
Cachier: A Tool for Automatically Inserting CICO Annotations

Trishul M. Chilimbi and James R. Larus
Computer Sciences Department

University of Wisconsin–Madison
1210 West Dayton Street

Madison, WI 53706
[chilimbi, larus]@cs.wisc.edu
r
red-
mer
age
m-
of
he
ce
ssor.
age-
e or
for

on
 was
on
 it
 be

-
The
ng

on
ed-
t a
er-
hat

 a
int
el
k-
h-

clu-
eci-
 of

eck-
Abstract
Shared memory in a parallel computer provides pro-

grammers with the valuable abstraction of a shared address
space—through which any part of a computation can
access any datum. Although uniform access simplifies pro-
gramming, it also hides communication, which can lead to
inefficient programs. The check-in, check-out (CICO) per-
formance model for cache-coherent, shared-memory paral-
lel computers helps a programmer identify the
communication underlying memory references and
account for its cost. CICO consists of annotations that a
programmer can use to elucidate communication and a
model that attributes costs to these annotations. The anno-
tations can also serve as directives to a memory system to
improve program performance. Inserting CICO annota-
tions requires reasoning about the dynamic cache behavior
of a program, which is not always easy.

This paper describes Cachier, a tool that automatically
inserts CICO annotations into shared-memory programs. A
novel feature of this tool is its use of both dynamic infor-
mation, obtained from a program execution trace, as well
as static information, obtained from program analysis. We
measured several benchmarks annotated by Cachier by
running them on a simulation of the Dir1SW cache coher-
ence protocol [10], which supports these directives. The
results show that programs annotated by Cachier perform
significantly better than both programs without CICO
annotations and programs that were annotated by hand.

Keywords: Shared-memory, parallel programming per-
formance models, parallel programming tools, cache-
coherence, directory protocols.

This work is supported in part by NSF NYI Award CCR-9357779, NSF
Grants CCR-9101035 and MIP-9225097, and a Univ. of Wisconsin Grad-
uate School Grant. Our Thinking Machines CM-5 was purchased through
NSF Institutional Infrastructure Grant No. CDA-9024618 with matching
funding from the Univ. of Wisconsin Graduate School.

1 Introduction

A programmer writing a parallel program can eithe
write the program under a message-passing or a sha
memory model. Message passing requires the program
to distribute data structures among processors and man
updates to data with messages. Explicitly managing co
munication complicates the already difficult process
writing correct parallel programs. Shared memory, on t
other hand, offers a simpler programming model sin
shared data can be transparently accessed by any proce
Typically, scalable shared memory systems use a mess
passing hardware base augmented by special hardwar
software that implements a cache-coherence protocol—
example, Stanford DASH [14], MIT Alewife [3], or Wis-
consin Dir1SW [10][18]. A read to or write from a shared
memory location will cause interprocessor communicati
in some cases, depending whether the referenced data
cached locally or is stored remotely. This communicati
can seriously impair a program’s performance. Although
is often easier to write shared-memory programs, it may
more difficult to write a fast program.

To write efficient programs, a shared-memory program
mer must be aware of the cost of memory references.
check-in, check-out (CICO) shared-memory programmi
performance model proposed by Larus et al. [13] is a first
step in this direction. CICO exposes the communicati
underlying memory references in cache-coherent shar
memory computers. CICO consists of annotations tha
programmer can use to capture the communication und
lying shared-memory references and a cost model t
attributes a cost to this communication.

The CICO annotations demarcate the point at which
program first reads or writes a shared location and the po
at which the program finishes with the location. The mod
consists of five annotations—check-out exclusive, chec
out shared, check-in, prefetch-exclusive, and prefetc
shared. Check-out annotations indicate the need for ex
sive or shared access to the cache block containing a sp
fied address. Prefetch annotations indicate the likelihood
an access to the cache block in the near future. The ch

es
ause
an
m’s
m

 as
rks

r-
ell
er-
-

ble.
 2
c-
h

that
s-
uce
the
 by

el
y
ry

this
O

nd
ram
te a
s-
 of

nd

the
the
the
in annotation relinquishes access to the specified cache
block. The CICO cost model provides a measure of the
communication incurred by non-local data references as
well as the cache-coherence protocol overhead required to
maintain consistency. The CICO annotations do not affect
a program’s semantics.

The CICO annotations can also be used as hardware
directives to a memory system to improve program perfor-
mance by reducing both communication latency and mes-
sage traffic. The memory system can use prefetch
annotations to reduce latency by overlapping communica-
tion with computation. The check-out exclusive annotation
can reduce the message traffic caused by write faults when
a shared location is first read and then written. The check-
in annotation flushes shared data from the cache, thereby
reducing the number of invalidate messages. Even in this
role as memory system directives, the annotations do not
affect a program’s semantics.

Most parallel computers provide memory system direc-
tives similar to CICO directives. Perhaps the most common
is a prefetch instruction. The Kendall Square KSR-1 [11]
provides a post-store instruction that broadcasts read-only
copies of a cache block to all other nodes that have it allo-
cated but are in the invalid state. This operation is similar,
though not identical, to a check-in. Even if a parallel com-
puter does not support CICO directives, a programmer can
always use the information from the annotations to restruc-
ture a program to improve its performance.

The first step in using the CICO model to compute a
program’s communication cost is to insert the annotations
into a program. The accuracy of the cost calculation
depends to a large extent on inserting the annotations so
they capture the communication behavior of a program.
Inserting CICO annotations requires reasoning about the
dynamic behavior of a program and memory system. This
is not easy, even for the simplest of programs.

This paper describes a tool—Cachier—that aids this
reasoning by automatically inserting CICO annotations
into shared-memory programs. Cachier uses a novel
approach of combining information about the dynamic
behavior of a program, obtained from its execution trace,
with static information, obtained from program analysis.
The dynamic information enables Cachier to annotate com-
plicated programs that manipulate pointer-based data struc-
tures, for which static analysis is infeasible. Even for
simpler programs, the dynamic information augments and
refines the static information. Since CICO annotations
need not be placed perfectly accurately, dynamic informa-
tion from a single execution of the program is sufficient.
The static analysis converts raw data addresses from the
trace into references to program variables and presents the
annotations in a readable form.

In addition to automatically inserting CICO annotations,

Cachier also informs a programmer of potential data rac
and false sharing. These events are undesirable bec
their timing-dependent interprocessor communication c
cause errors and complicates understanding a progra
performance. A programmer can use the information fro
Cachier to eliminate some of these events.

We measured the usefulness of CICO annotations
memory-system directives by running several benchma
on a simulator of the Dir1SW memory system protocol
[21]. The CICO annotations inserted by Cachier outpe
formed both the program without any annotations as w
as a hand-annotated version. Interestingly, Cachier p
formed better on programs with complex, dynamic mem
ory access, which caused programmers the greatest trou

The rest of this paper is organized as follows. Section
briefly describes the CICO model with an example. Se
tion 3 describes the computing environment in whic
Cachier operates. Section 4 explains the techniques
Cachier uses to insert CICO annotations. Section 5 illu
trates the use of the annotations by a programmer to red
a program’s communication cost. Section 6 evaluates
performance of several benchmarks that were annotated
Cachier. Finally, Section 7 discusses related work.

2 Programming Performance Model

A shared-memory programming performance mod
should aid a programmer in writing efficient programs b
exposing the communication underlying shared-memo
references and by providing a measure of the cost of
communication. This section briefly describes the CIC
model [10] [13] with the help of an example.

2.1 CICO Model
The CICO model consists of check-out, check-in, a

prefetch annotations that a programmer adds to a prog
and a cost model that uses these annotations to compu
program’s shared-memory communication cost. To illu
trate the CICO model, we consider a simple example
Jacobi relaxation code on a matrix of size N x N. This
example is from Hill et al. [10]. Assume there are P2 pro-
cessors (where N is a multiple of P), each of which has
been assigned a block of the matrix consisting of N/P rows,
Lip to Uip and N/P columns, Ljp to Ujp. Assume the bound-
ary columns and rows are first copied to local arrays a
then the stencil computation is performed locally:

for each time step do
 copy boundary rows & columns to local arrays
 for j = Ljp to Ujp do
 for i = Lip to Uip do
 compute stencil on cols & rows

The placement of the CICO annotations depends on
size of the matrix as well as the size of the cache. If
blocked matrix completely fits in the processors cache,
2

o-
ent

ed-
rier
a-
all
d
-

two
of
his
ro-
ri-
e

CICO annotations appear as follows:

check_out_X U[Lip: Uip, Ljp: Ujp]
for each time step do
 check_out_shared Boundary rows & columns
 copy boundary rows & columns to local arrays
 check_in Boundary rows & columns
 for j = Ljp to Ujp do
 for i = Lip to Uip do
 compute stencil on columns and rows
check_in U[Lip: Uip, Ljp: Ujp]

The communication cost of the program can be found
from the annotations. Assume that b matrix elements fit in
a cache block and the matrix is stored in column major
order. The check-out directives for the boundary columns
check out 2N/bP blocks per time step and those for the
boundary rows check out 2N/P blocks per time step, for a
total of 2N(1 + b)/bP blocks per time step. The check-out
for the matrix results in N2/bP2 blocks being checked out.
This is performed once. Thus if the program runs for T
time steps, the P2 processors check out a total of
(2NPT(1+b)/b + N2/b) cache blocks.

If the block of the matrix assigned to a processor is too
large to fit in the cache, but individual columns of the
matrix fit, the annotations appear as follows:

 for each time step do
 check_out_shared Boundary rows & columns
 copy boundary rows & columns to local arrays
 check_in Boundary rows & columns
 for j = Ljp to Ujp do
 check_out_exclusive U[Lip: Uip, j]
 for i = Lip to Uip do
 compute stencil on columns and rows
 check_in U[Lip: Uip, j]

In this case, the P2 processors check out (2NP(1+b)/b +
N2/b) cache blocks per time step, for a total of (2NP(1+b)/
b + N2/b)T cache blocks, if the program runs for T time
steps. If the processor cache is too small to hold even a sin-
gle column, the check-out annotations would appear imme-
diately before a reference and the check-in annotations
would appear immediately after a reference. This would
suggest blocking the loop to improve program performance
[8][12]. In the first version of the program, each processor
checked out a total of N/bP cache blocks per column of the
matrix (ignoring the check-outs for the boundary elements
which are anyway the same for both versions), while in the
second version, each processor checked out a total of NT/
bP cache blocks per column.

This example shows how the CICO annotations can be
used to compute and understand a programs communica-
tion cost as well as suggest ways of restructuring it to
reduce this cost.

3 Cachier Overview

Cachier is a tool that automatically inserts CICO anno-
tations into shared-memory programs. Figure 1 shows the

process that Cachier uses to annotate shared-memory pro-
grams. Cachier uses both dynamic and static information in
order to effectively insert CICO annotations. Section 4
explains the need for both types of program information, as
well as Cachier’s techniques for inserting the CICO ann
tations. This section describes the computing environm
in which Cachier operates.

3.1 Target Program Model
We studied programs from the Stanford Splash shar

memory benchmark suite [19]. These programs use bar
synchronizations as their primary synchronization mech
nism. The programs also use locks. However, a very sm
fraction of the program’s total computation is performe
within lock-unlock intervals, so we ignore locks and con
centrate on the program model shown in Figure 2.

Epochs are code segments that execute between
synchronization events. Our program model consists
epochs demarcated by barrier synchronization points. T
is a fairly general model as most parallel computers p
vide support for barriers. Also most programs using bar
ers typically perform the bulk of their computation in th
intervals between barriers.

WWT Filter Cachier

Unannotated

Target Program

Annotated Target
Program

Fig 1. Overview of the Cachier Framework

trace
filetarget

program
trace

execute read

Synchronization Barrier

Synchronization Barrier

Synchronization Barrier

•

•
•

•
•
•
•
•

 Epoch

Fig. 2 Program Model
3

ing

or
red
ssor
xt
use
of
 a
-

get
ted
and
nd
O

’s
ces

ied
the
the

r to
nd
ta-
t to
es-
ely.
ch-
 the

rst
bout
ta-
ses
ad
de
el-
g

eter-
. A
ess
 one
ore
ache
tion
ive,
ses
e

3.2 Wisconsin Wind Tunnel (WWT)
The Wisconsin Wind Tunnel (WWT) [18] is an accurate

parallel architecture simulator that runs on a Thinking
Machines CM-5 computer [20]. It uses a technique called
virtual prototyping, by which it only simulates those fea-
tures of the parallel architecture that are not present in the
native hardware. We use it to simulate Dir1SW [10], [21],
which is a cache-coherence directory protocol that has sup-
port for programs written within the CICO model. We run
the unannotated target program on WWT to generate its
execution trace.

3.3 Dynamic Program Information
The dynamic information obtained from a program’s

execution trace enables Cachier to insert annotations into
complicated programs that manipulate pointer-based data
structures, which are difficult to analyze statically. Even
for programs amenable to static analysis, dynamic infor-
mation supplements the static information since static anal-
ysis alone can produce overly conservative estimates of
sharing [1]. The trace file contains information about a
cache miss, including its type, the address being accessed,
the program counter at that point, the node making the
access, and the epoch in which the access occurred (see
Figure 3).

Each processor’s shared data cache is flushed at every
barrier synchronization to improve the quality of the trace
data generated, as only accesses that miss in these caches
show up in the trace. There is no time ordering of accesses
within an epoch. However epochs are ordered by the bar-
rier Virtual Times (VT’s).

The information in the trace, such as program counters
and addresses, are collected during program execution by
WWT and stored in a hash table. At each synchronization
barrier in the program, the processors’ shared data caches
are flushed and information in the hash table is written to
the trace file. Collection of trace information may affect a
program’s behavior in two ways. First, it may affect the

behavior of a program that has data races in the follow
manner. Suppose that in epoch i, two processors X and Y
have a data race on a particular variable. Say processX
used that variable in the previous epoch. Since the sha
data caches are flushed at every epoch boundary, proce
Y may end up with the variable in its cache in the ne
epoch, rather than the other way around. This may ca
the program to generate different results. Collection
trace information also slows the program’s execution. On
simulator like WWT, time dilation does not affect the pro
gram’s behavior.

3.4 Cachier
The input to Cachier consists of an unannotated tar

program and its trace file. Cachier parses the unannota
target program and constructs its abstract syntax tree
control flow graph. Cachier combines both the static a
dynamic program information to determine which CIC
annotations are to be inserted. It modifies the program
abstract syntax tree to include the annotations and produ
an annotated target program by unparsing this modif
abstract syntax tree. The annotated target program is
same as the unannotated target program, except for
CICO annotations inserted by Cachier.

4 Inserting CICO Annotations

This section describes the techniques used by Cachie
insert CICO annotations into shared-memory programs a
illustrates them with an example. In order to insert anno
tions, three key questions have to be answered—wha
CICO?, where to CICO?, and how to CICO? These qu
tions are answered in Sections 4.1, 4.2 and 4.3 respectiv
Section 4.4 provides an example to illustrate these te
niques. Section 4.5 discusses a few issues related to
technique Cachier uses to insert the annotations.

Cachier operates in two distinct phases. In the fi
phase, Cachier processes and assimilates information a
the epoch from the trace file and determines the anno
tions. Trace processing consists of removing addres
involved in shared write faults from the list of shared re
misses, updating the list of shared write misses to inclu
addresses involved in shared write faults, and storing lab
ling information contained in the trace to aid mappin
addresses to program data structures. Cachier also d
mines locations involved in data races and false sharing
potential data race exists if two or more processors acc
the same address within the same epoch and at least
access is a write. False sharing results from two or m
processors accessing different addresses in the same c
block. Cachier next uses the equations described in Sec
4.1 to compute addresses to be checked-out exclus
checked-out shared and checked-in. Finally, Cachier u
static information from program analysis along with th

Node no., Barrier PC, Barrier VT

Shared Write Miss : Address

Shared Read Miss : Address

Shared Write Fault : Address

Node no., Barrier PC, Barrier VT

•
•
•

•
•

•
•

•
•
Fig. 3 Trace File Format

Epoch

4

od-
eck-
in-
r,
, a
ry

h,

-
ut
ck-
eck-
f the
a-

eir
n
te
clu-
out
the

nd
, not
re

be
ec-
ata
or in
o-
that
the

 in

er
),
ns
rst
hat
).
st
tial
any
labelling information in the trace to map addresses to pro-
gram data structures and program counters to lines in the
program text.

In the second phase, Cachier uses this information to
place these annotations in a readable form, as described in
Sections 4.2 and 4.3.

4.1 Choosing CICO Annotations
CICO annotations serve two roles. They allow a pro-

grammer to reason about the communication in his pro-
gram and also permit the memory system to improve
program performance. To be useful for reasoning about
communication, the annotations have to expose all com-
munication. On the other hand, to improve program perfor-
mance we want to optimize the annotations by removing
unnecessary annotations wherever possible. To satisfy
these conflicting goals, Cachier produces either Program-
mer or Performance CICO annotations.

For each epoch, Cachier determines the set of locations
that should be checked-out, including their mode—shared
or exclusive—and the set of locations to check-in. To find
these sets for epoch i, Cachier uses the following set of
equations.

co_x [epoch i] = DRFS { SWi - SWi - 1 } + DRFS { SWi }
co_s [epoch i] = FS { SRi - SRi - 1 } + FS { SRi }
 ci [epoch i] = DRFS { Si - Si + 1} + DRFS { Si }

where:
• i-1 is the previous epoch and i+1 is the next epoch,
• co_x, co_s and ci are the locations that should be

checked-out exclusive, checked-out shared and
checked-in respectively,

• SWi is shared write missesi + shared write faultsi (in
epoch i),

• SRi is shared read missesi - shared write faultsi (in
epoch i),

• Si = SWi + SRi,
• DRFS is a function on a set of addresses that returns

those addresses that are either involved in a data race or
in false sharing. (DRFS is its complementary function)

• FS is a function on a set of addresses that returns a sub-
set of those addresses that are involved in false sharing.
(FS is its complementary function).
The basic idea behind these equations is that if there is

either a data race or false sharing on a location’s cache
block, then a processor should check it out and check it
back in immediately. The rationale is that since multiple
processors are contending for this block, it will remain in a
processor’s cache only for a short time before another pro-
cessor claims it. On the other hand, if a location is not
involved in data races or false sharing, then a processor
should check it out only if it was not checked out in the
previous epoch by the same processor. Similarly, a proces-
sor should check-in a location only if it is not going to use

it again in the next epoch. This annotation placement m
els caches and helps to eliminate many unnecessary ch
in, check-out pairs at epoch boundaries. Using only a s
gle epoch history simplifies the calculations. Moreove
since an epoch performs a large amount of computation
variable left unused in the cache for multiple epochs is ve
likely to be replaced before it can be reused.

To find Performance CICO annotations for each epoc
Cachier uses these equations:

co_x [epoch i] = DRFS { shared write faulti - SWi - 1 }
 + DRFS { shared write faulti }
co_ s[epoch i] = {}
 ci [epoch i] = DRFS { SWi - SWi + 1} +
 DRFS { SRi ∩ SWi+1} + DRFS { Si }

where the notation is the same as above.
The Dir1SW protocol [10][21] that uses CICO annota

tions as memory directives performs an implicit check-o
exclusive at each shared write miss and an implicit che
out shared at each shared read miss. Placing explicit ch
out’s for these cases reduces performance because o
overhead of the additional operation. However, many loc
tions are read before being written, which results in th
being in the cache read-only at the time of the write. A
explicit check-out exclusive, before the read, can elimina
the extra message traffic to upgrade a shared to an ex
sive copy. These are the only locations Cachier checks
(unless, of course, they were already checked out in
previous epoch).

The check-in annotations inserted by Cachier at the e
of epochs has three parts. The first are shared locations
involved in either data races or false sharing, that we
written to in the current epoch, and are not going to
written by the same processor in the next epoch. The s
ond are shared locations, again not involved in either d
races or false sharing, that were read by some process
the current epoch and which will be written by some pr
cessor in the next epoch. The last are shared locations
were involved in either a data race or in false sharing in
current epoch.

To make these ideas clearer, consider the example
Figure 4.

Using the equations for Programmer CICO, Cachi
finds the following CICO annotations for epoch i: co_s(c
co_s(a) & ci(c), ci(d). The Performance CICO annotatio
for the same epoch is just ci(c). If epoch i-1 was the fi
epoch in the program, then the Programmer CICO for t
epoch will be as follows: co_x(a), co_x(b), co_s(d) & ci(a
The Performance CICO for the same epoch will be ju
ci(a). The check-in for a is necessary as there is a poten
data race on that variable (the trace does not maintain
ordering of accesses within an epoch).
5

ar-
h
led
uc-
ous
r, a
uc-

na-
he
ro-
es

ro-
s-
its
s

ple
pli-
, to
ata

false

ix
N
or
-

ck of
4.2 Placement of CICO Annotations
The placement of CICO annotations depends on the role

they serve, whether the location is involved in either a data
race or false sharing, and the relative sizes of the data set
and the shared data cache. Static program information
guides the decisions. Cachier models the finite capacity of
a cache (but not its limited associativity) to improve its
placement of CICO annotations.

In the case of Programmer CICO, Cachier tries to place
check-out annotations as close to the beginning of an epoch
and check-in annotations as close to the end of an epoch as
possible under the cache size constraints. This placement
facilitates use of these annotations by the programmer to
reason about a program. Since an epoch can span multiple
functions, Cachier uses static program information to place
check-out annotations close to the beginning of the func-
tions in which the locations are referenced and check-in
annotations close to the end of these functions, again sub-
ject to cache size constraints.

In the case of Performance CICO, Cachier tries to place
all annotations as close to the accesses as possible in an
attempt to reduce interprocessor communication. Since a
naive attempt to do this will result in code size explosion, it
uses static information about the program, especially the
loop structure to present the annotations in a readable form.

4.3 Presentation of CICO Annotations
For CICO annotations to be readable by a programmer,

they must be presented in a compact, easily understandable
form. To achieve this goal, Cachier uses static program
information, obtained from its control flow graph and
abstract syntax tree, as well as some information from the
program’s trace.

In the case of shared read misses, it may not be always
possible to map an address to a program variable by exam-
ination of the line. For example, consider the following
line:

 C[i, j] = C[i, j] + A[i, k] * B[k, j]

To map a shared read miss on this line of code to a p
ticular variable, further information is required. In suc
cases, Cachier uses another utility which allows label
regions of memory to be mapped onto program data str
tures. The programmer uses a macro to label a continu
region of shared-memory with a name. To use Cachie
programmer must label all important shared data str
tures.

Cachier uses the program’s abstract syntax tree to a
lyze its loop structure. This information helps structure t
CICO annotations in a form that makes it easy for the p
grammer to read the annotations. This process involv
collapsing annotations, either by placing them inside p
gram loops, or by generating new loops for them. To illu
trate this step, consider the following piece of code. To
right is the result of naive insertion of CICO annotation
followed by Cachier’s more sophisticated insertion.

for i = 1 to N step 2 do for i = 1 to N step 2 do
 A[i] = check_out_X A[i]
 od A[i] = ...
 check_in A[i]
for i = 1 to N do od
 A[i] = for i = 1 to N do
od check_out_X A[i]
 A[i] = ...
 check_in A[i]
 od
for i = 1 to N step 2 do
 check_out_X A[i]
 A[i] = ...

for i = 2 to N-1 step 2 do
 check_out_X A[i]

for i = 1 to N do
 A[i] = ...
 check_in A[i]

Moreover, since an epoch can be executed multi
times, Cachier ensures that the annotations are not du
cated. Cachier also flags data races and false sharing
enable the programmer to use locks in the case of d
races or pad the relevant data structures in the case of
sharing, to alleviate the problem.

4.4 Example Cachier Annotations
Consider the following example which performs matr

multiplication of two dense matrices, each of size N x
using an unconventional technique explained below. F
simplicity, N is a multiple of P, the square root of the num
ber of processors and each processor is assigned a blo
rows, Lkp to Ukp, and columns, Ljp to Ujp, of the B matrix.

 for i = 1 to N do
 for k = Lkp to Ukp do

 P P + 1

 write (a)

 read (d)

 write (b)

 read (d)

 read(a)

 write (b)

 read (c)

 write (c)

 read (a)

 read (b)

 Epoch i-1

 Epoch i

 Epoch i+1

Fig. 4

6

sent
ch
ota-
era-
e
 a
 a
o-

r-
k-in

are

cs.
iate
e.
ed
ry
s at
vior
ed
ns
tly

 a
he
han
a-
e-
ata
d to
l (<

not
-

ec-
 all
on-

ram
].

s
am.
 t = A[i, k]
 for j = Ljp to Ujp do
 C[i, j] = C[i, j] + t * B[k, j]
Figure 5 illustrates the technique used to multiply the

matrices.

Each processor is assigned a block of the B matrix
which is not shared. The A matrix is read shared by the
processors and the C matrix (result matrix) is read as well
as write shared. This follows from the technique used to
multiply the matrices in which each processor updates the
result matrix with the values it computes.

In the case that the matrix size and the cache size are
such that the entire matrix does not fit in the processor’s
cache but individual rows/columns do, Cachier inserts the
following CICO annotations.

These are the Programmer CICO annotations inserted
by Cashier

 for i = 1 to N do
 for k = Lkp to Ukp do
 check_out_S A[i, k]
 t = A[i, k]
 check_out_S B[k, Ljp : Ujp]
 for j = Ljp to Ujp do
 check_out_X C[i, j]
 /*** Data Race on C[i, j] ***/
 C[i, j] = C[i, j] + t * B[k, j]
 check_in C[i, j]
 check_in B[k, Ljp : Ujp]
 check_in A[i, k]

For the case of Programmer CICO, Cachier inserts
annotations to check-out shared matrices A and B as they
are only read. Matrix C which is read as well as written is
checked-out exclusive. The data race on elements of matrix
C is flagged and the check-out/ check-in annotations for
these elements are placed as close to the reference as possi-
ble. On the other hand, since elements of matrices A & B
are not involved in a data race, their corresponding check-
out (check-in) annotations are placed as close to the begin-
ning (end) of the epoch as is possible under cache size con-
straints. The notation Ljp : Ujp indicates that the annotation
is in a loop generated by Cachier.

The Performance CICO annotations inserted by Cachier
look as follows

 for i = 1 to N do
 for k = Lkp to Ukp do
 t = A[i, k]
 for j = Ljp to Ujp do
 check_out_X C[i, j]
 /*** Data Race on C[i, j] ***/
 C[i, j] = C[i, j] + t * B[k, j]
 check_in C[i, j]

In this case the check-out shared annotations are ab
as Dir1SW performs an implicit check-out shared on ea
shared read miss. So an explicit check-out shared ann
tion would just result in an overhead due to address gen
tion translation. However the check-out exclusiv
annotation for matrix C is still present because it incurs
shared write fault, which would have otherwise upgraded
shared copy of the block to be writable. The check-in ann
tation for matrix C is placed immediately after it is refe
enced, due to the presence of the data race. The chec
annotations for matrices A and B are omitted as they
not write shared.

4.5 Discussion
CICO annotations do not affect a program’s semanti

Thus, even if the annotations are inserted at inappropr
points in the program, they only affect its performanc
Also while it is conceivable that the instrumentation add
to trace the program may substantially alter its memo
access pattern causing Cachier to insert the annotation
inappropriate places, we have not observed such beha
in practice. Cachier can use dynamic information obtain
from a single execution of the program to place annotatio
as the CICO annotations are not required to be perfec
accurate.

Cachier combines dynamic information obtained from
single execution with static analysis of the program. T
alternative would have been to use a training set rather t
a single input data set to obtain dynamic program inform
tion. However we found that the difference between ex
cuting a Cachier annotated program on the same input d
set used to generate the dynamic information as oppose
executing the program on a different data set was smal
2%) even for a dynamic application like Barnes. We
believe this is due to two reasons. Firstly, Cachier does
rely solely on the dynamic information obtained, but com
bines this with a static analysis of the program source. S
ondly, it appears that even dynamic applications are not
that dynamic as far as memory access patterns are c
cerned. Moreover, other measurements show that prog
behavior is typically independent of the input data set [7

5 Restructuring with CICO

This section illustrates how the CICO annotation
inserted by Cachier can be used to restructure a progr

 Ljp Ujp Lkp Ukp Ljp Ujp

Lkp

Ukp

 Matrix A Matrix B Matrix C

 Fig. 5
7

 Fig. 6
We do this using the same matrix multiply example from
the previous section. The annotations inserted by Cachier
indicate that the communication bottleneck is due to the
cache block race on elements of the result matrix. More-
over, this race can cause an incorrect result due to multiple
processors reading the same value of the C matrix at the
same time, modifying it, and writing it back. This race is
compounded by the fact that a single cache block contains
multiple adjacent elements of the result matrix (in this case
4 elements). Since a cache block is the minimum granular-
ity at which an element can be checked out, a solution
would be to restructure the program as follows. First each
processor copies the portion of the C matrix that it will be
updating into a local array. Each processor then performs
the computation on the C matrix locally, and finally copies
back its local portion of the C matrix.

 for i = 1 to N do
 for j = Ljp to Ujp step 4 do
 check_out_S C[i, j]
 Cp[i, j : j + 3] = C[i, j : j + 3]
 check_in C[i, j]
 for i = 1 to N do
 for k = Lkp to Ukp do
 t = A[i, k]
 for j = Ljp to Ujp do
 Cp[i, j] = Cp[i, j] + t * B[k, j]
 for i = 1 to N do
 for j = Ljp to Ujp step 4 do
 lock C[i, j]
 check_out_X C[i, j]
 C[i, j : j + 3] = C[i, j : j + 3] + Cp[i, j : j + 3]
 check_in C[i, j]
 unlock C[i, j]

The original program had a total of N3 (N * N/P * N/P
* P2) check-outs for elements of matrix C on which there
is a cache block race. The restructured program only has
N2P/2 (2 * N * N/4P *P2) check-outs for elements of
matrix C out of which there is a cache block race on only
N2P/4 of them which is protected by a lock.

6 Performance of Automatic CICO

This section compares the performance of several
unannotated shared-memory programs against hand-
inserted CICO and Cachier-annotated CICO versions of
the same program. The hand CICO was carefully done
over a period of a few weeks with the aid of existing pro-
filing tools by individuals with a detailed understanding of
the problem and cache-coherence protocol. Cachier pro-
duced the automatic CICO version. All simulations were
run on the Wisconsin Wind Tunnel (WWT) [18]. The sim-
ulated computer consists of 32 processor nodes, each con-
taining a processor, shared-memory module, cache, and
network interface. The cache is 256 KB, 4-way set-asso-
ciative with a cache block size of 32 bytes. We used WWT
to simulate a directory-based Dir1SW cache-coherence
protocol [10] [21].

For this evaluation we use five benchmarks: Barnes,
Ocean, Mp3d (from the SPLASH Benchmark suite [19]),
Matrix Multiply, and Tomcatv (a parallel version of the
SPEC Benchmark). Barnes performs a gravitational N-
body simulation using the Barnes-Hut algorithm. We sim-
ulated it for a data set of size 1024 bodies. Ocean performs
a cuboidal ocean basin simulation using Gauss-Seidel with
Successive Over Relaxation. We simulated it for a grid
size of 98 x 98. Mp3d simulates rarefied fluid flow of ide-
alized diatomic molecules in a three-dimensional active

nd
ce
ic-

as a
er-

ng

ata,

9].

uch
nly

ms
ns,
an
ry
ets
for-
 not

ng
e
n-

are
 all
es
ly
the
nce
ing
y-

lap
a-
d
tch
y
uses
-
es-
 as

g-
m

an
ve
].
space. We simulated it for 50,000 molecules and 10 time
steps. Matrix Multiply multiplies two matrices by dividing
them into blocks. We simulated it for a matrix size of 256 x
256. We simulated Tomcatv for 10 iterations on a grid of
size 1024 x 1024. The input data sets used to obtain the
execution trace for Cachier were different than the data sets
used in the performance comparison.

 Figure 6 displays the execution times of these pro-
grams, normalized to the version without CICO annota-
tions. For Matrix Multiply, the CICO annotations (without
the prefetch annotation) inserted by Cachier show a 16%
improvement in performance, as compared to the version
without CICO annotations and a slight improvement over
the hand-annotated version. In this program, one processor
initializes the matrices with random values. Part of the
improvement arises from checking-in these matrices after
initialization. Also, the result matrix is read-write shared
by the processors, so checking-out the required matrix ele-
ments exclusive eliminates upgrades of shared blocks to be
writable. In addition, checking in the result values after a
processor computes them reduces the number of invalida-
tion messages that have to be sent. The small difference in
performance between the hand-annotated and Cachier
annotated versions is due to a few unnecessary annotations
in the former. Using the prefetch annotation, Cachier
improves the program performance by around 20%. In the
hand-annotated version of the program, the prefetch anno-
tations were inappropriately placed.

For Barnes as well, the version of the program anno-
tated by Cachier outperforms the version without any
annotations by around 11% and the hand-annotated version
by 2%. In this case the hand-annotated version missed a
few annotations. The prefetch annotations are not very suc-
cessful in further improving performance due to the pro-
gram’s complicated pointer data structures.

For Tomcatv, the CICO annotations do not have a large
effect on its performance as it performs little communica-
tion relative to its computation (around 90% of its execu-
tion time is spent in computation). For Ocean, the
annotations inserted by Cachier improve program perfor-
mance by around 20% without prefetch, and by 25% with
prefetch. This is also a 7% improvement over the hand-
annotated version in both cases. For Mp3d, the Cachier
annotated version outperforms the unannotated version by
25% and the hand-annotated version by 45%. The hand-
annotated version suffers from both checking-in cache
blocks too early at certain places, (i.e., before a processor
finished with the block) as well as neglecting to check-in
blocks at other places.

These results emphasize the difficulty in hand-inserting
CICO annotations, especially for programs with dynamic
memory access patterns. They also show that Cachier’s
annotations are successful in improving program perfor-

mance, even for complicated programs like Barnes and
Mp3d that contain pointer-based data structures a
dynamic memory access patterns. This performan
improvement is due to a reduction in the time spent serv
ing shared data cache misses and write faults as well
reduction in the number of these events. The greatest p
formance improvement is obtained for Ocean and Mp3d,
both of which have the highest degree of sharing amo
the Splash benchmarks. In Ocean, 88% of loads read
shared data and 68% of the stores write shared d
whereas for Mp3d, the corresponding numbers are 71%
(shared reads) and 80% (shared writes) respectively [1
On the other hand, in Barnes, where the performance
improvement is not as large, the degree of sharing is m
lower—25.5% of the loads are shared data reads and o
1.3% of the stores are shared data writes [19].

Moreover, Cachier-annotated versions of the progra
consistently outperformed the hand-annotated versio
which shows that inserting annotations by hand is not
easy task, especially for programs with dynamic memo
access patterns. In addition, since different input data s
were used to insert the annotations and to compare per
mance, the results show that Cachier’s annotations are
overly specialized to a particular execution.

7 Related Work

Inserting CICO annotations appears similar to inserti
primitives for software cache coherence [4][5][15]. Th
crucial difference is that coherence primitives must be co
servatively inserted. To ensure correct execution, softw
cache coherence schemes must invalidate data along
possible program execution paths. Moreover, the schem
cannot use dynamic program information and rely sole
on conservative static analysis. CICO annotations, on
other hand, do not affect a program’s semantics and he
Cachier can aggressively insert annotations by combin
dynamic program information with static program anal
sis.

Other work studied how to prefetch data so as to over
communication with computation and reduce communic
tion latency [2][9][16]. However, these schemes relie
solely on static program analysis and were able to prefe
data only in scientific codes with fairly static memor
access patterns that a compiler can analyze. Cachier
dynamic information as well, which works in more circum
stances. It also uses check-ins to flush data from a proc
sor’s cache. This results in a reduction in message traffic
well as communication latency.

Techniques for race detection in the context of debu
ging programs have either used dynamic information fro
a program’s execution trace or static information from
analysis of the program text [17]. A few techniques ha
used dynamic information as well as static information [6
9

nt
”,

al

r
m

d
”,

A.
or

e
”,

 A
l”,

lf-
nd

he

d

d-
n-

k,
l:

a,
,

es
ee,
for
However the static information supplements the dynamic
information by ruling out races in certain parts of the pro-
gram, thereby precluding the need to trace those parts. The
actual race detection uses dynamic information. The
dynamic information used for race detection is similar to
that used by Cachier except for a couple of key differences.
The trace file used by Cachier does not contain all shared
memory locations read and written, rather it contains only
those that cause cache misses. Also while the trace has a
relative ordering between synchronization events, there is
no ordering maintained on other events (i.e. shared data
cache misses) between two synchronization events (i.e. an
epoch).

8 Conclusions

The CICO model is a practical shared-memory pro-
gramming performance model. However, it requires a pro-
grammer to reason about a program’s dynamic behavior
and the memory system, which can be difficult. This paper
describes Cachier, a tool for automatically inserting CICO
annotations into shared-memory programs. It uses a novel
approach of combining information about the dynamic
behavior of a program, from its execution trace, with static
information from an analysis of the program source. The
resulting CICO annotations can be both read by a program-
mer to help in reasoning about communication in the pro-
gram, as well as used by a memory system to improve the
program’s performance. In experiments on several bench-
marks, CICO annotations inserted by Cachier outper-
formed both unannotated as well as hand-annotated
versions of the programs.

Acknowledgements
We would like to thank Alvy Lebeck for the filter used

to generate a program’s execution trace. Also Babak Fal-
safi and Alvy Lebeck provided valuable help with the Wis-
consin Wind Tunnel simulator. Satish Chandra, Babak
Falsafi, Alvy Lebeck and Shubu Mukherjee provided the
hand-annotated versions of the benchmarks.

References
[1] Sarita V. Adve, Vikram S. Adve, Mark D. Hill, and Mary K. Vernon,

“Comparison of Hardware and Software Cache Coherence Schemes”,
Proceedings of the 18th Annual International Symposium on
Computer Architecture, (June, 1991), pp. 298-308.

[2] David Callahan, Ken Kennedy, and Allan Porterfield, “Software
Prefetching”, Proceedings of the 4th International Conference on
Architectural Support for Programming Languages and Operating
Systems, (April, 1991), pp. 40-52.

[3] David Chaiken, John Kubiatowics, and Anant Agarwal, “LimitLESS
Directories: A Scalable Cache Coherence Scheme”, Proceedings of
the 4th International Conference on Architectural Support for
Programming Languages and Operating Systems, (April, 1991), pp.
224-234.

[4] J. Cheong, and A.V. Veidenbaum, “A Cache Coherence Scheme with

Fast Selective Invalidation”, Proceedings of the 15th Annual
International Symposium on Computer Architecture, (June, 1988), pp.
299-307.

[5] Ron Cytron, Steve Karlovsky, and Kevin P. McAuliffe, “Automatic
Management of Programmable Caches”, Proceedings of the 1988
International Conference on Parallel Processing (Vol. 2 Software),
(Aug., 1988), pp. 229-238.

[6] Perry A. Emrath, Sanjoy Ghosh, and David A. Padua, “Eve
Synchronization Analysis for Debugging Parallel Programs
Supercomputing ‘89, (Nov., 1989), pp. 580-588.

[7] J. A. Fisher, and S. M. Freudenberger, “Predicting Condition
Branch Directions from Previous Runs of a Program”, Proceedings of
the 5th International Conference on Architectural Support for
Programming Languages and Operating Systems, (Sept., 1992), pp
85-95.

[8] Dennis Gannon, William Jalby, and K. Gallivan, “Strategies fo
Cache and Local Memory Management by Global Progra
Transformation” Journal of Parallel and Distributed Computing,
(Vol. 5, 1988), pp. 587-616.

[9] E. Gornish, E. Granston, and A. Veidenbaum, “Compiler Directe
Data Prefetching in Multiprocessors with Memory Hierarchies
International Conference on Supercomputing, 1990.

[10] Mark D. Hill, James R. Larus, Steven R. Reinhardt, and David
Wood, “Cooperative Shared Memory: Software and Hardware f
Scalable Multiprocessors”, ACM Transactions on Computer Systems,
(Nov., 1993), pp. 300-318.

[11] Kendall Square Research, Kendall Square Research Technical
Summary, 1992.

[12] Monica S. Lam, Edward E. Rothberg, and Michael E. Wolfe “Th
Cache Performance and Optimizations of Blocked Algorithms
Proceedings of the 4th International Conference on Architectural
Support for Programming Languages and Operating Systems, (April,
1991), pp. 63-74.

[13] James R. Larus, Satish Chandra, and David A. Wood, “CICO:
Practical Shared-Memory Programming Performance Mode
Workshop on Portability and Performance for Parallel Processing,
(July, 1993), To appear: Ferrante & Hey eds., Portability and
Performance for Parallel Processors.

[14] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wo
Dietrich Weber, Anoop Gupta, John Hennessy, Mark Horowitz, a
Monica Lam, “The Stanford DASH Multiprocessor”, IEEE
Computer, (March, 1992), pp. 63-79.

[15] Sang Lyul Min, and Jean-Loup Baer, “A Timestamp-based Cac
Coherence Scheme”, Proceedings of the 1989 International
Conference on Parallel Processing (Vol. 1 Architecture), (Aug.,
1989), pp 23-32.

[16] Todd C. Mowry, Monica S. Lam, and Anoop Gupta, “Design an
Evaluation of a Compiler Algorithm for Prefetching”, Proceedings of
the 5th International Conference on Architectural Support for
Programming Languages and Operating Systems, (Sept., 1992), pp.
62-73.

[17] Robert H. Netzer. Race Condition Detection for Debugging Share
Memory Parallel Programs. Ph.D. thesis, University of Wisconsi
Madison, 1991.

[18] Steven K. Reinhardt, Mark D. Hill, James R. Larus, Alvin R. Lebec
James C. Lewis, and David A. Wood, “The Wisconsin Wind Tunne
Virtual Prototyping of Parallel Computers”, Proceedings of the 1993
ACM Sigmetrics Conference on Measurement and Modeling of
Computer Systems, (May 1993), pp. 48–60.

[19] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupt
“SPLASH: Stanford Parallel Applications for Shared Memory”
Computer Architecture News, (March, 1992), pp. 5-44.

[20] Thinking Machines Corporation. The Connection Machine CM-5
Technical Summary, 1991.

[21] David A. Wood, Satish Chandra, Babak Falsafi, Mark D. Hill, Jam
R. Larus, Alvin L. Lebeck, James C. Lewis, Shubhendu S. Mukherj
Subbarao Palacharla, and Steven K. Reinhardt, “Mechanisms
Cooperative Shared Memory”, Proceedings of the 20th Annual
10

	Cachier: A Tool for Automatically Inserting CICO Annotations
	Trishul M. Chilimbi and James R. Larus
	Computer Sciences Department
	University of Wisconsin–Madison
	1210 West Dayton Street
	Madison, WI 53706
	[chilimbi, larus]@cs.wisc.edu
	Abstract
	1 Introduction
	2 Programming Performance Model
	2.1 CICO Model

	3 Cachier Overview
	3.1 Target Program Model
	3.2 Wisconsin Wind Tunnel (WWT)
	3.3 Dynamic Program Information
	3.4 Cachier

	4 Inserting CICO Annotations
	4.1 Choosing CICO Annotations
	4.2 Placement of CICO Annotations
	4.3 Presentation of CICO Annotations
	4.4 Example Cachier Annotations
	4.5 Discussion

	5 Restructuring with CICO
	6 Performance of Automatic CICO
	7 Related Work
	8 Conclusions
	Acknowledgements
	References

