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ABSTRACT
Traditional equi-join relies solely on string equality compar-
isons to perform joins. However, in scenarios such as ad-
hoc data analysis in spreadsheets, users increasingly need
to join tables whose join-columns are from the same se-
mantic domain but use different textual representations, for
which transformations are needed before equi-join can be
performed. We developed Auto-Join, a system that can au-
tomatically search over a rich space of operators to com-
pose a transformation program, whose execution makes in-
put tables equi-join-able. We developed an optimal sampling
strategy that allows Auto-Join to scale to large datasets ef-
ficiently, while ensuring joins succeed with high probability.
Our evaluation using real test cases collected from both pub-
lic web tables and proprietary enterprise tables shows that
the proposed system performs the desired transformation
joins efficiently and with high quality.

1. INTRODUCTION
Join performs the powerful operation of combining records

from two or more tables together, and is of key importance
to relational databases. It is extensively used in modern
relational database systems, as well as data analysis software
such as Power Query for Excel [5], Informatica [3], etc.

Most existing commercial systems only support equi-join
that uses string equality comparisons. While equi-join works
well in curated settings such as data warehousing, where
data are extensively cleansed and prepared through ETL, it
often falls short in scenarios where data is less curated. For
example, analysts today often perform one-off, ad-hoc data
analysis, where they need to correlate/join datasets from dif-
ferent sources whose key columns are formatted differently.
Requiring support staffs to perform ETL for such ad-hoc sce-
narios is often too slow and expensive – automating these
joins for end-users has become increasingly important.

Figure 1 shows such an example. An analyst has a ta-
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Figure 1: (left): US presidents and popular votes. (right):
US presidents and job approval rating. The right table uses
last-name, comma, first-name, with (year-of-birth and year-
of-death).

Figure 2: (left): Name and job titles in school. (right):
Email and school districts. Email from the right table can
be generated from name in the left by concatenating first-
initials, last-names, and ’@forsynth.k12.ga.us’.

Figure 3: (left): ATU name (for area team unit). (right):
Sub-ATU names organized under ATU.

Figure 4: (left): ID and session name in separate fields.
(right): Concatenated full session name.

ble on the left in her spreadsheets about US presidents and
popular votes they won in elections. She uses table search
engines (such as Google Web Tables [2] or Microsoft Power
Query [4]) to find an additional table on the right, that has
information about their job approval rating. Now she wants
to join these two tables so that she can correlate them. How-
ever, the name columns of the two tables use different rep-
resentations – the one on the left uses first-name followed
by last-name, while the one on the right uses last-name,
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comma, first-name, with additional year-of-birth informa-
tion in parenthesis. Today’s popular data analysis software
such as Power Query for Excel [5] and Informatica [3] only
support equi-join and would fail to work on these two tables.
The analyst would have to either write her own transfor-
mation program so that the name representations become
consistent for equi-join1, or ask technology support staffs to
perform such a transformation.

Figure 2 shows another case with two real tables collected
from the web, where the table on the left uses teachers’ full
names, while the table on the right only has email addresses
as the key column. Note that in this case because email
aliases can be generated by taking first-initials and concate-
nating with last names, there exists a clear join relationship
between the two tables. Equi-join, however, would again fail
to work in this case.

Scenarios like these are increasingly common in ad-hoc
data analysis, especially when analysts need to bring in data
from different sources, such as public datasets discovered
from table search engines.

It is worth noting that this join problem exists not only
for public data sets like web tables, but also in enterprise
data tables such as Excel files. Figure 3 shows a pair of real
spreadsheet tables from a corpus of Excel files crawled in a
large IT company. The ATU (area-team-unit) column on the
left can be joined with Sub-ATU on the right in a hierarchical
manner. The join can be produced by simply taking the first
two components of Sub-ATU, which can then equi-join with
ATU in a hierarchical N:1 manner. Figure 4 shows another
example from enterprise spreadsheets. An enterprise worker
who wants to combine these two tables cannot use equi-join.
However, if we concatenate id and session name in the left
table with appropriate brackets, the two tables can then be
equi-joined.

Joining tables with different formats and representations
is a ubiquitous problem. Notice that in these cases, simple
syntactic transformations (e.g., substring, split, concatena-
tion) can often be applied to make equi-join possible. While
humans looking at these tables can intuitively identify trans-
formations needed to join, existing commercial systems that
use equi-joins will fail. In this work, our goal is to automate
the discovery of syntactic transformations needed such that
two tables with different representations can be joined with
the click of a button. Note that because such transforma-
tions are driven by end-user tools such as spreadsheets, a sig-
nificant technical challenge is to make such transformation-
based join very efficient and at interactive speed.

Existing solutions: A few existing approaches may be
used for this problem, but none produces satisfactory results.

Program transformations manually. A straightforward ap-
proach is to ask users to manually write transformation pro-
grams that produce derived columns, with which tables can
be equi-joined. This is clearly inconvenient, and potentially
too difficult for end-users in spreadsheets such as data ana-
lysts or data scientists. We want to automate this process
without asking users to write programs.

Fuzzy join. Since rows that join under syntactic trans-
formations typically have substantial substring overlaps, an
alternative approach is to use fuzzy join [8]. The challenge is

1Such behavior is observed in logs collected from a commer-
cial data preparation software – for certain datasets users
perform sequences of transformations in order to enable
equi-join.

that fuzzy join has a wide range of parameters (tokenization,
distance-function, thresholds, etc.) that need to be config-
ured appropriately to work well. The ideal configuration
can vary significantly from case to case, and is difficult for
users to determine. For instance, for Figure 1, one should
tokenize by words, but that tokenization will fail completely
for Figure 2, which requires q-gram tokenization.

Furthermore, even when fuzzy join is configured perfectly,
it may still produce incorrect results due to its fuzzy and
imprecise nature. For example, in Figure 1, if we tokenize
by words, and want to join Ronald Reagan and Reagan,

Ronald(1911-2004), the threshold for Jaccard distance should
be at least 0.66 (this pair has a distance of 1.0− 1

3
= 0.66).

However, using a threshold of 0.66 will also join George W.

Bush with Bush, George H. W.(1924-) (where the distance
is 1.0 − 3

5
= 0.4), which is incorrect. The root cause here

is that fuzzy join uses an imprecise representation and sim-
ple threshold-based decision-boundary that is difficult to be
always correct. In comparison, there are many cases where
regularity of structures in data values exists (e.g. Figure 1-
4), and for those cases using consistent transformations for
equi-join complements fuzzy-join by overcoming its short-
comings mentioned above.

Substring Matching [22]. Warren and Tompa [22] pro-
posed a technique to translate schema between database
tables, which is applicable to joins and is the only pub-
lished technique that we are aware of that can produce
transformation-based joins given two tables. However, the
types of transformations they considered are rather limited
(e.g., no string-split and component based indexing), and as
a result their approach is not expressive enough to handle
many real join tasks we encountered. As we will show in our
experiments, their approach can handle less than 30% of the
join cases we collected.

Our contributions. We make the following contribu-
tions in the Auto-Join system.
•We propose to automate transformation-based joins using
a novel Auto-Join algorithm. Our technique leverages sub-
string indexes to efficiently identify promising row pairs that
can potentially join. We then use these row pairs to auto-
matically learn minimum-complexity programs whose exe-
cution can lead to equi-joins.
• In order to scale Auto-Join to large tables while still main-
taining interactive speed, we design a sampling scheme that
minimizes the number of rows sampled while guaranteeing
success of transformation-join with high probability.
•We are the first to compile benchmarks with over 70 cases
requiring transformation joins. We label each test case with
a fine-grained row-level ground truth. Our results show that
the proposed approach produces joins with higher quality
than existing approaches.

2. PROBLEM OVERVIEW
Our objective is to automate transformation-joins by gen-

erating the transformations that are needed for equi-joins.
Specifically, we want to transform columns of one table through
a sequence of string-based syntactic operations, such that
the derived columns can be equi-joined with another table.
Example 1 gives such an example.

Example 1. In Figure 1, there exists a transformation
whose application on the right table can lead to equi-joining
with the left table. We illustrate the sequence of opera-
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tions in the transformation using the first row
{[
Obama,

Barack(1961-)
]
,
[
47.0

]}
as an example.

1. Input row X with two elements:{[
Obama, Barack(1961-)

]
,
[
47.0

]}
2. Take the first item X[0], Split by “(”, produce Y :{[

Obama, Barack
]
,
[
1961-)

]}
3. Take the first item Y [0], Split by “,”, produce Z:
{
[
Obama

]
,
[
Barack

]
}

4. Takes Substring [1:] from Z[1], produce T :[
Barack

]
5. Concat T , a constant string “ ” and Z[0], produce[

Barack Obama
]

This derived value can then be equi-joined with the first
row in the left table in Figure 1. It can be verified that the
same transformation can also be applied on other rows in
the right table to equi-join with the President column of
the left table.

As discussed earlier, while such transformations can be
written manually as a program (e.g., a Python script), do-
ing so is cumbersome and requires programming skills. We
would like to automate the generation of the transformations
required for equi-joins. We call this the transformation join
problem.

Definition 1. Transformation Join Problem: Given two
tables Ts, Tt, and a predefined set of operators Ω, find a
transformation P = o1 ·o2 ·o3 · . . . on, using operators oi ∈ Ω,
such that P (Ts) can equi-join with key columns of Tt.

Here each transformation P is composed of a sequence
of operators in Ω, where the output of one operator is the
input of the next. For the purpose of transformation-join,
we have identified a small set of operators that are sufficient
for almost all join scenarios we encountered.

Ω = {Split, Concat, Substring, Constant, SelectK}
(1)

This set of operators Ω can be expanded to handle addi-
tional requirements as needed.

In this definition, because we require P (Ts) to equi-join
with key columns of Tt, the types of join we consider are
implicitly constrained to be 1:1 join (key:key) or N:1 join
(foreign-key:key). This property is important because it en-
sures that the joins we automatically generate are likely to
be useful; relaxing this constraint often leads to N:M joins
that are false positives (e.g., join by taking three random
characters from two columns of values).

Also observe that we apply transformations on one table
Ts in order to equi-join with another table Tt. We refer to
the table Ts as the source table, and Tt as the target table,
respectively.

Because in our problem, we are only given two tables with
no prior knowledge of which table is the source and which
is the target, we try to generate transformations in both
directions. In Example 1 for instance, the right table is used
as the source table. Changing direction in this case does not
generate a transformation-join because year-of-birth is not
present in the left table. Advanced handling of composite
columns will be discussed in Section 3.3.

Solution Overview. Our Auto-Join system has three high-
level steps.

Step 1: Find Joinable Row Pairs. In our problem, we
only take two tables as input, without knowing which row

Symbol Description

Ts, Tt Ts is the source table, Tt is the target table.

Rs, Rt A row in Ts and Tt, respectively

Cs, Ct A column in Ts and Tt, respectively

Qq(v) The q-grams of a string value v

Qq(Cs) The multi-set of all q-grams in Cs

Qq(Ct) The multi-set of all q-grams in Ct

Table 1: Notations used for analyzing q-gram matches

from Ts should join with which row from Tt. Generating
transformations without such knowledge would be exceed-
ingly slow, due to the quadratic combinations of rows in two
tables that can potentially join.

So in the first stage, we attempt to “guess” the pairs of
rows from the two tables that can potentially join. We lever-
age the observation that unique q-grams are indicative of
possible join relationships (e.g. Obama), and develop an effi-
cient search algorithm for joinable row pairs.

Step 2: Learn Transformation. Once we obtain enough
row pairs that can potentially join, we learn a transforma-
tion that uses rows from Ts as input and generates output
that can equi-join with key columns of Tt. In Example 1 for
instance, the desired transformation uses

{[
Obama, Barack

(1961-)
]
,
[
47.0

] }
as input, and produces

[
Barack Obama

]
as output to join with the key column of the left table.
Since there likely exists many possible transformations for
one particular input/output row pair, we use multiple ex-
amples to reduce the space of feasible transformations, and
then pick the one with minimum complexity that likely best
generalizes the observed examples. This learning process
is repeated many times using different combinations of row
pairs, and the transformation that joins the largest fraction
of rows in Tt is produced as the result.

Step 3: Constrained Fuzzy Join. In certain cases
such as tables on the web, the input tables may have in-
consistent value representations or dirty values. For exam-
ple, in Figure 2, the second row of the right table uses mi-

payne@forsyth.k12.ga.us, instead of first-initial concate-
nated by last-name like other rows (which would produce
mpayne@forsyth.k12.ga.us). Thus, transformations may
miss this joinable row pair. As an additional step to im-
prove recall, we develop a mechanism that automatically
finds a fuzzy-join with optimized configuration to maximize
additional rows to join, without breaking the join cardinality
constraints (i.e., 1:1 or N:1). This improves the coverage of
joins on dirty tables, and is a technique of independent inter-
est for the important problem of automatically optimizing
fuzzy join.

3. AUTO-JOIN BY TRANSFORMATIONS
In this section we discuss the first two steps of Auto-Join:

(1) finding joinable row pairs, and (2) learn transformations
that generalize the examples observed in these row pairs.

3.1 Finding Joinable Row Pairs
Let P be the desired transformation, such that P (Ts) can

equi-join with Tt as in Definition 1. Pairs of rows that join
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under this transformation P is termed as joinable row pair.
For instance, the first row from the left and right table in
Figure 1 is a joinable row pair.

Since users do not provide joinable row pair as input to our
system (which is cumbersome to provide especially in large
tables), in this section we explain our approach for“guessing”
joinable row pairs candidates from the two table through
unique q-grams matches. Note that finding such row pairs
is important, because trying the quadratic number of row
combinations exhaustively is too computationally expensive
to be interactive.

We leverage the observation that the set of operations Ω
considered for transformation-join (Equation 1) tend to pre-
serve local q-gram. A q-gram [7] of a string v is a substring
of v with q consecutive characters. A complete q-gram to-
kenization of v, denoted as Qq(v), is the set of all possible
q-grams of v. For example:

Q5(Database) = {Datab, ataba, tabas, abase}

q-grams have been widely used for string similarity and lan-
guage modeling, among other applications.

Operations required for transformation-joins in Ω all tend
to preserve sequences of local q-grams, which is the key prop-
erty we exploit to find joinable row pairs.

3.1.1 1-to-1 q-Gram Match
Intuitively, if we can find a unique q-gram that only occurs

once in Ts and Tt, then this pair of rows is very likely to be
a joinable row pair (e.g., q-gram Barack in Figure 1). We
start by discussing such 1-to-1 matches, and show why they
are likely joinable row pairs using a probabilistic argument.

It is known that q-grams in texts generally follows power-
law model [6, 14]. We conducted a similar experiment on a
large table corpus with over 100M web tables and observed
similar power law results B. For such power law distribu-
tions, the probability mass function for a q-gram whose fre-
quency ranks at position k among all q-grams, denoted by
pq(k), is typically modeled as [6, 14]

pq(k) =
1
ksq∑N
z=1

1
zsq

(2)

Here k is the rank of a q-gram by frequency, N is the total
number of q-grams, and sq is a constant for a given q. These
power-law distributions empirically fit well with real data [6].

Given a pair of tables whose q-grams are randomly drawn
from such a power-law distribution, we can show that it
is extremely unlikely that a q-gram appears exactly once
in both tables by chance (for reasonably large tables, e.g.,
N > 100).

Proposition 1. Given two columns Cs and Ct from
tables Ts and Tt respectively, each with N q-grams from an
alphabet of size |Σ| that follow the power-law distribution
above. The probability that a q-gram appears exactly once
in both Cs and Ct by chance is bounded from above by the
following.

|Σ|q∑
k=1

(
(1− pq(k))N−1 · pq(k)

)2

(3)

A proof this result can be found in Appendix C.

For q = 6, N = 100, |Σ| = 52, and using the sq defined
in [6], the probability of any 6-gram appearing exactly once

by chance on both columns is very small (< 0.00017). This
quantity will in fact grow exponentially small for larger N
(typical tables have at least thousands q-grams).

Given this result, we can conclude that if we do encounter
unique 1-to-1 q-gram matches from two tables, they are un-
likely coincidence but the result of certain relationships.

Let Qq(C) be the multi-set of all the q-grams of distinct
values 2 in column C; and let Fq(g, C) be the number of
occurrences of a q-gram g ∈ Qq(C). Let vs and vt be the
cell value at row Rs column Cs in Ts and row Rt column
Ct in Tt, respectively. We define 1-to-1 q-gram matches as
follows.

Definition 2. Let g be a q-gram with g ∈ Qq(vs) and
g ∈ Qq(vt). If Fq(g, Cs) = 1 and Fq(g, Ct) = 1, then g is
a 1-to-1 q-gram match between row pair Rs and Rt with
respect to the pair of column Cs and Ct.

As we have discussed, matches that are 1-to-1 q-gram are
likely joinable row pairs.

Example 2. Given two tables in Figure 1, the 6-gram
Barack appears only once in both tables, and the corre-
sponding rows in these two tables are indeed a joinable row
pair. The same is true for q-grams like chowdury in Figure 2,
France.01 in Figure 3 and UBAX01 in Figure 4, etc.

As the reader will see in the experimental results (Sec-
tion 6.3), using 1-to-1 q-gram matches as joining row pairs
leads to a precision of 95.6% in a real-world benchmark.

3.1.2 General n-to-m q-Gram Match
q-gram matches that are 1-to-1 are desirable special cases.

In general we have n-to-m q-gram matches.

Definition 3. Let g be a q-gram with F (g, Cs) = n ≥ 1
and F (g, Ct) = m ≥ 1, then g is a n-to-m q-gram match for
corresponding rows with respect to the pair of column Cs
and Ct.

Compared to 1-to-1 q-gram matches that almost always
identify a joinable row pair, the probability that a row pair
identified by n-to-m matches is a true joinable row pair is
roughly 1

n·m . We use 1
n·m to quantify the “goodness” of the

match.
Note that the ideal q to identify n-to-m matches with small

n and m can vary significantly in different cases.

Example 3. For the tables in Figure 1, if we use 6-grams
for value Barack Obama, we get an ideal 1-to-1 match of
Barack between the first rows of these two tables. However,
if we also use 6-gram for the second row George W. Bush,
then the best we could generate is a 2-to-2 match using the
6-gram George, between the second and fourth rows of these
two tables, respectively.

For George W. Bush, the ideal q should be 9, since the
9-gram George W. could produce a 1-to-1 match. However,
if we use 9-grams for the first row Barack Obama, we would
fail to generate any q-gram match.

The ideal q is not known a priori and needs to be searched.

3.1.3 Efficient Search of q-Gram Matches
A simple algorithm for finding ideal q-gram matches (with

small n and m) would conceptually operate as follows: (1)
for every cell from one table, (2) for all possible settings
of q, (3) for each q-gram in the resulting tokenization, (4)

2We remove possible duplicates in Ts columns since they are
potentially foreign keys.
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iterate through all values in the this table to find the num-
ber of q-gram matches, denoted as n; (5) iterate through
all values in the other table to find the number of q-gram
matches, denoted as m. The resulting match can be declared
as an n-to-m match. This is clearly inefficient and would fail
to make the desired join interactive. In this section we de-
scribe efficient techniques we use to search for unique q-gram
matches.

First, we build a suffix array index [19] for every column
in the source table and each column of the target table, so
that instead of using step (4) and (5) above, we can search
with logarithmic complexity. A suffix array index is built
by creating a sorted array of the suffixes of all values in a
column. Given a query q-gram, matches can be found by
using binary search over the sorted array and looking for
prefixes of the suffixes that match the query exactly. The
complexity of probing a q-gram in the index is O(logS),
where S is the number of unique suffixes. We probe each
q-gram once in both tables, to find the number of matches n
and m. An example of using suffix array index can be found
in Appendix A.

Using suffix array significantly improves search efficiency
for a given q-gram. However, for a cell value v, we still need
to test all possible q-grams. To efficiently find the best q-
gram (with the highest 1

nm
score), we express the optimal

q-gram g∗ as the best prefix of all possible suffixes of v.

g∗ = arg max
∀g∈Prefixes(u),u∈Suffixes(v)

1

nm
(4)

Where n = F (g, Cs) > 0 and m = F (g, Ct) > 0 are the
number of matches in column Cs and Ct, respectively. We
leverage a monotonicity property described below.

Proposition 2. Let gqu be a prefix of a suffix u with length
q. As the length increases by 1 and gqu extends at the end,
the 1

nm
score of the longer prefix gq+1

u is monotonically non-

increasing, or F (gq+1
u , Cs) ≤ F (gqu, Cs) and F (gq+1

u , Ct) ≤
F (gqu, Ct).

A proof of this can be found in Appendix C.
Given Proposition 2, for every suffix u we can find gq

∗
u

by looking for the longest prefix with matches in Ct using
binary search. The global optimal g∗ can be found by taking
the gq

∗
u with the highest score for all u.

Example 4. In Figure 1, for the value George W. Bush,
we iterate through all its suffixes (e.g., “George W. Bush”,
“eorge W. Bush”, etc.). For each suffix, we test their pre-
fixes using binary search to find the one with the best score
(the longest prefix with match), from which we select the
best prefix. In this case the prefix “George W.” for the first
suffix is the best g∗.

With this 1-to-1 match, we can determine that the first
rows from the left/right tables in Figure 1 are joinable row
pairs. Similarly the second rows from the two tables are also
joinable row pairs, etc.

Because of the use of suffix array indexes and binary search,
our overall search complexity is O(|v| log |v| logS), which is
orders of magnitude more efficient than the simple method
discussed at the beginning of this section.

3.1.4 Putting it together: Find Joinable Rows
Algorithm 1 gives the high-level pseudo code for this step

of finding joinable row pairs. For each pair of Cs and Ct, we
iterate through distinct value v ∈ Cs, and use OptimalQ-

Algorithm 1 Find joinable row pairs.

1: function FindJoinableRowPairs(Ts, Tt)
2: M ← {} . q-gram matches
3: for all Cs ∈ Ts do
4: for all Ct ∈ KeyColumns(Tt) do
5: for all v ∈ Cs do
6: {g∗, score,Rs, Rt}← OptimalQGram(v, Ct)
7: M ← ∪{(g∗, score,Rs, Rt, Cs, Ct)}
8: return M , GroupBy(Cs, Ct), Orderby(score)

Gram (the procedure discussed above) to efficiently find the
best q-gram match and its associated row pairs. Finally, row
pairs connected together by q-gram matches are grouped by
Cs and Ct, and ordered by their match scores. Details of
this step can be found in Appendix E.1.

It is worth noting that we group matches by the column
pairs from which the matches are produced. This is because
we want to produce consistent transformations on certain
columns Cs in Ts, so that the results can equi-join with
columns Ct in Tt. As such, matches found in different col-
umn pairs are good indications that they belong to different
transformation-join relationships, as illustrated by the fol-
lowing example.

Example 5. In Figure 2, in addition to q-gram matches
between the columns Name and Email, there is a q-gram
match for Princ, which matches Principal in the first row
in the Title column from the left table, and Princeville

in the last row in the School column from the right table.
However, matching row pairs produced between Title and
School can be used to produce a transformation-join rela-
tionship between these columns (if one exists), which should
be treated separately from one produced using matches be-
tween the Name and Email columns.

3.2 Transformation Learning
Given joinable row pairs {(Rs, Rt)} produced for some

column pair Cs and Ct from the previous step, we will now
generate transformation programs using these pairs as ex-
amples. Specifically, we can view row Rs from Ts as input
to a transformation program, and Rt projected on some key
columns K of Tt as the desired output. If a transformation
can take Rs as input and produce key columns K of Rt,
equi-join becomes possible.

Physical Operators. Recall that we generate transfor-
mations using the following set of physical operators, Ω =
{Split, SelectK, Concat, Substring, Constant}. The
detailed interface of each operator is as follows.

• string[] Split(string v, string sep)

• string SelectK(string[] array, int k)

• string Concat(string u, string v)

• string Constant(string v)

• string Substring(string v, int start, int length,

Casing c)

Each operator is quite self-explanatory. Split splits an in-
put string using separator; SelectK selects the k-th element
from an array; Concat performs concatenation; Constant
produces a constant string; and finally Substring returns a
substring from a starting index position (counting forward or
backward) for a fixed length, with appropriate casing (lower
case, upper case, title case, etc.).

In designing the operator space for Auto-Join, we referred
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to the string transformation primitives defined in the spec of
the String class of C# and Java. The physical operators we
use in the end are a subset of the built-in String functions
of these languages. More discussions on the choice of the
operators can be found in Appendix D.

Disambiguate Transformations by Examples. While
we initially illustrate transformations using one joinable row
pair for simplicity in Example 1; in practice, given only one
joinable row pair there often exists multiple plausible trans-
formations.

Example 6. In Example 1 the input row denoted as X
has two elements

{[
Obama, Barack(1961-)

]
,
[
47.0

]}
, and

the target output is
[
Barack Obama

]
. In addition to the

transformation shown in that example, an alternative trans-
formations that can also produce this output is:

1. Take the first itemX[0], Substr[8:6], produce
[
Barack

]
2. Concat with a constant string “ ”, produce

[
Barack

]
3. Concat again withX[0], Substr[0:5], produce

[
Barack

Obama
]

There exists many candidate transformations given only
one input/output example pair. However, most of trans-
formations would fail to generalize to other example pairs.
The observation here is that if we use multiple joinable row
pairs as input/output examples, the space of possible trans-
formations are significantly constrained, such that the in-
correct transformations will be pruned out. For example,
if we just add the second rows from Figure 1 as an exam-
ple pair, with

{[
Bush, George W.(1946-)

]
,
[
49.4

]}
as the

input and
[
George W. Bush

]
as the output, then the trans-

formation discussed in Example 6 would no longer be valid,
as it would produce

[
eorge Bush,

]
, which cannot be joined

with the keys in the other row.
The pruning power grows exponentially with the number

of examples (details of this analysis can be found in Ap-
pendix H). In practice we just need a few examples (3 or
4) to constrain the space of candidate programs enough and
generate the desired transformations.

Learning via Logical Operators. The learning prob-
lem now is to find consistent transformations for a small set
of input/output example row pairs. While the execution of
transformations can be decomposed into simple physical op-
erators defined in Ω, these are too fine-grained and do not
directly correspond to our logical view of the transformation
steps that humans would take. For instance, in Example 1
when we use

{[
Obama, Barack(1961-)

]
,
[
47.0

]}
as input

to produce
[
Barack Obama

]
as output, humans would natu-

rally view the required transformation as having three dis-
tinct logical steps – extract the component Barack, produce
a space “ ”, extract the component Obama. Note that these
logical operations correspond to a higher-level view that can
always translate into a combination of simple physical op-
erators – extracting the first of component Barack can be
implemented as Split by “(” followed by Split by “,”, and
finally a Substring.

For the technical reason of learning programs from exam-
ples, by mimicking how humans rationalize transformations,
we introduce a set of higher-level logical operators Θ, each
of which can be written as a sequence of physical operators.

Θ = {Constant,Substr,SplitSubstr,SplitSplitSubstr}

Unlike physical operators, each logical operator always

Algorithm 2 Transformation learning by example

Require: R = {Ii, Oi|i ∈ [k]} . Input/output row pairs
1: function TryLearnTransform(R = {Ii, Oi|i ∈ [k]})
2: while true do
3: θ ← FindNextBestLogicalOp(R)
4: P i ← ExecuteOperator(θ, Ii, Oi), ∀i ∈ [k]
5: Oil = LeftRemainder(Oi, P i), ∀i ∈ [k]
6: θl = TryLearnTransform({Ii, Oil |i ∈ [k]})
7: if θl = null then
8: continue
9: Oir = RightRemainder(Oi, P i),∀i ∈ [k]

10: θr = TryLearnTransform({Ii, Oir|i ∈ [k]})
11: if θr = null then
12: continue
13: θ.left child = θl
14: θ.right child = θr
15: return θ . current root node

returns a string. Each logical operator can be viewed as
a “step” that contributes “progress” (partial output) to fi-
nal results. It is important that logical operators all re-
turn strings, so that during automatic program generation,
at each step we can decide which logical operator is more
promising based on “progress”. In comparison, physical op-
erators like SelectK often need to be used in conjunction
with other operators like SubStr before producing partial
output, thus not directly amenable to automatic program
generation.

The exact specification of each logical operator can be
found in Appendix F. Here we give an example of rewriting
SplitSubstr as a sequence of four operators.

string SplitSubstr(string[] array, int k, string sep,

int m, int start, int length, Casing c) :=

Substring(SelectK(Split(SelectK(array, k), sep), m),

start, length, c)

Using logical operators, we can define the transformation
learning problem as follows.

Definition 4. Transformation Learning : Given a set of
joinable row pairs R = {(Ris, Rit)|i ∈ [m]} that can be viewed
as input/output examples, and a predefined set of logical
operations Θ, find a transformation P = θ1 · θ2 · θ3 · . . . θn,
θi ∈ Θ, such that
(1) P is consistent with all examples in R, namely, ∀i ∈ [m],
P (Ris) can produce the projection ofRit on some key columns
K of Tt, denoted as ΠK(Rit);
(2) P has minimum-complexity, measured as the number
of logical operators used, among all other transformation
programs that are consistent with examples in R.

This definition is in spirit consistent with principles such
as Minimum Description Length [20] or Occam’s razor [15]
– if there are multiple candidate transformations that can
explain all given examples, we use the simplest one and that
is likely correct. For instance, the transformation in Exam-
ple 1 requires 3 logical operators, and there exist no other
programs with lower complexity.

The learning problem can be viewed as a search problem
– each logical operator produces a partial output and has a
unit cost. Like shortest path algorithms, we want to reach
the goal state by producing the required output strings but
with the least cost.
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This motivates a program learning algorithm that searches
for the best program by recursively expanding a partial
transformation program using the logical operator that yields
the most progress. This algorithm is outlined in Algorithm 5
and works as follows. For the given set of input/output ex-
amples, it finds the best logical operator θ that produces the
most progress towards the required output strings (which in
this case is some key column of the output rows). We ex-
ecute the operator θ and extract partial output produced
from the target output. We get what remains to the left
and right in the target output, denoted as Oil and Oir, re-
spectively. This produces two new instances of the problem
with {Ii, Oil |i ∈ [k]} and {Ii, Oir|i ∈ [k]}, which have the
same structure as the original {Ii, Oi|i ∈ [k]}. So we re-
curse and invoke TryLearnTransform on the two smaller
problems. The resulting operators, θl and θr, if learned suc-
cessfully, are added as the left child and right child of θ,
until all remaining target output have been consumed. If at
certain level in the hierarchy TryLearnTransform fails to
find a consistent transformation, we can give up or option-
ally backtrack by using the next best logical operator. In
practice we impose a limit τ on the number of logical oper-
ators that can be used in a program P to bound the search
space (e.g., τ = 16). Empirically, we found τ = 10 to be
sufficient to produce transformations needed to join all real
scenarios encountered in our benchmark. Setting a larger
τ however has little impact on efficiency, because incorrect
program generation paths are terminated quickly for failing
to generate new operators consistent with the set of output
examples.

We use the following example to illustrate this procedure.

Example 7. From the example in Figure 1, suppose the
first three rows from right/left tables are given as learning
examples for input/output row pairs, respectively. To learn
transformation, we use the first row

{[
Obama, Barack(1961-

)
]
,
[
47.0

]}
as input and

[
Barack Obama

]
as output, and

we use the remaining two rows as validations. To gener-
ate the first logical operator for this row pair, we search
over operators in Θ with all possible parameters (separa-
tors for Split up to a certain length, indexes for Substring
that are valid for the given string, etc.), and pick the log-
ical operator that yields the most progress. In this case it
can be verified that the operator with the most progress is
SplitSplitSubstr, which selects the first input element: [X
= SelectK(input, 0)]; split by “(” and take the first ele-
ment: [Y = SelectK(Split(X, “(”), 0)]; split again by
“ ” and take the second element: [Z = SelectK(Split(Y,

“ ”), 1)]; take substring from position 1 to the end [1:-1]:
[Substr(Z, 1, -1)]. This operator generates Barack for the
first row, George W. for the second, Bill for the third, with
a total gain of 19 characters (6 + 9 + 4), and an average gain
of 49% for the required outputs across three rows ( 6

12
, 9

14

and 4
12

, respectively).
With this first operator, the remaining required output

strings to be covered are {“ Obama”, “ Bush”, “ Clinton” }.
We again search for the logical operator that yields the most
progress, for which we find SplitSubstr that splits by “,”,
takes the first element, and returns the full string. Now the
remaining output strings are {“ ”, “ ”, “ ” }, which can be
covered by adding a Constant operator that produces a
space character. Finally, by concatenating these operators,
we complete a candidate transformation program that can
be tested on the full input tables.

Through the following proposition, we show the success
probability of transformation learning.

Proposition 3. The learning procedure succeeds with
high probability, if the transformation can be expressed using
operators in Θ. The success probability is lower bounded by

1−

1−
∏
i∈[m]

(
1−

(
1 + (|SI |+ |SI |k)|SO|k

) 1

|Σ|
k|Si|

)T

where k is the number of independent examples used, T is the
number of trials (each with k examples), |SI | and |SO| are
the lengths of input/output examples, and |Si| is the length of
the result of each intermediate step (for a logical operator).

A proof of this result can be found in Appendix H. This
proposition shows that with T independent trials we can
reduce the failure probability at a rate exponential in T ,
thus quickly improving success probability as T increases.
Ranking of Candidate Transformations. Recall in

Section 3.1.4, we generate groups of joinable row pairs, based
on q-gram matches between each pair of columns Cs, Ct.
For each such group, we select the top-k row pairs with the
highest scores (typically 1-to-1 matches), and apply trans-
formation learning for a fixed number of times, each of which
on a random subset of the selected row pairs. We execute
each learnt transformation on the original input tables, and
pick the one that joins the most number of rows in the tar-
get table. By the definition of transformation join problem
(Definition 1), the joining columns in the target table are key
columns (1:1 or N:1 joins). A key-column join with high row
coverage is likely to be meaningful in practice. Pseudocode
of this step can be found in Appendix E.2.

3.3 Join with Composite Key Columns
There exist cases where a key column in the target table is

a composite column that joins with more than one columns
in the source table. The right table in Figure 1 is such an
example that has both the president names and their life
spans. If we had used this composite column as the target,
we would have failed to find any transformation, because the
life span is missing from the left table.

While changing the direction of join in the example above
would work, when both source and target key columns are
composite, then neither direction would work. We use exist-
ing methods [10, 13] to split a composite columns by aligning
substrings into multiple parts across all rows. For instance,
one can split the key column in the right table in Figure 1
into three columns: the last name part before “,”, the first
name part before “ (”, and the life span. Since compos-
ite columns usually have strong structural regularities (e.g.,
punctuations) this technique produces high quality splits in
most cases, from which we can apply the Auto-Join again.

To summarize, we first attempt transformation joins in
two directions. When neither direction results in a transfor-
mation, we can split the key columns of input tables before
applying transformation join for the second time.

4. SCALABLE AUTO-JOIN
Auto-Join is used as a data exploration feature in spread-

sheet environment such as Excel, where interactivity is crit-
ical. As a result, we need to efficiently scale it to tables
with thousands or even millions of rows. In this section, we
explain how to achieve such scalability for Auto-Join.
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Given two tables Ts and Tt, each with millions of rows,
with commodity hardware it is unlikely that we can achieve
interactive speed if all values need to be indexed and probed.
On the other hand, it would actually be wasteful to in-
dex/probe all values, because for the purpose of transfor-
mation learning we only need enough joinable row pairs for
learning to be successful. Intuitively, we can sample rows
from input tables, where the key is to use appropriate sam-
pling rates to minimize processing costs but still guarantee
success with high probability (the danger is that we may
under-sample, thus missing join relationships that exist).

For Auto-Join, we use independent row samples from in-
put tables. Unlike sampling techniques for equi-join or set-
intersection, where co-ordinated sampling can be used as
join keys are explicitly given, in our problem, the join keys
are not known a priori and we have to rely on independent
samples. Although q-gram sampling is a possible alterna-
tive, the cost of analyzing and hashing all q-grams can be
prohibitive for large tables. With these considerations, we
now study a lightweight row sampling for Auto-Join.

Let Ns, Nt be the number of rows in table Ts, Tt, and
ps, pt be their sampling rates, respectively. Furthermore,
let r be the join participation rate, defined as the fraction
of records in the target table Tt that participate in the de-
sired join. Note that the join participation rate needs to be
reasonably high for sampling to succeed – if only one row
in a million-row table participates in a join, then we need
to sample a very large fraction of it to find the joinable row
pair with high probability. In practice, r is likely to be high,
because joins that humans find interesting likely involve a
non-trivial fraction of rows. We conservatively set r to a low
value (e.g., 1%), so that as long as the real join participation
is higher we can succeed with high probability.

We formulate the problem of determining ps and pt as
an optimization problem. The objective is to minimize the
total number of sampled rows that need to be indexed and
queried, which isNsps+Ntpt. The constraint is that we need
to sample enough joinable row pairs with high probability.
Since the join participation rate is r, at least Ntptr rows
from the target table Tt participate in join. Because each
of these participating row joins with at least one row from
the source table Ts, which is sampled with probability ps,
leading to an expectation of µ = Nt · pt · r · ps joinable row
pairs in the sample. This can be seen as a Bernoulli process
with a success probability of ptpsr and Nt total trials.

As discussed in Section 3.2, we need a certain number
of examples to constrain the space of feasible transforma-
tions enough to produce correct transformations. Let this re-
quired number be T (empirically 4 is enough in most cases).
Let X be a random variable to denote the total number of
joinable row pairs sampled. We want to find an upperbound
for the probability that less than T joinable rows pairs are
sampled, or P (X ≤ T ).

Using the Multiplicative Chernoff Bound [9], we know X
can be bounded by

P (X ≤ (1− δ)µ) ≤ e−
δ2µ
2 (5)

If we have µ ≥ T
1−δ , we can upper-bound the failure proba-

bility as

P (X ≤ T ) ≤ e−
δ2µ
2 (6)

For example, let T = 4, δ = 0.8, we get µ = Ntptpsr >

T
1−δ = 20. Using Equation 6, we get P (X ≤ T ) ≤ e−

0.64·20
2 =

e−6.4 < 0.0017, or in other words, our success probabil-
ity is at least 99.8%. So as long as we can ensure µ =
Ntptpsr >

T
1−δ , then more than T joinable row pairs will be

sampled with high probability. This becomes the constraint
that completes our optimization problem:

min Nsps +Ntpt

s.t. Ntptpsr ≥
T

1− δ , pt, ps ∈ [0, 1]
(7)

Using Lagrange we obtain the following closed form opti-
mal solution 3:

pt =

√
T

(1− δ)rNs
, ps =

√
TNs

(1− δ)rN2
t

(8)

The corresponding sample sizes can be written as Ntpt =
Nt
Ns

√
TNs

(1−δ)r and Nsps = Ns
Nt

√
TNs

(1−δ)r , and both of them grow

sub-linearly in Ns.
As a concrete example, suppose we have two tables both

with 1M rows. For some fixed setting of T and δ, such as T =
4 and δ = 0.8 from the previous example that guarantees
success with high probability, and r = 0.1, we can compute
the sampling rates as pt = 0.014 and ps = 0.014, which
translates to a small sample of 14K rows from the 1M-row
tables.

Using the optimized sampling technique, we significantly
reduce the processing cost and improve the efficiency of
Auto-Join in dealing with large tables.

5. CONSTRAINED FUZZY JOIN
For datasets from the Web, inconsistencies are often found

in how values are formatting and represented (e.g., with or
without middle name and middle initials for names). Thus,
an equi-join using transformation may miss some row pairs
that should join, as Example 8 shows.

Example 8. In Figure 2, the learned transformation that
has the highest coverage on the target key column Email

concatenates the first character of the first name with the
last name in the left table to get the email addresses. How-
ever this transformation does not cover the target key mi-

payne@forsyth.k12.ga.us as it uses the first two characters
in the first name. As a result, the third rows in the left and
right tables cannot be equi-joined.

Traditionally fuzzy join is used to deal with small value
inconsistencies. However, given a wide space of parameters
in fuzzy join such as the tokenization, distance function,
and threshold, configuring a fuzzy join that works well for
a given problem instance is difficult. This is particularly
true for Auto-Join, as it is intended to be a data exploration
feature in spreadsheets where users may not have no the
expertise on fuzzy joins.

We propose to automatically optimize a fuzzy join con-
figuration using rows that are already equi-joinable as con-
straints, so that as we relax matching criteria in fuzzy join,
we do not make these rows to join more than their equi-join
results (which indicates that the corresponding fuzzy join is
too lax). Although we use this optimization in the context

3When Ns and Nt are small, there may not be feasible solu-
tions (the required p may be greater than 1). In such cases
we use full tables.
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of Auto-Join, the techniques here are of independent interest
and can be used to optimize general fuzzy join.

Given a column C produced by transformations on the
source table, and K a key column from the target table,
where the join is 1:1 or N:1, our optimization objective is to
maximize the number of rows in the target table that can be
fuzzy-joined between C and K, subjecting to the constraint
on join cardinality.

Specifically, given a tokenziation scheme t from a space of
possible configurations (e.g., word, 2-gram, 3-gram, etc.), a
distance function d (e.g., Jaccard, Cosine), and a distance
threshold (normalized into a fixed range, e.g., [0,1]). The
rows that can fuzzy join for some given t, d, s, denoted as
Ft,d,s(C,K), is defined as follow.

Ft,d,s(C,K) = {vk |∃vk ∈ K, vc ∈ C, dt(vk, vc) ≤ s} (9)

where dt is the distance d using a given tokenization t.
This objective alone tends to produce overly lax matches.

The counteracting constraint is to respect join cardinality.
Specifically, after using fuzzy join every value vc ∈ C cannot
join with more than one value vk ∈ K. This can be viewed as
a key-foreign-key join constraint – a foreign-key value should
not join with two key values (even with fuzzy join).

Additionally, we can optionally require that each vk ∈
K cannot join with more than one distinct vc ∈ C. This
is an optional constraint assuming that on the foreign key
side, each entity is only represented with one distinct value.
E.g., if we already have “George W. Bush” in a table, we
would not have“George Bush”or“George W. Bush Jr.” for
the same person. On the other hand a very close value
“George H. W. Bush” in the same column likely corresponds
to a different entity and should not join with the same key
as “George W. Bush”. This optional requirement helps to
ensure high precision.

These requirements lead to the following two constraints
in the optimization problem.

arg max
t,d,s

|Ft,d,s(C,K)|

s.t. |{vk | vk ∈ K, dt(vc, vk) ≤ s}| ≤ 1,∀vc ∈ C
|{vc | vc ∈ C, dt(vc, vk) ≤ s}| ≤ 1, ∀vk ∈ K

(10)

We can search over possible t, d, and s from a given pa-
rameterization space. The following example illustrates how
fuzzy join optimzation is used for joining tables in Figure 1.

Example 9. Continue with Example 8, after applying the
transformation, the output for Missy Payne in the left ta-
ble is mpayne@forsyth.k12.ga.us, which cannot be equi-
joined with mipayne@forsyth.k12.ga.us in the right ta-
ble. Using 3-gram tokenizer and Jaccard distance, the dis-
tance between the two is 0.125. Thus, a distance thresh-
old above 0.125 would join these two rows. On the other
hand, if we use a larger distance threshold such as 0.4,
kmoore@forsyth.k12.ga.us (transformation output from the
left table) would join mipayne@forsyth.k12.ga.us (in the
right table), breaking the second constraint in Equation 10
as mipayne@forsyth.k12.ga.us is joined with two distinct
values. The fuzzy join optimization algorithm finds the max-
imum threshold that still satisfies the join constraints, thus
the optimal threshold in this case is 0.2 or 0.3.

Due to the monotonicity property of the objective function
with respect to the distance threshold, we use binary search

to find the optimal distance threshold. The pseudo code for
fuzzy join optimzation can be found in Appendix E.4.

6. EXPERIMENTS
In this section we discuss experimental results on join

quality (precision/recall) as well as scalability.

6.1 Benchmark Datasets
Benchmarks. We constructed two benchmark, Web and

Enterprise, using test cases from real datasets; as well as
a synthetic benchmark Synthetic. The Web benchmarks is
published online4 to facilitate future research.

The Web benchmark is constructed using tables on the
Web. We sampled table-intent queries from the Bing search
engine that have the prefix “list of” (e.g., “list of US pres-
idents”). We then used Google Tables [2] to find a list of
tables for that query (e.g., U.S. presidents), and selected
pairs of tables that use different representations but are still
joinable under transformation (e.g., Figure 1). We searched
17 topics and collected 31 table pairs. We observe that tables
on the Web often have minor inconsistencies (e.g., format-
ting differences, with or without middle initials in names,
etc.) even when they are on the same topic, and many such
inconsistencies cannot be easily accounted for using trans-
formations alone. This makes Web a difficult benchmark.

The Enterprise benchmark contains 38 test cases, each
of which has a pair of tables extracted from spreadsheet files
found in the intranet of a large enterprise (e.g., Figure 3 and
Figure 4). The test cases are constructed by grouping tables
with common topics. Comparing to Web that has mostly 1-
to-1, entity-to-entity joins, Enterprise also has cases with
hierarchical N:1 joins (e.g., Figure 3).

Lastly, since the authors in [22] studied a close variant of
the auto-join problem and used synthetic datasets for eval-
uation, as a validation test we also reconstruct 4 synthetic
datasets used in [22] to create the Synthetic benchmark.
The 4 test cases, UserID, Time, NameConcat, and Citeseer,
are constructed by either splitting or merging columns from
source tables to produce target tables [22].

In all these benchmark cases, equi-join would fail. We
manually created the ground truth join result for each pair
of tables, by determining what rows in one table should join
with what rows from the other table.

Evaluation metrics. We use the following metrics to
measure join quality. Denote by G the row pairs in the
ground truth join results, J the joined row pairs produced
by an algorithm. We measure join quality using the standard
precision and recall, defined as:

precision =
|G ∩ J |
|J | , recall =

|G ∩ J |
|G|

We also report F-score that is the harmonic mean of pre-
cision and recall. When an algorithm produces empty join
results, we do not include it in computing average precision,
but we include it in average recall and F-score.

6.2 Methods Compared
We implemented 8 methods for comparison.
Substring Matching (SM). We implemented the algo-

rithm by Warren and Tompa based on their paper [22]. This

4https://www.microsoft.com/en-us/research/publication/
auto-join-joining-tables-leveraging-transformations/
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Figure 5: Average precision/recall comparison for all methods on three benchmarks.

algorithm uses a greedy strategy to find a translation for-
mula, which is a sequence of indexes of the source columns’
substrings that matches parts of the target column. The
translation formula is constructed incrementally by inspect-
ing one source column at a time with no reverse-back. When
inspecting each source column, SM finds the source column’s
substring indexes that lead to the highest number of success-
ful alignments with the target column, and then uses the
substring indexes to form the partial translation formula,
which is added to the main formula.

Fuzzy Join - Oracle (FJ-O). It is known that a major
difficulty of using fuzzy join is the need to find the right con-
figuration from a large space of parameters, which includes
different tokenization schemes, distance functions, and dis-
tance thresholds, etc. To be more favorable to fuzzy join
based methods, we consider an extensive combination of
configurations. Specifically, for tokenization we use {Exact,
Lower, Split, Word, and q-gram for q ∈ [2, 10]} (similar to
ones used in [17]); for distance functions we consider {Inter-
sect, Jaccard, Dice, MaxInclusion}; and for thresholds we
use 10 equally-distanced values (e.g., {0.1, 0.2, ..., 1} for
Jaccard). This creates a total of 520 unique parameter con-
figurations. We execute each of these fuzzy joins on columns
that are used in the ground truth as if they are known a
priori, and we join each row with top-1 fuzzy match in the
other table to maintain high precision. We report the best
configuration that has the highest average F-score across all
cases.

Note that this method acts much like an “Oracle” – it
has access to not only the columns that join, but also the
ground truth join result to “fine tune” its configuration for
the best performance. These optimizations are not feasible
in practice, so this provides an upper bound on what fuzzy
join like methods can achieve.

Fuzzy Join - Column (FJ-C). In this method, we per-
form fuzzy join on columns that participate in joins in the
ground truth as if these are known, but without using de-
tailed row-level ground truth of which rows should join with
which for configuration optimization. We use techniques
discussed in Section 5 to determine the best parameter con-
figuration.

Fuzzy Join - Full Row (FJ-FR). This fuzzy join variant
is similar to FJ-C, but we do not provide the information on
which columns are used in join in the ground truth. As a
result, this approach considers full rows in each table. This
represents a realistic scenario of how fuzzy join would be
used without ground truth.

Dynamic q-gram - Precision (DQ-P). Since q-grams al-

ready identify some joinable row-pairs (from which we gen-
erate transformations), one may wonder if it is sufficient to
perform join using q-gram matches alone. In this method we
use matches produced in Section 3.1, and only allow 1-to-1
q-gram matches to ensure high precision. Joinable row pairs
are used directly as join result.

Dynamic q-gram - Recall (DQ-R). This algorithm is
similar to DQ-P, except that we allow n-to-1 q-gram matches
as join results. This produces results of higher recall but can
also lead to lower precision compared to DQ-P.

Auto-Join (AJ). This is our Auto-Join algorithm. We
create a variant Auto-Join - Equality (shorten as AJ-E)
that only uses equality join without the fuzzy join described
in Section 5.

6.3 Quality Comparison
In this section we discuss the experimental results on three

benchmarks. Figure 5 shows the average precisions and re-
calls comparison on all three benchmarks. Table 2, Figure 6
and 7 show the F-scores on all the benchmark datasets.

6.3.1 Enterprise Benchmark
Enterprise contains data that are mostly clean and well

structured – values are consistently encoded with few typos
or inconsistencies as they are likely dumped from sources like
relational databases (e.g., Figure 3 and Figure 4). Unlike
other benchmarks, a significant fraction of joins are N:1 join
through hierarchically relationships (e.g., Figure 3).

The precision and recall results are show in Figure 9a.
First, Auto-Join (AJ) achieves near-perfect precision (0.9997)
and recall (0.9781) on average. In comparison, the oracle
baseline FJ-O has precision at 0.9756 and recall at 0.9755,
which is inferior to Auto-Join. Recall that FJ-O is the Oracle
version of fuzzy join that uses ground truth to find the best
possible configuration, which provides an upper-bound for
fuzzy join and not feasible in practice. This demonstrates
the advantage of transformation-based join over fuzzy join
when consistent transformations exist. We note that in this
test case using equality-join only AJ-E (with no optimized
fuzzy join) produces virtually the same quality results, be-
cause values in this benchmark are clean and well structured.

Second, the SM algorithm achieves lower precision and re-
call then other baselines methods. This shows that their ap-
proach in building the translation formula using fixed sub-
string indexes, as mentioned earlier in Section 6.2, is not
expressive enough to handle transformations needed in real
join scenarios we encountered.

Third, fuzzy join algorithms (FJ-FR and FJ-C) produced
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Figure 6: F-Scores on Enterprise Benchmark

good precision due to our conservative fuzzy-join optimiza-
tion. However, their recall is low, because in certain cases
where the join values are hierarchical, non-joinable row pairs
may also have low syntactic distance (e.g., Figure 3), which
makes it difficult to differentiate between joinable/non-joinable
row pairs using distance functions alone.

Lastly, DQ-P produces joins based on 1-to-1 q-gram matches,
which has high precision but low recall. This is consis-
tent with our analysis that 1-to-1 q-gram matches are often
good joinable row pairs for transformation learning. On the
other hand, DQ-R relaxes the matching constraints, and as
expected produces better recall but lower precision.

Figure 6 shows the F-scores on individual cases. It is clear
that in most datasets, AJ achieved higher scores than the
baselines, demonstrating that AJ is more resilient to compli-
cations such as N:1 joins and common substrings between
joinable and non-joinable row pairs. In the test cases uk ad

sector and region atu 1, AJ did worse than DQ methods.
A close inspection reveals that it finds an alternative trans-
formation that only covers a subset of the joinable results.

6.3.2 Web Benchmark
Unlike Enterprise that have a significant number of N:1

joins, in Web most join cases are 1:1, entity-to-entity joins
(e.g., Figure 1 and Figure 2), and are considerably more
dirty with ad-hoc inconsistencies.

Figure 9b gives the quality comparisons. First, AJ has a
considerably higher average precision than the oracle fuzzy
join FJ-O, but a lower average recall. This is not surprising
because FJ-O uses ground truth to optimizing its configu-
ration parameters, which is not feasible in practice. We do
notice that because FJ-O always joins a row with its top-1
match by score as long as the score is above a certain thresh-
old, which leads to many false positives and thus lower pre-
cision. The problem is the most apparent for cases where
most rows from one table do not actually participate in join.
This is an inherent shortcoming of top-1 fuzzy join methods
that AJ can overcome.

We see in Figure 9b that Auto-Join (AJ) has a higher
average recall than its equality join version, AJ-E (0.8840
vs. 0.7757), but slightly lower precision (0.9504 vs. 0.9758).
This is because inconsistencies exist in certain cases, where
one correct transformation alone does apply to all rows that
should join. In such cases, optimized fuzzy join brings sig-
nificant gain in recall (≈ 0.11), with a small loss in precision
(≈ 0.025).
SM does not perform well compared to other methods.

Transformations required in Web benchmark are often too
more complex for SM that relies on fixed substring indexes.

We analyze individual cases for which FJ-C produces higher
F-scores than AJ, as shown in Figure 7. For cases like uk

Citeseer NameConcat Time UserID

DQ-P 0.9826 0.1264 0.0392 0.7572

DQ-R 0.9826 0.1356 0.2025 0.6638

FJ-C 0.4637 0.1651 1.0000 0.8795

SM 0.0291 0.1186 0.5464 0.7553

AJ 1.0000 1.0000 1.0000 1.0000

Table 2: F-Scores on Synthetic Benchmark

pms, we found that although AJ learnt the correct trans-
formation and achieved a perfect precision, the fuzzy join
step was not able to cover the rest of joinable row pairs
that have inconsistencies in entities’ naming. For complex
cases like duke cs profs, the correct join actually requires
more than one transformations in order to join all rows. Al-
though AJ learns one transformation with perfect precision,
it falls short in recall as not all joinable rows are covered.
For these two datasets, the fuzzy distances between the non-
joinable row pairs using the original join-columns are larger
than when using the derived column. So it is easier for FJ-

C, which uses the original join-columns, to differentiate be-
tween joinable and non-joinable row pairs and achieve higher
F-score, even though FJ-C and AJ uses the same fuzzy join
method.

6.3.3 Synthetic Benchmark
Synthetic contains cases synthetically generated as de-

scribed in prior work [22] using split or concatenation. The
cases here are relatively simple and we use these as a vali-
dation test to complement with our previous benchmarks.

Figure 9d shows that AJ achieves perfect precision and
recall, matching the oracle fuzzy join FJ-O. Other methods
produce results similar to the previous benchmarks.

Table 2 shows the F-scores on individual cases. Both of
DQ-P and DQ-R performs poorly on the Time dataset. Time

is synthetically generated by concatenating three columns
with second (0-59), minute (0-59), and hour (0-23) into a
time column separated by “:”. Due to the small space of
numbers, there are many common substrings and few 1-to-1
or n-to-1 q-gram matches, thus the low scores of DQ-P and
DQ-R. These two approaches work well on Citeseer, which
has many 1-to-1 q-gram matches due to unique author names
and publication titles. AJ achieved perfect F-scores on all
datasets, since it just needs a few examples to produce the
generalized transformations needed.

We found that SM achieved good recall in this bench-
mark, however, its average precision is relatively low (see
Figure 9d). This result is not as well as what is reported in
the original work [22]. This is likely because the method is
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Figure 7: F-Scores on Web Table Benchmark

data-sensitive, and it tends to fall into a local optimum with
its use of greedy strategy in finding a translation formula.
Since the translation formula is constructed incrementally
by inspecting one source column at a time with no reverse-
back, the addition of a single incorrect partial formula stops
the whole algorithm from finding the globally optimal for-
mula. This step is quite sensitive to the variance in the
lengths of the substrings that matches with the target col-
umn. This is evident in Table 2, as SM did relatively better
in Time and UserID, which has smaller variances (Time has
zero variance, and UserID uses a fixed-length substring in
the translation formula), while the scores in Citeseer and
NameConcat are much lower.

6.4 Scalability Evaluation
We used the DBLP datasets [1] to evaluate the scalability

of SM, FJ-O, FJ-C, and AJ. In the DBLP data set, each record
has three fields: authors, title, and year of publication. For
the purpose of scalability evaluation, we create a target table
that is the concatenation of these three fields. We sample N
records from the source table and the target table where N =
{100, 1K, 10K, 100K, 1M}, and measure the corresponding
end-to-end execution time. Some existing methods are very
slow on large data sets so we set a timeout at 2 hours. Note
that we omit results for FJ-FR since it is identical to FJ-C

for this data set. We also do not compare with DQ-R and
DQ-P since these are sub-components from the proposed AJ

method.
Figure 8 shows the end-to-end running times. AJ is 2-3

orders of magnitude faster than existing methods. In partic-
ular, SM and FJ-O time out at 10K rows, and FJ-C times out
at 100K rows. The runtime of these methods grow quickly
with the table sizes.

For AJ, we break down the time into three stages. The
first stage is the creation of the suffix array indexes (In-
dexing). The second stage is finding joinable row pair and
transformation learning (Find Trans). The third stage is to
perform equality join (Equi-Join). The indexing time grad-
ually dominates as the number of rows grows over 100K. On
the other hand, the cost of transformation learning increases
very slowly, from 2.5 seconds at 100 rows to 6.4 seconds at
1M rows, since the number of attempts for transformations
learning does not increase as the table grows.

In addition, we experimented Auto-Join without the op-
timized row sampling (Section 4) to see its impact on effi-
ciency. Without sampling the algorithm reaches timeout on
the data set with 1M rows, and is more than 5 times slower
on the 100K data set. The sampling-based optimization is
clearly important to scale to large data sets.
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Figure 8: End-to-end running time comparison

7. RELATED WORKS
Warren and Tompa proposed a schema translation tech-

nique in the context of data integration [22], which is closely
related to Auto-Join. Their technique is based on string
alignment that produces a transformation given two tables
as input. However, the set of transformations they consider
is limited to only concatenation, which is not sufficient to
handle transformations required to join real tables as our
experiment results show. Our approach, in comparison, sup-
ports much more expressive transformations that can handle
almost all real join cases encountered, provides probabilistic
guarantee of its success, and maintain an interactive speed
even for large tables.

There is a long and fruitful line of research on schema
matching that identifies column correspondence between ta-
bles, where certain types of transformations have been con-
sidered. For example, iMap [12] was developed to han-
dle transformations such as numerical conversion and string
concatenation. Similarly Bellman [11] can also find column
correspondence when the underlying transformation is sim-
ple string concatenations.

Compared to Auto-Join, in schema matching one only
needs to identify column-level correspondence for humans
to judge, where no precise correspondence is produced at
the row-level. In Auto-Join we need to reproduce the un-
derlying transformation at the row-level in a generative pro-
cess. Furthermore in schema matching transformations con-
sidered are limited since q-gram match and fuzzy matching
is often sufficient to identify column correspondence. Tech-
niques we develop for Auto-Join can precisely identify com-
plex relationships between columns, which can in fact be
used for schema matching (with high confidence).

Program-by-example [18] is a programming paradigm stud-
ied in the programming language community to facilitate
program generation based on examples, which is closely re-
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lated to our transformation learning component. Systems
such as FlashFill [16] and BlinkFill [21] perform transfor-
mations when given input/output examples. In comparison,
our system automatically identifies such examples. Our pro-
gram generation algorithm is also considerably different from
existing techniques that requires efficient enumeration of all
feasible programs.

8. CONCLUSION
We developed Auto-Join, a system for automatically join

tables with transformations. We show that Auto-Join is able
to produce high-quality join result that significantly outper-
form existing solutions. An interesting future direction is
to look at ways to automatically join tables with semantic
relationships.
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APPENDIX
A. SUFFIX ARRAY INDEX

Here we present a simple example of a suffix array index.
As we have discussed in Section 3.1.3, we use suffix array
indexes for finding q-gram matches: given a query q-gram
from a source column, we want to find a value in a target
column that contains the q-gram exactly.

In this example, we match a person’s full-name with its
email address. For the sake of simplicity, let the target col-
umn contain only one value, surajitc@microsoft.com. To
build a suffix array index, we first extract all the suffixes of
the value as follows:

["surajitc@microsoft.com",

"urajitc@microsoft.com$",

"rajitc@microsoft.com$$",

"ajitc@microsoft.com$$$",

"jitc@microsoft.com$$$$",

"itc@microsoft.com$$$$$",

"tc@microsoft.com$$$$$$",

"c@microsoft.com$$$$$$$",

"@microsoft.com$$$$$$$$",

"microsoft.com$$$$$$$$$",

"icrosoft.com$$$$$$$$$$",

"crosoft.com$$$$$$$$$$$",

"rosoft.com$$$$$$$$$$$$",

"osoft.com$$$$$$$$$$$$$",

"soft.com$$$$$$$$$$$$$$",

"oft.com$$$$$$$$$$$$$$$",

"ft.com$$$$$$$$$$$$$$$$",

"t.com$$$$$$$$$$$$$$$$$",

".com$$$$$$$$$$$$$$$$$$",

"com$$$$$$$$$$$$$$$$$$$",

"om$$$$$$$$$$$$$$$$$$$$",

"m$$$$$$$$$$$$$$$$$$$$$"]

Note we pad the suffixes with $. Then we sort the suffixes
in ascending order:

[".com$$$$$$$$$$$$$$$$$$",

"@microsoft.com$$$$$$$$",

"ajitc@microsoft.com$$$",

"c@microsoft.com$$$$$$$",

"com$$$$$$$$$$$$$$$$$$$",

"crosoft.com$$$$$$$$$$$",

"ft.com$$$$$$$$$$$$$$$$",

"icrosoft.com$$$$$$$$$$",

"itc@microsoft.com$$$$$",

"jitc@microsoft.com$$$$",

"m$$$$$$$$$$$$$$$$$$$$$",

"microsoft.com$$$$$$$$$",

"oft.com$$$$$$$$$$$$$$$",

"om$$$$$$$$$$$$$$$$$$$$",

"osoft.com$$$$$$$$$$$$$",

"rajitc@microsoft.com$$",

"rosoft.com$$$$$$$$$$$$",

"soft.com$$$$$$$$$$$$$$",

"surajitc@microsoft.com",

"t.com$$$$$$$$$$$$$$$$$",

"tc@microsoft.com$$$$$$",

"urajitc@microsoft.com$"]

Let the query be urajit, a 6-gram from the name Surajit
Chaudhuri. We want to find a suffix in the array that has an

exact prefix match with the query q-gram. Since the array is
sorted, we can use binary search. In this case, the matching
suffix is urajitc@microsoft.com$, whose prefix of length 6
matches the query q-gram exactly. The search complexity
is O(log(S)) where S is the total number of suffixes.

B. POWER LAW IN TABLE CORPUS
We have conducted experiments that count q-gram occur-

rences from over 100M Web tables extracted from a recent
snapshot of the documents indexed by the Bing search en-
gine. We test whether q-grams and natural words in the
large table corpus also follow power laws by plotting a rank
vs. frequency graph as shown in Figure 9. Note that both
axes of the plots are in log scale. The close-to-linear rela-
tionships observed on these plots (especially for words and
q-grams with larger q) suggest that this is indeed the case.
This provides justification for our q-gram-probing based de-
sign that leverages unique q-gram matches to find joinable
row pairs.

C. PROOFS OF PROPOSITIONS
Proof of Proposition 1. Given Equation 2, the proba-

bility that a q-gram with rank k appears exactly once in a
random collection of N q-grams follows a geometric distri-
bution:

(1− pq(k))N−1 · pq(k)

The probability of this q-gram appears exactly once each in
two independent collections with N q-grams is then:(

(1− pq(k))N−1 · pq(k)
)2

Lastly, the probability that at least one q-gram appears ex-
actly once each in two collections can be computed using a
summation over all possible |Σ|q q-grams:

|Σ|q∑
k=1

(
(1− pq(k))N−1 · pq(k)

)2

Proof of Proposition 2. This proof is for the mono-
tonicity of the number of q-gram matches with respect to
q, which in the context of Proposition 2 is the length of the
prefix gqu of the suffix u. Let a gqu = x1x2 . . . xq be a prefix
with length q, and S = s1s2 . . . sn be a string of length n,
where x1, x2, . . . and s1, s2, . . . are characters. Let S[i : j]
be a slice of S from si to sj , where 1 ≤ i < j ≤ n. If
S[i : j] = gqu, then S[i : j − 1] = gqu[1 : q − 1]. Thus, if gqu
has one match with S, then gqu[1 : q − 1] must have at least
one match with S. Reversely, if S[i : j − 1] = gqu[1 : q − 1]
but sj 6= aq, then S[i : j] 6= gqu. Thus, if gqu[1 : q − 1] has a
match with S, then gqu may not have a match with S. There-
fore, the number of matches for a prefix gqu with a string S
monotonically decreases as q increases.

D. DESIGN OF Auto-Join OPERATORS
We believe that for a good design Auto-Join operators

need to be (1) expressive enough to support all practical
join cases; and (2) amenable to human understanding and
algorithmic inference. The criterion (1) is easy to under-
stand – we want to have a language that covers most if not
all cases that require transformation-based joins. This alone
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Figure 9: Frequency vs. rank in log-log plots. Close-to-linear relationships in the plots show that q-grams in Web tables and
Wikipedia tables also follow power laws, similar to what people have observed in general natural language text [6, 14].

however is not enough, because a naive design to satisfy this
requirement is to introduce one operator specifically for each
join case, which would create a bloated set of operators with
partially overlapping semantics. The criterion (2) is impor-
tant in this context – a natural and succinct language will
be easier for humans to understand/debug (advanced users
may want to inspect join-programs to ensure correctness).
It is also important for the technical reason of learnability,
because a succinct set of operators with non-overlapping se-
mantics is easier to learn from examples (a language with
partially overlapping operators, on the other hand, will cre-
ate parallel versions of intermediate programs that are ex-
pensive to converge).

In designing the operators for Auto-Join, we referred to
the string transformation primitives defined in the spec of
the String class of C# 5 and Java 6. As described in Section
3.2, the physical operators we use in the end are {Concat,
Substr, Split, SelectK, Constant}, which is really a
subset of the built-in String functions in C# and Java.
These languages are time-tested, which are clearly expres-
sive and natural to humans. The primitives are known to
have disjoint in semantics that are great for composability.
By adopting these operators, our language should inherit
the good properties discussed above.

5C# String class: https://msdn.microsoft.com/en-us/
library/system.string(v=vs.110).aspx
6Java String class: https://docs.oracle.com/javase/7/docs/
api/java/lang/String.html

To validate that the operators used in auto-join are in-
deed both natural and expressive for real join scenarios, we
conduct the following exercise. We ask a human expert to
manually label all benchmark cases using any natural string
transformation primitives that he can think of. The human
expert is able to write ground-truth programs for all but 4
difficult test cases for which consistent transformation pro-
grams do not exist. We will get to these cases shortly. For
the remaining cases where the human expert is able to write
ground-truth programs, we count the number of occurrences
of each operator used in the ground truth. It turns out that
all the operators in the ground truth can be mapped to
the operators we use in auto-join – a detailed breakdown
of operator distribution is shown in Figure 10. This result
suggests that the operators in auto-join are not only expres-
sive for real-world join cases, but also natural to humans – if
one would have to manually write transformation-join pro-
grams, they would be the same as the ones we automatically
generate.
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Figure 10: Distribution of operators used in ground truth
join programs for all real-world join cases benchmarked.

The 4 cases for which the human expert fails to gen-
erate ground-truth programs are worth discussing. These
are verified to be complicated cases, where no single string-
transformation program can consistently join a large enough
fraction of rows. To illustrate, in a case called Duck-CS-Prof7,
the join columns of two tables are professor names, which for
the same person can be 2-4 tokens with many variations. For
example, names can be with or without middle initials and
suffixes, such as “John A. Board” in one table and “Board
Jr. John A.” in the other; and similarly “Yang Jun” in one
table and “Jun Yang” in the other. It is hard to write a con-
sistent program that can simultaneously join the two pairs
of values above, not to mention many other name variations
that are present in the data set. For cases like this, string
transformation programs alone are unlikely to produce good
equi-joins. The proposed auto-join could nevertheless solve
these difficult cases, by generating a program to equi-join a
fraction of rows, and using constrained fuzzy join to connect
remaining rows, as described in Section 5.

To sum up, while it is hard to reason about“optimality”of
languages, by adopting operators from well-established lan-
guages like C# and Java we have inherited desirable prop-
erties. Our analysis using benchmark data sets and human
evaluator suggests that the current language is both natural
and expressive for auto-join scenarios.

E. DETAILED PSEUDO CODE
In this section we present the detailed pseudo code for the

Auto-Join algorithm.

E.1 Find Joinable Row Pairs
Algorithm 3 shows detailed pseudo code for finding join-

able row pairs as described in Section 3.1. The code is more
complex in order to cover the details that are omitted in the
main paper.

KeyColumns(T ) returns all the single columns that is
part of a key column in the table T . Suffixes(v) returns
all suffixes of a value v. QueryIndex(C, g) uses a suffix ar-
ray index built for the column C, and returns a list of rows
containing g. The suffix array index can cache query re-
sults to efficiently serve queries that have been seen queried.

7The benchmark data set from web ta-
bles is published online: https://www.
microsoft.com/en-us/research/publication/
auto-join-joining-tables-leveraging-transformations/

Algorithm 3 Complete pseudo code for joinable row pair

1: function FindJoinableRowPairs(Ts, Tt)
2: M ← {} . q-gram matches
3: for all Cs ∈ Ts do
4: for all Ct ∈ KeyColumns(Tt) do
5: for all v ∈ Cs do
6: m← {}
7: for all u ∈ Suffixes(v) do
8: q∗ ← BinarySearchQ(u,Ct)
9: if q∗ < 3 or q∗ > Length(u) then

10: continue
11: gq

∗
u ← u[1 : q∗]

12: rs ← QueryIndex(Cs, g
q∗
u )

13: rt ← QueryIndex(Ct, g
q∗
u )

14: for all (Rs, Rt) ∈ Pairs(rs, rt) do

15: m← ∪{(gq
∗
u , Rs, Rt,

1
|rs||rt| )}

16: (g∗, R∗s , R
∗
t , score) · · · ←MaxByScore(m)

17: M ← ∪{(g∗, (R∗s , R∗t ), (Cs, Ct), score) . . . }
18: return SortByScore(M),GroupBy((Cs, Ct))

19: function BinarySearchQ(u,Ct)
20: a← 3, b← Length(u) + 1
21: while a < b do
22: h← a+ (b− a)/2
23: rt ← QueryIndex(Ct, u[1 : h])
24: if |rt| > 0 then
25: a← h+ 1
26: else
27: b← h
28: return a− 1 . a is the smallest q for |rt| = 0

MaxByScore returns the optimal row pairs with the high-
est score. Note that more than one row pairs may have the
same highest score.

In Section 3.1.3, we state that the optimal prefix gq
∗
u for

a suffix u is the one that has the highest 1
nm

score. Here

we present our algorithm for finding gq
∗
u . First, due to the

monotonicity property given by Proposition 2, the value q∗

that leads to the highest score should results in the small-
est possible non-zero number of matches in Ct. That is, let
rt be the matching rows in Ct returned by QueryIndex,
calling QueryIndex(Ct, g

q∗
u ) results in |rt| ≥ 1, while call-

ing QueryIndex(Ct, g
q∗+1
u ) results in |rt| = 0. The source

column Cs is not needed in finding gq
∗
u . This is because

(1) there is always a match in the source column (i.e., the
current row itself) so n = |rs| > 0 always, and (2) when
m = |rt| = 0, the score 1

nm
becomes undefined and thus the

corresponding q is infeasible. Therefore, q∗ is only obtained
at the conditions mentioned above, and is not dependent on
Cs. BinarySearchQ(u,C) performs the binary search of

q∗ that finds gq
∗
u in C.

In practice, we found that when q < 3, the number of
q-gram matches can be very large, severely impacting per-
formance. Thus, we force q and the minimum length of
suffixes to be at least 3.

E.2 Learn Transformations: Overall Steps
Algorithm 4 provides an overview for the transformation

learning step described in Section 3.2. The LearnTrans-
form(M) takes the q-gram matches M discovered in the
previous step (Algorithm 3), which is grouped by the com-
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Algorithm 4 Overall steps for transformation learning

Require: k . Num. of row pairs to use in each group
Require: r . Num. of example sets from each group
Require: L . Max. num. of example sets to gen.
Require: b . Size of an example set
1: function GenExampleSets(M)
2: sets← {} . Example sets
3: for all (Cs, Cj),m ∈M do . Grouped by col. pair
4: m← TopK(m, k)
5: for all set ∈ SubsetsOfSize(m, b, r) do
6: sets← sets ∪ {(set, Ct)}
7: if |sets| = L then
8: return sets . Reach max. num of sets
9: return sets

10: function LearnTransform(M)
11: p← {} . Learned transformations
12: for all set, Ct ∈ GenExampleSets(M) do
13: t← TryLearnTransform(set)
14: if t = null then
15: continue . Failed to learn
16: C ← ApplyTransform(t, Ts)
17: p← p ∪ {(C,Ct[y], t, |C ∩ Ct|)}
18: return MaxByCoverage(p) . The best transform

lumn pairs. GenExampleSets generates multiple sets of
examples using the groups of q-gram matches. In descending
order of the average q-gram score, it goes through each group
and generates a limited number of example sets. TopK
takes at most k highest scored q-gram matches from each
group. SubsetsOfSize creates r number of unique random
subsets each with b number of q-gram matches. TryLearn-
Transform implements the learning algorithm, which is
further expanded in Algorithm 5. ApplyTransform takes
the transformation and applies it to the source table Ts.
MaxBySCoverage returns the transformation (and its out-
put) that results in the highest number of joined rows in the
target table.

E.3 Learning Transformations
Algorithm 5 gives details of the TryLearnTransform

procedure used in Algorithm 4, which takes a k example
rows R = {Ii, Oi|i ∈ [k]} as input, and produce a best-fit,
low-complexity transformation as output.

The procedure is recursive and works as follows. For the
given set of input/output examples, it finds the best logi-
cal operator θ that produces the most progress towards the
required output strings (which in this case is some key col-
umn of the output rows). We execute the operator θ and
extract partial output produced from the target output. We
get what remains to the left and right in the target out-
put, denoted as Oil and Oir, respectively. This produces
two new instances of the problem with {Ii, Oil |i ∈ [k]} and
{Ii, Oir|i ∈ [k]}, which have the same structure as the orig-
inal {Ii, Oi|i ∈ [k]}. So we recurse and invoke TryLearn-
Transform on the two smaller problems. The resulting
operators, θl and θr, if learned successfully, are added as
the left child and right child of θ, until all remaining tar-
get output have been consumed. If at certain level in the
hierarchy TryLearnTransform fails to find a consistent
transformation, we backtrack and proceed to find the next
best logical operator.

Algorithm 5 Transformation learning by example

Require: R = {Ii, Oi|i ∈ [k]} . Input/output row pairs
1: function TryLearnTransform(R = {Ii, Oi|i ∈ [k]})
2: while true do
3: θ ← FindNextBestLogicalOp(R)
4: P i ← ExecuteOperator(θ, Ii, Oi), ∀i ∈ [k]
5: Oil = LeftRemainder(Oi, P i), ∀i ∈ [k]
6: θl = TryLearnTransform({Ii, Oil |i ∈ [k]})
7: if θl = null then
8: continue
9: Oir = RightRemainder(Oi, P i),∀i ∈ [k]

10: θr = TryLearnTransform({Ii, Oir|i ∈ [k]})
11: if θr = null then
12: continue
13: θ.left child = θl
14: θ.right child = θr
15: return θ . current root node

E.4 Fuzzy Join Optimization
Algorithm 6 provides the complete pseudo code for per-

forming distance threshold optimization as described in Sec-
tion 5. OptimizeThreshold takes the derived source col-
umn from transformation C and the target key column K,
and uses binary search to find the optimal distance thresh-
old. CheckConstraint is called at each iteration of the
search to verify if the current threshold satisfies the join
constraints in Equation 10.

F. LOGICAL OPERATORS
Here we give a specification of logical operators described

in Section 3.2 using physical operators. Recall that the fol-
low logical operators are used.

Θ = {Constant,Substr,SplitSubstr,SplitSplitSubstr}

string SplitSubstr(string[] array, int k, string sep,

int m, int start, int length, Casing c) :=

Substring(SelectK(Split(SelectK(array, k), sep), m),

start, length, c)

string SplitSplitSubstr(string[] array, int k1, string

sep1, int k2, string sep2, int m, int start, int length,

Casing c) :=

Substring(SelectK(Split(SelectK(Split(SelectK(array,

k1), sep1), k2), sep2), m), start, length, c)

string Constant(string input) := input

string Substring(string[] array, int m, int start,

int length, Casing c) :=

Substring(array, m, start, length, c)

Note that Concat is a physical operator but not defined
as a logical operator above. When programs are generated
by the learning procedure (Appendix E.3), Concat is used
implicitly to compose multiple logical operators in transfor-
mation programs through concatenation.

G. OPTIMIZATION FOR LEARNING
As discussed in Section 3.2, in learning transformation we

conceptually enumerate all possible parameters that can be
used for each logical operator. In practice physical optimiza-
tions are performed to only test meaningful parameters for
a given input/output example pair.
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Algorithm 6 Find the distance threshold that produces
the maximum fuzzy-join coverage on the target table (Equa-
tion 9) while satisfying the join constraints (Equation 10).

Require: dt . Distance function using tokenization t
Require: δ ∈ (0.0, 1.0) . Stopping condition
1: function OptimizeThreshold(C, K)
2: coveragebest ← 0
3: a← 0.0, b← 1.0
4: t0 ← 0.0, t← a+ (b− a)/2
5: while |s− s0| > δ do
6: if CheckConstraint(C,K, s) then
7: coverage← Ft,d,s(C,K)
8: if coverage > coveragebest then
9: coveragebest ← coverage

10: b← s
11: else
12: a← s
13: s0 ← s
14: s← a+ (b− i)/2
15: if coveragebest > 0 then
16: return s0 . Found optimal threshold

17: return −1.0 . No feasible threshold found

18: function CheckConstraint(C, K, s)
19: matched← {}
20: for all u ∈ Distinct(C) do
21: n′ ← 0
22: for all v ∈ K do
23: if dt(u, v) ≤ s then
24: if v ∈ matched then
25: return false
26: matched← matched ∪ {v}
27: n′ ← n′ + 1
28: if n′ > 1 then
29: return false
30: return true

For example, for operators involving Split (i.e., Split-
Substr and SplitSplitSubstr), for the separator param-
eter, we only use punctuations and substrings that actually
exist in the input string up to a certain length limit. If the
input string in any recursive call does not share characters
with the desired output and no Constant transformation
can cover all examples, no more learning needs to be per-
formed and we backtrack for alternative transformations.

For operators involving Substring, casing parameters that
are not compatible with the casing used by the output then
such parameters will not need to be tested (e.g., output
string is all lower case, then there is no need to test up-
per casing or title casing). And similar to Split, when the
input shares no common character with the desired output
and no Constant transformation can explain all examples,
we also terminate and backtrack.

When attempting to generate the best logical operators by
enumerating each operator, we remember the best progress
that can be made using a logical operator seen so far. For
each additional logical operator, we can inspect the input/output
strings and derive upper bounds of how much progress can
be made with that logical operator, and can early terminate
testing a new logical operator if the best possible progress
for it is already smaller than the current best.

H. SUCCESS GUARANTEE OF LEARNING
If the transformation required is indeed expressible in the

language described before (i.e., using operators in Θ), and
examples selected for learning are independent of each other,
then the learning process has a high probability of success.

To show that this is the case, we start by analyzing a sim-
plified scenario with only two operators, Substr and Con-
cat. Given an input string of length SI , and an output
string of length SO that are selected as an example pair.
Since only Substr and Concat are used in generating the
transformation, the desired transformation in this language
is bound to be a concatenation of m substrings, where m is
the size of the transformation (or the number of operators).

Our algorithm greedily selects the best operator in each
step, which is the one with the most gain towards the tar-
get output. Let {S1, S2, ...Sm} be the sequence of sub-
strings generated, whose concatenation produces SO. We
now compute the probability that one substring segment
Si is correctly generated. In each step i, the reason that
it may fail is because there exists another q-gram in SI
with a different match in SO, whose length is at least |Si|.
The probability that this event happens for one example

can be bounded by |SI ||SO| 1
|Σ|
|Si| 8. For k number of in-

dependent examples, denote by Pk(str) the probability of
confusing a true Substr operator with a different Substr,

Pk(str) = |SI |(|SO| 1
|Σ|
|Si|)k, which decreases exponentially

in k. Note that |SI | is not raised to the power of k because
all k examples are required to have the substring at the
same position, but for SO there is no restriction on starting
positions. As a result the success probability for the i-th

step is 1 − |SI |(|SO| 1
|Σ|
|Si|)k, and the success probability

for a given set of k examples across m steps is bounded by∏
i∈[m]

(
1− |SI |(|SO| 1

|Σ|
|Si|)k

)
. Given that we try a fixed

T number of random example-sets (e.g. T = 128), and the
overall transformation succeeds as long as one such example
set can produce the correct transformation, so the overall
success probability is

1−

1−
∏
i∈[m]

(1− Pk(str))

T

We now consider the scenario with operator Const in ad-
dition to Substr and Concat. At step i, we may produce
an incorrect Const operator, in place of a correct Substr,
or a correct but different Const. Let Pk(const) be the prob-

ability. Pk(const) = |SO|( 1
|Σ|
|Si|)k, because it also fails when

there exists a constant q-gram in SO whose length is at least
|Si|.

Note that Pk(str) now indicates the probability of con-
fusing a Substr with Const and a different Substr, which
is the same as the value computed above, because the only
case where it is produced incorrectly is when the substring
length exceeds that of the correct program |Si|.

8Characters are assumed to be sampled uniformly at ran-
dom from Σ for simplicity of this analysis. A different
character-level distribution model can be plugged here in

place of 1
|Σ|
|Si| to produce results with the same structure

and similar overall results.
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1−

1−
∏
i∈[m]

(1− Pk(str)− Pk(const))

T

We now describe the scenario with the addition of opera-
tors that use Split (SplitSubstr and SplitSplitSubstr).
Split can be viewed as modifying the relative positions of
each input string, but does not alter local q-grams in other
ways. So in the best case it can shift the starting position of
q-grams. The probability of mistakenly producing a Split

instead of others is thus Pk(split) = (|SI ||SO| 1
|Σ|
|Si|)k. Note

that compared to Pk(str) here |SI | is raised to the power of
k, because starting position of input string is no longer con-
strained to be the same.

Combining, the success probability is lower bounded by

1−

1−
∏
i∈[m]

(1− Pk(str)− Pk(const)− Pk(split))

T

which can be rewritten as

1−

1−
∏
i∈[m]

(
1−

(
1 + (|SI |+ |SI |k)|SO|k

) 1

|Σ|
k|Si|

)T

The failure probability becomes exponentially small with
more number of attempts T . The failure probability gener-
ally decreases when using more number of examples k, but
increases with m that indicates more complex programs.

For illustration, we plug in numbers for concreteness. The
program generated in Example 7 for tables in Figure 1 has
the following parameters: |SI | = 29, |SO| = 19 + 4 = 17
(we pick the longest input/output, in this case the fourth
row to bound the probability). Value of m = 3 since the de-
sired program has 3 logical operators, and |S1| = 12, |S2| =
4, |S3| = 1. Assume we use 3 examples to generate programs
so k = 3, and |Σ| = 52. Even with T = 1 the success prob-
ability is ≈ 0.999 9. When failure probability of individual
trials is more significant, with T repeated independent trials
we can quickly reduce the failure probability at exponential
rate, and thus produce a high overall success rate.

9internally when multiple operators can produce the same
output sequence with the same score, Const will be picked
over other operators for the simplicity of its explanation.
Thus the last operator does not have a confusion probability
and will succeed with probability of 1.
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