
FEBRUARY 2016 | VOL. 59 | NO. 2 | COMMUNICATIONS OF THE ACM 113

DOI:10.1145/2863699

ric combines functional equivalence
measure with a performance metric
(an optimization constraint). In or-
der to define a smooth cost metric
over Boolean program equivalent
constraints, STOKE uses two clever
heuristics: use of Hamming distance
to measure closeness of generated
bit-values to the target on a represen-
tative test input set, and rewarding
generation of (almost) correct values
in incorrect locations.

Interdisciplinary inspiration. STOKE
combines techniques from software
engineering, programming languag-
es, and numerical optimization. It
uses test input generation (Intel’s
PinTool) for generating representa-
tive test inputs for evaluating equiv-
alence cost metrics during MCMC
sampling. It uses automated theo-
rem proving (Microsoft’s Z3) for veri-
fying equivalence of the synthesized
sequence in a post-processing step.
Recent extensions that search over
loopy program spaces leverage invari-
ant inference techniques for verifying
equivalence. STOKE is a great exercise
in interdisciplinary inspiration for
efficient search algorithms for hard
synthesis problems. This is timely and
significant, given recent renewed in-
terest and promising developments in
the area of program synthesis across
various communities.	

References
1.	 Alur, R. et al. Syntax-guided synthesis. In Proceedings

of 2013 FMCAD.
2.	 Bjørner, N. Taking satisfiability to next level with Z3. In

Proceedings of 2012 IJCAR.
3.	 Gulwani, S. Dimensions in program synthesis. In

Proceedings of 2010 PPDP.
4.	 Gulwani, A., Harris, W., and Singh, R. Spreadsheet data

manipulation using examples. Commun. ACM, (2012).
5.	 Solar-Lezama, A. Program Synthesis by Sketching.

Ph.D. thesis, UC Berkeley, 2008.

Sumit Gulwani (sumitg@microsoft.com) is research
manager and principal researcher at Microsoft Corp.,
Redmond, WA.

Copyright held by author.

P R O G R A M S Y N T H E S I S I N V O LV E S discov-
ering a program from an underlying
space of programs that satisfies a giv-
en specification using some search
technique.3 It has many applications
including algorithm discovery, opti-
mized implementations, program-
ming assistance,5 and synthesis of
small scripts to automate repetitive
tasks for end users.4 Its success re-
lies heavily on efficient search algo-
rithms to navigate the underlying
huge state space of programs. The
authors of the following paper have
developed a stochastic search tech-
nique and applied it to program op-
timization. The impressive results
of their implementation STOKE on
hard program optimization bench-
marks illustrate the promising po-
tential of stochastic search to hard
program synthesis problems.

The specification for program syn-
thesis can be in the form of a logi-
cal declarative relationship between
inputs and outputs. Examples or
demonstration traces are a popular
specification choice for end-user pro-
gramming.4 In program optimization,
when viewed as a synthesis problem,
the specification consists of ineffi-
cient programs that need to be trans-
lated into functionally equivalent but
more efficient programs.

Multiple solutions may satisfy the
Boolean constraints in the specifica-
tion. In such cases, preferences can be
specified using an optimization func-
tion. In programming-by-examples,
where the number of solutions may
be several powers of 10, ranking func-
tions over program features are used
to guess an intended program.4 In pro-
gram optimization, the goal is to pre-
fer programs with smaller runtimes.
STOKE’s use of sum of average laten-
cies of the involved instructions serves
as a good static approximation to the
intended measure.

The search space in program syn-
thesis requires a trade-off: expressive

enough to describe programs of inter-
est, while restricted enough to allow
efficient synthesis. Various domain-
specific languages have been de-
signed for synthesis purposes1,3 that
meet this trade-off. In program opti-
mization, a common choice is loop-
free instruction sequences of bound-
ed length. While prior techniques
restrict the space to 10–15 opcodes or
require specifying a small set of rel-
evant opcodes for a given problem in-
stance, STOKE significantly advances
the state of the art by allowing nearly
400 x86-64 opcodes.

Search Technique
A simple search strategy is to enumer-
ate programs in the underlying space
in order of increasing size. However,
this does not scale to huge search
spaces of the kind considered by
STOKE. Another strategy is to reduce
the (second-order) search problem to
(first-order) constraint solving3 and
leverage off-the-shelf SAT/SMT solv-
ers like Z3.2 This allows building over
huge engineering advances made in
SAT/SMT solving, but does not allow
effectively incorporating optimiza-
tion constraints. Version-space alge-
bra-based techniques4 incorporate
preferences by computing the set of
all/many solutions in a first phase,
and then selecting the highest-
ranked solution in a second phase.
STOKE also leverages a two-phased
approach. Its first phase finds algo-
rithmically distinct solutions, while
the second phase finds efficient im-
plementations of code sequences dis-
covered by the first phase.

Stochastic search. STOKE uses
stochastic search for each of its two
phases. This includes an appropri-
ately defined cost metric, and MCMC
sampling to select a next candidate.
The first-phase cost metric is based
on functional equivalence to the tar-
get input sequence (a Boolean con-
straint). The second-phase cost met-

Technical Perspective
Program Synthesis Using
Stochastic Techniques
By Sumit Gulwani

To view the accompanying paper,
visit doi.acm.org/10.1145/2863701 rh

http://dx.doi.org/10.1145/2863699
http://doi.acm.org/10.1145/2863701

