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HUMAN LEARNING AND communication is often 
structured around examples, possibly a student trying 
to understand or master a certain concept through 
examples or a teacher trying to understand a student’s 
misconceptions or provide feedback through example 
behaviors. Example-based reasoning is also used in 
computer-aided programming to analyze programs, 
including to find bugs through test-input-generation 
techniques4,34 and prove correctness through inductive 
reasoning or random examples15 and synthesize 
programs through input/output examples or 
demonstrations.10,16,18,22 This article explores how 

such example-based reasoning tech-
niques developed in the programming-
languages community can also help 
automate certain repetitive and struc-
tured tasks in education, including 
problem generation, solution genera-
tion, and feedback generation. 

These connections are illustrated 
through recent work (in computer 
science) applied to a variety of STEM 
subject domains, including logic,1 au-
tomata theory,3 programming,27 arith-
metic,5,6 algebra,26 and geometry.17 
More significant, the article identifies 
some general principles and method-
ologies that are applicable across mul-
tiple subject domains. 

Procedural vs. conceptual prob-
lems. Procedural problems involve so-
lutions that require following a specific 
procedure students are expected to 
memorize and apply; examples include 
mathematical procedures5 taught in 
middle school or high school (such as 
addition, long division, greatest com-
mon divisor computation, Gaussian 
elimination, and basis transforma-
tions) and algorithmic procedures 
taught in undergraduate computer 
science, where students are expected 
to demonstrate their understanding of 
certain classic algorithms on specific 
inputs (such as breadth-first search, 
insertion sort, Dijkstra’s shortest-path 
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 � �Computing technologies can automate 
repetitive tasks in education, including 
problem generation, solution generation, 
and feedback generation, for numerous 
subject domains, including programming, 
logic, automata theory, arithmetic, 
algebra, and geometry. 

 � �This can make standard and online 
classrooms more efficient and enable 
new pedagogies involving personalized 
workflows, saved teacher time, and 
improved student learning. 

 � �Computer-aided education requires cross-
disciplinary computing technologies; 
highlighted here are contributions 
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human-computer interaction, and 
artificial intelligence; natural language 
understanding and machine learning also 
play a significant role.
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algorithm, regular expression to au-
tomaton conversion, and even comput-
ing tensor/inner product of qubits). 

Conceptual problems include all 
nonprocedural ones for which there 
is no decision procedure (the student 
is expected to know and apply) but re-
quire creative thinking in the form of 
pattern matching or educated guesses. 
Problems include: 

Proof problems. Natural deduc-
tion proofs,1 proofs of algebraic theo-
rems,26 and proofs of non-regularity of 
languages; and 

Construction problems. Construc-
tion of computational artifacts (such as 
geometric constructions,17 automata,3 
algorithmic procedures,27 and bitvector 
circuits). 

Example-based learning. Examples 
have multifaceted use in educational 
technologies. This article classifies their 

use according to interaction with the un-
derlying technology (see Figure 1). 

Input. For several educational tasks, 
examples constitute a natural means 
to express intent. In the case of solu-
tion generation for procedural prob-
lems, teachers can demonstrate exam-
ple traces with the goal of synthesizing 
procedures for the problems. In the 
case of problem generation for concep-
tual problems, teachers can provide 
an example problem with the goal of 
generating similar problems. In the 
case of feedback generation for proce-
dural problems, teachers can provide 
examples of buggy traces with the goal 
of learning the algorithmic misconcep-
tions a student might have. In the case 
of feedback generation for concep-
tual problems, teachers can provide 
examples of common local error cor-
rections, aiming to find some appro-

priate combination of the corrections 
that correct a given incorrect attempt. 
For such cases, this article describes 
techniques inspired by research in pro-
gramming by example (PBE).10,16,18,22 

Output. For some educational tasks, 
examples constitute the intended out-
put artifact. In the case of problem 
generation for procedural problems, 
teachers want to produce example 
inputs that exercise various paths in 
the given procedure to generate a pro-
gression of problems. In the case of 
feedback generation for conceptual 
problems, teachers want to produce 
counterexamples that expose incorrect 
behavior in the student’s solution. For 
such cases, the article describes tech-
niques inspired by program analysis, 
in particular by test-input-generation 
techniques4,34 often used to find bugs. 

Inside. Examples can also be used 
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ing33—solution generation, problem 
generation, and feedback generation—
through multiple instances of example-
based learning technologies for each 
task. Also described are several evalua-
tions associated with each of these in-
stances. While several of the instances 
are preliminary, some have been de-
ployed and evaluated more thoroughly. 

Solution Generation 
Solution generation involves auto-
matically generating solutions, given 
a problem description in some sub-
ject domain, and is important for sev-
eral reasons: It can be used to gener-
ate sample solutions for automatically 
generated problems; given a student’s 
incomplete solution, it can be used to 
complete a solution that can be much 
more illustrative for the student com-
pared to providing a completely differ-
ent sample solution; and, given a stu-
dent’s incomplete solution, it can also 
be used to generate hints on the next 
step or toward an intermediate goal. 

Procedural problems. Solution 
generation for procedural problems 
can be achieved by writing down and 
executing the corresponding proce-
dure for a given problem. While these 
procedures can be written manually, 
technologies for automatic procedure 
synthesis (from examples) can enable 
nonprogrammers to create custom-
ized procedures on the fly. The number 
of such procedures and their stylistic 
variations in how they are taught can 
be significant and may not be known in 
advance to outsource manual creation 
of the procedures. 

The procedures can be synthesized 
through PBE technology10,16,22 tradi-
tionally applied to end-user applica-
tions. More recently, PBE has also 
been used to synthesize programs for 
spreadsheet tasks, including string 
transformations and table layout 
transformations.18 Mathematical pro-
cedures can be viewed as spreadsheet 
procedures involving computation 
of new values from existing values in 
spreadsheet cells, as in string trans-
formations that produce a new out-
put string from substrings of input 
strings, and positioning that value in 
an appropriate spreadsheet cell, as in 
table transformations that reposition 
the content of an input spreadsheet 
table. Ideas from learning string and 

inside the underlying algorithms to 
perform inductive reasoning, which 
happens in both solution generation 
and problem generation for concep-
tual problems. It is inspired by how 
humans often approach problem gen-
eration and solving, with the underly-
ing techniques inspired by research in 

establishing program correctness us-
ing random examples15 and program 
synthesis using examples.16 

The article next explores example-
based learning technologies through 
specific instances, highlighting gen-
eral principles. It is organized around 
the three key tasks in intelligent tutor-

Figure 1. Three ways examples are used in computer-aided educational technologies as 
input (for intent expression); as output (to generate the intended artifact); and inside the  
underlying algorithm (for inductive reasoning). 

Procedural Conceptual

Solution Generation Input6 Inside1,17

Problem Generation Output5 Input,1,26 Inside1,26

Feedback Generation Input6 Output,3 Input27

Figure 2. Solution generation for procedural problems:6 (a) demonstrate greatest common 
factor (GCF) procedure over inputs 762 and 1270 to produce output 254; and (b) synthesize 
procedure GCF automatically from the demonstration in (a). 

(a) (b)

GCF (int array array T, int I1, int I2)
1
2 for ( j := 0; T[2j  , j ] ≠ 0; j := j + 1):
3 T[2j, j + 2] := Floor(T[2 j, j + 1] ÷ T[2 j, j]); 
4 T[2j + 1, j + 1] := T[2j, j + 2] × T[2 j, j]); 
5 T[2j + 1, j + 1] := T[2j, j + 1] – [2j + 1, j + 1]; 
6 T[2j + 2, j + 2] := T[2j, j];
7 return T[2j,  j + 1];

762
762 1270 1

508
508
254 508 2

508
0 254

762 1

Assume T, [0,0], T[1,0] contain I1, I2 respectively. 

Figure 3. Solution generation for geometry constructions.17 

(a) English Description Construct a triangle given its base L (with end-points p1, p2), 
a base angle a, and sum r of the other two sides.⇓

(b) PreCondition r > Length(p1, p2)

(c) Random Example L = Line(p1 = 〈81:62; 99:62〉, p2= 〈99:62; 83:62〉)
r = 88:07 a = 0:81 radians  p = 〈131:72; 103:59〉

(d) Geometry Program

(e) Geometry Construction

ConstructTriangle(p1, p2, L, r, a):
L1 := ConstructLineGivenAngleLinePoint(L, a, p1);
C1 := ConstructCircleGivenPointLength(p1, r);
(p3, p5) := LineCircleIntersection(L1, C1);
L2 := PerpendicularBisector2Points(p2, p3);
p := LineLineIntersection(L1, L2); 
return p;

⇓

PostCondition Angle(p, p1, p2) = a∧ 
Length(p, p1) + Length(p, p2) = r ⇓

C1 

p

L2 

L1 
a

r

p3p1

p2
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The use of trace-
based modeling 
allows for test-
input-generation 
tools for generating 
problems with 
certain trace 
features. 

table transformations can be com-
bined to learn mathematical proce-
dures from example traces, where 
a trace is a sequence of (value, cell) 
pairs.6 Dynamic programming can 
be used to compute all subprograms 
that are consistent with various sub-
traces (in order of increasing length). 
The underlying algorithm starts out 
by computing, for each trace element 
(v, c), the set of all program statements 
(over a teacher-specified set of opera-
tors) that can produce v from previous 
values in the trace; see Figure 2 for 
synthesis of a greatest common divi-
sor procedure from an example trace, 
where the teacher-specified operators 
include −, ×, ÷, and Floor. 

Conceptual problems. Solution 
generation for conceptual problems 
often requires performing search over 
the underlying solution space. Follow-
ing are two complementary principles, 
each useful across multiple subject 
domains while also reflecting how hu-
mans might search for such solutions. 

S1: Perform reasoning over examples 
as opposed to abstract symbolic rea-
soning. The idea is to reason about 
the behavior of a solution on some or 
even all examples, or concrete inputs, 
instead of performing symbolic rea-
soning over an abstract input. Such 
reasoning reduces search time by 
large constant factors because execut-
ing part of a construction or proof on 
concrete inputs is much quicker than 
reasoning symbolically about the con-
struction or proof. 

S2: Reduce solution space to solutions 
with small length. The idea is to extend 
the solution space with commonly used 
macro constructs in which each such 
construct is a composition of several 
basic constructs/steps. This extension 
reduces the size of solutions, making 
search more feasible in practice. 

The following illustrates these prin-
ciples in multiple subject domains: 

Geometry constructions. Geometry 
construction is a method for con-
structing a desired geometric object 
from other objects by applying a se-
quence of ruler and compass con-
structions (see Figure 3). Such con-
structions are an important part of 
high school geometry. The automated 
geometric-theorem-proving com-
munity (one of the success stories in 
automated reasoning) has developed 

tools (such as Geometry Explorer32 
and Geometry Expert14) that allow 
students to create geometry construc-
tions and use interactive provers to 
prove properties of the constructions. 
How are these constructions synthe-
sized in the first place? 

Geometry constructions can be re-
garded as straight-line programs that 
manipulate geometry objects—points, 
lines, and circles—using ruler/com-
pass operators. Hence, their synthesis 
can be phrased as a program-synthesis 
problem17 in which the goal is to syn-
thesize a straight-line program, as in 
Figure 3d, that realizes the relational 
specification between inputs and out-
puts, as in Figure 3b. 

The semantics of geometry opera-
tions is too complicated for symbolic 
methods for synthesis or even for veri-
fication. Ruler/compass operators are 
analytic functions, implying the validity 
of a geometry construction can be prob-
abilistically inferred from testing on 
random examples, an implication that 
follows from the following extension of 
the classical result on polynomial iden-
tity testing25 to analytic functions: 

Property 1 (probabilistic testing of 
analytic functions). Let f (X) and g(X) 
be non-identical real-valued analytic 
functions over Rn. Let Y ∈ Rn be selected 
uniformly at random, then with high 
probability over the random selection 
f (Y) ≠ g(Y). Property 1 follows from the 
fact that non-zero analytic functions 
have isolated zeroes; that is, for ev-
ery zero point of an analytic function, 
there exists a neighborhood in which 
the function is non-zero. The num-
ber of non-zero points of the non-zero 
analytic function f(X) − g(X) thus domi-
nates the number of its zero points.a 

The problem of synthesizing geome-
try constructions that satisfy a symbolic 
relational specification between inputs 
and outputs can thus be reduced to syn-
thesizing constructions that are consis-

a	 Unlike the polynomial identity testing theo-
rem,25 which allows performing modular arith-
metic over numbers selected randomly from a 
finite integer set for efficient evaluation, this 
result provides no constructive guidance on 
the size of the selection set and requires pre-
cise arithmetic. This process is approximated 
by using finite-precision floating-point arith-
metic and a threshold for comparing equality; 
in practical experiments, it has yielded no un-
soundness or incompleteness.
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that is either a premise or derived from 
preceding propositions through ap-
plication of some inference rule (see 
Figure 4a) or replacement rule (see 
Figure 4b), the last of which concludes 
the argument; see Figure 4d for a proof. 
Ditmarsc29 surveyed proof assistants 
for teaching natural deduction (such 
as Pandora9), some of which also solve 
problems. This article describes a dif-
ferent, scalable, way to solve such prob-
lems while also paving the way for gen-
erating fresh problems, as described in 
the next section. 

While the SAT (Boolean satisfiabil-
ity), SMT (satisfiability modulo theo-
ries), and theorem-proving commu-
nities8 continue to focus on solving 
large-size proof problems in a reason-
able amount of time, one recent ap-
proach, by Ahmed et al.,1 to generating 
natural deduction proofs in real time 
leverages the observation that class-
room-size instances are small. The 
Ahmed et al. approach reflects use of 
the two general principles discussed 
earlier: abstract a proposition using its 
truth table, which can be represented 
using a bitvector representation,20 
thus avoiding expensive symbolic 
reasoning and reducing application 
of inference rules to simple bitvector 
operations (Principle S1); and break 
the proof search into multiple small-
er (and hence more efficient) proof 
searches (Principle S2). 

First, an abstract proof is discov-
ered that involves only inference-rule 
applications over truth-table repre-
sentation; note replacement rules are 
identity operations over truth-table 
representation. This abstract proof 
over truth-table representation is then 
refined to a complete proof over sym-
bolic propositions by searching for 
sequences of replacement rules be-
tween consecutive inference rules; see 
Figure 4c for an example of an abstract 
proof and Figure 4d for its refinement 
to a complete proof. Note the size of 
an abstract proof and the number of 
replacement rules inserted between 
any two consecutive inference rules is 
much smaller than the size of the over-
all proof. The Ahmed et al. approach 
solved 84% of 279 problems from var-
ious textbooks (generating proofs of 
≤27 steps), while a baseline algorithm 
(using symbolic representation for 
propositions and performing breadth-

tent with randomly chosen input-output 
examples (Principle S1). 

This reduction is the basis of 
Gulwani et al.’s17 synthesis algorithm 
for geometry constructions involving 
two key steps (see also Figure 3) re-
flecting the two general principles dis-
cussed earlier: 

˲˲ Generate random input-output 
examples, as in Figure 3c, from the 
logical description, as in Figure 3b, of 
the given problem using off-the-shelf 
numerical solvers; the logical descrip-
tion is in turn generated from the natu-
ral language description, as in Figure 
3a, using natural language translation 
technology; and 

˲˲ Perform brute-force search over a 
library of ruler-and-compass operators 
to find a construction, as in Figure 3d, 
that transforms the randomly selected 
input(s) into corresponding output(s). 

The search is performed over an ex-
tended library of ruler and compass 
operators that includes higher-level 
primitives, such as perpendicular and 
angular bisectors (Principle S2). The 
use of an extended library not only 
shortens the size of a solution (allow-
ing for efficient search) but also makes 
a solution more readable for students. 
On Gulwani et al.’s17 benchmark of 25 
problems, the extended library helped 
reduce the maximum solution size 
from 45 steps to 13 steps and increased 
the success rate from 75% to 100%. 

Natural deduction proofs. Natural 
deduction (taught in introductory logic 
courses in college) is a method for es-
tablishing the validity of arguments in 
propositional logic, where the conclu-
sion of an argument is derived from the 
premises through a series of discrete 
steps. Each one derives a proposition 

Figure 4. Solution generation for natural deduction:1 (a) sample inference rules; (b) sample  
replacement rules; (c) abstract proof of the problem in Figure 7b, with second column listing 
the 32-bit integer representation of the truth-table over five variables; (d) natural deduction 
proof of the problem in Figure 7b, with inference rule applications in bold; and (e) natural de-
duction proof of a problem similar to the one in Figure 7b with the same inference rule steps. 

Rule Name Premises Conc

Modus Ponens (MP) p→q, p q 

Hypo. Syllogism (HS) p→q, q→r p→r

Disj. Syllogism (DS) p∨q, ¬p q

Simplification (Simp) p∧q q

(a)

Step Proposition Reason

P1 x1 ∨ (x2 ∧ x3) Premise

P2 x1 → x4 Premise

P3 x4 → x5 Premise

1 (x1 ∨ x2)∧(x1∨x3) P1, Distr.

2 x1 ∨ x2 1, Simp.

3 x1 → x5 P2, P3, HS.

4 x2 ∨ x1 2, Comm.

5 ¬¬x2 ∨ x1 4, Double Neg

6 ¬x2 → x1 5, Implication

7 ¬x2 → x5 6, 3, HS.

8 ¬¬x2 ∨ x5 7, Implication

Conc x2 ∨ x5 8, Double Neg

Step Proposition Reason

P1 x1 ≡ x2 Premise

P2 x3 → ¬x2 Premise

P3 (x4 → x5) → x3 Premise

1 (x1→x2)∧(x2→x1) P1, Equivalence

2 x1 → x2 1, Simp.

3 (x4 → x5) → ¬x2 P3, P2, HS.

4 ¬¬x2 → ¬(x4→x5) 3, Transposition

5 x2 → ¬(x4 → x5) 4, Double Neg

6 x1 → ¬(x4 → x5) 2, 5, HS.

7 x1 → ¬(¬x4 ∨ x5) 6, Implication

8 x1 → (¬¬x4 ∧ ¬x5) 7, De Morgan’s

Conc x1 → (x4 ∧ ¬x5) 8, Double Neg.

(d)

(e)

Rule Name Proposition
Equivalent 
Proposition

Distribution p∨(q∧r) (p∨q)∧(p∨r)

Double  
Negation

p ¬¬p

Implication p→q ¬p∨q

Equivalence p≡q (p→q)∧(q→p)

p≡q (p∧q)∨(¬p∧¬q)

(b)

Step Truth-table Reason

P1 1048575 Premise

P2 4294914867 Premise

P3 3722304989 Premise

1 16777215 P1, Simp

2 4294923605 P2, P3, HS

3 1442797055 1, 2, HS

(c)
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first search for the complete proof) 
solved 57% of the same problems.1 

Problem Generation 
Generating fresh problems with spe-
cific solution characteristics (such as 
a certain difficulty level and set of con-
cepts) is tedious for the teacher. Auto-
mating the generation of fresh prob-
lems has several benefits: Generating 
problems similar to a given problem 
can help avoid copyright issues. It may 
not be legal to publish problems from 
textbooks on course websites. A prob-
lem-generation tool can give instructors 
a fresh source of problems for their as-
signments or lecture notes. It can also 
help prevent cheating23 in classrooms 
or MOOCs (with unsynchronized in-
struction) since each student can be 
given a different problem with the same 
difficulty level. And when a student fails 
to solve a problem and ends up looking 
at the sample solution, the student may 
be assigned a similar practice problem 
by an automated system, not necessar-
ily by human teacher. Generating prob-
lems with a given difficulty level and 
exercising a given set of concepts can 
help create personalized workflows for 
students. Students who solve a problem 
correctly may be given a problem more 
difficult than the last problem or that 
involves a richer set of concepts. 

On the other hand, fresh problems 
create new pedagogical challenges 
since teachers may no longer recognize 
the problems and students may be un-
able to discuss them with one another 
after assignment submission. These 
challenges can be mitigated through 
solution-generation and feedback- 
generation capabilities. 

Procedural problems. A procedural 
problem can be characterized by the 
trace it generates through the corre-
sponding procedure. Various features 
of the trace can then be used to iden-
tify the difficulty level of a procedural 
problem and the concepts it exercises; 
for instance, a trace that executes both 
sides of a branch (in multiple iterations 
through a loop) might exercise more 
concepts than the one that simply exe-
cutes only one side of that branch, and 
a trace that executes more iterations of 
a loop might be more difficult than the 
one that executes fewer iterations. 

Trace-based modeling allows for 
test-input-generation tools4 for gener-

ating problems with certain trace fea-
tures. Andersen et al.5 used this insight 
to automatically synthesize practice 
problems for elementary and middle 
school mathematics;5 Figure 5 out-
lines such automatic synthesis in the 
context of an addition procedure. Note 
various addition concepts can be mod-
eled as trace properties and, in partic-
ular, regular expressions over proce-
dure locations. Moreover, trace-based 
modeling allows for use of notions of 
procedure coverage34 to evaluate the 
comprehensiveness of a certain col-
lection of expert-designed problems 
and fill any holes. It also allows for 
defining a partial order over problems 
by defining a partial order over corre-
sponding traces based on trace fea-
tures (such as number of times a loop 
was executed and whether the excep-
tional case of a conditional branch 
was executed) and the set of n-grams 
present in the trace. Andersen et al.5 
used this partial order to synthesize 
progressions of problems and even 
to analyze and compare existing pro-
gressions across multiple textbooks. 

As part of follow-on work, Andersen 
et al. used their trace-based framework 
to synthesize a progression of thou-
sands of levels for Refraction, a popu-
lar math puzzle game. An A/B test with 
2,377 players (on the portal http://www.

newgrounds.com) showed automati-
cally synthesized progression can mo-
tivate players to play for similar lengths 
of time, as in the case of the original 
expert-designed progression. The me-
dian player in the synthesized progres-
sion group played 92% as long as the 
median player in the expert-designed 
progression group. 

Effective progressions are impor-
tant not just for school-based learning 
but also for usability and learnability in 
end-user applications. Many modern 
user applications have advanced fea-
tures, and learning them constitutes 
a major effort by the user. Designers 
have thus focused on trying to reduce 
the effort; for example, Dong et al.11 
created a series of mini-games to teach 
users advanced image-manipulation 
tasks in Adobe Photoshop. The Ander-
sen et al.5 methodology may assist in 
creating such tutorials and games by 
automatically generating progressions 
of tasks from procedural specifications 
of advanced tasks. 

Conceptual problems. Problem 
generation for certain conceptual 
problems can be likened to discover-
ing new theorems, a search-intensive 
activity that can be aided by domain-
specific strategies. However, two gen-
eral principles are useful across mul-
tiple subject domains: 

Figure 5. Problem generation for procedural problems:5 (a) addition procedure to add two 
numbers, instrumented with control locations on the right side; and (b) concepts expressed 
in terms of trace features and corresponding example inputs that satisfy those features 
(such example inputs can be generated through test-input-generation techniques). 

Concept Trace characteristic Example input

Single-digit addition L 3 + 2

Multiple-digit addition without carry LL+ 1234 + 8765

Single carry L*(LC)L* 1234 + 8757

Two single carries L*(LC)L+(LC)L* 1234 + 8857

Double carry L*(LCLC)L* 1234 + 8667

Triple carry L*(LCLCLC)L* 1234 + 8767

Extra digit in input and new digit in output L*CLDCE 9234 + 900

(b)

(a)

Add(int array A, int array B)
	  := Max(Len(A), Len(B));
	 for i=0 to -1 . 	 •  Loop over digits (L)
		  if (i ≥ Len(A)) t := B[i]; 	 •  Different # of digits (D)
		  else if (i ≥ Len(B)) t := A[i]; 	 •  Different # of digits (D)
		  else t:=A[i]+B[i];
		  if (C[i] == 1) t:=t+1; 	 •  Carry from prev. step (C)
		  if (t > 9) { R[i]:=t-10; C[i + 1]:=1; }
		  else R[i] := t;
	 if (C[] == 1) R[] := 1;	 •  Extra digit in output (E)
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The proposition replacement inter-
face (see Figure 7a) finds replacements 
for a given premise or the conclusion 
in a given example problem. It gener-
ates those propositions as replace-
ments that ensure the new problem is 
well defined, or one whose conclusion 
is implied by the premises but not by 
any strict subset of the premises. This 
interface, based on Principle P1, in-
volves checking all possible small-size 
propositions as replacements. The 
validity of each candidate problem is 
checked by performing bitvector oper-
ations over bitvector-based truth table 
representation of the propositions20 
(Principle S1). A candidate problem is 
valid if the bitwise-and of the premise 
bitvectors is bitwise smaller than the 
conclusion bitvector. 

The similar problem-generation in-
terface finds problems with a solution 
that uses exactly the same sequence of 
inference rules used by a solution of an 
example problem. Figure 7b lists auto-
matically generated problems, given an 
example problem. Figure 4e describes 
a solution for the first new problem in 
Figure 7b. Observe this solution uses 
exactly the same sequence of inference 
rules (in bold) as the solution for the 
original example problem in Figure 
4d. The parameterized problem-gen-
eration interface finds problems with 
specific features (such as a given num-
ber of premises and variables, maxi-
mum size of propositions, and small-
est proof involving a given number of 
steps and given set of rules). Figure 
7c lists automatically generated prob-
lems, given some parameters. Both 
these interfaces find desired problems 
by performing a reverse search in the 
solution space (Principle P2) explored 
by the solution-generation technology 
for natural deduction described ear-
lier. The similar-problem-generation 
interface further uses the solution tem-
plate obtained from a solution of the 
example problem for search guidance 
(Principle P1). 

Feedback Generation 
Feedback generation may involve iden-
tifying whether or not a student’s solu-
tion is incorrect, why it is incorrect, and 
where or how it can be fixed. A teacher 
might even want to generate a hint to 
enable students to identify and/or fix 
mistakes on their own. In examination 

P1: Example-based template gener-
alization. This involves generalizing 
a given example problem into a tem-
plate and searching for all possible 
instantiations of the template for val-
id problems. Given the search space 
might be vast, it is usually applicable 
when the validity of a given candidate 
problem can be checked quickly. It 
does not necessarily require access 
to a solution-generation technology, 
though such technology can be used to 
ascertain the difficulty level of the gen-
erated problems; and 

P2: Problem generation as reverse of 
solution generation. This applies only to 
proof problems. The idea is to perform 
a reverse search in the solution-search 
space starting with the goal and leading 
up to the premises. It has the advantage 
of ensuring the generated problems 
have specific solution characteristics. 

The following sections illustrate 
how these principles are used in mul-
tiple subject domains. 

Algebraic proof problems. Problems 
that require proving algebraic identi-
ties (see Figure 6) are common in high 
school math curricula. Generating 
such problems is tedious for the teach-
er since the teacher cannot arbitrarily 
change constants (unlike in procedur-
al problems) or variables to generate a 
correct problem. 

The Singh et al.26 Algebra-problem-
generation methodology, as in Figure 
6, uses Principle P1 to generate fresh 
problems similar to a given example 
problem. First, a given example prob-
lem is generalized into a template with 
a hole for each operator in the original 
problem to be replaced by another op-
erator of the same type signature. The 
teacher can guide the template-gen-
eralization process by providing more 
example problems or manually edit-
ing the initially generated template. All 
possible instantiations of the template 
are automatically enumerated, and the 
validity of an instantiation is checked 
by testing on random inputs. The prob-
abilistic soundness of such a check 
follows from Property 1. The method-
ology works for identities over analytic 
functions involving common algebraic 
operators, including trigonometry, in-
tegration, differentiation, logarithm, 
and exponentiation. Note the method-
ology would not be feasible if symbolic 
reasoning were used (instead of ran-
dom testing) to check the validity of a 
candidate instantiation since symbolic 
reasoning is much slower (Principle 
S1) and the density of valid instantia-
tions is often quite low. 

Natural deduction problems. Figure 
7 covers three interfaces for generat-
ing new natural deduction problems:1 

Figure 6. Problem generation for algebraic-proof problems involving identities over analytic 
functions (such as trigonometry and determinants);26 a given problem is generalized into a 
template, and valid instantiations are found by testing on random values for free variables. 
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settings, the teacher would even like to 
award a numerical grade. 

Automating feedback generation is 
important for several reasons: First, it 
is quite difficult and time-consuming 
for a human teacher to identify what 
mistake a student has made. As a re-
sult, teachers often take several days 
to return graded assignments to their 
students. In contrast, if students get 
immediate feedback (due to automa-
tion), it can help them realize and 
learn from their mistakes faster and 
better. Furthermore, maintaining 
grade consistency across students and 
graders is difficult. The same grader 
may award different scores to two 
very similar solutions, while different 
graders may award different scores to 
the same solution. 

Procedural problems. Generating 
feedback for procedural problems is 
relatively easy (compared to concep-
tual problems) since they all have a 
unique solution; the student’s attempt 
can simply be syntactically compared 
with the unique solution. While stu-
dent errors may include careless mis-
takes or incorrect fact recall, one com-
mon class of mistakes students make 
in procedural problems is employing 
a wrong algorithm. Van Lehn30 identi-
fied more than 100 bugs students in-
troduce in subtraction alone. Ashlock7 
identified a set of buggy computational 
patterns for a variety of algorithms 
based on real student data. Here are 
two bugs Ashlock described for the ad-
dition procedure (see Figure 5a): 

˲˲ Add each column and write the 
sum below each column, even if it is 
greater than nine; and 

˲˲ Add each column from left to 
right; if the sum is greater than nine, 

write the 10s digit beneath the column 
and the ones digit above the column 
to the right. 

All such bugs have a clear proce-
dural meaning and can be captured 
as a procedure. The buggy procedures 
can be automatically synthesized from 
examples of incorrect student traces 
using the same PBE technology dis-
cussed earlier in the context of solution 
generation for procedural problems. 
In fact, each of the 40 bugs described 
by Ashlock7 is illustrated with a set of 
five to eight example traces, and An-
dersen et al.6 were able to synthesize 28 
(out of 40) buggy procedures from their 
example traces. 

Identifying buggy procedures has 
multiple benefits; for instance, it can 
inform teachers about a student’s mis-
conceptions. It can also be used to au-
tomatically generate a progression of 
problems specifically tailored to high-
lighting differences between the correct 
procedure and the buggy procedure. 

Aleven et.al.2 used PBE technology 
to generalize demonstrations of cor-
rect and incorrect behaviors provided 
upfront by the teacher. While their 
generalization is restricted to loop-
free procedures, teachers are able to 
add annotations as feedback to stu-
dents who get stuck or follow a known 
incorrect path. 

Conceptual problems. Feedback 
for proof problems can be generated by 
checking correctness of each individu-
al step (assuming students are using a 
correct proof methodology) and using 
a solution-generation technology to 
generate proof completions from the 
onset of any incorrect step.13 Here, this 
article focuses on feedback generation 
for construction problems, including 

two general principles useful across 
multiple subject domains: 

F1: Edit distance. The idea is to find 
the smallest set of edits to the stu-
dent’s solution that will transform it 
into a correct solution. Such feedback 
informs students about where the er-
ror is in their solution and how it can 
be fixed. An interesting twist is to find 
the smallest set of edits to the problem 
description that will transform it into 
one that corresponds to the student’s 
incorrect solution, thus capturing the 
common mistake of misunderstand-
ing the problem description. Such 
feedback can inform students as to 
why their solution is incorrect. The 
number and type of edits can be used 
as a criterion for awarding numerical 
grades; and 

F2: Counterexamples. The idea is 
to find input examples on which a 
student’s solution does not behave 
correctly. Such feedback informs the 
student about why the solution is in-
correct. The density of such inputs 
can be used as a criterion for awarding 
grades. 

The following illustrates how these 
principles are used in different subject 
domains: 

Introductory programming assign-
ments. The standard approach to grad-
ing programming assignments is to 
examine its behavior on a set of test 
inputs that can be written manually or 
generated automatically.4 Douce et al.12 
surveyed various systems developed 
for automated grading of program-
ming assignments. Failing test inputs, 
or counterexamples, can provide guid-
ance as to why a given solution is incor-
rect (Principle F2). However, this guid-
ance alone is not ideal, especially for 

Figure 7. Problem-generation interfaces for natural deduction problems;1 (a) proposition replacement; (b) similar-problem generation; and 
(c) parameterized-problem generation. 

¬x4

x4 ≡ x5

x4 ≡ x2

x4 → x2

x4 → ¬x1

(a)

(b) (c)

Some replacements 
for Premise 3 in 
Example Problem 
in (b):

Parameters:	 # of premises = 3, Size of propositions ≤ 4, 
	 # of variables = 3, # of inference steps = 2, 
	 Inference rules = { DS, HS }

Premise 1 Premise 2 Premise 3 Conclusion

Example Problem

x1 ∨ (x2 ∧ x3) x1 → x4 x4 → x5 x2 ∨ x5

New Similar Problems

x1 ≡ x2 x3 → ¬x2 (x4 → x5) → x3 x1 → (x4 ∧ ¬x5)

x1 ∧ (x2 → x3) (x1 ∨ x4) → ¬x5 x2 ∨ x5 (x1 ∨ x4) → ¬x3

(x1 ∨ x2) → x3 x3 → (x1 ∧ x4) (x1 ∧ x4) → x5 x1 → x5

(x1 → x2) → x3 x3 → ¬x4 x1 ∨ (x5 ∨ x4) x5 ∨ (x2 → x1)

x1 → (x2 ∧ x3) x4 → ¬x2 (x3 ≡ x5) → x4 x1 → (x3 ≡ ¬x5)

Premise 1 Premise 2 Premise 3 Conclusion

(x1 → x3) → x2 x2 → x3 ¬x3 x1 ∧ ¬x3

x3 → x1 (x3 ≡ x1) → x2 ¬x2 x1 ∧ ¬x3

(x1 ≡ x3) ∨ (x1 ≡ x2) (x1 ≡ x2) → x3 ¬x3 x1 ≡ x3

x1 ≡ ¬x3 x2 ∨ x1 x3 → ¬x2 x1 ∧ ¬x3

x3 → x1 x1 → (x2 ∧ x3) x3 → ¬x2 ¬x3
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While the Singh et al. tool makes no as-
sumption as to the algorithms or plans 
students can use, a key limitation is it 
cannot provide feedback on student at-
tempts with big conceptual errors that 
cannot be fixed through local rewrite 
rules. Moreover, the Singh et al. tool is 
limited to providing feedback on func-
tional equivalence, as opposed to per-
formance or design patterns. 

Automata constructions. Determinis-
tic finite automaton (DFA) is a simple 
but powerful computational model 
with diverse applications and hence 
is a standard part of computer science 
education. JFLAP24 is a widely used sys-
tem for teaching automata and formal 
languages that allows for constructing, 
testing, and conversion between com-
putational models but does not sup-
port grading. The following paragraphs 
explore a technique for automated 
grading of automata constructions.3 

Consider the problem of construct-
ing a DFA over alphabet {a, b} for the 
regular language L = {s | s contains the 
substring “ab” exactly twice}. Figure 
9 includes five attempts submitted by 
different students and the respective 
feedback generated by the Alur et al.3 
automata grading tool. The underlying 
technique involves identifying different 
kinds of feedback, including edit dis-
tance over both solution and problem 
(Principle F1) and counterexamples 
(Principle F2), with each feedback as-
sociated with a numerical grade. The 
feedback that corresponds to the best 
numerical grade is then reported to the 
student. The reported feedback for the 
third attempt is based on edit distance 
to a correct solution, and the grade is 
a function of the number and kind of 
edits needed to convert the student’s 
incorrect automaton into a correct au-
tomaton. In contrast, the rest of the 
incorrect attempts have a large edit 
distance and hence are based on other 
kinds of feedback. The second attempt 
and the last attempt correspond to a 
slightly different language description; 
that is, L′ = {s | s contains the substring 
“ab” at least twice}, possibly reflecting 
the common student mistake of mis-
reading the problem description. The 
reported feedback here is based on edit 
distance over problem descriptions, 
and the associated grade is a function of 
the number and kind of edits required. 
The reported feedback for the fourth at-

beginners who find it difficult to map 
counterexamples to errors in their 
code. An edit-distance-based tech-
nique27 offers guidance on fixing an in-
correct solution (Principle F1). 

Consider the problem of computing 
the derivative of a polynomial whose coef-
ficients are represented as a list of integers, 
teaching conditionals and iteration over 
lists (see Figure 8a for a reference solu-
tion). For this problem, students struggled 
with low-level Python semantics involving 
list indexing and iteration bounds. Stu-
dents also struggled with conceptual as-
pects of the problem (such as missing the 
corner case of handling lists consisting of 
single element). A teacher could leverage 
this knowledge of common example er-
rors to define an edit distance model con-
sisting of a set of weighted rewrite rules 
that capture potential corrections (along 
with their cost) for mistakes students 
might make in their solutions. Figure 8b 
includes sample rewrite rules: The first 
such rule transforms the index in a list 
access; the second transforms the right-
hand side of a constant initialization; and 
the third transforms the arguments for 
the range function. 

Figure 8c–e show three student pro-
grams, together with respective feed-
back generated by Singh et al.’s pro-
gram-grading tool.27 The underlying 
technique involves exploring the space 
of all candidate programs, applying 
teacher-provided rewrite rules to the 
student’s incorrect program, to syn-
thesize a candidate program equiva-
lent to the reference solution while 
requiring a minimum number of cor-
rections. For this purpose, the under-
lying technique leverages SKETCH,28 
a state-of-the-art program synthesizer 
that employs a SAT-based algorithm 
to complete program sketches (pro-
grams with holes) so they meet a given 
specification. Singh et al. evaluated 
their tool on thousands of real student 
attempts (at programming problems) 
obtained from the 2012 Introduction 
to Programming course at MIT (6.00) 
and MITx (6.00x).27 The tool generated 
feedback (up to four corrections) on 
over 64% of all submitted solutions 
that were incorrect in about 10 sec-
onds on average. 

Intention-based matching ap-
proaches19 match plans in student 
programs with those in a preexisting 
knowledgebase to provide feedback. 

The underlying 
technique involves 
exploring the space 
of all candidate 
programs, applying 
teacher-provided 
rewrite rules to 
the student’s 
incorrect program, 
to synthesize a 
candidate program 
equivalent to the 
reference solution 
while requiring a 
minimum number 
of corrections. 
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tempt, which does not involve a small 
edit distance, is based on counterexam-
ples. The grade here is a function of the 
density of counterexamples, with more 
weight given to smaller-size counter-
examples since students ought to have 
checked the correctness of their con-
struction on smaller strings. 

To automatically generate feedback, 
Alur et al.3 formalized problem descrip-
tions using a logic called MOSEL, an ex-
tension of the classical monadic-second 
order logic (MSO) with some syntactic 
sugar that allows defining regular lan-
guages in a concise, natural way. In MO-
SEL, the languages L and L′ can be de-
scribed by the formulas |indOf(ab)| = 2 
and |indOf(ab)| ≥ 2 respectively, where 
the indOf constructor returns the set 
of all indices where the argument string 
occurs. Their automata-grader tool 
implements synthesis algorithms that 
translate MOSEL descriptions into au-
tomata and vice versa. The MOSEL-to-
automaton synthesizer rewrites MOSEL 
descriptions into MSO, then leverages 
standard techniques to transform an 
MSO formula into the corresponding 
automaton. The automaton-to-MOSEL 
synthesizer uses brute-force search to 
enumerate MOSEL formulas in order of 
increasing size to find one that matches 
a given automaton. Edit distance is then 
computed based on notions of automa-
ta distance or tree distance (in case of 
problem descriptions), while counter-
examples are computed using automa-
ta difference. 

Alur et al.3 evaluated their automata-
grader tool on 800+ student attempts 
to solve several problems from an 
automata course—CS373 at the Uni-
versity of Illinois at Urbana Champaign 
in Spring 2013. Each submission 
was graded by two instructors and 
the tool. For one of these represen-
tative problems, instructors were in-
correct (having given full marks to 
an incorrect attempt) or inconsistent 
(same instructor having given differ-
ent marks to syntactically equivalent 
attempts) for 20% of attempts. For 
another 25% of attempts, there was 
at least a three (out of 10) points dis-
crepancy between the tool and one of 

the instructors; in more than 60% of 
these cases, the instructor conclud-
ed (after re-reviewing) that the tool’s 
grade was more fair. The two instruc-
tors thus concluded that the tool is 
preferable to humans for consistency 
and scalability. 

The automata grading tool3 has 
been deployed online, providing live 
feedback and a variety of hints. In Fall 
2013, Alur et al.,3 together with Bjoern 
Hartmann of the University of Califor-
nia, Berkeley, conducted a user study 
around the utility of the tool at the Uni-
versity of Pennsylvania and the Univer-
sity of Illinois at Urbana-Champaign, 
observing such hints were helpful, in-

Figure 8. Automated grading of introductory programming problems:27 (a) reference implementation (in Python) for the problem of computing 
a derivative of a polynomial; (b) rewrite rules that capture common errors; and (c), (d), and (e) denoting three different student submissions, 
along with respective feedback generated automatically. 

(a)

(b) (c) (d) (e)

def computeDeriv(poly): 
result = [] 
for i in range(len(poly)):
	 result += [i * poly[i]]
if len(poly) == 1: 
	 return result
	 # return [0]
else: 
	 return result[1:]
	 # remove the leading 0

def computeDeriv(poly): 
deriv, zero = [], 0 
if (len(poly) == 1):
	 return deriv
for e in range(0,len(poly)):
	 if (poly[e] == 0):
		  zero += 1
	 else
		  deriv.append(poly[e]*e)
return deriv

def computeDeriv(poly): 
idx = 1
deriv = list([])
plen = len(poly)
while idx <= plen:
	 coeff = poly.pop(1)
	 deriv +– [coeff*idx]
	 idx = idx + 1
	 if len(poly) < 2:
		  return deriv

def computeDeriv(poly): 
length=int(len(poly)–1)
i = length
deriv = range(1,length)
if len(poly) == 1:
	 deriv = [0.0]
else:
	 while i >= 0:
		  new = poly[i] * i
		  i –= 1
		  deriv[i] = new
return deriv

		  x[a] → x[{a + 1, a – 1, ?a}]
	 x = n → x = {n + 1, n – 1, 0}
range(a0, a1) →
			   range({0, 1, a0 – 1, a0 + 1},
				    {a1 + 1, a1 – 1})

The program requires 3 changes:
•	 In the return statement return deriv in 

line 4, replace deriv by [0].
•	 In the comparison expression  

(poly[e] == 0) in line 6, change  
(poly[e] == 0) to False.

•	 In the expression range (0, len(poly)) in 
line 5, increment 0 by 1.

The program requires 1 change:
•	 In the function computeDeriv,  

add the base case to return [0] for 
len(poly) = 1.

The program requires 2 changes:
•	 In the expression range(1, length) in 

line 4, increment length by 1.
•	 In the comparison expression (i >= 0) in 

line 8, change operator >= to !=.

Figure 9. Automated grading of automata problems:3 several student attempts to con-
struct an automaton that accepts strings containing the substring “ab” exactly twice, 
along with automatically generated feedback and grade. 
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creased student perseverance, and im-
proved problem-completion time. 

Conclusion 
Providing personalized and interactive 
education (as in one-on-one tutoring) 
remains an unsolved problem in stan-
dard classrooms. The arrival of MOOCs, 
despite being an opportunity for sharing 
quality instruction with a large number 
of students, exacerbates the problem 
with an even higher student-to-teacher 
ratio. Recent advances in computer sci-
ence can be brought together to rethink 
intelligent tutoring,33 with the phenom-
enal rise of online education making 
this investment very timely. 

This article has summarized re-
cently published work from different 
areas of computer science, including 
programming languages,17,27 artificial 
intelligence,1,3,26 and human-computer 
interaction.5 It also reveals a common 
thread in this interdisciplinary line of 
work, namely the use of examples as an 
input to the underlying algorithms (for 
intent understanding), as an output of 
these algorithms (for generating the in-
tended artifact), or even inside these al-
gorithms (for inductive reasoning). This 
may enable other researchers to apply 
these principles to develop similar tech-
niques for other subject domains. This 
article should inform educators about 
new advances to assist various educa-
tional activities, allowing them to think 
more creatively about curriculum and 
pedagogical reforms; for instance, these 
advances can enable development of 
gaming layers that take computational 
thinking into K–12 classrooms. 

This article has applied a rather tech-
nical perspective to computer-aided 
education. While the technologies can 
affect education in a positive manner, 
computer-aided education researchers 
must still devise ways to quantify its ben-
efits on student learning, which may be 
critical to attract funding. Furthermore, 
this article has discussed only logical-
reasoning-based techniques, but these 
techniques can be augmented with 
complementary techniques that lever-
age large student populations and data 
whose availability is facilitated by recent 
interest in online education platforms 
like Khan Academy and MOOCs; for in-
stance, large amounts of student data 
can be used to collect different correct 
solutions to a (proof) problem, which in 

turn can be used to generate feedback13 
or discover effective learning pathways 
to guide problem selection. Large stu-
dent populations can be leveraged to 
crowdsource tasks that are difficult to 
automate,31 as in peer grading.21 A syn-
ergistic combination of logical reason-
ing, machine learning, and crowdsourc-
ing methods may lead to self-improving 
advanced intelligent tutoring systems 
that can revolutionize all education. 
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