
70 COMMUNICATIONS OF THE ACM | AUGUST 2014 | VOL. 57 | NO. 8

contributed articles

HUMAN LEARNING AND communication is often
structured around examples, possibly a student trying
to understand or master a certain concept through
examples or a teacher trying to understand a student’s
misconceptions or provide feedback through example
behaviors. Example-based reasoning is also used in
computer-aided programming to analyze programs,
including to find bugs through test-input-generation
techniques4,34 and prove correctness through inductive
reasoning or random examples15 and synthesize
programs through input/output examples or
demonstrations.10,16,18,22 This article explores how

such example-based reasoning tech-
niques developed in the programming-
languages community can also help
automate certain repetitive and struc-
tured tasks in education, including
problem generation, solution genera-
tion, and feedback generation.

These connections are illustrated
through recent work (in computer
science) applied to a variety of STEM
subject domains, including logic,1 au-
tomata theory,3 programming,27 arith-
metic,5,6 algebra,26 and geometry.17
More significant, the article identifies
some general principles and method-
ologies that are applicable across mul-
tiple subject domains.

Procedural vs. conceptual prob-
lems. Procedural problems involve so-
lutions that require following a specific
procedure students are expected to
memorize and apply; examples include
mathematical procedures5 taught in
middle school or high school (such as
addition, long division, greatest com-
mon divisor computation, Gaussian
elimination, and basis transforma-
tions) and algorithmic procedures
taught in undergraduate computer
science, where students are expected
to demonstrate their understanding of
certain classic algorithms on specific
inputs (such as breadth-first search,
insertion sort, Dijkstra’s shortest-path

Example-
Based
Learning in
Computer-
Aided STEM
Education

DOI:10.1145/2634273

Example-based reasoning techniques
developed for programming languages also
help automate repetitive tasks in education.

BY SUMIT GULWANI

 key insights

 � �Computing technologies can automate
repetitive tasks in education, including
problem generation, solution generation,
and feedback generation, for numerous
subject domains, including programming,
logic, automata theory, arithmetic,
algebra, and geometry.

 � �This can make standard and online
classrooms more efficient and enable
new pedagogies involving personalized
workflows, saved teacher time, and
improved student learning.

 � �Computer-aided education requires cross-
disciplinary computing technologies;
highlighted here are contributions
from programming languages,
human-computer interaction, and
artificial intelligence; natural language
understanding and machine learning also
play a significant role.

http://dx.doi.org/10.1145/2634273

AUGUST 2014 | VOL. 57 | NO. 8 | COMMUNICATIONS OF THE ACM 71

I
M

A
G

E
 B

Y
 S

E
R

G
E

Y
 N

I
V

E
N

S

algorithm, regular expression to au-
tomaton conversion, and even comput-
ing tensor/inner product of qubits).

Conceptual problems include all
nonprocedural ones for which there
is no decision procedure (the student
is expected to know and apply) but re-
quire creative thinking in the form of
pattern matching or educated guesses.
Problems include:

Proof problems. Natural deduc-
tion proofs,1 proofs of algebraic theo-
rems,26 and proofs of non-regularity of
languages; and

Construction problems. Construc-
tion of computational artifacts (such as
geometric constructions,17 automata,3
algorithmic procedures,27 and bitvector
circuits).

Example-based learning. Examples
have multifaceted use in educational
technologies. This article classifies their

use according to interaction with the un-
derlying technology (see Figure 1).

Input. For several educational tasks,
examples constitute a natural means
to express intent. In the case of solu-
tion generation for procedural prob-
lems, teachers can demonstrate exam-
ple traces with the goal of synthesizing
procedures for the problems. In the
case of problem generation for concep-
tual problems, teachers can provide
an example problem with the goal of
generating similar problems. In the
case of feedback generation for proce-
dural problems, teachers can provide
examples of buggy traces with the goal
of learning the algorithmic misconcep-
tions a student might have. In the case
of feedback generation for concep-
tual problems, teachers can provide
examples of common local error cor-
rections, aiming to find some appro-

priate combination of the corrections
that correct a given incorrect attempt.
For such cases, this article describes
techniques inspired by research in pro-
gramming by example (PBE).10,16,18,22

Output. For some educational tasks,
examples constitute the intended out-
put artifact. In the case of problem
generation for procedural problems,
teachers want to produce example
inputs that exercise various paths in
the given procedure to generate a pro-
gression of problems. In the case of
feedback generation for conceptual
problems, teachers want to produce
counterexamples that expose incorrect
behavior in the student’s solution. For
such cases, the article describes tech-
niques inspired by program analysis,
in particular by test-input-generation
techniques4,34 often used to find bugs.

Inside. Examples can also be used

72 COMMUNICATIONS OF THE ACM | AUGUST 2014 | VOL. 57 | NO. 8

contributed articles

ing33—solution generation, problem
generation, and feedback generation—
through multiple instances of example-
based learning technologies for each
task. Also described are several evalua-
tions associated with each of these in-
stances. While several of the instances
are preliminary, some have been de-
ployed and evaluated more thoroughly.

Solution Generation
Solution generation involves auto-
matically generating solutions, given
a problem description in some sub-
ject domain, and is important for sev-
eral reasons: It can be used to gener-
ate sample solutions for automatically
generated problems; given a student’s
incomplete solution, it can be used to
complete a solution that can be much
more illustrative for the student com-
pared to providing a completely differ-
ent sample solution; and, given a stu-
dent’s incomplete solution, it can also
be used to generate hints on the next
step or toward an intermediate goal.

Procedural problems. Solution
generation for procedural problems
can be achieved by writing down and
executing the corresponding proce-
dure for a given problem. While these
procedures can be written manually,
technologies for automatic procedure
synthesis (from examples) can enable
nonprogrammers to create custom-
ized procedures on the fly. The number
of such procedures and their stylistic
variations in how they are taught can
be significant and may not be known in
advance to outsource manual creation
of the procedures.

The procedures can be synthesized
through PBE technology10,16,22 tradi-
tionally applied to end-user applica-
tions. More recently, PBE has also
been used to synthesize programs for
spreadsheet tasks, including string
transformations and table layout
transformations.18 Mathematical pro-
cedures can be viewed as spreadsheet
procedures involving computation
of new values from existing values in
spreadsheet cells, as in string trans-
formations that produce a new out-
put string from substrings of input
strings, and positioning that value in
an appropriate spreadsheet cell, as in
table transformations that reposition
the content of an input spreadsheet
table. Ideas from learning string and

inside the underlying algorithms to
perform inductive reasoning, which
happens in both solution generation
and problem generation for concep-
tual problems. It is inspired by how
humans often approach problem gen-
eration and solving, with the underly-
ing techniques inspired by research in

establishing program correctness us-
ing random examples15 and program
synthesis using examples.16

The article next explores example-
based learning technologies through
specific instances, highlighting gen-
eral principles. It is organized around
the three key tasks in intelligent tutor-

Figure 1. Three ways examples are used in computer-aided educational technologies as
input (for intent expression); as output (to generate the intended artifact); and inside the
underlying algorithm (for inductive reasoning).

Procedural Conceptual

Solution Generation Input6 Inside1,17

Problem Generation Output5 Input,1,26 Inside1,26

Feedback Generation Input6 Output,3 Input27

Figure 2. Solution generation for procedural problems:6 (a) demonstrate greatest common
factor (GCF) procedure over inputs 762 and 1270 to produce output 254; and (b) synthesize
procedure GCF automatically from the demonstration in (a).

(a) (b)

GCF (int array array T, int I1, int I2)
1
2 for (j := 0; T[2j , j] ≠ 0; j := j + 1):
3 T[2j, j + 2] := Floor(T[2 j, j + 1] ÷ T[2 j, j]);
4 T[2j + 1, j + 1] := T[2j, j + 2] × T[2 j, j]);
5 T[2j + 1, j + 1] := T[2j, j + 1] – [2j + 1, j + 1];
6 T[2j + 2, j + 2] := T[2j, j];
7 return T[2j, j + 1];

762
762 1270 1

508
508
254 508 2

508
0 254

762 1

Assume T, [0,0], T[1,0] contain I1, I2 respectively.

Figure 3. Solution generation for geometry constructions.17

(a) English Description Construct a triangle given its base L (with end-points p1, p2),
a base angle a, and sum r of the other two sides.⇓

(b) PreCondition r > Length(p1, p2)

(c) Random Example L = Line(p1 = 〈81:62; 99:62〉, p2= 〈99:62; 83:62〉)
r = 88:07 a = 0:81 radians p = 〈131:72; 103:59〉

(d) Geometry Program

(e) Geometry Construction

ConstructTriangle(p1, p2, L, r, a):
L1 := ConstructLineGivenAngleLinePoint(L, a, p1);
C1 := ConstructCircleGivenPointLength(p1, r);
(p3, p5) := LineCircleIntersection(L1, C1);
L2 := PerpendicularBisector2Points(p2, p3);
p := LineLineIntersection(L1, L2);
return p;

⇓

PostCondition Angle(p, p1, p2) = a∧
Length(p, p1) + Length(p, p2) = r ⇓

C1

p

L2

L1
a

r

p3p1

p2

AUGUST 2014 | VOL. 57 | NO. 8 | COMMUNICATIONS OF THE ACM 73

contributed articles

The use of trace-
based modeling
allows for test-
input-generation
tools for generating
problems with
certain trace
features.

table transformations can be com-
bined to learn mathematical proce-
dures from example traces, where
a trace is a sequence of (value, cell)
pairs.6 Dynamic programming can
be used to compute all subprograms
that are consistent with various sub-
traces (in order of increasing length).
The underlying algorithm starts out
by computing, for each trace element
(v, c), the set of all program statements
(over a teacher-specified set of opera-
tors) that can produce v from previous
values in the trace; see Figure 2 for
synthesis of a greatest common divi-
sor procedure from an example trace,
where the teacher-specified operators
include −, ×, ÷, and Floor.

Conceptual problems. Solution
generation for conceptual problems
often requires performing search over
the underlying solution space. Follow-
ing are two complementary principles,
each useful across multiple subject
domains while also reflecting how hu-
mans might search for such solutions.

S1: Perform reasoning over examples
as opposed to abstract symbolic rea-
soning. The idea is to reason about
the behavior of a solution on some or
even all examples, or concrete inputs,
instead of performing symbolic rea-
soning over an abstract input. Such
reasoning reduces search time by
large constant factors because execut-
ing part of a construction or proof on
concrete inputs is much quicker than
reasoning symbolically about the con-
struction or proof.

S2: Reduce solution space to solutions
with small length. The idea is to extend
the solution space with commonly used
macro constructs in which each such
construct is a composition of several
basic constructs/steps. This extension
reduces the size of solutions, making
search more feasible in practice.

The following illustrates these prin-
ciples in multiple subject domains:

Geometry constructions. Geometry
construction is a method for con-
structing a desired geometric object
from other objects by applying a se-
quence of ruler and compass con-
structions (see Figure 3). Such con-
structions are an important part of
high school geometry. The automated
geometric-theorem-proving com-
munity (one of the success stories in
automated reasoning) has developed

tools (such as Geometry Explorer32
and Geometry Expert14) that allow
students to create geometry construc-
tions and use interactive provers to
prove properties of the constructions.
How are these constructions synthe-
sized in the first place?

Geometry constructions can be re-
garded as straight-line programs that
manipulate geometry objects—points,
lines, and circles—using ruler/com-
pass operators. Hence, their synthesis
can be phrased as a program-synthesis
problem17 in which the goal is to syn-
thesize a straight-line program, as in
Figure 3d, that realizes the relational
specification between inputs and out-
puts, as in Figure 3b.

The semantics of geometry opera-
tions is too complicated for symbolic
methods for synthesis or even for veri-
fication. Ruler/compass operators are
analytic functions, implying the validity
of a geometry construction can be prob-
abilistically inferred from testing on
random examples, an implication that
follows from the following extension of
the classical result on polynomial iden-
tity testing25 to analytic functions:

Property 1 (probabilistic testing of
analytic functions). Let f (X) and g(X)
be non-identical real-valued analytic
functions over Rn. Let Y ∈ Rn be selected
uniformly at random, then with high
probability over the random selection
f (Y) ≠ g(Y). Property 1 follows from the
fact that non-zero analytic functions
have isolated zeroes; that is, for ev-
ery zero point of an analytic function,
there exists a neighborhood in which
the function is non-zero. The num-
ber of non-zero points of the non-zero
analytic function f(X) − g(X) thus domi-
nates the number of its zero points.a

The problem of synthesizing geome-
try constructions that satisfy a symbolic
relational specification between inputs
and outputs can thus be reduced to syn-
thesizing constructions that are consis-

a	 Unlike the polynomial identity testing theo-
rem,25 which allows performing modular arith-
metic over numbers selected randomly from a
finite integer set for efficient evaluation, this
result provides no constructive guidance on
the size of the selection set and requires pre-
cise arithmetic. This process is approximated
by using finite-precision floating-point arith-
metic and a threshold for comparing equality;
in practical experiments, it has yielded no un-
soundness or incompleteness.

74 COMMUNICATIONS OF THE ACM | AUGUST 2014 | VOL. 57 | NO. 8

contributed articles

that is either a premise or derived from
preceding propositions through ap-
plication of some inference rule (see
Figure 4a) or replacement rule (see
Figure 4b), the last of which concludes
the argument; see Figure 4d for a proof.
Ditmarsc29 surveyed proof assistants
for teaching natural deduction (such
as Pandora9), some of which also solve
problems. This article describes a dif-
ferent, scalable, way to solve such prob-
lems while also paving the way for gen-
erating fresh problems, as described in
the next section.

While the SAT (Boolean satisfiabil-
ity), SMT (satisfiability modulo theo-
ries), and theorem-proving commu-
nities8 continue to focus on solving
large-size proof problems in a reason-
able amount of time, one recent ap-
proach, by Ahmed et al.,1 to generating
natural deduction proofs in real time
leverages the observation that class-
room-size instances are small. The
Ahmed et al. approach reflects use of
the two general principles discussed
earlier: abstract a proposition using its
truth table, which can be represented
using a bitvector representation,20
thus avoiding expensive symbolic
reasoning and reducing application
of inference rules to simple bitvector
operations (Principle S1); and break
the proof search into multiple small-
er (and hence more efficient) proof
searches (Principle S2).

First, an abstract proof is discov-
ered that involves only inference-rule
applications over truth-table repre-
sentation; note replacement rules are
identity operations over truth-table
representation. This abstract proof
over truth-table representation is then
refined to a complete proof over sym-
bolic propositions by searching for
sequences of replacement rules be-
tween consecutive inference rules; see
Figure 4c for an example of an abstract
proof and Figure 4d for its refinement
to a complete proof. Note the size of
an abstract proof and the number of
replacement rules inserted between
any two consecutive inference rules is
much smaller than the size of the over-
all proof. The Ahmed et al. approach
solved 84% of 279 problems from var-
ious textbooks (generating proofs of
≤27 steps), while a baseline algorithm
(using symbolic representation for
propositions and performing breadth-

tent with randomly chosen input-output
examples (Principle S1).

This reduction is the basis of
Gulwani et al.’s17 synthesis algorithm
for geometry constructions involving
two key steps (see also Figure 3) re-
flecting the two general principles dis-
cussed earlier:

˲˲ Generate random input-output
examples, as in Figure 3c, from the
logical description, as in Figure 3b, of
the given problem using off-the-shelf
numerical solvers; the logical descrip-
tion is in turn generated from the natu-
ral language description, as in Figure
3a, using natural language translation
technology; and

˲˲ Perform brute-force search over a
library of ruler-and-compass operators
to find a construction, as in Figure 3d,
that transforms the randomly selected
input(s) into corresponding output(s).

The search is performed over an ex-
tended library of ruler and compass
operators that includes higher-level
primitives, such as perpendicular and
angular bisectors (Principle S2). The
use of an extended library not only
shortens the size of a solution (allow-
ing for efficient search) but also makes
a solution more readable for students.
On Gulwani et al.’s17 benchmark of 25
problems, the extended library helped
reduce the maximum solution size
from 45 steps to 13 steps and increased
the success rate from 75% to 100%.

Natural deduction proofs. Natural
deduction (taught in introductory logic
courses in college) is a method for es-
tablishing the validity of arguments in
propositional logic, where the conclu-
sion of an argument is derived from the
premises through a series of discrete
steps. Each one derives a proposition

Figure 4. Solution generation for natural deduction:1 (a) sample inference rules; (b) sample
replacement rules; (c) abstract proof of the problem in Figure 7b, with second column listing
the 32-bit integer representation of the truth-table over five variables; (d) natural deduction
proof of the problem in Figure 7b, with inference rule applications in bold; and (e) natural de-
duction proof of a problem similar to the one in Figure 7b with the same inference rule steps.

Rule Name Premises Conc

Modus Ponens (MP) p→q, p q

Hypo. Syllogism (HS) p→q, q→r p→r

Disj. Syllogism (DS) p∨q, ¬p q

Simplification (Simp) p∧q q

(a)

Step Proposition Reason

P1 x1 ∨ (x2 ∧ x3) Premise

P2 x1 → x4 Premise

P3 x4 → x5 Premise

1 (x1 ∨ x2)∧(x1∨x3) P1, Distr.

2 x1 ∨ x2 1, Simp.

3 x1 → x5 P2, P3, HS.

4 x2 ∨ x1 2, Comm.

5 ¬¬x2 ∨ x1 4, Double Neg

6 ¬x2 → x1 5, Implication

7 ¬x2 → x5 6, 3, HS.

8 ¬¬x2 ∨ x5 7, Implication

Conc x2 ∨ x5 8, Double Neg

Step Proposition Reason

P1 x1 ≡ x2 Premise

P2 x3 → ¬x2 Premise

P3 (x4 → x5) → x3 Premise

1 (x1→x2)∧(x2→x1) P1, Equivalence

2 x1 → x2 1, Simp.

3 (x4 → x5) → ¬x2 P3, P2, HS.

4 ¬¬x2 → ¬(x4→x5) 3, Transposition

5 x2 → ¬(x4 → x5) 4, Double Neg

6 x1 → ¬(x4 → x5) 2, 5, HS.

7 x1 → ¬(¬x4 ∨ x5) 6, Implication

8 x1 → (¬¬x4 ∧ ¬x5) 7, De Morgan’s

Conc x1 → (x4 ∧ ¬x5) 8, Double Neg.

(d)

(e)

Rule Name Proposition
Equivalent
Proposition

Distribution p∨(q∧r) (p∨q)∧(p∨r)

Double
Negation

p ¬¬p

Implication p→q ¬p∨q

Equivalence p≡q (p→q)∧(q→p)

p≡q (p∧q)∨(¬p∧¬q)

(b)

Step Truth-table Reason

P1 1048575 Premise

P2 4294914867 Premise

P3 3722304989 Premise

1 16777215 P1, Simp

2 4294923605 P2, P3, HS

3 1442797055 1, 2, HS

(c)

AUGUST 2014 | VOL. 57 | NO. 8 | COMMUNICATIONS OF THE ACM 75

contributed articles

first search for the complete proof)
solved 57% of the same problems.1

Problem Generation
Generating fresh problems with spe-
cific solution characteristics (such as
a certain difficulty level and set of con-
cepts) is tedious for the teacher. Auto-
mating the generation of fresh prob-
lems has several benefits: Generating
problems similar to a given problem
can help avoid copyright issues. It may
not be legal to publish problems from
textbooks on course websites. A prob-
lem-generation tool can give instructors
a fresh source of problems for their as-
signments or lecture notes. It can also
help prevent cheating23 in classrooms
or MOOCs (with unsynchronized in-
struction) since each student can be
given a different problem with the same
difficulty level. And when a student fails
to solve a problem and ends up looking
at the sample solution, the student may
be assigned a similar practice problem
by an automated system, not necessar-
ily by human teacher. Generating prob-
lems with a given difficulty level and
exercising a given set of concepts can
help create personalized workflows for
students. Students who solve a problem
correctly may be given a problem more
difficult than the last problem or that
involves a richer set of concepts.

On the other hand, fresh problems
create new pedagogical challenges
since teachers may no longer recognize
the problems and students may be un-
able to discuss them with one another
after assignment submission. These
challenges can be mitigated through
solution-generation and feedback-
generation capabilities.

Procedural problems. A procedural
problem can be characterized by the
trace it generates through the corre-
sponding procedure. Various features
of the trace can then be used to iden-
tify the difficulty level of a procedural
problem and the concepts it exercises;
for instance, a trace that executes both
sides of a branch (in multiple iterations
through a loop) might exercise more
concepts than the one that simply exe-
cutes only one side of that branch, and
a trace that executes more iterations of
a loop might be more difficult than the
one that executes fewer iterations.

Trace-based modeling allows for
test-input-generation tools4 for gener-

ating problems with certain trace fea-
tures. Andersen et al.5 used this insight
to automatically synthesize practice
problems for elementary and middle
school mathematics;5 Figure 5 out-
lines such automatic synthesis in the
context of an addition procedure. Note
various addition concepts can be mod-
eled as trace properties and, in partic-
ular, regular expressions over proce-
dure locations. Moreover, trace-based
modeling allows for use of notions of
procedure coverage34 to evaluate the
comprehensiveness of a certain col-
lection of expert-designed problems
and fill any holes. It also allows for
defining a partial order over problems
by defining a partial order over corre-
sponding traces based on trace fea-
tures (such as number of times a loop
was executed and whether the excep-
tional case of a conditional branch
was executed) and the set of n-grams
present in the trace. Andersen et al.5
used this partial order to synthesize
progressions of problems and even
to analyze and compare existing pro-
gressions across multiple textbooks.

As part of follow-on work, Andersen
et al. used their trace-based framework
to synthesize a progression of thou-
sands of levels for Refraction, a popu-
lar math puzzle game. An A/B test with
2,377 players (on the portal http://www.

newgrounds.com) showed automati-
cally synthesized progression can mo-
tivate players to play for similar lengths
of time, as in the case of the original
expert-designed progression. The me-
dian player in the synthesized progres-
sion group played 92% as long as the
median player in the expert-designed
progression group.

Effective progressions are impor-
tant not just for school-based learning
but also for usability and learnability in
end-user applications. Many modern
user applications have advanced fea-
tures, and learning them constitutes
a major effort by the user. Designers
have thus focused on trying to reduce
the effort; for example, Dong et al.11
created a series of mini-games to teach
users advanced image-manipulation
tasks in Adobe Photoshop. The Ander-
sen et al.5 methodology may assist in
creating such tutorials and games by
automatically generating progressions
of tasks from procedural specifications
of advanced tasks.

Conceptual problems. Problem
generation for certain conceptual
problems can be likened to discover-
ing new theorems, a search-intensive
activity that can be aided by domain-
specific strategies. However, two gen-
eral principles are useful across mul-
tiple subject domains:

Figure 5. Problem generation for procedural problems:5 (a) addition procedure to add two
numbers, instrumented with control locations on the right side; and (b) concepts expressed
in terms of trace features and corresponding example inputs that satisfy those features
(such example inputs can be generated through test-input-generation techniques).

Concept Trace characteristic Example input

Single-digit addition L 3 + 2

Multiple-digit addition without carry LL+ 1234 + 8765

Single carry L*(LC)L* 1234 + 8757

Two single carries L*(LC)L+(LC)L* 1234 + 8857

Double carry L*(LCLC)L* 1234 + 8667

Triple carry L*(LCLCLC)L* 1234 + 8767

Extra digit in input and new digit in output L*CLDCE 9234 + 900

(b)

(a)

Add(int array A, int array B)
	  := Max(Len(A), Len(B));
	 for i=0 to -1 . 	 •  Loop over digits (L)
		 if (i ≥ Len(A)) t := B[i]; 	 •  Different # of digits (D)
		 else if (i ≥ Len(B)) t := A[i]; 	 •  Different # of digits (D)
		 else t:=A[i]+B[i];
		 if (C[i] == 1) t:=t+1; 	 •  Carry from prev. step (C)
		 if (t > 9) { R[i]:=t-10; C[i + 1]:=1; }
		 else R[i] := t;
	 if (C[] == 1) R[] := 1;	 •  Extra digit in output (E)

76 COMMUNICATIONS OF THE ACM | AUGUST 2014 | VOL. 57 | NO. 8

contributed articles

The proposition replacement inter-
face (see Figure 7a) finds replacements
for a given premise or the conclusion
in a given example problem. It gener-
ates those propositions as replace-
ments that ensure the new problem is
well defined, or one whose conclusion
is implied by the premises but not by
any strict subset of the premises. This
interface, based on Principle P1, in-
volves checking all possible small-size
propositions as replacements. The
validity of each candidate problem is
checked by performing bitvector oper-
ations over bitvector-based truth table
representation of the propositions20
(Principle S1). A candidate problem is
valid if the bitwise-and of the premise
bitvectors is bitwise smaller than the
conclusion bitvector.

The similar problem-generation in-
terface finds problems with a solution
that uses exactly the same sequence of
inference rules used by a solution of an
example problem. Figure 7b lists auto-
matically generated problems, given an
example problem. Figure 4e describes
a solution for the first new problem in
Figure 7b. Observe this solution uses
exactly the same sequence of inference
rules (in bold) as the solution for the
original example problem in Figure
4d. The parameterized problem-gen-
eration interface finds problems with
specific features (such as a given num-
ber of premises and variables, maxi-
mum size of propositions, and small-
est proof involving a given number of
steps and given set of rules). Figure
7c lists automatically generated prob-
lems, given some parameters. Both
these interfaces find desired problems
by performing a reverse search in the
solution space (Principle P2) explored
by the solution-generation technology
for natural deduction described ear-
lier. The similar-problem-generation
interface further uses the solution tem-
plate obtained from a solution of the
example problem for search guidance
(Principle P1).

Feedback Generation
Feedback generation may involve iden-
tifying whether or not a student’s solu-
tion is incorrect, why it is incorrect, and
where or how it can be fixed. A teacher
might even want to generate a hint to
enable students to identify and/or fix
mistakes on their own. In examination

P1: Example-based template gener-
alization. This involves generalizing
a given example problem into a tem-
plate and searching for all possible
instantiations of the template for val-
id problems. Given the search space
might be vast, it is usually applicable
when the validity of a given candidate
problem can be checked quickly. It
does not necessarily require access
to a solution-generation technology,
though such technology can be used to
ascertain the difficulty level of the gen-
erated problems; and

P2: Problem generation as reverse of
solution generation. This applies only to
proof problems. The idea is to perform
a reverse search in the solution-search
space starting with the goal and leading
up to the premises. It has the advantage
of ensuring the generated problems
have specific solution characteristics.

The following sections illustrate
how these principles are used in mul-
tiple subject domains.

Algebraic proof problems. Problems
that require proving algebraic identi-
ties (see Figure 6) are common in high
school math curricula. Generating
such problems is tedious for the teach-
er since the teacher cannot arbitrarily
change constants (unlike in procedur-
al problems) or variables to generate a
correct problem.

The Singh et al.26 Algebra-problem-
generation methodology, as in Figure
6, uses Principle P1 to generate fresh
problems similar to a given example
problem. First, a given example prob-
lem is generalized into a template with
a hole for each operator in the original
problem to be replaced by another op-
erator of the same type signature. The
teacher can guide the template-gen-
eralization process by providing more
example problems or manually edit-
ing the initially generated template. All
possible instantiations of the template
are automatically enumerated, and the
validity of an instantiation is checked
by testing on random inputs. The prob-
abilistic soundness of such a check
follows from Property 1. The method-
ology works for identities over analytic
functions involving common algebraic
operators, including trigonometry, in-
tegration, differentiation, logarithm,
and exponentiation. Note the method-
ology would not be feasible if symbolic
reasoning were used (instead of ran-
dom testing) to check the validity of a
candidate instantiation since symbolic
reasoning is much slower (Principle
S1) and the density of valid instantia-
tions is often quite low.

Natural deduction problems. Figure
7 covers three interfaces for generat-
ing new natural deduction problems:1

Figure 6. Problem generation for algebraic-proof problems involving identities over analytic
functions (such as trigonometry and determinants);26 a given problem is generalized into a
template, and valid instantiations are found by testing on random values for free variables.

Example
Problem

sin A
1 + cos A

+

+ = 2T5 A
= c F9(x, y, z)

where Ti ∈ {cos, sin, tan, cot, sec, csc}
where Fi (0 ≤ i ≤ 8) and F9 are homogeneous polynomials

of degrees 2 and 6 respectively,
 ∀(i, j) ∈ {(4,0), (8,4), (5, 1), . . .} : Fi = Fj [x→y; y→z; z→x],

and c ∈ {±1, ±2, . . ., ±10}.

⇓

Generalized
Problem
Template

New
Similar
Problems

⇓

cos A
1 – sin A

+ = 2 tan A1 – sin A
cos A

cos A
1 + sin A

+ = 2 sec A1 + sin A
cos A

cot A
1 + csc A

+ = 2 sec A1 + csc A
cot A

tan A
1 + sec A

+ = 2 csc A1 + sec A
tan A

sin A
1 – cos A

+ = 2 cot A1 – cos A
sin A

T1 A
1 ± T2 A T4A

1 ± T3 A

1 + cos A
 sin A

= 2 csc A = 2xyz(x + y + z)3
(x + y)2

zx
yz

F0(x, y, z)
F3(x, y, z)
F6(x, y, z)

F1(x, y, z)
F4(x, y, z)
F7(x, y, z)

F2(x, y, z)
F5(x, y, z)
F8(x, y, z)

zx
(y + z)2

xy

zy
xy

(z + x)2

= 2(xy + yz + zx)3
y2

(z + y)2

z2

x2

z2

(x + z)2

(y + x)2

y2

x2

= xyz(x + y + z)3
–xy

zx + z2

xy + x2

yz + y2

–yz
xy + x2

yz + y2

zx + z2

–zx

= 4x2y2z2
yz + y2

yz
zx

xy
zx + z2

zx

xy
yz

xy + x2

AUGUST 2014 | VOL. 57 | NO. 8 | COMMUNICATIONS OF THE ACM 77

contributed articles

settings, the teacher would even like to
award a numerical grade.

Automating feedback generation is
important for several reasons: First, it
is quite difficult and time-consuming
for a human teacher to identify what
mistake a student has made. As a re-
sult, teachers often take several days
to return graded assignments to their
students. In contrast, if students get
immediate feedback (due to automa-
tion), it can help them realize and
learn from their mistakes faster and
better. Furthermore, maintaining
grade consistency across students and
graders is difficult. The same grader
may award different scores to two
very similar solutions, while different
graders may award different scores to
the same solution.

Procedural problems. Generating
feedback for procedural problems is
relatively easy (compared to concep-
tual problems) since they all have a
unique solution; the student’s attempt
can simply be syntactically compared
with the unique solution. While stu-
dent errors may include careless mis-
takes or incorrect fact recall, one com-
mon class of mistakes students make
in procedural problems is employing
a wrong algorithm. Van Lehn30 identi-
fied more than 100 bugs students in-
troduce in subtraction alone. Ashlock7
identified a set of buggy computational
patterns for a variety of algorithms
based on real student data. Here are
two bugs Ashlock described for the ad-
dition procedure (see Figure 5a):

˲˲ Add each column and write the
sum below each column, even if it is
greater than nine; and

˲˲ Add each column from left to
right; if the sum is greater than nine,

write the 10s digit beneath the column
and the ones digit above the column
to the right.

All such bugs have a clear proce-
dural meaning and can be captured
as a procedure. The buggy procedures
can be automatically synthesized from
examples of incorrect student traces
using the same PBE technology dis-
cussed earlier in the context of solution
generation for procedural problems.
In fact, each of the 40 bugs described
by Ashlock7 is illustrated with a set of
five to eight example traces, and An-
dersen et al.6 were able to synthesize 28
(out of 40) buggy procedures from their
example traces.

Identifying buggy procedures has
multiple benefits; for instance, it can
inform teachers about a student’s mis-
conceptions. It can also be used to au-
tomatically generate a progression of
problems specifically tailored to high-
lighting differences between the correct
procedure and the buggy procedure.

Aleven et.al.2 used PBE technology
to generalize demonstrations of cor-
rect and incorrect behaviors provided
upfront by the teacher. While their
generalization is restricted to loop-
free procedures, teachers are able to
add annotations as feedback to stu-
dents who get stuck or follow a known
incorrect path.

Conceptual problems. Feedback
for proof problems can be generated by
checking correctness of each individu-
al step (assuming students are using a
correct proof methodology) and using
a solution-generation technology to
generate proof completions from the
onset of any incorrect step.13 Here, this
article focuses on feedback generation
for construction problems, including

two general principles useful across
multiple subject domains:

F1: Edit distance. The idea is to find
the smallest set of edits to the stu-
dent’s solution that will transform it
into a correct solution. Such feedback
informs students about where the er-
ror is in their solution and how it can
be fixed. An interesting twist is to find
the smallest set of edits to the problem
description that will transform it into
one that corresponds to the student’s
incorrect solution, thus capturing the
common mistake of misunderstand-
ing the problem description. Such
feedback can inform students as to
why their solution is incorrect. The
number and type of edits can be used
as a criterion for awarding numerical
grades; and

F2: Counterexamples. The idea is
to find input examples on which a
student’s solution does not behave
correctly. Such feedback informs the
student about why the solution is in-
correct. The density of such inputs
can be used as a criterion for awarding
grades.

The following illustrates how these
principles are used in different subject
domains:

Introductory programming assign-
ments. The standard approach to grad-
ing programming assignments is to
examine its behavior on a set of test
inputs that can be written manually or
generated automatically.4 Douce et al.12
surveyed various systems developed
for automated grading of program-
ming assignments. Failing test inputs,
or counterexamples, can provide guid-
ance as to why a given solution is incor-
rect (Principle F2). However, this guid-
ance alone is not ideal, especially for

Figure 7. Problem-generation interfaces for natural deduction problems;1 (a) proposition replacement; (b) similar-problem generation; and
(c) parameterized-problem generation.

¬x4

x4 ≡ x5

x4 ≡ x2

x4 → x2

x4 → ¬x1

(a)

(b) (c)

Some replacements
for Premise 3 in
Example Problem
in (b):

Parameters:	 # of premises = 3, Size of propositions ≤ 4,
	 # of variables = 3, # of inference steps = 2,
	 Inference rules = { DS, HS }

Premise 1 Premise 2 Premise 3 Conclusion

Example Problem

x1 ∨ (x2 ∧ x3) x1 → x4 x4 → x5 x2 ∨ x5

New Similar Problems

x1 ≡ x2 x3 → ¬x2 (x4 → x5) → x3 x1 → (x4 ∧ ¬x5)

x1 ∧ (x2 → x3) (x1 ∨ x4) → ¬x5 x2 ∨ x5 (x1 ∨ x4) → ¬x3

(x1 ∨ x2) → x3 x3 → (x1 ∧ x4) (x1 ∧ x4) → x5 x1 → x5

(x1 → x2) → x3 x3 → ¬x4 x1 ∨ (x5 ∨ x4) x5 ∨ (x2 → x1)

x1 → (x2 ∧ x3) x4 → ¬x2 (x3 ≡ x5) → x4 x1 → (x3 ≡ ¬x5)

Premise 1 Premise 2 Premise 3 Conclusion

(x1 → x3) → x2 x2 → x3 ¬x3 x1 ∧ ¬x3

x3 → x1 (x3 ≡ x1) → x2 ¬x2 x1 ∧ ¬x3

(x1 ≡ x3) ∨ (x1 ≡ x2) (x1 ≡ x2) → x3 ¬x3 x1 ≡ x3

x1 ≡ ¬x3 x2 ∨ x1 x3 → ¬x2 x1 ∧ ¬x3

x3 → x1 x1 → (x2 ∧ x3) x3 → ¬x2 ¬x3

78 COMMUNICATIONS OF THE ACM | AUGUST 2014 | VOL. 57 | NO. 8

contributed articles

While the Singh et al. tool makes no as-
sumption as to the algorithms or plans
students can use, a key limitation is it
cannot provide feedback on student at-
tempts with big conceptual errors that
cannot be fixed through local rewrite
rules. Moreover, the Singh et al. tool is
limited to providing feedback on func-
tional equivalence, as opposed to per-
formance or design patterns.

Automata constructions. Determinis-
tic finite automaton (DFA) is a simple
but powerful computational model
with diverse applications and hence
is a standard part of computer science
education. JFLAP24 is a widely used sys-
tem for teaching automata and formal
languages that allows for constructing,
testing, and conversion between com-
putational models but does not sup-
port grading. The following paragraphs
explore a technique for automated
grading of automata constructions.3

Consider the problem of construct-
ing a DFA over alphabet {a, b} for the
regular language L = {s | s contains the
substring “ab” exactly twice}. Figure
9 includes five attempts submitted by
different students and the respective
feedback generated by the Alur et al.3
automata grading tool. The underlying
technique involves identifying different
kinds of feedback, including edit dis-
tance over both solution and problem
(Principle F1) and counterexamples
(Principle F2), with each feedback as-
sociated with a numerical grade. The
feedback that corresponds to the best
numerical grade is then reported to the
student. The reported feedback for the
third attempt is based on edit distance
to a correct solution, and the grade is
a function of the number and kind of
edits needed to convert the student’s
incorrect automaton into a correct au-
tomaton. In contrast, the rest of the
incorrect attempts have a large edit
distance and hence are based on other
kinds of feedback. The second attempt
and the last attempt correspond to a
slightly different language description;
that is, L′ = {s | s contains the substring
“ab” at least twice}, possibly reflecting
the common student mistake of mis-
reading the problem description. The
reported feedback here is based on edit
distance over problem descriptions,
and the associated grade is a function of
the number and kind of edits required.
The reported feedback for the fourth at-

beginners who find it difficult to map
counterexamples to errors in their
code. An edit-distance-based tech-
nique27 offers guidance on fixing an in-
correct solution (Principle F1).

Consider the problem of computing
the derivative of a polynomial whose coef-
ficients are represented as a list of integers,
teaching conditionals and iteration over
lists (see Figure 8a for a reference solu-
tion). For this problem, students struggled
with low-level Python semantics involving
list indexing and iteration bounds. Stu-
dents also struggled with conceptual as-
pects of the problem (such as missing the
corner case of handling lists consisting of
single element). A teacher could leverage
this knowledge of common example er-
rors to define an edit distance model con-
sisting of a set of weighted rewrite rules
that capture potential corrections (along
with their cost) for mistakes students
might make in their solutions. Figure 8b
includes sample rewrite rules: The first
such rule transforms the index in a list
access; the second transforms the right-
hand side of a constant initialization; and
the third transforms the arguments for
the range function.

Figure 8c–e show three student pro-
grams, together with respective feed-
back generated by Singh et al.’s pro-
gram-grading tool.27 The underlying
technique involves exploring the space
of all candidate programs, applying
teacher-provided rewrite rules to the
student’s incorrect program, to syn-
thesize a candidate program equiva-
lent to the reference solution while
requiring a minimum number of cor-
rections. For this purpose, the under-
lying technique leverages SKETCH,28
a state-of-the-art program synthesizer
that employs a SAT-based algorithm
to complete program sketches (pro-
grams with holes) so they meet a given
specification. Singh et al. evaluated
their tool on thousands of real student
attempts (at programming problems)
obtained from the 2012 Introduction
to Programming course at MIT (6.00)
and MITx (6.00x).27 The tool generated
feedback (up to four corrections) on
over 64% of all submitted solutions
that were incorrect in about 10 sec-
onds on average.

Intention-based matching ap-
proaches19 match plans in student
programs with those in a preexisting
knowledgebase to provide feedback.

The underlying
technique involves
exploring the space
of all candidate
programs, applying
teacher-provided
rewrite rules to
the student’s
incorrect program,
to synthesize a
candidate program
equivalent to the
reference solution
while requiring a
minimum number
of corrections.

AUGUST 2014 | VOL. 57 | NO. 8 | COMMUNICATIONS OF THE ACM 79

contributed articles

tempt, which does not involve a small
edit distance, is based on counterexam-
ples. The grade here is a function of the
density of counterexamples, with more
weight given to smaller-size counter-
examples since students ought to have
checked the correctness of their con-
struction on smaller strings.

To automatically generate feedback,
Alur et al.3 formalized problem descrip-
tions using a logic called MOSEL, an ex-
tension of the classical monadic-second
order logic (MSO) with some syntactic
sugar that allows defining regular lan-
guages in a concise, natural way. In MO-
SEL, the languages L and L′ can be de-
scribed by the formulas |indOf(ab)| = 2
and |indOf(ab)| ≥ 2 respectively, where
the indOf constructor returns the set
of all indices where the argument string
occurs. Their automata-grader tool
implements synthesis algorithms that
translate MOSEL descriptions into au-
tomata and vice versa. The MOSEL-to-
automaton synthesizer rewrites MOSEL
descriptions into MSO, then leverages
standard techniques to transform an
MSO formula into the corresponding
automaton. The automaton-to-MOSEL
synthesizer uses brute-force search to
enumerate MOSEL formulas in order of
increasing size to find one that matches
a given automaton. Edit distance is then
computed based on notions of automa-
ta distance or tree distance (in case of
problem descriptions), while counter-
examples are computed using automa-
ta difference.

Alur et al.3 evaluated their automata-
grader tool on 800+ student attempts
to solve several problems from an
automata course—CS373 at the Uni-
versity of Illinois at Urbana Champaign
in Spring 2013. Each submission
was graded by two instructors and
the tool. For one of these represen-
tative problems, instructors were in-
correct (having given full marks to
an incorrect attempt) or inconsistent
(same instructor having given differ-
ent marks to syntactically equivalent
attempts) for 20% of attempts. For
another 25% of attempts, there was
at least a three (out of 10) points dis-
crepancy between the tool and one of

the instructors; in more than 60% of
these cases, the instructor conclud-
ed (after re-reviewing) that the tool’s
grade was more fair. The two instruc-
tors thus concluded that the tool is
preferable to humans for consistency
and scalability.

The automata grading tool3 has
been deployed online, providing live
feedback and a variety of hints. In Fall
2013, Alur et al.,3 together with Bjoern
Hartmann of the University of Califor-
nia, Berkeley, conducted a user study
around the utility of the tool at the Uni-
versity of Pennsylvania and the Univer-
sity of Illinois at Urbana-Champaign,
observing such hints were helpful, in-

Figure 8. Automated grading of introductory programming problems:27 (a) reference implementation (in Python) for the problem of computing
a derivative of a polynomial; (b) rewrite rules that capture common errors; and (c), (d), and (e) denoting three different student submissions,
along with respective feedback generated automatically.

(a)

(b) (c) (d) (e)

def computeDeriv(poly):
result = []
for i in range(len(poly)):
	 result += [i * poly[i]]
if len(poly) == 1:
	 return result
	 # return [0]
else:
	 return result[1:]
	 # remove the leading 0

def computeDeriv(poly):
deriv, zero = [], 0
if (len(poly) == 1):
	 return deriv
for e in range(0,len(poly)):
	 if (poly[e] == 0):
		 zero += 1
	 else
		 deriv.append(poly[e]*e)
return deriv

def computeDeriv(poly):
idx = 1
deriv = list([])
plen = len(poly)
while idx <= plen:
	 coeff = poly.pop(1)
	 deriv +– [coeff*idx]
	 idx = idx + 1
	 if len(poly) < 2:
		 return deriv

def computeDeriv(poly):
length=int(len(poly)–1)
i = length
deriv = range(1,length)
if len(poly) == 1:
	 deriv = [0.0]
else:
	 while i >= 0:
		 new = poly[i] * i
		 i –= 1
		 deriv[i] = new
return deriv

		 x[a] → x[{a + 1, a – 1, ?a}]
	 x = n → x = {n + 1, n – 1, 0}
range(a0, a1) →
			 range({0, 1, a0 – 1, a0 + 1},
				 {a1 + 1, a1 – 1})

The program requires 3 changes:
•	 In the return statement return deriv in

line 4, replace deriv by [0].
•	 In the comparison expression

(poly[e] == 0) in line 6, change
(poly[e] == 0) to False.

•	 In the expression range (0, len(poly)) in
line 5, increment 0 by 1.

The program requires 1 change:
•	 In the function computeDeriv,

add the base case to return [0] for
len(poly) = 1.

The program requires 2 changes:
•	 In the expression range(1, length) in

line 4, increment length by 1.
•	 In the comparison expression (i >= 0) in

line 8, change operator >= to !=.

Figure 9. Automated grading of automata problems:3 several student attempts to con-
struct an automaton that accepts strings containing the substring “ab” exactly twice,
along with automatically generated feedback and grade.

a

b

0

a

b a

b

2

a

b

b

a b

a,b

DFA Attempt

1 3 4 5 6

a

a

b

0

a

b a

b

2

a

b

a,b

1 3 4

a

b

0

a

b a

b

2

a

b

b

a b

a,b

1 3 4 6

a

5

a

b

0

a

b a

b

2

a

b

a

b

a,b

1 3 4 5

Accepts the strings that
contain ‘ab’ at least twice
instead of exactly twice
Grade: 5/10

Accepts the strings that
contain ‘ab’ at least twice
instead of exactly twice
Grade: 5/10

Misses the final state 5
Grade: 9/10

Behaves correctly on
most of the strings
Grade: 6/10

Accepts the correct
language
Grade: 10/10

Feedback and Grade

a

b

0

a

b
a

b
2 a

a

a,b

1 3 4

5
b

80 COMMUNICATIONS OF THE ACM | AUGUST 2014 | VOL. 57 | NO. 8

contributed articles

Automated Deduction in Geometry (Hagenberg Castle,
Austria, Sept. 4–6). Springer, 2004, 44–66.

15.	 Gulwani, S. Program Analysis Using Random
Interpretation. Ph.D. thesis. University of California,
Berkeley, 2005; http://research.microsoft.com/en-us/
um/people/sumitg/pubs/dissertation.pdf

16.	 Gulwani, S. Synthesis from examples: Interaction
models and algorithms (invited talk paper). In
Proceedings of the 14th International Symposium
on Symbolic and Numeric Algorithms for Scientific
Computing (Timisoara, Romania, Sept. 26–29). IEEE
Computer Society, 2012, 8–14.

17.	 Gulwani, S., Korthikanti, V.A., and Tiwarim, A.
Synthesizing geometry constructions. In Proceedings
of the 32nd ACM SIGPLAN conference on Programming
Language Design and Implementation (San Jose, CA,
June 4–8), ACM Press, New York, 2011, 50–61.

18.	 Gulwani, S., Harris, W., and Singh, R. Spreadsheet data
manipulation using examples. Commun. ACM 55, 8
(Aug. 2012), 97–105.

19.	 Johnson, W. Intention-based Diagnosis of Novice
Programming Errors. Morgan Kaufmann, Burlington,
MA, 1986.

20.	 Knuth, D.E. The Art of Computer Programming,
Volume 4A: Combinatorial Algorithms, Part 1.
Addison-Wesley Professional, Boston, 2011.

21.	 Kulkarni, C., Pang, K., Le, H., Chia, D., Papadopoulos,
K., Cheng, J., Koller, D., and Klemmer, S. Peer and
self assessment in massive online design classes.
ACM Transactions on Computer-Human Interaction
20, 6 (2013).

22.	 Lieberman, H. Your Wish Is My Command:
Programming by Example. Morgan Kaufmann,
Burlington, MA, 2001.

23.	 Mozgovoy, M., Kakkonen, T., and Cosma, G. Automatic
student plagiarism detection: Future perspectives.
Journal of Educational Computing Research 43, 4
(2010), 511–531.

24.	 Rodger, S. and Finley, T. JFLAP: An Interactive
Formal Languages and Automata Package. Jones and
Bartlett Publishers, Inc., Sudbury, MA, 2006.

25.	 Schwartz, J.T. Fast probabilistic algorithms for
verification of polynomial identities. Journal of the
ACM 27, 4 (1980), 701–717.

26.	 Singh, R., Gulwani, S., and Rajamani, S. Automatically
generating algebra problems. In Proceedings of the
26th conference on Artificial Intelligence (Toronto, July
22–26). AAAI Press, 2012.

27.	 Singh, R., Gulwani, S., and Solar-Lezama, A.
Automated feedback generation for introductory
programming assignments. In Proceedings of the 34th
annual ACM SIGPLAN Conference on Programming
Language Design and Implementation (Seattle, June
16–22). ACM Press, New York, 2013, 15–26.

28.	 Solar-Lezama, A. Program Synthesis By Sketching.
Ph.D. thesis. University of California, Berkeley, 2008;
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/
EECS-2008–177.pdf

29.	 Van Ditmarsch, H. User interfaces in natural deduction
programs. In Proceedings of the User Interfaces
for Theorem Provers Workshop (Eindhoven, The
Netherlands, July 1998), 87–95.

30.	 VanLehn, K. Mind Bugs: The Origins of Procedural
Misconceptions. MIT Press, Cambridge, MA, 1991.

31.	 Weld, D.S., Adar, E., Chilton, L., Hoffmann, R., Horvitz,
E., Koch, M., Landay, J., Lin, C.H., and Mausam, M.
Personalized online education: A crowdsourcing
challenge. In Proceedings of the Fourth Human
Computation Workshop at the 26th Conference on
Artificial Intelligence (Toronto, July 22–26, 2012).

32.	 Wilson, S. and Fleuriot, J.D. Combining dynamic
geometry, automated geometry theorem proving
and diagrammatic proofs. In Proceedings of the User
Interfaces for Theorem Provers Workshop (Edinburgh,
Apr.). Springer, 2005.

33.	 Woolf, B. Building Intelligent Interactive Tutors.
Morgan Kaufman, Burlington, MA, 2009.

34.	 Zhu, H., Hall, P.A.V., and May, J.H.R. Software unit test
coverage and adequacy. ACM Computing Surveys 29,
4 (Dec. 1997), 366–427.

Sumit Gulwani (sumitg@microsoft.com) is a principal
researcher at Microsoft Research, Redmond, WA, adjunct
faculty in the Department of Computer Science and
Engineering at the Indian Institute of Technology, Kanpur,
India, and affiliate faculty in the Department of Computer
Science & Engineering at the University of Washington,
Seattle.

© 2014 ACM 0001-0782/14/08 $15.00

creased student perseverance, and im-
proved problem-completion time.

Conclusion
Providing personalized and interactive
education (as in one-on-one tutoring)
remains an unsolved problem in stan-
dard classrooms. The arrival of MOOCs,
despite being an opportunity for sharing
quality instruction with a large number
of students, exacerbates the problem
with an even higher student-to-teacher
ratio. Recent advances in computer sci-
ence can be brought together to rethink
intelligent tutoring,33 with the phenom-
enal rise of online education making
this investment very timely.

This article has summarized re-
cently published work from different
areas of computer science, including
programming languages,17,27 artificial
intelligence,1,3,26 and human-computer
interaction.5 It also reveals a common
thread in this interdisciplinary line of
work, namely the use of examples as an
input to the underlying algorithms (for
intent understanding), as an output of
these algorithms (for generating the in-
tended artifact), or even inside these al-
gorithms (for inductive reasoning). This
may enable other researchers to apply
these principles to develop similar tech-
niques for other subject domains. This
article should inform educators about
new advances to assist various educa-
tional activities, allowing them to think
more creatively about curriculum and
pedagogical reforms; for instance, these
advances can enable development of
gaming layers that take computational
thinking into K–12 classrooms.

This article has applied a rather tech-
nical perspective to computer-aided
education. While the technologies can
affect education in a positive manner,
computer-aided education researchers
must still devise ways to quantify its ben-
efits on student learning, which may be
critical to attract funding. Furthermore,
this article has discussed only logical-
reasoning-based techniques, but these
techniques can be augmented with
complementary techniques that lever-
age large student populations and data
whose availability is facilitated by recent
interest in online education platforms
like Khan Academy and MOOCs; for in-
stance, large amounts of student data
can be used to collect different correct
solutions to a (proof) problem, which in

turn can be used to generate feedback13
or discover effective learning pathways
to guide problem selection. Large stu-
dent populations can be leveraged to
crowdsource tasks that are difficult to
automate,31 as in peer grading.21 A syn-
ergistic combination of logical reason-
ing, machine learning, and crowdsourc-
ing methods may lead to self-improving
advanced intelligent tutoring systems
that can revolutionize all education.

Acknowledgments
I thank Moshe Y. Vardi for encourag-
ing me to write this article. I thank Ben
Zorn and the anonymous reviewers for
providing valuable feedback on earlier
versions of the draft. 	

References
1.	 Ahmed, U., Gulwani, S., and Karkare, A. Automatically

generating problems and solutions for natural
deduction. In Proceedings of the International Joint
Conference on Artificial Intelligence (Beijing, Aug. 3–9,
2013).

2.	 Aleven, V., McLaren, B.M., Sewall, J., and Koedinger,
K.R. A new paradigm for intelligent tutoring systems:
Example-tracing tutors. Artificial Intelligence in
Education 19, 2 (2009), 105–154.

3.	 Alur, R., D’Antoni, L., Gulwani, S., Kini, D., and
Viswanathan, M. Automated grading of DFA
constructions. In Proceedings of the International
Joint Conference on Artificial Intelligence (Beijing, Aug.
3–9, 2013); tool at http://www.automatatutor.com/

4.	 Anand, S., Burke, E., Chen, T.Y., Clark, J., Cohen, M.B.,
Grieskamp, W., Harman, M., Harrold, M.J., and McMinn,
P. An orchestrated survey on automated software test
case generation. Journal of Systems and Software 86,
8 (2013), 1978–2001.

5.	 Andersen, E., Gulwani, S., and Popovic, Z. A trace-
based framework for analyzing and synthesizing
educational progressions. In Proceedings of the ACM
SIGCHI Conference on Human Factors in Computing
Systems (Paris, Apr. 27–May 2). ACM Press, New York,
2013, 773–782.

6.	 Andersen, E., Gulwani, S., and Popovic, Z.
Programming by Demonstration Framework Applied
to Procedural Math Problems Technical Report MSR-
TR-2014-61. Microsoft Research, Redmond, WA, 2014.

7.	 Ashlock, R. Error Patterns in Computation: A Semi-
Programmed Approach. Merrill Publishing Company,
Princeton, NC, 1986.

8.	 Bjørner, N. Taking satisfiability to the next level with
Z3. In Proceedings of the Sixth International Joint
Conference on Automated Reasoning (Manchester,
U.K., June 26–29). Springer, 2012, 1–8.

9.	 Broda, K., Ma, J., Sinnadurai, G., and Summers, A.J.
Pandora: A reasoning toolbox using natural deduction
style. Logic Journal of the Interest Group in Pure and
Applied Logics 15, 4 (2007), 293–304.

10.	 Cypher, A., Ed. Watch What I Do: Programming by
Demonstration. MIT Press, Cambridge, MA, 1993.

11.	 Dong, T., Dontcheva, M., Joseph, D., Karahalios, K.,
Newman, M., and Ackerman, M. Discovery-based
games for learning software. In Proceedings of
the ACM SIGCHI Conference on Human Factors in
Computing Systems (Austin, TX, May 5–10). ACM
Press, New York, 2012, 2083–2086.

12.	 Douce, C., Livingstone, D., and Orwell, J. Automatic
test-based assessment of programming: A review.
Journal of Educational Resources in Computing 5, 3
(2005), 511–531.

13.	 Fast, E., Lee, C., Aiken, A., Bernstein, M.S., Koller,
D., and Smith, E. Crowd-scale interactive formal
reasoning and analytics. In Proceedings of the
ACM Symposium on User Interface Software and
Technology (St. Andrews, Scotland, Oct. 8–11). ACM
Press, New York, 2013, 363–372.

14.	 Gao, X.-S. and Lin, Q. MMP/Geometer-a software
package for automated geometric reasoning. In
Proceedings of the Fourth International Workshop on

