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ric combines functional equivalence 
measure with a performance metric 
(an optimization constraint). In or-
der to define a smooth cost metric 
over Boolean program equivalent 
constraints, STOKE uses two clever 
heuristics: use of Hamming distance 
to measure closeness of generated 
bit-values to the target on a represen-
tative test input set, and rewarding 
generation of (almost) correct values 
in incorrect locations.

Interdisciplinary inspiration. STOKE 
combines techniques from software 
engineering, programming languag-
es, and numerical optimization. It 
uses test input generation (Intel’s 
PinTool) for generating representa-
tive test inputs for evaluating equiv-
alence cost metrics during MCMC 
sampling. It uses automated theo-
rem proving (Microsoft’s Z3) for veri-
fying equivalence of the synthesized 
sequence in a post-processing step. 
Recent extensions that search over 
loopy program spaces leverage invari-
ant inference techniques for verifying 
equivalence. STOKE is a great exercise 
in interdisciplinary inspiration for 
efficient search algorithms for hard 
synthesis problems. This is timely and 
significant, given recent renewed in-
terest and promising developments in 
the area of program synthesis across 
various communities.	
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P R O G R A M  S Y N T H E S I S  I N V O LV E S  discov-
ering a program from an underlying 
space of programs that satisfies a giv-
en specification using some search 
technique.3 It has many applications 
including algorithm discovery, opti-
mized implementations, program-
ming assistance,5 and synthesis of 
small scripts to automate repetitive 
tasks for end users.4 Its success re-
lies heavily on efficient search algo-
rithms to navigate the underlying 
huge state space of programs. The 
authors of the following paper have 
developed a stochastic search tech-
nique and applied it to program op-
timization. The impressive results 
of their implementation STOKE on 
hard program optimization bench-
marks illustrate the promising po-
tential of stochastic search to hard 
program synthesis problems.

The specification for program syn-
thesis can be in the form of a logi-
cal declarative relationship between 
inputs and outputs. Examples or 
demonstration traces are a popular 
specification choice for end-user pro-
gramming.4 In program optimization, 
when viewed as a synthesis problem, 
the specification consists of ineffi-
cient programs that need to be trans-
lated into functionally equivalent but 
more efficient programs.

Multiple solutions may satisfy the 
Boolean constraints in the specifica-
tion. In such cases, preferences can be 
specified using an optimization func-
tion. In programming-by-examples, 
where the number of solutions may 
be several powers of 10, ranking func-
tions over program features are used 
to guess an intended program.4 In pro-
gram optimization, the goal is to pre-
fer programs with smaller runtimes. 
STOKE’s use of sum of average laten-
cies of the involved instructions serves 
as a good static approximation to the 
intended measure.

The search space in program syn-
thesis requires a trade-off: expressive 

enough to describe programs of inter-
est, while restricted enough to allow 
efficient synthesis. Various domain-
specific languages have been de-
signed for synthesis purposes1,3 that 
meet this trade-off. In program opti-
mization, a common choice is loop-
free instruction sequences of bound-
ed length. While prior techniques 
restrict the space to 10–15 opcodes or 
require specifying a small set of rel-
evant opcodes for a given problem in-
stance, STOKE significantly advances 
the state of the art by allowing nearly 
400 x86-64 opcodes.

Search Technique
A simple search strategy is to enumer-
ate programs in the underlying space 
in order of increasing size. However, 
this does not scale to huge search 
spaces of the kind considered by 
STOKE. Another strategy is to reduce 
the (second-order) search problem to 
(first-order) constraint solving3 and 
leverage off-the-shelf SAT/SMT solv-
ers like Z3.2 This allows building over 
huge engineering advances made in 
SAT/SMT solving, but does not allow 
effectively incorporating optimiza-
tion constraints. Version-space alge-
bra-based techniques4 incorporate 
preferences by computing the set of 
all/many solutions in a first phase, 
and then selecting the highest- 
ranked solution in a second phase. 
STOKE also leverages a two-phased 
approach. Its first phase finds algo-
rithmically distinct solutions, while 
the second phase finds efficient im-
plementations of code sequences dis-
covered by the first phase.

Stochastic search. STOKE uses 
stochastic search for each of its two 
phases. This includes an appropri-
ately defined cost metric, and MCMC 
sampling to select a next candidate. 
The first-phase cost metric is based 
on functional equivalence to the tar-
get input sequence (a Boolean con-
straint). The second-phase cost met-
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