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Abstract 1 Introduction

Shared memory in a parallel computer provides pro- A - ;
. X programmer writing a parallel program can either
grammers with the valuable abstraction of a shared address write the program under a message-passing or a shared-

space—thro(ljjgth Wr/m an% p"’.‘;t of a comp_uta;q;_)n Canmemory model. Message passing requires the programmer
access any datum. Although uniform access SImpliles proy, qisyihyte data structures among processors and manage
gramming, it also hides communication, which can lead to

2 _ updates to data with messages. Explicitly managing com-
inefficient programs. The check-in, check-out (CICO) per- munication complicates the already difficult process of
formance model for cache-coherent, Shared-mempry paralV/vriting correct parallel programs. Shared memory, on the
lel computers helps a programmer identity  the other hand, offers a simpler programming model since
communication underlying memory refereqces and shared data can be transparently accessed by any processor.
account for its cost. CICO co_n5|sts of annoj[atl(_)ns that aTypicaIIy, scalable shared memory systems use a message-
programmer can use to elucidate communication and assing hardware base augmented by special hardware or
model that attributes costs to these annotations. The ann Software that implements a cache-coherence protocol—for
tations can also serve as directives to a memory system tgxample, Stanford DASH [14], MIT Alewife [3], or Wis-

improve program performance. Inserting CICO annota_- consin DigSW [10][18]. A read to or write from a shared

tions requires reasoning about the dynamic cache behav'oﬁwemory location will cause interprocessor communication
ofa program, Wh'Ch.'S not Q'Ways ceasy. _ in some cases, depending whether the referenced data was
. This paper descrlb_e@ac_mer, a tool that automatically cached locally or is stored remotely. This communication
inserts CICO annotations into shared-memory programs. Acan seriously impair a program’s performance. Although it

nO\{t_eI featbutrg ofdtrfns tool is its use of bo:_h d)inamlc mfor-”is often easier to write shared-memory programs, it may be
mation, obtained from a program execution trace, as well | - siicult to write a fast program.

as static information, obtained from program analysis'. We To write efficient programs, a shared-memory program-
measured several benchmarks annotated by Cachier b?ﬁer must be aware of the cost of memory references. The

running them on a simL_JIation of the EBW ca(_:he goher- check-in, check-out (CICO) shared-memory programming
ence protocol [10], which supports these directives. The erformance model proposed by Lagtisl. [13] is a first

results show that programs annotated by Cachier perfor tep in this direction. CICO exposes the communication

S|gn|f|ca_1ntly better than both programs without CICO underlying memory references in cache-coherent shared-
annotations and programs that were annotated by_ hand. memory computers. CICO consists of annotations that a

Keywords: Shared-memory, parallel programming per- programmer can use to capture the communication under-
formance deeIS’ parallel programming tools, CaChe'Iying shared-memory references and a cost model that
coherence, directory protocols. attributes a cost to this communication.

The CICO annotations demarcate the point at which a
program first reads or writes a shared location and the point
at which the program finishes with the location. The model
consists of five annotations—check-out exclusive, check-
out shared, check-in, prefetch-exclusive, and prefetch-

_ . _ shared. Check-out annotations indicate the need for exclu-
S S miost st o Wi oy, Sive o shared access to the cache block containing a speci-
uate School Grant. Our Thinking Machines CM-5 was purchased through fied address. Prefetch annotations indicate the likelihood of

NSF Institutional Infrastructure Grant No. CDA-9024618 with matching an access to the cache block in the near future. The check-
funding from the Univ. of Wisconsin Graduate School.



in annotation relinquishes access to the specified cache Cachier also informs a programmer of potential data races
block. The CICO cost model provides a measure of the and false sharing. These events are undesirable because
communication incurred by non-local data references as their timing-dependent interprocessor communication can
well as the cache-coherence protocol overhead required to cause errors and complicates understanding a program'’s
maintain consistency. The CICO annotations do not affect performance. A programmer can use the information from

a program’s semantics. Cachier to eliminate some of these events.

The CICO annotations can also be used as hardware We measured the usefulness of CICO annotations as
directives to a memory system to improve program perfor- memory-system directives by running several benchmarks
mance by reducing both communication latency and mes-on a simulator of the DjEW memory system protocol
sage traffic. The memory system can use prefetch[21]. The CICO annotations inserted by Cachier outper-
annotations to reduce latency by overlapping communica-formed both the program without any annotations as well
tion with computation. The check-out exclusive annotation as a hand-annotated version. Interestingly, Cachier per-
can reduce the message traffic caused by write faults wheformed better on programs with complex, dynamic mem-
a shared location is first read and then written. The check-ory access, which caused programmers the greatest trouble.
in annotation flushes shared data from the cache, thereby The rest of this paper is organized as follows. Section 2
reducing the number of invalidate messages. Even in thidriefly describes the CICO model with an example. Sec-
role as memory system directives, the annotations do notion 3 describes the computing environment in which
affect a program’s semantics. Cachier operates. Section 4 explains the techniques that

Most parallel computers provide memory system direc- Cachier uses to insert CICO annotations. Section 5 illus-
tives similar to CICO directives. Perhaps the most commontrates the use of the annotations by a programmer to reduce
is a prefetch instruction. The Kendall Square KSR-1 [11] a program’s communication cost. Section 6 evaluates the
provides a post-store instruction that broadcasts read-onlyperformance of several benchmarks that were annotated by
copies of a cache block to all other nodes that have it allo-Cachier. Finally, Section 7 discusses related work.
cated but are in the invalid state. This operation is similar,
though not identical, to a check-in. Even if a parallel com- 2 Programming Perfor mance M odel
puter does not support CICO directives, a programmer can

always use the information from the annotations to restruc- A Shared-memory programming performance model
ture a program to improve its performance. should aid a programmer in writing efficient programs by

The first step in using the CICO model to compute aexposing the communipa_\tion underlying shared-memory
program’s communication cost is to insert the annotations'€férences and by providing a measure of the cost of this
into a program. The accuracy of the cost calculation communication. ThIS section briefly describes the CICO
depends to a large extent on inserting the annotations sg'0del [10] [13] with the help of an example.
they (;apture the communication_behavior qf a program.» 1 c|cO Mode
Inserting CICO annotations requires reasoning about the
dynamic behavior of a program and memory system. This
is not easy, even for the simplest of programs.

This paper describes a tool—Cachier—that aids this
reasoning by automatically inserting CICO annotations
into shared-memory programs. Cachier uses a nove
approach of combining information about the dynamic

behavior of a program, obtained from its execution trace'cessors (wherdl is a multiple ofP), each of which has

with static information, obtained from program analysis. been assigned a block of the matrix consisting/Bfrows
The dynamic information enables Cachier to annotate com- '
Lip to Ui, andN/P columns L, to U;,. Assume the bound-

plicated programs thaF manipulgte .poi_nter-b_ased data StrucE;lry columns and rows are first copied to local arrays and
tqres, for which static anaIygg IS |nfga3|ble. Even for then the stencil computation is performed locally:

simpler programs, the dynamic information augments and .

refines the static information. Since CICO annotations for each time stego

need not be placed perfectly accurately, dynamic informa- copy boundary rows & columns to local arrays

tion from a single execution of the program is sufficient. for | - Ljp to Ujp do

The static analysis converts raw data addresses from the for i = Lipto Ujp d,o

trace into references to program variables and presents the compute stencil on cols & rows

annotations in a readable form. The placement of the CICO annotations depends on the

In addition to automatically inserting CICO annotations, Size of the matrix as well as the size of the cache. If the
blocked matrix completely fits in the processors cache, the

The CICO model consists of check-out, check-in, and
prefetch annotations that a programmer adds to a program
and a cost model that uses these annotations to compute a
program’s shared-memory communication cost. To illus-
frate the CICO model, we consider a simple example of
Jacobi relaxation code on a matrix of siex N. This
example is from Hillet al. [10]. Assume there are? pro-



CICO annotations appear as follows:
check _out_X U[Lip: Uip’ Ljp: Ujp]
for each time step do
check_out_shared Boundary rows & columns
copy boundary rows & columnsto local arrays
check_in Boundary rows & columns
for | = LiptoUj,do
fori=LjptoUj,do
compute stencil on columns and rows
check_in U[Ljp: Ujp, Ljp: Ujpl
The communication cost of the program can be found
from the annotations. Assume that b matrix elementsfit in
a cache block and the matrix is stored in column major
order. The check-out directives for the boundary columns
check out 2N/bP blocks per time step and those for the
boundary rows check out 2N/P blocks per time step, for a
total of 2N(1 + b)/bP blocks per time step. The check-out
for the matrix results in N%/bP? blocks bei ng checked out.
This is performed once. Thus if the program runs for T
time steps, the p2 processors check out a total of
(2NPT(1+b)/b + N2/b) cache blocks.
If the block of the matrix assigned to a processor is too
large to fit in the cache, but individual columns of the
matrix fit, the annotations appear as follows:

for each time step do
check_out_shared Boundary rows & columns
copy boundary rows & columnsto local arrays
check_in Boundary rows & columns
for j=Lj,toU;,do
check_out_exclusive U[Ly: Ujp, j]
for i = LiptoUj, do
compute stencil on columns and rows
check_in U[L;p: Ujp, j]

In this case, the P? processors check out (2NP(1+b)/b +
N2/b) cache blocks per time step, for atotal of (2NP(1+b)/
b + N2/b)T cache blocks, if the program runs for T time
steps. If the processor cache istoo small to hold even asin-
gle column, the check-out annotations would appear imme-
diately before a reference and the check-in annotations
would appear immediately after a reference. This would
suggest blocking the loop to improve program performance
[8][12]. In the first version of the program, each processor
checked out atotal of N/bP cache blocks per column of the
matrix (ignoring the check-outs for the boundary elements
which are anyway the same for both versions), while in the
second version, each processor checked out a total of NT/
bP cache blocks per column.

This example shows how the CICO annotations can be
used to compute and understand a programs communica-
tion cost as well as suggest ways of restructuring it to
reduce this cost.

3 Cachier Overview

Cachier is atool that automatically inserts CICO anno-
tations into shared-memory programs. Figure 1 shows the
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Target Program
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trace
target file ¢
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trace

Annotated Target
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Fig 1. Overview of the Cachier Framework

process that Cachier uses to annotate shared-memory pro-
grams. Cachier uses both dynamic and static information in

order to effectively insert CICO annotations. Section 4
explains the need for both types of program information, as

well as Cachier’s techniques for inserting the CICO anno-
tations. This section describes the computing environment
in which Cachier operates.

3.1 Target Program Model

We studied programs from the Stanford Splash shared-
memory benchmark suite [19]. These programs use barrier
synchronizations as their primary synchronization mecha-
nism. The programs also use locks. However, a very small
fraction of the program’s total computation is performed
within lock-unlock intervals, so we ignore locks and con-
centrate on the program model shown in Figure 2.

Synchronization Barrier

Epoch

Synchronization Barrier
L]
L]
L]
L]
L]
Synchronization Barrier

Fig. 2 Program Model

Epochs are code segments that execute between two
synchronization events. Our program model consists of
epochs demarcated by barrier synchronization points. This
is a fairly general model as most parallel computers pro-
vide support for barriers. Also most programs using barri-
ers typically perform the bulk of their computation in the
intervals between barriers.



3.2 Wisconsin Wind Tunnel (WWT) behavior of a program that has data races in the following
The Wisconsin Wind Tunnel (WWT) [18] is an accurate manner. Suppose that in epdchiwo processorX andY

parallel architecture simulator that runs on a Thinking have a data race on a particular variable. Say proc&ssor
Machines CM-5 computer [20]. It uses a technique called used that variable in the previous epoch. Since the shared
virtual prototyping, by which it only simulates those fea- data caches are flushed at every epoch boundary, processor
tures of the parallel architecture that are not present in the Y may end up with the variable in its cache in the next
native hardware. We use it to simulate Dir;SW [10], [21], epoch, rather than the other way around. This may cause
which is a cache-coherence directory protocol that has sup- the program to generate different results. Collection of

port for programs written within the CICO model. We run trace information also slows the program’s execution. On a
the unannotated target program on WWT to generate its simulator like WWT, time dilation does not affect the pro-
execution trace. gram’s behavior.

3.3 Dynamic Program Information 3.4 Cachier

The dynamic information obtained from a program’s  The input to Cachier consists of an unannotated target
execution trace enables Cachier to insert annotations intgrogram and its trace file. Cachier parses the unannotated
complicated programs that manipulate pointer-based datdarget program and constructs its abstract syntax tree and
structures, which are difficult to analyze statically. Even control flow graph. Cachier combines both the static and
for programs amenable to static analysis, dynamic infor-dynamic program information to determine which CICO
mation supplements the static information since static anal-annotations are to be inserted. It modifies the program’s
ysis alone can produce overly conservative estimates ofbstract syntax tree to include the annotations and produces
sharing [1]. The trace file contains information about a an annotated target program by unparsing this modified
cache miss, including its type, the address being accesseapstract syntax tree. The annotated target program is the
the program counter at that point, the node making thesame as the unannotated target program, except for the
access, and the epoch in which the access occurred (ségdCO annotations inserted by Cachier.
Figure 3).

_ _ 4 Inserting CICO Annotations

Nodeno., Barrier PC, Barrier VT

. . This section describes the techniques used by Cachier to
Shared Write Miss : Address

insert CICO annotations into shared-memory programs and

. illustrates them with an example. In order to insert annota-

. tions, three key questions have to be answered—what to

Shared Read 'Y“SS + Address Epoch CICO?, where to CICO?, and how to CICO? These ques-
. tions are answered in Sections 4.1, 4.2 and 4.3 respectively.

Section 4.4 provides an example to illustrate these tech-
nigues. Section 4.5 discusses a few issues related to the
. technique Cachier uses to insert the annotations.
¢ Cachier operates in two distinct phases. In the first
phase, Cachier processes and assimilates information about
the epoch from the trace file and determines the annota-
. tions. Trace processing consists of removing addresses
Fig. 3 Trace File Format involved in shared write faults from the list of shared read
Each processor's shared data cache is flushed at everjpisses, updating the list of shared write misses to include
barrier synchronization to improve the quality of the trace addresses involved in shared write faults, and storing label-
data generated, as only accesses that miss in these cacH#¥ information contained in the trace to aid mapping
show up in the trace. There is no time ordering of accessegddresses to program data structures. Cachier also deter-
within an epoch. However epochs are ordered by the barmines locations involved in data races and false sharing. A
rier Virtual Times (VT’s). potential data race exists if two or more processors access
The information in the trace, such as program countersthe same address within the same epoch and at least one
and addresses, are collected during program execution bccess is a write. False sharing results from two or more
WWT and stored in a hash table. At each synchronizationProcessors accessing different addresses in the same cache
barrier in the program, the processors’ shared data cachelglock. Cachier next uses the equations described in Section
are flushed and information in the hash table is written to4.1 to compute addresses to be checked-out exclusive,
the trace file. Collection of trace information may affect a checked-out shared and checked-in. Finally, Cachier uses
program’s behavior in two ways. First, it may affect the static information from program analysis along with the

Shared Write Fault : Address

Node no., Barrier PC, Barrier VT



labelling information in the trace to map addresses to pro-
gram data structures and program counters to lines in the
program text.

In the second phase, Cachier uses this information to
place these annotations in a readable form, as described in
Sections 4.2 and 4.3.

4.1 Choosing CICO Annotations

CICO annotations serve two roles. They allow a pro-
grammer to reason about the communication in his pro-
gram and also permit the memory system to improve
program performance. To be useful for reasoning about
communication, the annotations have to expose all com-
munication. On the other hand, to improve program perfor-
mance we want to optimize the annotations by removing
unnecessary annotations wherever possible. To satisfy
these conflicting goals, Cachier produces either Program-
mer or Performance CICO annotations.

For each epoch, Cachier determines the set of locations

it again in the next epoch. This annotation placement mod-
els caches and helps to eliminate many unnecessary check-
in, check-out pairs at epoch boundaries. Using only a sin-
gle epoch history simplifies the calculations. Moreover,
since an epoch performs a large amount of computation, a
variable left unused in the cache for multiple epochs is very
likely to be replaced before it can be reused.

To find Performance CICO annotations for each epoch,
Cachier uses these equations:

co_x[epochi] = DRFS{ shared writefault; - SM _; }
+ DRFS{ shared write fault; }
co_gepochi] ={}
ci [epochi] = DRFS{ SW, - SW ;. 1} +
DRFS{ SR N SW, 1} + DRFS{ S}
where the notation is the same as above.
The DinSW protocol [10][21] that uses CICO annota-
tions as memory directives performs an implicit check-out
exclusive at each shared write miss and an implicit check-

that should be checked-out, including their mode—sharedout shared at each shared read miss. Placing explicit check-
or exclusive—and the set of locations to check-in. To find out's for these cases reduces performance because of the
these sets for epodh Cachier uses the following set of overhead of the additional operation. However, many loca-

equations
co_x[epochi] = DRFS{ SM - SN 1} + DRFS{ SW }
co_s[epochi] = FS{ SR - SR .1} + FS{ R}

ci [epochi] = DRFS{ S-S, 1} + DRFS{ S}
where:

¢ j-1isthe previousepoch and i+1 isthe next epoch,

®* Cco X co s and ci are the locations that should be
checked-out exclusive, checked-out shared and
checked-in respectively,

* SW is shared write misses + shared write faults; (in
epoch i),

* SR is shared read misses - shared write faults (in
epoch i),

* S =SW;+SR;

* DRFSis a function on a set of addresses that returns
those addresses that are either involved in a data race or
in false sharing. (DRFSisits complementary function)

* FSisafunction on a set of addresses that returns a sub-
set of those addresses that are involved in false sharing.
(FSisits complementary function).

The basic idea behind these equations is that if there is

tions are read before being written, which results in their
being in the cache read-only at the time of the write. An
explicit check-out exclusive, before the read, can eliminate
the extra message traffic to upgrade a shared to an exclu-
sive copy. These are the only locations Cachier checks out
(unless, of course, they were already checked out in the
previous epoch).

The check-in annotations inserted by Cachier at the end
of epochs has three parts. The first are shared locations, not
involved in either data races or false sharing, that were
written to in the current epoch, and are not going to be
written by the same processor in the next epoch. The sec-
ond are shared locations, again not involved in either data
races or false sharing, that were read by some processor in
the current epoch and which will be written by some pro-
cessor in the next epoch. The last are shared locations that
were involved in either a data race or in false sharing in the
current epoch.

To make these ideas clearer, consider the example in
Figure 4.

Using the equations for Programmer CICO, Cachier
finds the following CICO annotations for epoch i: co_s(c),

either a data race or false sharing on a location’s cach_%o_s(a) & ci(c), ci(d). The Performance CICO annotations
block, then a processor should check it out and check oy the same epoch is just ci(c). If epoch i-1 was the first
back in immediately. The rationale is that since multiple epoch in the program, then the Programmer CICO for that
processors are contending for this block, it will remain in a epoch will be as follows: co_x(a), co_x(b), co_s(d) & ci(a).
processor’s cache only for a short time before another pro-the performance CICO for the same epoch will be just
cessor claims it. On the other hand, if a location is notgi(a). The check-in for a is necessary as there is a potential

involved in data races or false sharing, then a processofjata race on that variable (the trace does not maintain any

previous epoch by the same processor. Similarly, a proces-
sor should check-in a location only if it is not going to use
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Fig. 4

4.2 Placement of CICO Annotations

The placement of CICO annotations depends on the role
they serve, whether the location isinvolved in either a data
race or false sharing, and the relative sizes of the data set
and the shared data cache. Static program information
guides the decisions. Cachier models the finite capacity of
a cache (but not its limited associativity) to improve its
placement of CICO annotations.

In the case of Programmer CICO, Cachier tries to place
check-out annotations as close to the beginning of an epoch
and check-in annotations as close to the end of an epoch as
possible under the cache size constraints. This placement
facilitates use of these annotations by the programmer to
reason about a program. Since an epoch can span multiple
functions, Cachier uses static program information to place
check-out annotations close to the beginning of the func-
tions in which the locations are referenced and check-in
annotations close to the end of these functions, again sub-
ject to cache size constraints.

In the case of Performance CICO, Cachier triesto place
all annotations as close to the accesses as possible in an
attempt to reduce interprocessor communication. Since a
naive attempt to do thiswill result in code size explosion, it
uses static information about the program, especially the
loop structure to present the annotationsin areadable form.

4.3 Presentation of CICO Annotations

For CICO annotations to be readable by a programmer,
they must be presented in a compact, easily understandable
form. To achieve this goal, Cachier uses static program
information, obtained from its control flow graph and
abstract syntax tree, as well as some information from the
program’s trace.

To map a shared read miss on this line of code to a par-
ticular variable, further information is required. In such
cases, Cachier uses another utility which allows labelled
regions of memory to be mapped onto program data struc-
tures. The programmer uses a macro to label a continuous
region of shared-memory with a name. To use Cachier, a
programmer must label all important shared data struc-
tures.

Cachier uses the program’s abstract syntax tree to ana-
lyze its loop structure. This information helps structure the
CICO annotations in a form that makes it easy for the pro-
grammer to read the annotations. This process involves
collapsing annotations, either by placing them inside pro-
gram loops, or by generating new loops for them. To illus-
trate this step, consider the following piece of code. To its
right is the result of naive insertion of CICO annotations
followed by Cachier’'s more sophisticated insertion.

fori=1toNstep2do fori=1toNstep2do

Ali] = ... check_out_X A[i]
od Ali] = ...
..... check_in A[i]
fori=1toNdo od
Alil=.... fori=1toN do
od check_out_X A[i]
Ali] = ...
check_in A[i]
od

for i =1toNstep 2do
check_out_X A[i]
Ali] = ...

for i =2toN-1step 2do
check_out_X Ai]

fori=1toNdo
Ali] = ...
check_in A[i]

Moreover, since an epoch can be executed multiple
times, Cachier ensures that the annotations are not dupli-
cated. Cachier also flags data races and false sharing, to
enable the programmer to use locks in the case of data
races or pad the relevant data structures in the case of false
sharing, to alleviate the problem.

4.4 Example Cachier Annotations

Consider the following example which performs matrix
multiplication of two dense matrices, each of size N x N
using an unconventional technique explained below. For

In the case of shared read misses, it may not be alwaysimplicity, N is a multiple of P, the square root of the num-
possible to map an address to a program variable by examber of processors and each processor is assigned a block of
ination of the line. For example, consider the following rows, Ly, to Uy, and columns, f to Uy, of the B matrix.

line:
C[i, j1=C[i, j1 + Afi, k] * B[k, j]

fori=1toNdo
for k = Ly, to Uypdo



t=A[i, K] for i=1toNdo

for j=L;,toU;, do for k = Ly to Uy, do
Cli,jl =C[i, j] +t* B[k, ] t=Al, K
Figure 5 illustrates the technique used to multiply the for j=Li,to U;,do
matrices. check_out_X CJi, j]
/***Data Raceon C[i, j] ***/
Cli, ] =C[i, j] + t* B[k, ]]
Lip check_in CIi, j]
= Up In this case the check-out shared annotations are absent
as DirSW performs an implicit check-out shared on each
shared read miss. So an explicit check-out shared annota-
Lbp Y kp U b Up tion would just result in an overhead due to address genera-
Matrix C Matrix A Matrix B tion translation. However the check-out exclusive
) annotation for matrix C is still present because it incurs a
Fig. 5 shared write fault, which would have otherwise upgraded a

Each processor is assigned a block of the B matrix  shared copy of the block to be writable. The check-in anno-
which is not shared. The A matrix is read shared by the tation for matrix C is placed immediately after it is refer-

processors and the C matrix (result matrix) is read as well enced, due to the presence of the data race. The check-in
as write shared. This follows from the technique used to annotations for matrices A and B are omitted as they are

multiply the matrices in which each processor updates the not write shared.
result matrix with the values it computes. ) )
In the case that the matrix size and the cache size are 4.5 Discussion
such that the entire matrix does not fit in the processor's CICO annotations do not affect a program’s semantics.
cache but individual rows/columns do, Cachier inserts theThus, even if the annotations are inserted at inappropriate

following CICO annotations. points in the program, they only affect its performance.
These are the Programmer CICO annotations insertecfIso while it is conceivable that the instrumentation added
by Cashier to trace the program may substantially alter its memory
for i=1toN do access pattern causing Cachier to insert the annotations at
for k = Ly to Uy, do !nappro_priate pIa_ces, we have not (_)b§erved s.uch beh_avior
check_out_SA[i, K] in practice. Cachier can use dynamic information obtallned
t = A[i, K] from a single execution of the program to place annotations
check_out_SBIK, Ljp : U] as the CICO annotations are not required to be perfectly
for j = Ljp to U, do accurate. . o . .
check_out_X C[i, j] _ Cachier co_mbme:s dynamm mformauon obtained from a
/**Data Raceon CI[i,j] ***/ single e_xecutlon with static analysis of_the program. The
Cli, jl = C[i, j] + t * BK, ] aIte_rnatl\_/e would have been to use a training set rgther than
check_in C[i, j] a single input data set to obtain dyqamlc program informa-
check_in BIK, Ljp : Ujp] tion. However we found that the difference betwc_een exe-
check_in Ali, K] cuting a Cachier annotated program on the same input data

set used to generate the dynamic information as opposed to

For the case of Programmer CICO, Cachier inserts ecuting the program on a different data set was small (<
annotations to check-out shared matrices A and B as they - o9 prog . meren ; W
%) even for a dynamic application likBarnes. We

are only read. Matrix C which is read as well as written is believe this is due to two reasons. Firstly, Cachier does not
checked-out exclusive. The data race on elements of matrix ) Y,

C is flagged and the check-out/ check-in annotations forrely solely on the dynamic information obtained, but com-

these elements are placed as close to the reference as pos%'{-]es this with a static analysis of the program source. Sec-

ble. On the other hand, since elements of matrices A & Bondly, it appears that even dynamic applications are not all

. . . - that dynamic as far as memory access patterns are con-
are not involved in a data race, their corresponding check- y y P

out (check-in) annotations are placed as close to the begi cerned. Moreover, other measurements show that program

ning (end) of the epoch as is possible under cache size collrb—(ah"’w'or is typically independent of the input data set [7].

straints. The notation-ll,: U., indicates that the annotation . .
] ip
is in a loop generated by Cachier. 5 Restructuring with CICO

The Performance CICO annotations inserted by Cachier This section illustrates how the CICO annotations
look as follows inserted by Cachier can be used to restructure a program.
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We do this using the same matrix multiply example from
the previous section. The annotations inserted by Cachier
indicate that the communication bottleneck is due to the
cache block race on elements of the result matrix. More-
over, this race can cause an incorrect result due to multiple
processors reading the same value of the C matrix at the
same time, modifying it, and writing it back. This race is
compounded by the fact that a single cache block contains
multiple adjacent el ements of the result matrix (in this case
4 elements). Since a cache block is the minimum granular-
ity at which an element can be checked out, a solution
would be to restructure the program as follows. First each
processor copies the portion of the C matrix that it will be
updating into alocal array. Each processor then performs
the computation on the C matrix locally, and finally copies
back its local portion of the C matrix.
fori=1toNdo
for j=L;,toUj, step 4do
check_out_SCJi, |]
Cpli,j:j+3]=C[i,j:j+3]
check_in CJi, j]
fori=1toNdo
for k=L toUy,do
t=Ali, K]
for j=Lj,to U, do
Colis 11 = Cli, 1+ t* Bk, ]
fori=1toNdo
for j =L, to Uj, step 4 do
lock C[i, j]
check_out_X CJi, j]
Cli,j:j+3]=Cli,j:j+3] +Cyli,j:j+3]
check_in Cfi, j]
unlock Cfi, j]

The original program had atotal of N3 (N * N/P* N/P
* PZ) check-outs for elements of matrix C on which there
is a cache block race. The restructured program only has
N2P/2 (2 * N * N/4P *P?) check-outs for elements of
matrix C out of which there is a cache block race on only
N2P/4 of them which is protected by alock.

6 Performance of Automatic CICO

This section compares the performance of severa
unannotated shared-memory programs against hand-
inserted CICO and Cachier-annotated CICO versions of
the same program. The hand CICO was carefully done
over a period of a few weeks with the aid of existing pro-
filing tools by individuals with a detailed understanding of
the problem and cache-coherence protocol. Cachier pro-
duced the automatic CICO version. All smulations were
run on the Wisconsin Wind Tunnel (WWT) [18]. The sim-
ulated computer consists of 32 processor nodes, each con-
taining a processor, shared-memory module, cache, and
network interface. The cache is 256 KB, 4-way set-asso-
ciative with a cache block size of 32 bytes. We used WWT
to simulate a directory-based Dir{SW cache-coherence
protocol [10] [21].

For this evaluation we use five benchmarks: Barnes,
Ocean, Mp3d (from the SPLASH Benchmark suite [19]),
Matrix Multiply, and Tomcatv (a parallel version of the
SPEC Benchmark). Barnes performs a gravitational N-
body simulation using the Barnes-Hut algorithm. We sim-
ulated it for adata set of size 1024 bodies. Ocean performs
acuboidal ocean basin simulation using Gauss-Seidel with
Successive Over Relaxation. We simulated it for a grid
size of 98 x 98. Mp3d simulates rarefied fluid flow of ide-
alized diatomic molecules in a three-dimensiona active



space. We simulated it for 50,000 molecules and 10 time
steps. Matrix Multiply multiplies two matrices by dividing
them into blocks. We simulated it for amatrix size of 256 x
256. We simulated Tomcatv for 10 iterations on a grid of
size 1024 x 1024. The input data sets used to obtain the
execution trace for Cachier were different than the data sets
used in the performance comparison.

Figure 6 displays the execution times of these pro-
grams, normalized to the version without CICO annota-
tions. For Matrix Multiply, the CICO annotations (without
the prefetch annotation) inserted by Cachier show a 16%
improvement in performance, as compared to the version
without CICO annotations and a slight improvement over
the hand-annotated version. In this program, one processor
initializes the matrices with random values. Part of the
improvement arises from checking-in these matrices after
initialization. Also, the result matrix is read-write shared
by the processors, so checking-out the required matrix ele-
ments exclusive eliminates upgrades of shared blocks to be
writable. In addition, checking in the result values after a
processor computes them reduces the number of invalida
tion messages that have to be sent. The small differencein
performance between the hand-annotated and Cachier
annotated versions is due to a few unnecessary annotations
in the former. Using the prefetch annotation, Cachier
improves the program performance by around 20%. In the
hand-annotated version of the program, the prefetch anno-
tations were inappropriately placed.

For Barnes as well, the version of the program anno-
tated by Cachier outperforms the version without any
annotations by around 11% and the hand-annotated version
by 2%. In this case the hand-annotated version missed a
few annotations. The prefetch annotations are not very suc-
cessful in further improving performance due to the pro-
gram’s complicated pointer data structures.

For Tomcatv, the CICO annotations do not have a large
effect on its performance as it performs little communica-
tion relative to its computation (around 90% of its execu-

tion time is spent in computation). FdDcean, the

annotations inserted by Cachier improve program perfor-

mance, even for complicated programs liRarnes and
Mp3d that contain pointer-based data structures and
dynamic memory access patterns. This performance
improvement is due to a reduction in the time spent servic-
ing shared data cache misses and write faults as well as a
reduction in the number of these events. The greatest per-
formance improvement is obtained fOcean and Mp3d,

both of which have the highest degree of sharing among
the Splash benchmarks. @cean, 88% of loads read
shared data and 68% of the stores write shared data,
whereas forMp3d, the corresponding numbers are 71%
(shared reads) and 80% (shared writes) respectively [19].
On the other hand, iBarnes, where the performance
improvement is not as large, the degree of sharing is much
lower—25.5% of the loads are shared data reads and only
1.3% of the stores are shared data writes [19].

Moreover, Cachier-annotated versions of the programs
consistently outperformed the hand-annotated versions,
which shows that inserting annotations by hand is not an
easy task, especially for programs with dynamic memory
access patterns. In addition, since different input data sets
were used to insert the annotations and to compare perfor-
mance, the results show that Cachier’s annotations are not
overly specialized to a particular execution.

7 Related Work

Inserting CICO annotations appears similar to inserting
primitives for software cache coherence [4][5][15]. The
crucial difference is that coherence primitives must be con-
servatively inserted. To ensure correct execution, software
cache coherence schemes must invalidate data along all
possible program execution paths. Moreover, the schemes
cannot use dynamic program information and rely solely
on conservative static analysis. CICO annotations, on the
other hand, do not affect a program’s semantics and hence
Cachier can aggressively insert annotations by combining
dynamic program information with static program analy-
sis.

Other work studied how to prefetch data so as to overlap

mance by around 20% without prefetch, and by 25% with communication with computation and reduce communica-

prefetch. This is also a

annotated version in both cases. Rp3d, the Cachier
annotated version outperforms the unannotated version b

25% and the hand-annotated version by 45%.

annotated version suffers from both checking-in cache
blocks too early at certain places, (i.e., before a processor
finished with the block) as well as neglecting to check-in

blocks at other places.

These results emphasize the difficulty in hand-inserting
CICO annotations, especially for programs with dynami

7% improvement over the hang-tion latency [2][9][16]. However, these schemes relied

solely on static program analysis and were able to prefetch

>glata only in scientific codes with fairly static memory
The hand@ccess patterns that a compiler can analyze. Cachier uses

dynamic information as well, which works in more circum-
tances. It also uses check-ins to flush data from a proces-
sor’s cache. This results in a reduction in message traffic as
well as communication latency.

Techniques for race detection in the context of debug-

¢ 9ing programs have either used dynamic information from

memory access patterns. They also show that Cachier'@ program’s execution trace or static information from an

annotations are successful in improving program perfor-

analysis of the program text [17]. A few techniques have
used dynamic information as well as static information [6].
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