genes listed in the geneList.  Check this box if 

you want to recalculate the statistics for the given group.  If left unchecked, the current 

table will simply be re-sorted based on the sorting parameters you provide.  Since 

calculation takes a couple minutes, this allows you to play with the data quickly.  If you 

change the genes in the geneList, you must check this box for the group statistics to 

reflect this.   

F. Compute Ratios 
Click the checkbox to compute ratios of occurrence, then specify which type of 

computation you would like to do.  

F.1. Compare Regions 
The default type compares the ratio of occurrence of each motif in the primary region vs 

that in the secondary region.  The order matters only in how the results are displayed and 

sorted.  Ratios are computed by taking each motif and dividing the number of times it 

occurs in the primary region by the number of times it occurs in the secondary region.  

Multiplying by T2/T1, where T2 = total number of motifs in secondary region, and T1 

each the total in the primary region, gives us the normalized ratio.  The data is organized 

in descending order by ratio (which is the same order as that by normalized ratio).  If 

motifs are specified in Define Motif Sequences, only those motifs will be returned. 
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F.2. Compare Genes 
Use this to compute the ratio of occurrence for each motif in the subset of genes versus 

all the other genes.  The primary group is the genes specified in Gene List, the region and 

range from Define Genomic Region are used, and if motifs are specified in Define Motif 

Sequences, only those motifs are returned. 

F.3. Min Number of Occurrences 
Specifies the minimum number of occurrence in the primary group that will be returned.  

This is useful because often times the highest ratios will be motifs that occur only once or 

twice, which many not be biologically meaningful. 

G. Type Your Own Query 
Click the checkbox to have your own query computed.  This obviously requires quite a 

bit of knowledge regarding the database.  Its intended use is for minor modifications of 

automatically generated queries.  Since every query you generate will include the SQL 

code on the results page, you can copy that code and modify it here.  CBBC users have 

permissions to view all tables (except most system tables), and to create and destroy new 

tables and views.  You cannot, however, modify existing tables in any way.  Full access 

users can view any tables that are necessary for the website and can create and delete 

lists.  They cannot, however, create new tables or views.  Guest user accounts are limited 

further by not being allowed to create or delete lists. 

G.1.Limit the number of results returned 
Please be careful how many rows your query will return.  A query can easily return 

millions of rows, which will never return to you.  While I have hardcoded in a limit of 

5000 rows, this number is still quite high for network traffic, so you should make a habit 
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of using the select top xxx clause.  You may notice that all generated queries do this, and 

the default query starts out with a limit of 1000 rows.   

G.2.Error Messages 
If you’re SQL code isn’t perfect, you will receive an SQL exception on the results page.  

On the off chance that it’s helpful, say a prayer of thanksgivinF.  Otherwise, look hard at 

your code and hope for the best. 

H. What do you want to do with this information? 

H.1. Get Sequences 
Takes the motif, geneList, region, and range information, and returns the sequences that 

contain motifs that match all the requirements.   

H.2. Get Descriptions 
Takes the motif, geneList, region, and range information, and returns descriptions of 

those genes that contain motifs that match all the requirements.  If the regions are exons 

or introns, the exon/intron number, as well as the total number of exons/introns for that 

gene are returned.  The motif list, position list, and exon/intron number list are all in 

matching order.  So you can figure out what goes with what based on that. 

 

If “include reference links” is selected, then the reference ID replaces the geneID.  This is 

linked to a curated database of locus IDs and information.  Currently, this is only 

implemented for Arabidopsis, which links to www.arabidopsis.org.  

H.3. Limit Number of Results Returned 
All queries but the user-defined query use this number to limit how many results are 

returned.  1000 should be more than enough.  I’ve hardcoded a maximum of 5000 rows to 
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prevent you from crashing the system.  If you want quicker results, make this number 

smaller. 

I. The Buttons 

I.1. Get Info 
Processes all the queries you have indicated using the checkboxes.  Directs you to the 

results page, which will display all results in order.  This page includes the SQL query 

used for each calculation.   

I.2. Get Graph 
Launches a new window that will graph your specified motif, taking into account the 

gene list and the region and range information.  BinSize specifies the size of the bins used 

in creating the histogram.   

I.3. Reset Form 
Simply resets the form back to its default settings. 

 

The Graphs Page 

A. The Graphs 
The graph includes a Cumulative Distribution (CD) plot, a histogram, and some statistical 

information.  The y value of the CDPlot shows the percentage of motifs that are expected 

to lie to the left of a given position, specified by the x axis.  There are up to three separate 

lines: the expected line, which takes into account the varying lengths of sequences in the 

specified region, Motif1, and Motif2.  The latter two are cumulative measures for all 

motifs entered in motif field 1 and two, respectively.  Thus, you can graph a 6mer, a set 

of related motifs, or even completely random motifs together, and compare them against 



118 

their reverse compliments, for example.  The same information is used to plot the 

histogram. 

 

Note: All position information on the QQPlot is positive, even if it should be negative.  

This in an artifact of using a package I don’t fully understand.  To convert, simply take 

the maximum value shown on the graph, and subtract that from all x values.  So when 

plotting up1500 regions, you should subtract 1500 from all positions on the x axis.  I 

apologize for the inconvinience. 

B. The Statistics 
The statistical information includes three things: a d value, an x value, and a KSProb 

value.  The d value is the maximum y-axis deviation between a graph and the expected 

graph.  This will be between 0 and 1 and is a percentage.  The x value is the position at 

which this d value occurred.  Again, if this is a negative region (eg, upstream, 3’ intron), 

you must subtract the maximum value from the x value to get the corresponding negative 

position.  The KS probability is essentially the probability of getting that d value with the 

number of observations.  You can interpret this as saying a really small KSprob value (eg 

<0.01) indicates this distribution is not likely to be random.  It is not clear what 

appropriate cutoffs (α values) should be.  Most distributions are pretty clear-cut though. 

C. Width and Height Fields 
These simply resize the jpegs.  They actually recalculate and regenerate the graphs, so 

you’ll get a different pixel count.  If you need to copy this into photoshop, you may want 

to copy a large picture to give you better flexibility

 


