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End-user interactive machine learning is a promising tool for enhancing human capabilities with data. 

Recent work has shown that we can create specific applications that employ end-user interactive machine 

learning. However, we still lack a generalized understanding of how to design effective end-user 

interaction with machine learning. This dissertation advances our understanding of this problem by 

demonstrating effective end-user interaction with machine learning in a variety of new situations and by 

characterizing the design factors affecting the end-user interactive machine learning process itself. 

Specifically, this dissertation presents (1) new interaction techniques for end-user creation of image 

classifiers in an existing end-user interactive machine learning system called CueFlik, (2) a novel system 

called ReGroup that employs end-user interactive machine learning for the purpose of access control in 

social networks, (3) a novel system called CueT that supports end-user driven machine learning for 

computer network alarm triage, and (4) a novel design space characterizing the goals and constraints 

impacting the end-user interactive machine learning process itself. Together, these contributions can 

move us beyond ad-hoc designs for specific applications and provide a foundation for future researchers 

and developers of end-user interactive machine learning systems. 
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Chapter 1  

Introduction 

1.1 Motivation 

It is widely believed that powerful information is locked within the vast amounts of data we now have 

access to and harnessing this information can enhance our capabilities and improve our lives (e.g., 

Anderson and Rainie, 2012; World Economic Forum Report, 2012). For example, a recent report by the 

Pew Internet & American Life Project (Anderson and Rainie, 2012) stated that the majority of technology 

experts surveyed believe that “big data” will have significant effects on human productivity and decision 

making. Specifically, many experts believe that data will have a broad impact on our economy, national 

security, health care, education, and green technology industries. Accordingly, many government 

agencies, universities, and large corporations have started investing in big data initiatives dedicated to 

developing new ways of tapping into this transformative resource (e.g., Weiss and Zgorski, 2012; 

Denison, 2012; Carstensen, 2012). For example, the federal government recently unveiled a $200 million 

research and development initiative for advancing the state of the art in collecting, storing, analyzing, and 

generating new knowledge from big data (Weiss and Zgorski, 2012). 

A key approach for transforming raw data into usable information is machine learning. Machine learning 

is the process of teaching computers to automatically recognize concepts or patterns of interest in data. 

For example, machine learning has been used to convert everyday search queries into models that can 

track the spread of influenza (Ginsberg et al, 2009). In the same way, machine learning has been used 

over incident reports to predict violent outbreaks in war torn regions (Zammit-Mangion et al, 2012; 

Beckhusen, 2012), over MRI scans for early detection of Alzheimer’s disease (Kloppel et al, 2008), over 

social network streams to understand and monitor public sentiment of political parties and issues (Hardy, 

2012), and over observed human behaviors to aid financial decision making (Duhigg, 2012; Cha, 2012). 
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Unfortunately, the complexity of machine learning has largely restricted its practice and use to experts 

and skilled developers. A consequence of this is that everyday people are then inherently limited to using 

data in developer-conceived ways. For example, our applications can only detect or monitor concepts that 

a developer has regarded as interesting or meaningful. In addition, because experts are a scare resource, 

relying on them for machine learning severely limits the number of concepts or patterns we can ever 

extract from data (Rooney, 2012; Anderson and Rainie, 2012).  

Despite these limitations of relying on experts to make use of data, most large-scale big data initiatives 

continue to focus on developing new tools and technologies for expert use (e.g., Weiss and Zgorski, 2012; 

Denison, 2012; Carstensen, 2012). However, we assert that regardless of the sophistication of future tools 

and technologies, experts cannot possibly foresee the countless variety of concepts people might be 

interested in nor can they drive machine learning to extract all of these concepts from our data. Therefore, 

to take full advantage of the opportunity that big data provides and realize a vision of enhanced human 

productivity and capabilities from data, we must equip everyday people with the ability to drive machine 

learning themselves.  

1.2 Objectives and Hypothesis 

This dissertation examines the fundamental process by which end-users can interact with machine 

learning systems, known as end-user interactive machine learning (see Figure 1.1). In the end-user 

interactive machine learning process, a person iteratively guides a machine towards learning a desired 

concept and inspects feedback illustrating the machine’s current understanding. 

 

Figure 1.1: The cycle above illustrates the fundamental aspects of the end-user 

interactive machine learning process. In this process, a person iteratively 

guides a machine towards learning a desired concept. The person then inspects 

the system’s current understanding and decides how to proceed with further 

guidance. The learned concept is encoded by the machine as a model that can 

configure automated behaviors on data. 
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Recent work has demonstrated several applications of end-user interactive machine learning in a variety 

of compelling application domains. For example, Fails and Olsen’s Crayons system supports end-user 

interactive machine learning for image segmentation (2003). Ritter and Basu also demonstrated the 

potential for end-user interactive machine learning in complex file selection tasks (2009). Dey et al’s 

aCAPpella system demonstrated end-user interactive machine learning for end-user driven context-aware 

computing (2004). In addition, it is becoming increasingly common for online retailers (e.g., 

Amazon.com, eBay.com) and service providers (e.g., Pandora.com, Netflix.com) to employ interactive 

machine learning for recommending items to purchase or view.  

These applications provide evidence of the utility of interactive machine learning. However, we still lack 

a generalized understanding of how to design effective end-user interaction with machine learning. This is 

evidenced by the fact that most real-world applications of end-user interactive machine learning still 

design interaction in much the same way. For example, most commercial recommender systems support 

end-user interaction in one of two ways, by enabling indiscriminate item ratings (e.g., ‘likes’ and 

‘dislikes’ on items) or by implicitly obtaining item feedback from observations of user behavior. While 

this approach simplifies interaction, it can also create a frustrating user experience if a person cannot 

effectively guide the system (Rao et al, 2009; Zaslow, 2002). Moreover, this approach may be 

inappropriate for interactive machine learning in different scenarios. For example, when an end-user’s 

primary goal in interacting with a machine learning system is to create an accurate and reusable model (as 

is the case with many of the recent end-user interactive machine learning systems presented by the 

research community), they may desire more feedback or guidance about how to effectively steer the 

system.  

At the other extreme, the traditional active learning approach to designing end-user interaction with 

machine learning is to force a person to label items that provide the machine with the greatest information 

gain. While this favors efficient learning, it can be equally frustrating to an end-user by discounting their 

abilities and treating them like a passive oracle of information (Baum and Lang, 1992; Gurevich et al, 

2006). 

In the research community, much of the focus on improving the design of end-user interaction with 

machine learning-based systems has been on attempting to increase the transparency and 

understandability of these inherently complex systems (e.g., Herlocker et al, 2000; Tintarev and Masthoff, 

2007; Lim and Dey, 2009; Kulesza et al, 2011). For example, some researchers have advocated the use of 

detailed explanations of system behavior to increase understandability and in turn improve end-user trust 

in machine learning (e.g., Lim and Dey, 2009; Kulesza et al, 2011). However, explanations might impede 
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efficiency during interaction. In addition, explanations may be unnecessary when output of the machine 

learning will be regulated by the end-user (as opposed to when the system will be taking autonomous 

actions on behalf of the user) or when the system is operating in a low risk environment (e.g., 

automatically selecting songs to play).  

The goal of this dissertation is to advance our understanding of how to design effective end-user 

interaction with machine learning. To this end, I argue that what is needed for a general understanding of 

how to design end-user interaction with machine learning is a clearer understanding of (1) the variety of 

situations in which end-user interactive machine learning may be used and (2) the factors that can impact 

and constrain an end-user’s interaction with machine learning in those situations. Therefore, it is my 

thesis that: 

Interactive machine learning can give end-users new leverage on data in a variety of applications, 

and we can move beyond an ad-hoc understanding of how to design such applications by 

characterizing the goals and contexts surrounding the interactive machine learning process itself. 

1.3 Summary of Contributions 

This dissertation makes the following contributions towards advancing our understanding of how to 

design effective end-user interaction with machine learning: 

 A novel design space characterizing the factors that should be considered in designing end-user 

interaction with machine learning (Chapter 3). This design space also outlines dimensions that have 

been explored in the design of existing systems and research. Together these design factors and 

dimensions can help us navigate the space of potential solutions for designing end-user driven 

machine learning, thereby providing a foundation and reference for future researchers and developers. 

In addition, this design space can facilitate communication across existing disciplines that employ 

machine learning for domain specific purposes. 

 The design and evaluation of new interaction techniques for facilitating end-user creation of image 

classifiers in an existing interactive machine learning system called CueFlik (Chapter 4). In particular, 

here we examine the design of three important aspects of the interactive machine learning process: (1) 

illustrating the system’s current understanding of a concept, (2) guiding end-users to select effective 

training examples, and (3) enabling end-user exploration of multiple potential models. 

 The design and evaluation of a novel system called ReGroup that employs end-user interactive 

machine learning for the purpose of access control in social networks (Chapter 5). In designing 
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ReGroup’s interactive machine learning, we specifically explored new interaction techniques for: (1) 

supporting interactive machine learning while preserving end-user control, (2) indirectly training an 

effective classifier, (3) minimizing frustration caused by unlearnable groups, and (4) integrating 

human knowledge through interaction with both examples and features. 

 The design and evaluation of a novel system called CueT that supports end-user driven machine 

learning for the high-impact process of computer network alarm triage (Chapter 6). Here we 

specifically investigate new techniques for (1) learning over a stream of data where the classes of 

interest are unknown a priori and evolve constantly and (2) visualizing model quality to reduce 

errors. 

1.4 Scope 

There are many ways in which end-users can interact with machine learning-based systems. These range 

from interaction with fixed or predefined models created by experts to interaction with the purpose of 

defining new models or concepts of interest. During end-user interaction with fixed models, an end-user 

might feed data to the model and use predicted outcomes, but their interaction will not change the 

behavior of the system. An example of this is an application that can recognize pre-defined behaviors 

such as walking or running, but cannot adapt to the unique behaviors of individuals. In contrast, when 

defining new concepts, there is typically some sort of loop over the model, outcome, or data involved in 

the interactive machine learning process. For example, when the loop is over the model, the learned 

model itself is changing as a result of end-user guidance. Similarly, a loop over the data might involve the 

creation of new classes in the model that impact the predictions of the system (e.g., recommender systems 

that make predictions based on end-user specified classes of interest and but use a fixed similarity metric).  

In this dissertation, we focus on the latter end of this spectrum. That is, we focus on interaction involving 

an explicit end-user interactive machine learning loop. It should be noted, however, that some design 

techniques discussed throughout this dissertation could transfer from designing interaction with fixed 

models to designing interactive machine learning and vice versa. We therefore point out such cases, 

particularly when design solutions from interaction with fixed models can further our understanding of 

how to design end-user interaction with machine learning. For example, feedback techniques for 

displaying recommendations from recommender systems driven by fixed models (e.g., using demographic 

or stereotypical information) could transfer to recommender systems using models that evolve based on 

end-user interaction. Therefore, it is important that we learn from these systems as well as from systems 

involving an explicit end-user interactive machine learning loop. 
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In this dissertation, we also only consider people with little to no machine learning expertise interacting 

with a machine learning system. This includes everyday people as well as domain experts or developers 

untrained in the art of statistical machine learning. For example, untrained developers desiring to build 

machine learned models into their end-user facing applications may face difficulties creating those 

models without appropriate guidance or support. 

1.5 Outline 

The rest of this dissertation is organized as follows: 

Chapter 2 reviews related work involving end-users interacting with machine learning. This includes 

overviewing related fields that employ interactive machine learning as a tool to help end-users accomplish 

domain specific tasks (e.g., information retrieval, recommender systems, intelligent user interfaces). I also 

discuss related work in understanding how we can or should design end-user interaction with machine 

learning based systems.  

Chapter 3 presents a novel design space for end-user interaction with machine learning systems. This 

design space is informed by the same body of related work reviewed in Chapter 2 as well as my own 

experiences designing end-user interactive machine learning systems. In this design space, I characterize 

factors impacting how the interaction between an end-user and a machine learning system should be 

designed. These factors include potential end-user goals and constraints on the interaction. I also identify 

and describe design dimensions that have been explored in previous systems to achieve various 

interaction goals. 

In Chapter 4, I explore the design of new interaction techniques for facilitating end-user creation of image 

classifiers in an existing interactive machine learning system called CueFlik. Specifically, I present new 

overview-based feedback techniques for both illustrating CueFlik’s current understanding of a desired 

visual concept and for guiding end-users to select effective training examples during interaction. My 

evaluation shows that overview-based feedback leads end-users to create better models with CueFlik than 

the best performing feedback technique in prior research. In Chapter 4, I also explore new revision and 

comparison mechanisms for enabling end-user exploration of multiple potential models during interaction 

with CueFlik’s interactive machine learning. A second evaluation shows that revision enables people to 

create better models with CueFlik than when revision is absent and revision is consistent with how people 

expect to interact with their applications. 

Chapter 5 presents ReGroup, a novel system I developed that employs end-user interactive machine 

learning to help people create custom groups on-demand in online social networks. In particular, ReGroup 
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uses interactive machine learning to recommend additional group members to end-users as they create 

custom groups in their social network. In designing interaction with ReGroup, I explore new techniques 

for supporting interactive machine learning while preserving end-user control, indirectly training an 

effective classifier for group member recommendation, and integrating human knowledge through 

interaction with both examples and features. My evaluation of ReGroup compared to the traditional 

method of creating custom on-demand groups in social networks (i.e., search-by-name and scrolling 

through an alphabetical list) shows that each method effectively supports a different class of groups. The 

traditional method is efficient for small well-defined groups, whereas ReGroup is more effective for 

larger and more varied groups. 

In Chapter 6, I present CueT, a novel system I developed to support end-user interactive machine learning 

for the high-impact and dynamic process of computer network alarm triage. In this chapter, I present new 

techniques for interactive machine learning over a stream of data where the classes of interest are not 

known a priori and evolve constantly. I also present a novel visualization for depicting model quality 

during the interactive machine learning process. My evaluation of CueT compared to the state-of-the-art 

approach demonstrates that CueT increases both speed and accuracy of computer network alarm triage. 

Finally, Chapter 7 concludes with a discussion of the research presented in this dissertation and suggests 

opportunities for future research. In this chapter, I also propose guidelines for the design of future 

interactive machine learning systems. 
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Chapter 2  
Related Work 

In this chapter, we review related work involving end-users interacting with machine learning. This 

chapter is divided into two sections:  

 In Section 2.1, we overview related fields that sometimes employ interactive machine learning as a 

tool to help end-users accomplish domain specific tasks (e.g., information retrieval, recommender 

systems, intelligent user interfaces). We also discuss recent systems that have started to push the 

boundaries of what end-users can use machine learning for and that motivated our own research in 

this space. For each of these fields, we discuss where interactive machine learning plays a role and 

characterize the typical interactive loop applied. Where appropriate for context, we also discuss 

aspects of each field that we do not consider instances of end-user interactive machine learning.  

 In Section 2.2, we discuss related work in understanding how we can or should design end-user 

interaction with machine learning based systems. Much of this existing work concerns designing end-

user interaction with machine learning in specific domains or within more complex intelligent 

systems that may embed machine learning as a component of a larger application. However, many of 

the issues raised and solutions proposed in these related works apply to the design of end-user 

interaction with machine learning. 

Throughout this chapter, we discuss related work from a human interaction perspective. We do not 

discuss specific machine learning algorithms used because often, as in our own experiences, several 

different algorithms may be suitable for a given interaction or task goal. The choice of algorithm to use is 

then typically the result of examining tradeoffs between desired interaction techniques for achieving those 

goals (see Chapter 3 for an examination of potential interaction goals and techniques for achieving them).  
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As discussed previously in Chapter 1, we consider something an instance of end-user interactive machine 

learning when there is some end-user driven interactive loop over the model, outcome, or data involved in 

the machine learning. In most cases, this interactive machine learning loop fundamentally impacts the 

way people can interact with a machine learning system. However, there are instances in which design 

techniques discussed in this chapter could transfer to non-interactive machine learning based systems and 

vice versa. For example, some fixed model or rule-based systems may operate similarly to machine 

learning based systems in terms of the feedback or control techniques implemented. Therefore, 

throughout this chapter, we note situations in which this transfer may occur. 

Note that this review is not intended to be comprehensive. This review is meant to orient the reader as to 

the breadth of applications of end-user interactive machine learning and to highlight issues that have been 

raised about how to design interaction with machine learning in those applications. In Chapter 3, we 

present our design space for end-user interaction with machine learning which draws on the work 

discussed in this chapter as well as our own experiences with designing end-user interactive machine 

learning systems (discussed in Chapters 4 to 6). In outlining this design space, we present a closer 

examination of the different interaction techniques that have been used in the previous systems and 

research discussed in this chapter. 

2.1 Interactive Machine Learning as a Tool in Related Fields 

Here we discuss related fields that use interactive machine learning as a tool for accomplishing domain 

specific tasks (e.g., search in information retrieval, filtering in recommender systems, activity detection in 

context-aware computing). We also discuss areas of work often defined by their interaction paradigm but 

which may use interactive machine learning to achieve a variety of domain specific goals (e.g., 

programming by demonstration is an interaction paradigm which has been used for automating web based 

tasks as well as for teaching context-aware computing systems). These fields are therefore not necessarily 

mutually exclusive (e.g., recommender systems are often defined as a type of adaptive or intelligent 

system). In describing each field, we characterize the typical interactive machine learning loop and give 

concrete examples for illustrative purposes when necessary. We also discuss some common interaction 

issues studied in each area.  

2.1.1 Information Retrieval 

Information Retrieval is a broad field of research generally concerned with helping people access, retrieve 

and organize unstructured information (as opposed to structured information that can more easily be 

stored and retrieved from databases). Typically, this unstructured information originates from large 

corpora like the Web. Research in this field covers a range of topics (e.g., indexing, query optimizations, 
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storage and architecture), but here we discuss topics relevant to end-user interaction with machine 

learning. For good reviews of information retrieval see Ghorab et al (2012) and Greengrass (2000). 

One of the major and most public facing areas of information retrieval is search, particularly with the 

advent of the Web search engine. In typical search, a person issues a keyword based query to 

communicate their information need to a machine. That query is then used to retrieve candidate 

documents (e.g., web pages, text or images) which are typically ranked according to importance or 

estimated relevance and displayed to the end-user. Retrieval and ranking is often handled by static 

matching algorithms (e.g., by measuring the similarity between query terms and documents in a corpus 

according to a static metric) or global and aggregate notions of importance or document quality (e.g., 

Agichtein et al 2006; Smyth and Balfe, 2006). Therefore, this standard search process alone typically 

does not involve interactive machine learning according to our definition (i.e., there is no interactive loop 

involving the machine learning).  

When search does involve an interactive machine learning loop, it is typically used for a process known 

as relevance feedback (Salton and Buckley, 1990; Harman, 1992; Greengrass 2000). Relevance feedback 

is the process by which end-users can (iteratively) provide information to the system about the relevance 

of documents presented to them. The system then uses this additional information to modify the search 

results presented (e.g., by re-ranking or filtering the results (Stamou and Ntoulas, 2009; Teevan et al, 

2005; Speretta and Gauch, 2005)) or to retrieve new results (e.g., through automatic query refinement or 

expansion and re-retrieval (Ruvini, 2003; Pitkow et al, 2002; Shen et al, 2005)).  

There are two main classes of feedback techniques in search based relevance feedback: explicit and 

implicit. With explicit feedback, a person directly supplies relevance information to the machine (e.g., via 

ratings on documents (Harman, 1992)). However, the additional effort required from the end-user for this 

type of feedback is generally believed to be cumbersome and obtrusive (Gauch et al, 2007; White et al, 

2002). This has led to much research on techniques for implicitly obtaining relevance information (e.g., 

based on system observed behaviors such as document clicks or dwell times (Shen et al, 2005; Stamou 

and Ntoulas, 2009; Teevan et al, 2005; White et al, 2002; White, 2005)).  

While research has demonstrated that relevance feedback can improve the quality of search results, 

particularly when it is difficult for a person to formulate their query (e.g., image search (Crucianu et al, 

2004)) or their information needs evolve, conventional relevance feedback is rarely used in commercial 

Web search engines (Manning et al, 2008). Many commercial search engines do, however, provide 

personalized search results in which retrieved documents are ranked or filtered based on historical 
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evidence of user interests such as previous queries or documents views (Ghorab et al, 2012). We do 

consider this type of personalized search as interactive machine learning. However, the interactive loop 

here is generally more prolonged than the short-lived relevance feedback loop typically guided by a 

person’s current information need. Personalized search is therefore akin to user modeling in recommender 

and intelligent systems as will be discussed in subsequent sections.  

Another major topic area in information retrieval that is increasingly using end-user interactive machine 

learning involves the process of organizing or categorizing large corpora of data. This area typically 

includes document classification (e.g., spam filters and email classifiers), document clustering, and 

annotation (e.g., tagging documents).   

Document classification in information retrieval typically refers to the classification of objects from a 

streaming data source and is therefore sometimes called routing or filtering. One of the most studied 

applications of document classification of this kind involves personal email classifiers and spam filters. 

Most commercial email applications support hand-crafted rule-based email filters (Crawford et al, 2001; 

Pazzani, 2000). These rules and filters can be used, for example, to automatically file or tag emails that 

originate from a specific sender or that contain a specific word. However, because such filters are 

manually constructed and fixed, we do not consider them instances of interactive machine learning.  

Cases involving end-user interactive machine learning include classifiers learned from explicit or implicit 

end-user behaviors (e.g., Segal and Kephart, 1999; Crawford et al, 2001; Boone, 1998; Sahami et al, 

1998; Aberdeen et al, 2010; Payne and Edwards, 1997). For example, Segal and Kephart’s MailCat 

system (1999) monitors an end-user’s manual email filings and learns a classifier which can be used to 

make predictions for future filings. Predictions are presented in a ranked list and can be used or ignored, 

providing additional feedback to the learning system. Crawford et al’s I-EMS system (2001) similarly 

learns email filters based on previous actions but also includes a sliding window which discards old 

emails in order to try and adapt to a person’s changing behaviors. Gmail’s Priority Inbox (Aberdeen et al, 

2010) also learns from previous actions to determine which emails might be important or not (based on 

behavioral information including interaction histories between the senders and receiver and keywords 

within the emails) and then automatically organizes emails into these categories. Priority Inbox also 

allows for explicit feedback by supporting manual labeling or correcting of the system’s predictions.  

Document clustering generally refers to the grouping of items from a relatively static corpus (e.g., a large 

but fixed corpus of papers that need to be organized by topic).  Interactive document clustering involves 

the end-user in this process (e.g., Drucker et al, 2011; Hearst et al, 1995; Baker et al, 2009). For example, 
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Hearst et al’s Scatter/Gather system (1995) automatically clusters documents into topical categories. A 

user can then iteratively select clusters of interest (and remove irrelevant clusters) which are then re-

clustered by the system for further examination. This Scatter/Gather technique can help people better 

understand and process large amounts of data (e.g., by categorizing results that might be retrieved from a 

search engine). Baker et al’s document clustering system (2009) also supports interactive user feedback 

including support for end-users to remove clusters, correct clusters (by adjusting the keywords 

characterizing a cluster), and correct classifications of individual items within a cluster. In contrast to 

these interactive approaches, we do not consider systems that automatically cluster documents without 

user feedback as instances of interactive machine learning (e.g., Zeng et al’s system (2004) automatically 

clusters search results without any user intervention).  

Another active area of research in information retrieval involves document annotation (i.e., attaching 

metadata on documents such as text, images, and webpages). Research in this area has increased recently 

due to the prevalence and utility of tagging on the Web, which facilitates search and browsing. Automatic 

and interactive document annotation is of particular importance for improving the quality of human 

annotations and tags and also to increase the coverage of those tags over untagged documents. For 

example, several researchers have started to explore tag recommendation to help people quickly annotate 

documents with better quality tags (e.g., Graham and Caverlee, 2008; Chen et al, 2008; Byde et al, 2007). 

Outside of interactive tagging, some researchers have explored interactive techniques for reliably 

annotating large corpora according to various coding schemes (e.g., Donmez et al, 2005; Kulesza et al, 

2010). For example, Kulesza et al’s AutoCoder system (2010) interactively learns how to annotate 

phrases of text based on some initial manual annotations and then uses its learned model to automatically 

annotate the remaining data. A user can then iteratively inspect the annotations and correct the system. 

2.1.2 Recommender Systems 

Recommender systems have their roots in information retrieval, but have become a prominent area of 

research and development in their own right. The general goal of recommender systems is to select an 

item or items to present to an end-user that has the most utility for them, where utility depends on the 

application. For example, utility in product recommender systems might be based on a person’s likeliness 

to purchase a consumer item, whereas utility in news or music recommender systems might be based on a 

person’s computed interest. Unlike search in information retrieval, however, utility is typically estimated 

via a persistent model representing the end-user themselves, known as a profile or user model, rather than 

a model representing their current and transient information need (Adomavicius and Tuzhilin, 2005).  
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Early recommender systems often generated user models based on static information gathered once and 

prior to first use of the system (e.g, Rich and Sidner, 1979; Krulwich, 1997; Kobsa et al, 2001; Yan and 

Garcia-Molina, 1999). For example Rich and Sidner’s Grundy system (1979) made book 

recommendations based on initial dialog with an end-user gathering their demographic information and 

general interests. We do not consider these systems examples of interactive machine learning because 

there is no loop over the model being created.  

Today, user models in recommender systems are more commonly constructed via some form of 

interactive machine learning, typically via iterative user feedback analogous to relevance feedback 

techniques in search. As with relevance feedback in search, end-user feedback in recommender systems is 

typically provided in the form of explicit item ratings or comments or based on implicit and observed user 

behaviors (Montaner, 2003).  

Recommender systems are generally divided into two classes: content-based and collaborative filtering 

systems (along with hybrid approaches of the two). Content-based filtering is most similar to relevance 

feedback because item recommendations are based directly on the content of similarly rated items. 

Therefore, the interactive machine learning loop is characterized by feedback on items, the combination 

of those items to generate a model of the user’s interests, and then the selecting and ranking of new items 

based on their similarity to the learned model (e.g., Billsus and Pazzani, 1999; Billsus and Pazzani 2000; 

Zhang et al, 2002).  

On the other hand, the interactive loop in collaborative filtering systems is more indirect in that a user’s 

ratings on items are combined to find similar users (i.e., users who rate items the same way) rather than 

similar items. After similar users are found, actual item recommendations are based on some heuristic 

extrapolation of ratings from those similar users (e.g., Breese et al, 1998; Pennock and Horvitz, 1999; 

Konstan et al, 1997; Billsus and Pazzani, 1998). Therefore, the recommendations here are controlled by a 

combination of an end-user’s input and other people’s input (hence the term “collaborative”).  

Recommender systems are now commonplace in many commercial domains, including music (e.g., 

Pandora.com, Last.fm), movies (e.g., Netflix.com), shopping (e.g., Amazon.com), and others. In fact, 

most popular commercial websites offering consumer products now provide some form of 

recommendations based on an interactively trained user model. However, recommender systems are 

generally used for low risk tasks (Jøsang and Lo Presti, 2004), particularly due to the lack of transparency 

and understandability of the modeling and recommendation process. This has led to numerous 
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investigations into the nature of trust in recommender systems and potential methods for achieving it (see 

Section 2.2 for a further examination of trust in interactive machine learning-based systems). 

Another major issue studied in the research literature pertains to the temporal nature of the user model, 

including how to best keep the user model up to date or what kind of memory the models should have. 

For example, in some domains a person’s interests or needs change frequently whereas in others interests 

are longer lived. This has led to some systems employing multiple user models to reflect both short and 

long term user interests (e.g., Billsus and Pazzani, 1999). 

For good surveys on recommender systems see Adomavicius and Tuzhilin (2005), Montaner (2003), and 

Konstan and Riedl (2012). 

2.1.3 Context-Aware Computing 

Context-aware computing is one of the major themes in the fields of ubiquitous and pervasive computing 

which focuses on the seamless integration of computing into our everyday lives (made possible by the 

ever-increasing proliferation of embedded devices in our physical world). Context-aware computing 

refers to the sensing and reacting of applications to a person’s current context. A person’s context can 

include information about themselves and others who may be near them, their current state or activity, 

and their surroundings (e.g., where they are and when).  

Until recently, most systems and research in modeling a person’s context have taken a fixed approach 

(Davies et al, 2008), modeling context as a set of hand-constructed if-then rules or training and fixing 

machine learned models prior to deployment. Examples include location based services such as call 

forwarding (e.g., Want et al, 1992), tour guide information presentation (e.g., Abowd et al, 1997), and 

contextual reminders or messages (e.g., Schilit et al, 1994, Munoz et al, 2003). However, in order to 

support individual users in an increasing number of situations (due to the increasing prevalence of mobile 

devices and cheap sensors), researchers have more recently begun exploring how to involve end-users and 

machine learning in the process of creating, using, and adapting contextual models for a variety of 

applications (e.g., Dey et al, 2004; Fogarty and Hudson, 2007; Horvitz et al, 2004; Mozer, 1988; 

Verpoorten et al, 2007; Hartmann et al, 2007).  

For example, Dey et al’s aCAPpella system (2004) enables people to specify contexts of interest 

themselves (as well as actions to take within those contexts), by interactively demonstrating examples of 

those contexts. A person specifies a context by recording sensor information during real instances of that 

context (e.g., recording sound, video, and other sensor information during a meeting context). aCAPpella 

learns a model from these examples which it then uses to automatically take specified actions when it 
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detects those contexts in the future. A person can continue providing new examples in situ or inspect and 

edit old examples until the system is performing the way they want it to. 

Similarly, Fogarty and Hudson’s Subtle system (2007) enables end-users to interactively build sensor-

based models of context by example (e.g., by implicitly monitoring a person’s behaviors in different 

situations or by explicitly prompting for labels of contexts). Subtle also supports a sliding window over 

the learning so as to better keep the models up to date and relevant. 

Relevant issues for interactive machine learning in context-aware computing systems include 

understandability and control of complex sensing and reasoning systems (e.g., Lim and Dey, 2009; 

Barkhuus and Dey 2003; Bellotti and Edwards, 2001), ambiguity resolution (e.g., Dey et al, 2002), and 

appropriately obtaining accurate context labels and information (e.g., interrupting a user to obtain labeled 

contextual information can lead to frustration and biased information (Baily et al, 2001; Horvitz et al, 

2004)). 

2.1.4 Programming by Demonstration 

Programming by demonstration refers to the technique of instructing a computer in how to perform tasks 

by demonstrating examples of those tasks (therefore, programming by demonstration is also sometimes 

known as “programming by example”). The general goal of programming by demonstration systems is to 

enable people to essentially program computers without needing to operate in low-level programming 

languages. Therefore, the main challenge in programming by demonstration systems is effectively 

generalizing from a user’s demonstration of an intended program’s behavior so as to enable autonomous 

or semi-autonomous execution of that program in the future and in possibly variable situations. Although 

programming by demonstration is sometimes used as an umbrella term for referring to any interaction in 

which generalization is made from examples (e.g. Dey et al described their aCAPpella system (2004) 

discussed above as a programming by demonstration system), it is most often is characterized by 

examples involving sequences of steps or traces (Lieberman, 2000).  

Common generalization strategies in programming by demonstration systems include using heuristics or 

rules to extract patterns from examples and then generating programs from those patterns (e.g., Cypher, 

1991; Myers and Buxton, 1986; Modugno et al, 1997; Lieberman, 1993; Bergman et al, 2005; Spaulding 

et al, 2009). Once generated, these programs can often be viewed and manually edited.  

However, because rule-based strategies can result in brittle and limited programs, researchers have also 

explored interactive machine learning-based strategies for generalization (e.g., Lau et al, 2000; McDaniel 

and Myers, 1999; Lau et al, 2004; Garland et al, 2001; Paynter , 2000; Paynter and Witten, 2004; 
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Wolfman et al, 2001; Chen and Weld, 2008). For example, Lau et al’s SMARTedit system (2000) uses 

interactive machine learning over demonstrations of text edits to learn a program for performing future 

edits. The learned program can then be executed step by step, allowing for the interleaving of manual 

actions with program predictions. When manual actions deviate from the learned program’s predictions, 

the new sequence is interpreted as another example which is then fed back into the model for further 

generalization. The learned program can also be viewed and manually edited. In another example, Chen 

and Weld’s CHINLE system (2008) enables end-users to interactively train a program for automating 

repetitive tasks in an interface (e.g., customizing application settings). After demonstrations of a task, 

CHINLE learns a procedure (or a partial procedure) for automating that task in the future. An end-user 

can view and edit the system’s learned procedure which is displayed as a sequence of color coded steps 

wherein color intensity indicates CHINLE’s confidence in that step. This color coding not only explains 

the system’s current understanding, but can also guide the user towards appropriate edits (e.g., steps in 

which the system has the lowest confidence). In CHINLE, edits can be made to individual procedures as 

well as to hypotheses used by the system to generalize from examples. In each case, these edits impact 

future iterations of CHINLE’s task learning. 

It should be noted that in heuristic and rule-based programming by demonstration systems, there is also 

often an iterative loop over the generated program. For example, Cypher’s Eager system (1991) monitors 

a user’s behaviors but uses fixed heuristics to detect repetition over those behaviors which it then records 

as a program. A person can then either validate that the current program is correct (thereby instructing 

Eager can stop evolving it), or can continue interacting as normal to provide Eager with additional 

behaviors which it will continue to incorporate into the program. Therefore, the end-user’s interaction 

experience with Eager is similar to that of many interactive machine learning based systems (such as Lau 

et al’s SMARTedit). However, the learned program is inherently different which can impact 

generalization performance and, in turn, affect the amount of effort and iteration required by the end-user.  

Because iteration and program demonstration is expensive (generally more so than providing examples 

over discrete objects), research issues in programming by demonstration systems include enabling robust 

generalization from very few carefully chosen examples (e.g., Wolfman et al, 2001). 

2.1.5 Adaptive and Intelligent Systems 

Adaptive and Intelligent Systems are also umbrella terms used to refer to any system that adapts to the 

needs or abilities of individual users (as opposed to fixed, one-size fits all systems). For example, many of 

the areas already described in this chapter (e.g., recommender systems, document classification, and 

programming by demonstration) are sometimes referred to as specific cases of adaptive or intelligent 
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systems (Jameson, 2008; Ross, 2000). Other examples of intelligent systems include systems that adapt to 

an individual’s skill level (e.g., adapting an interface for accessibility purposes (Gajos et al, 2008) or 

automatically tailoring support or difficulty levels in educational systems (Corbett et al, 1997)) or goals 

(e.g., interface features that are automatically reorganized such that the functions that are most likely to be 

used next are easily accessible (Mitchell and Shneiderman, 1989; Greenberg and Witten, 1985)). Another 

class of systems that typically falls under this category is known as interface agents. Interface agents act 

as personal assistants that attempt to provide proactive support on how to use an interface or carry out 

tasks on behalf of a user or in collaboration with them (e.g., Horvitz et al, 1998; Maes and Kozierok, 

1993).  

Not all adaptive and intelligent systems have an interactive machine learning component (e.g., Rich et al, 

2005; Lesh et al, 1999; Lieberman and Espinosa, 2007). For example, Lieberman & Espinosa’s (2007) 

Roadie system uses plan recognition and a pre-defined knowledge base to help people use and debug 

electronic devices. This system employs a fixed model (not a model learned via interactive machine 

learning) to aid the user in their task.  

When intelligent systems (particularly agent-based system) do employ interactive machine learning, they 

often embed it within a larger and more complex processing and decision making unit (e.g., Glass et al, 

2008; Horvitz, 1999). For example, many intelligent tutoring systems include both an interactive machine 

learning loop (to model the current skill level of the user) as well as a knowledge base of the domain 

which together influence how the system behaves (Nwana, 1990). Similarly, Hovitz’s LookOut system 

(1999) embeds an interactive machine learning loop (modeling whether emails can be calendered or not) 

within a larger system which combines the output of this learned model in a decision theoretic process 

which determines the expected utility of taking action in an interface or not. In such systems, it can be 

difficult to tease out the effects of an end-user’s actions during the interactive machine learning process.  

This dissertation focuses on the design of systems that have a more well-defined interactive machine 

learning loop (such as some of the applications discussed above). However, as discussed in Section 2.2, 

we can apply some of the insights learned from work on general intelligent systems and agents towards 

understanding how to design more direct end-user interaction with machine learning.  

As in some of the areas of research discussed above, the user model typically plays a key role in adaptive 

and intelligent systems that employ interactive machine learning (Langley, 1999; Jameson, 2008; Ross, 

2000). Therefore, interactive machine learning relevant issues in adaptive and intelligent systems involve 

generating accurate user models based on interactive user feedback and keeping the learned models up to 
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date and consistent with an individual’s possibly changing needs (e.g., Ross, 2000; Billsus and Pazzani, 

2000; Webb, 2001; Koren, 2009; Koychev and Schwab, 2000; Stamou and Ntoulas, 2009). Again, 

feedback to the user model can be explicit (e.g., based on dialog with the user (Horvitz et al, 1998)) or 

implicit (e.g., based on observed behaviors (Webb et al, 2001)). Interestingly, there has also been research 

in this space on detecting and preventing un-authorized feedback to the system (e.g., detecting when a 

student is gaming an intelligent tutoring system to advance through the program (Baker et al, 2006)). 

Other issues include understandability and controllability of complex intelligence and managing 

expectations (Höök, 2000; Shneiderman and Maes, 1997; Horvitz, 1999; Jameson, 2008). For example, 

because perfect adaptations are difficult if not impossible to achieve consistently, some have advocated a 

mixed-initiative interaction paradigm in which the user and machine explicitly collaborate towards some 

goal rather than the traditional approach where the system may take action or adapt completely 

autonomously (Horvitz, 1999). Because these issues are also relevant to designing for end-user interaction 

with machine learning, we discuss these further in Section 2.2. 

2.1.6 New Uses of End-User Interactive Machine Learning 

In addition to the use of end-user interactive machine learning in the established fields discussed above, 

researchers have also started to explore the use of end-user driven machine learning for new and varied 

purposes. The following examples push the boundaries of what people can do with machine learning and 

inspired our own ambitions in this space. 

Fails and Olsen’s Crayons system (2003) supports the interactive training of pixel classifiers for image 

segmentation. These classifiers can then be used in camera-based applications (e.g., that visually track 

objects). To guide the system in learning how to segment images, a person paints over an image 

indicating both positive and negative regions (i.e., pixels that should be detected and ignored). Crayons 

uses this information to update its model and then displays its current understanding of how to segment 

using visual highlighting over the image. A user can then iteratively provide additional examples to 

correct the system by painting over areas in the image that the system is misclassifying. 

Ritter and Basu (2009) employed end-user interactive machine learning to help users perform complex 

selection tasks (e.g., selecting files to delete or copy or selecting emails to move from large lists). Here a 

user selects a few examples to start. The system then learns from these examples and automatically 

selects additional items from the set. A person can continue to iteratively select or deselect items 

(providing additional positive and negative training examples to the system) until the correct set is 

selected. 
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Shilman et al’s CueTip (2006) employs interactive machine learning in the process of handwriting 

recognition. CueTip’s handwriting recognizer first interprets some handwritten ink and displays its 

results. The end-user can then begin correcting the system’s interpretation via simple gestures over the 

results (e.g., crossing out incorrect letters or joining words via a stroke between them). As the user is 

correcting, CueTip feeds these corrections back into the model for re-analysis. That is, corrections are 

translated into constraints on the data passed through the recognizer, thereby guiding the system’s 

interpretation.  

Fiebrink et al’s Wekinator (2009) is a general purpose tool supporting machine learning novices in the 

interactive training of gesture classifiers. These gesture classifiers are intended for use in creative 

applications such as musical performances or new musical instruments. With The Wekinator, a person 

can iteratively demonstrate gestures that they wish the system to recognize (along with sounds they wish 

the gestures to trigger). The Wekinator then trains a model from video and other sensor data collected 

during the gesture demonstrations, which it can then immediately apply to detect those gestures in the 

future. A person can iteratively test the system’s recognition performance and correct it when necessary 

by providing additional gestures or editing previous ones. 

Finally, Fogarty et al’s CueFlik (2009) is a system for enabling end-users to create reusable image 

classifiers for automatically detecting visual concepts (e.g., scenic, visually busy, or bright and colorful 

images). A person can train CueFlik by iteratively providing it with positive and negative example images 

of that concept while examining the system’s current understanding. CueFlik inspired much of our 

research in end-user driven machine learning and became a test-bed for some of our own work discussed 

in this dissertation (see Chapter 4). 

In this section, we reviewed work in established fields that employ end-user interactive machine learning 

for domain specific purposes as well as new systems that have started to push the boundaries of what end-

users can do with machine learning. This review was not intended to be comprehensive. Indeed, end-user 

interactive machine learning is also used in other domains such as human-robot interaction (e.g., 

Goodrich and Schultz, 2007; Nicolescu and Mataric, 2001)) and recognition systems (e.g., Daneu and 

Dorizzi, 1996; Licsar and Sziranyi, 2005)). This review instead serves to illustrate the diversity of 

interesting uses of end-user interactive machine learning as well as to provide a reference for designing 

future systems.  
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2.2  Exploring How to Design End-User Driven Machine Learning 

In this section we discuss work related to understanding how to design end-user interaction with machine 

learning. Much of the work discussed in this section comes from the adaptive and intelligent systems 

community and, therefore, considers the question of how to design end-user interaction with systems that 

incorporate any sort of intelligence (i.e., adaptive and intelligent systems which may or may not use some 

interactive machine learning, as discussed in Section 2.1.5). Some of this work also comes from specific 

domains (e.g., designing interaction with recommender, context aware computing, and document 

classification systems). However, many of the issues raised and solutions proposed in these related works 

apply to the design of end-user interaction with machine learning and we highlight some of these 

similarities (and differences) throughout this section when necessary. 

The human-computer interaction community has decades of experience in designing traditional systems 

(e.g., direct manipulation interfaces). This has led to established practices and principles for designing 

end-user interaction with these systems (e.g., Moggridge, 2007; Dix et al, 2004; Winograd, 1996; 

Norman, 1988). For example, research and practice has shown that systems that support understandability 

(e.g., systems that are predictable or clear about how they work) and control (e.g., systems that make it 

clear how a person can accomplish their goals and give them the freedom to do so) are generally more 

usable than systems that do not support these principles.  

However, researchers have pointed out that adaptive and intelligent systems inherently violate some of 

these tried and tested principles, leading to years of debate about when to use intelligence in systems, if 

ever (e.g., Shneiderman and Maes, 1997; Lanier, 1995; Norman, 1994; Höök, 2000; Horvitz, 1997). For 

example, the goal of many intelligent systems is to do some of the work on behalf of the user, potentially 

violating the principle of control (Norman, 1994). Similarly, intelligent systems often use complex 

processing which can make it difficult for an end-user to predict or understand the outcomes of the system 

(Shneiderman and Maes, 1997). Many of these issues are also relevant for end-user interaction with 

machine learning. For example, a machine learning system evolves as it receives additional user feedback 

which may make its behaviors difficult to predict. Similarly, machine learning algorithms are inherently 

complex and therefore might be difficult to control. 

Accordingly, researchers have endeavored to identify key challenges for designing intelligent systems 

(e.g., Höök, 2000; Benyon, 1993; Horvitz 1997). For example, Höök (2000) stresses that the community 

needs new usability principles for designing interaction with intelligence. Others suggest that we need a 

better understanding of when intelligence is and is not appropriate (Horvitz, 1997). 
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Some researchers have also started to suggest new principles for designing end-user interaction with 

intelligent systems (e.g., Norman, 1994; Höök, 2000; Horvitz, 1999; Jameson, 2008). For example, 

Norman (1994) and Höök (2000) both identified safety and trust as key factors to consider when 

designing intelligent systems, referring to the assurance against and prevention of unwanted adaptations 

or actions. Others have stated that intelligent systems should manage expectations so as not to mislead or 

frustrate the end-user during interaction (e.g., Norman, 1994; Höök, 2000; Jameson, 2008). In Horvitz’s 

formative paper on mixed-initiative interfaces (1999), he proposed several principles for balancing 

intelligence with traditional direct manipulation constructs. For example, Horvitz emphasized 

consideration of the timing of intelligent services, scoping of adaptations or favoring direct control under 

severe uncertainty, and maintaining a working memory of recent interactions.  

A large body of work in the intelligent systems community as well as in other fields that use interactive 

machine learning has gone on to start exploring solutions for achieving some of these proposed principles 

or for supporting some of the traditional direct manipulation principles. Here we summarize some of the 

most explored techniques for designing effective end-user interaction with intelligent and interactive 

machine learning-based systems. In the next chapter, we analyze these techniques further and discuss 

other ways that researchers have designed end-user interaction with machine learning. 

Explanations have received considerable attention as a design solution for supporting transparency and 

understandability in intelligent systems (e.g., Bunt et al, 2004; Glass et al, 2008), recommender systems 

(e.g., Vig et al, 2009; Herlocker et al, 2000; Tintarev and Masthoff, 2007; McSherry, 2004; Pu and Chen, 

2006; Sinha and Swearington, 2002; Waern, 2004), document classification (e.g., Stumpf et al, 2007; 

Kulesza et al, 2010; Kulesza et al, 2011; Crawford et al, 2001) and context aware computing systems 

(e.g., Lim et al, 2009; Lim and Dey, 2009; Lim and Dey, 2010; Bellotti and Edwards, 2001; Tullio et al, 

2007). 

Herlocker et al (2000) designed and evaluated 21 different explanation facilities for collaborative filtering 

based movie recommendations, including histograms of neighbor ratings (i.e., a summary of ratings on a 

movie from other users who have similar interests in movies), similarity to already labeled movies (i.e., 

content based), highlighting important movie attributes (e.g., actors or genres the user is interested), and 

indicators of past system performance on its predictions. From their evaluation, Herlocker et al found that 

explanations helped increase user acceptance of the recommender system (however, the effects of 

explanations on end-user decision making was inconclusive). 



22 

 

 

 

Lim et al (2009) designed ten different types of explanations for context-aware computing systems 

including why (e.g., why did the system behave the way it did?), why not (e.g., why did the system not 

behave in some other way?), how to (e.g., how can I get the system to do what I want?), and what if 

explanations (e.g., how would the system behave if X happened?). From their evaluation, Lim and Dey 

found that some types of explanations performed better than others at improving user understanding of 

the system (e.g., why explanations improved understanding while why not explanations lowered it). Lim 

and Dey (2010) went on to develop a toolkit for aiding developers in generating explanations for future 

context-aware computing systems. 

Stumpf et al (2007) compared explanations designed for three different types of machine learning based 

email classifiers (rule, keyword, and similarity based classifiers) and found that some explanations were 

more understandable than others (e.g., rule-based explanations were the most understandable while 

similarity based explanations were least understandable). Stumpf et al also found that explanation type 

impacted the types of feedback that people were able to supply to further guide the system.  

Other researchers have explored techniques for influencing end-users’ mental-models to improve their 

understanding and control of interactive machine learning-based systems (e.g., Tullio et al, 2007; 

Borgman, 1986; Muramatsu and Pratt, 2001; Kulesza et al, 2010; Kulesza et al, 2012). For example, 

Kulesza et al (2012) studied the effects of introductory tutorials on people’s mental models of a music 

recommender system. Their experiment found that tutorials designed to induce a deep understanding of a 

recommender system’s reasoning and behavior resulted in sound mental models and that improvement in 

mental model accuracy resulted in better ability to control the system. Tullio et al (2007) investigated the 

effects of in situ explanations on mental models of a context-aware computing system. They found that 

over time, people developed a reasonable understanding of how their system worked, but found that deep 

mental models were difficult to correct even with explanations. 

Explanations and mental models are believed to be effective in improving understandability and control 

of complex, adaptive systems. However, in lieu of understandability and transparency, particularly when 

systems are believed to be too complex to explain, researchers have investigated other ways of building 

trust and acceptance of intelligent and interactive machine learning based systems (e.g., Glass et al, 2008; 

Cramer et al, 2008; Cramer et al, 2009; Sinha and Swearingen, 2002; Parasuraman and Miller, 2004; 

Jøsang and Lo Presti, 2004; Alpert et al, 2003; Lee and See, 2004; Victor et al, In Press; Dzindolet et al, 

2003; Muir, 1994; Muir and Moray, 1996). For example, Glass et al (2008) investigated factors that 

people believe impact their trust in an intelligent office assistant that autonomously performs calendaring, 

emailing, address booking tasks. The authors found that along with inadequate explanations and feedback 
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(e.g., providing little evidence about whether or not the system was listening to the user), other factors 

that reduced user trust and acceptance included mismatching expectations about what the system should 

be able to do with the given information and usability issues such as slow update times and lack of 

appropriate controls (e.g., undo). Even when people did claim to trust the system, they later revealed that 

they would still disapprove of autonomous actions without a verification step. Other researchers found 

that active user participation in the training process (e.g., Cramer et al, 2009; Alpert et al, 2003), system 

politeness (e.g., Parasuraman and Miller, 2004), and perceived system performance (e.g., Lee and See, 

2003; Cramer et al, 2008) all impact trust and acceptance of interactive machine learning-based systems. 

Despite these advances, our community still lacks established principles and proven techniques for 

designing intelligent systems. Accordingly, researchers continue to investigate the causes and suggest 

new solutions for effective designs. For example, Lieberman (2009) argues that the artificial intelligence 

and human-computer interaction communities need to work together before we can start to understand 

how to design effective intelligent systems. In another example, Jameson (2009) proposed a new 

approach for designing interaction with intelligent systems based around identifying potential side effects 

of intelligence within different applications and mitigating problems when necessary. 

Many researchers have also concluded that, as with traditional systems, the success of an adaptive or 

intelligent system depends on the context of use and whether or not the system was designed 

appropriately for that context (e.g., Höök, 2000; Horvitz, 1997; Benyon, 1997; Jameson, 2008; Jameson, 

2009; Lieberman, 2009). This suggests that the principles and solutions being proposed need to be 

weighed in light of the underlying system goals as with traditional interaction design. For example, 

system transparency might impede efficiency during interaction and therefore consideration must be 

given to the reason why an end-user is interacting with a machine learning system in the first place (e.g., 

to quickly accomplish some transient task versus to build an accurate model). Similarly, trust is important 

when the system will take autonomous action on the user’s behalf or when the user is unfamiliar with the 

data (e.g., deciding on new items to purchase). However, trust may be less critical when the system’s 

predictions will be regulated by the end-user or when the system is operating in a low risk environment 

(e.g., when automatically selecting songs to play). 

Therefore, we argue that what is needed to further advance our understanding of how to design end-user 

interaction with machine learning is a better understanding of potential end-user goals during interaction 

along with an understanding of other factors and constraints that might impact the design. By identifying 

and characterizing these factors, we can better weigh alternative design solutions.  
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To this end, the next chapter presents our design space for end-user interactive machine learning which 

can provide a foundation and reference for future researchers and developers of interactive machine 

learning-based systems. 
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Chapter 3  
A Design Space for End-User Interaction with Machine 

Learning 

In traditional interaction design there is an early focus on the end-user and their goals (Moggridge, 2007; 

Dix et al, 2004; Winograd, 1996; Norman, 1988). The first step in this iterative design process is thus to 

identify these goals and the constraints that will form the context of the end-user’s interaction. Only after 

these design factors are identified should idea generation begin. Idea generation involves formulating 

potentially many design solutions for achieving identified goals within the constraints embedded in the 

task. Finally, design solutions are weighed in light of tradeoffs between competing design factors. This 

process may continue (i.e., identifying design factors, designing potential solutions, and evaluating 

tradeoffs) until an appropriate and effective solution is obtained. Goals and constraints therefore directly 

influence the design choices that system developers can and should make. 

In this chapter we present a design space for end-user interaction with machine learning from an 

interaction design perspective. That is, we examine the end-user interactive machine learning loop itself 

and distill the following design attributes: 

 Design Factors. We describe the end-user interactive machine learning process in terms of factors 

that influence how the interaction between the end-user and the machine should be designed. These 

factors include potential end-user goals in using machine learning and their contexts of doing so. We 

also describe constraints that naturally arise from these goals and contexts. 

 Design Dimensions. We identify and describe design dimensions that have been explored to achieve 

various interaction goals in various contexts. These dimensions are not necessarily orthogonal and 

some may intersect. But examining them individually can provide a clearer understanding of the 

various ways interactive machine learning can be designed.  
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This design space has been informed by the same body of related work discussed in Chapter 2 as well as 

our own experiences designing end-user interactive machine learning in several domains (see Chapters 4 

to 6). Specifically, we developed this design space by identifying design factors and dimensions explored 

in existing systems and research. We also abstracted away domain specific details as much as possible to 

focus on the end-user interactive machine learning loop itself. Note, however, that domain specific factors 

are partially captured by the context of end-user interaction. We also give concrete examples from 

existing systems throughout this section to better illustrate the various design attributes. 

While domain specific factors do influence how existing systems have been and should be designed, there 

are many benefits to calling out the interactive machine learning process itself and analyzing it 

independently. As described in Chapter 2, many fields of research are already employing end-user 

interactive machine learning to solve domain specific problems. However, these fields often refer to the 

interactive machine learning process in domain specific terms (e.g., relevance feedback, programming by 

demonstration) or embed it within larger or more complex systems (e.g., adaptive and intelligent 

interfaces). This can make it difficult to communicate and learn from one another. Moreover, overlooking 

design solutions used in related fields could potentially lead to duplicate work. Therefore, by isolating the 

end-user interactive machine learning process, we can attempt to move beyond ad hoc and domain 

specific solutions. In turn, this can help accelerate our understanding of how end-user interactive machine 

learning should be designed.  

The design space therefore serves the following purposes: 

 To provide a common language for understanding and discussing how end-user interactive machine 

learning has been or might be designed. 

 To facilitate a systematic approach towards designing systems that might involve an end-user 

interactive machine learning loop (e.g., by enabling designers and developers to compare competing 

design solutions for achieving the interaction goals and contexts identified for their systems). 

 To expose new challenges and opportunities for improving the end-user interactive machine learning 

process. 

 To provide a foundation and reference for future researchers and developers of interactive machine 

learning-based systems. 
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Note that this design space is meant to be descriptive, not prescriptive. This is for several reasons. First, 

the design factors and dimensions discussed in this chapter span many diverse fields using different 

evaluation methods and criteria for gauging success. This makes it difficult to determine which 

techniques might also be successful in different scenarios. Second, a prescriptive analysis demands 

comparison of different design techniques in controlled scenarios (e.g., with fixed interaction goals and 

contexts of use). However, many evaluations in the literature, including some of our own work (e.g., our 

work on CueT discussed in Chapter 6), have opted for feasibility studies comparing a system with and 

without an interactive machine learning component. While feasibility evaluations are useful for 

demonstrating the effectiveness of a system for solving a domain specific problem, it also makes it 

difficult to attribute the success of that system to any particular design technique employed. For these 

reasons, it is premature to declare some techniques observed in previous systems as being better than 

others. However, in Chapter 7 we begin to hypothesize about what some design guidelines might be as a 

result of our own experiences and our investigation into this design space.  

3.1 Design Factors 

3.1.1 Interaction Goals and Contexts 

In this section we describe interaction goals and contexts that we identified as impacting the design of the 

end-user interactive machine learning process. Interaction goals refer to the underlying reasons why an 

end-user might be using machine learning and what they aim to accomplish in doing so (e.g., what their 

expected or intended outcomes might be). Related to interaction goals is the desired context in which the 

machine learning will be used to achieve those goals.  

Intended Product (Reusable versus Disposable Models)  

The Intended Product design factor refers to the desired outcome of the end-user interactive machine 

learning process. The desired outcome could either be the machine-learned model itself or the model 

predictions (i.e., the output over some data set). Typically, when the Intended Product of interactive 

machine learning is the model itself, the model is intended for reuse in the future. On the other hand, if 

the intended product is the model output, the model itself is essentially a disposable side effect. 

The Intended Product can affect how much time and attention a person should or might be willing to 

spend on improving the system’s understanding. For example, in Fails and Olsen’s Crayons system 

(2003), an end-user interactively trains a model intended for embedding in camera-based object tracking 

applications. Therefore, the end-user is expected to iteratively correct the system’s understanding until the 

model is working adequately for reuse. In contrast, in Ritter and Basu’s file selection system (2009), a 

person interacts with a machine learning system for the purpose of more quickly select items of interest. 
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In this case, the user is primarily interested in the output of the model being learned (i.e., the predicted 

selections) rather than improving the model itself. Furthermore, in Ritter and Basu’s file selection system, 

the current model is only used to help accomplish a person’s immediate selection task and future tasks 

will require entirely new models.  

This design factor also has implications on whether or not trust in the system is important (see Section 2.2 

for more details on the issue of trust in interactive machine learning). For example, a person intending to 

reuse a model might desire some guarantees about that model’s generalization performance. In contrast, 

trust might be less critical when the model is disposable and the model’s predictions will be regulated by 

the end-user (e.g., an end-user is expected to verify selections by Ritter and Basu’s file selection system 

(2009)). However, the need for trust is also dependent on other design factors that we identify below (e.g., 

performance requirements, volume of data). For example, trust might only be important for reusable 

models that will be used in high risk situations (e.g., email classification), and less for reusable models 

intended for lower risk tasks (e.g., recommender systems). Similarly, trust might be still be important for 

disposable models operating over large data sets where it may be more difficult or infeasible to verify all 

of the model’s predictions (e.g., with Kulesza et al’s AutoCoder system that helps people annotate a large 

corpus of text (2010)). 

Interaction Focus (Interaction with Machine Learning as a Primary versus Secondary Task)  

Interaction Focus refers to whether a person’s attention during interaction will be on the machine learning 

process or on some external or domain specific goal (and the interaction with the machine learning is 

simply a means for accomplishing that goal).  

When an end-user’s Interaction Focus is on the machine learning, they will typically dedicate some time 

and attention to working with the system. For example, a person’s focus during interaction with Kulesza 

et al’s AutoCoder system (2010) is to guide the machine learning to annotate a large corpus of text. 

Therefore, the end-user expects to continue collaborating with the system until the text is adequately 

annotated. In contrast, with Ritter and Basu’s file selection system (2009), a person’s focus is on selecting 

items. In this case, the machine learning can work in the background to help but can also be ignored. 

The Interaction Focus design factor can also impact how rich the interface to the interactive machine 

learning process can be as well as how tolerant a person might be to more aggressive guidance. Again, 

because a person’s focus with Kulesza et al’s AutoCoder system is on collaborating with the machine 

learning, the system could display a considerable amount of information to help the user more effectively 

interact with the machine learning (e.g., explanations, confidence metrics, impact counts, a history of 
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prediction changes). In contrast, the interface to Ritter and Bau’s file selection system is appropriately 

much less complex. Furthermore, in other cases in which a person’s focus is on something other than the 

machine learning process, the person may not even be aware that they are interacting with a machine 

learning system at all (e.g., recommender and relevance feedback systems that use implicit observations 

of user behavior to improve the model).  

Note that Interaction Focus is related to but different from the Intended Product design factor. For 

example, in Kulesza et al’s AutoCoder system, interaction with the machine learning is a person’s 

primary task but the model is disposable. Whereas with Fail’s and Olsen’s Crayons (2003), interactive 

machine learning is again a person’s primary focus, but in this case they are working towards creating a 

reusable model. Correspondingly, interaction with the machine learning is secondary in Ritter and Basu’s 

file selector (2009) and the model is disposable. However, with recommender systems, interaction is 

again secondary (because a person is focused on evaluating recommended items) but the underlying 

model is intended for prolonged use. 

Evolutionary Needs (Ranging from Fixed to Evolving Models)  

The Evolutionary Needs design factor refers to whether or not the model, once in a functional state, is 

intended to be fixed or needs to adapt to potentially changing end-user needs or situations of use. This 

design factor is a spectrum ranging from fixed models with no evolutionary needs to models that need to 

frequently update. Typically, models that do not need to evolve are capturing concepts that are somewhat 

objective and stable. In contrast, models that should evolve over time typically capture subjective interests 

or needs that might change as a result of new data (a phenomenon known as concept drift). 

A model’s Evolutionary Needs affects how frequently a system needs to update the model as well as 

when and how often a person might be required to provide additional guidance. Fiebrink et al’s 

Wekinator (2009) is an example of a system in which a model is intended to be fixed once created 

because gestures are relatively stable concepts (e.g., a gesture is either a hand wave or not). At the other 

end of this spectrum, Billsus and Pazzani’s news recommender (2000) includes both long and short term 

user models. The long term model evolves slowly to capture a person’s general interests. However, the 

short term model continually evolves to keep up to date with a person’s rapidly changing interests (which 

often depends on new data that may be arriving from sources such as breaking news stories).  

Evolutionary Needs also impacts the new user problem in some interactive machine learning systems 

(e.g., recommender systems, intelligent interfaces). The new user problem occurs when the system does 

not have enough information about an end-user to make reasonable adaptations or predictions for them. 
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To mitigate this potentially frustrating experience, some systems initially employ a canonical user model 

and then slowly adapt that model based on interaction with new users (Langley, 1999; Ross, 2000). 

Note that even concepts that are thought to be relatively stable might benefit from a model capable of 

evolving. Consider Dey et al’s aCAPpella system (2004) which models end-user defined contexts such as 

meetings. Meetings are relatively objective concepts. However, because machine learning systems are 

designed to generalize from a limited set of examples, it is likely that not every scenario has been 

accounted for. In this case, the model might benefit from being able to incorporate data from new 

situations so as to improve over time.  

Concept Flexibility (Well-Defined verses Open-Ended Concepts)  

Concept Flexibility refers to whether a person will have a well-defined concept in mind prior to 

interacting with the machine learning or whether that concept might be flexible and more open-ended.  

The Concept Flexibility design factor can affect the type of feedback that should be displayed by the 

interactive machine learning system such as whether or not to organize system predictions to display 

diversity in results (see Section 3.2 below). This design factor also affects whether or not system 

predictability is important during the interaction. For example, in recognition systems like Fiebrink et al’s 

Wekinator (2009), a person typically has a clear concept in mind that they are attempting to convey or 

teach the system (i.e., a particular gesture). In this case, predictability is important and the system 

feedback should focus on presenting matching gestures. In contrast, in search and browsing systems, a 

person’s conceptual target might be less clear or more exploratory in nature. Here, because a person’s 

intended concept might evolve as a result of interacting with the system, the system might display a 

variety of results that a person may have not even anticipated but still might be of interest. 

Performance Requirements (e.g., Accuracy and Efficiency)  

This design factor pertains to any model or system requirements resulting from the context of use. For 

example, model accuracy might be important in high-risk scenarios where errors are costly. In contrast, 

efficiency might be desired over accuracy in low-risk situations. In other scenarios, precision in model 

predictions might be preferred over recall. 

Performance Requirements can affect the design of interactive machine learning in many ways. A person 

might be more willing to spend time and effort training or debugging a system in high-right scenarios 

where accuracy is critical. For example, it is generally considered critical for email classifiers to be 

accurate because missing important emails (e.g., about upcoming work meetings) can result in high costs 

to the end-user. In this situation, a person might benefit from feedback about a system’s estimated 
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accuracy or confidence in its predictions. Alternatively, a person might prefer verifying a system’s output 

in high risk situations rather than allowing the system to take autonomous actions on their behalf (as in 

Glass et al’s 2008 study of trust in an intelligent office assistant). 

Model Ownership (Personal or Shared Use)  

When creating reusable models, Model Ownership refers to whether those models are intended for 

personal use or might be shared with others. Most previous systems and research have focused on models 

intended for personal use. However, we expect shared models to become more commonplace in the 

future. For example, as interactive machine learning becomes a reality in our everyday applications, 

people will likely want to make use of already created models rather than starting from scratch. People 

might also want to share their classifiers socially (e.g., a person might want to share their musical interests 

with their friends via a trained music classifier).  

Designing interaction with models intended to be shared might affect how much attention a person should 

pay in assessing a model’s generalization performance on new data sets. Model Ownership could also 

impact how models might be described by their creators or searched for and adapted by their future users 

for new situations and purposes.  

3.1.2 Constraints 

Constraints refer to contextual factors that are less flexible or inherent to the task and identified 

interaction goals. Here we discuss three general categories of constraints that we identified as impacting 

how interaction can be designed: the data, the target end-users themselves, and the interaction 

environment. 

Data Constraints 

Nature of the Data  

This constraint refers to characteristics of the type of data that the end-user and the machine learning will 

need to operate over during the course of the interaction (e.g., text, images, multimedia, sound, sensors).  

The Nature of the Data shapes many aspects of the interactive machine learning process. For example, the 

data type dictates the features that can be used to represent items in the machine learning algorithm and 

whether or not any features might have missing values. The data type also affects how the examples or 

individual features might be displayed to the end-user. For example, text and images might be 

straightforward to present, whereas sensor data might require custom transformations before they can be 

presented to an end-user.  



32 

 

 

 

The diversity of features might also affect how straightforward examples or features might be to display. 

For example, data types comprised of heterogeneous features might require multiple custom 

transformations (e.g., emails might be represented by text, time of day, and sender features, all of which 

might occupy different areas on screen and might require different display techniques). The data type 

might in turn enable or prohibit interaction over the different elements displayed (see Section 3.2 for more 

details on possible feedback and control types). 

Data Source 

The Data Source refers to from where the data is originating. For example, the data source may be static 

(i.e., pool-based) or streaming (i.e., where new data is constantly arising). The source could also be 

intermittent in that new data is arriving but more sporadically. Data could also be originating from 

multiple sources (e.g., multiple sensors collecting data in a context-aware computing system).  

This constraint effects when and how often a person can or should interact with a machine learning 

system. The data source also impacts whether a model will be operating on the same or similar data from 

which it was trained (e.g., with the same distribution) or will need to operate on dissimilar data. The Data 

Source may therefore necessitate a design that supports verification or evaluation of generalization 

performance during the training process. 

Volume of Data  

This constraint refers to the amount of data over which the end-user and machine learning system is 

expected to operate.  

The Volume of Data can impact how much data a person might be required to process or view at any 

given time. This, however, can also be affected by a person’s Interaction Focus or Performance 

Requirements of the system. For example, sampling could be used over large data sets if a person’s focus 

is limited or the system is operating in a low risk environment.  

End-User Constraints 

Machine Learning Experience  

This constraint refers to how much experience an end-user has using interactive machine learning 

systems. Experience also relates to an end-user’s mental model of how an interactive machine learning 

system works (see Section 2.2 for a more detailed discussion on mental models of interactive machine 

learning). 
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Machine Learning Experience can affect a person’s ability to effectively train a machine learning system. 

For example, a person with more experience might require less guidance in steering a system than a 

person unfamiliar with the interactive machine learning process. 

Domain Expertise  

Domain Expertise refers to how familiar an end-user is with the domain or data over which the system 

will operate. A person might also be considered a domain expert when the data involved is easy to inspect 

(e.g., some types of images). 

This constraint affects how easy it is for a person to make decisions on items for feedback to the machine 

learning or for some external goal (e.g., purchasing items). For example, a person training a personal 

email classifier will be operating over known data or data that is easy to inspect. In contrast, during search 

and in some recommender systems a person might be being shown items that are unfamiliar to them. 

Therefore, this constraint affects how data should be displayed or what information should be presented to 

the end-user for effective understanding and use of the system.  

Motivation  

Motivation refers to incentives that people might have in interacting with a machine learning system. For 

example, a person might be interacting with a system for their own personal gain (e.g., to create a model 

for personal use). Alternatively, a person might be interacting with a machine learning system as part of 

their job (e.g., an operator employed to train a system). 

This constraint can impact how engaging the interface or interaction needs to be. For example, a person 

not intrinsically motivated to supply accurate information to the machine learning might require 

additional incentives to keep them interested or alert. 

Individual Differences 

This constraint refers to other characteristics that an individual might possess and that may impact the 

design of a system (e.g., gender, personality traits). 

This constraint can affect how aggressive or confident a person might be in steering the system. For 

example, Kulesza et al (2011) found that people with higher self-efficacy were more confident in their 

feedback decisions and were more willing to experiment during interaction with their AutoCoder system.  

Collaboration 

This constraint refers to whether a single person will be interacting with the machine learning system at 

any given time or whether a group or multiple people are somehow contributing to the learning. 
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Collaboration has received little attention in previous work, but might become more relevant in the future 

(e.g., as advances are made in the areas of human computation and crowdsourcing). 

Collaboration can impact how interaction must be coordinated between multiple people to achieve some 

common goal. For example, Lau et al’s Sheepdog programming by demonstration system (2004) enables 

multiple domain experts to create technical support procedures via a pipeline workflow (i.e., in which 

successive experts can expand a procedure created by preceding users). Similarly, Hoffman et al’s Kylin 

information extraction system (2009) operates on Wikipedia articles and receives in situ feedback about 

its text extractions from multiple users. This feedback is then used to improve future extractions. Other 

strategies for coordinating multiple users might involve a divide and conquer approach in which portions 

of data are distributed amongst multiple end-users and then recombined for training. 

Environmental Constraints 

Display Size  

Display Size refers to how much screen real estate might be available for the end-user and machine to 

communicate over during the interactive machine learning process, if any. 

The Display Size can impact the amount of feedback the system can provide the end-user during 

interaction. This constraint can also impact the type of end-user control that can be achieved. For 

example, Billsus and Pazzani’s news recommender (2000) came in two varieties, a desktop and mobile 

version. The desktop version could display the entire ranked list of news recommendations to the end-

user, whereas the mobile version only displayed the top few recommendations. The desktop version also 

supported explicit feedback through interface controls (e.g., ‘interesting’, ‘not interesting’, ‘known’ 

buttons), whereas their mobile version learned exclusively from implicit behaviors.  

Surroundings 

This constraint refers to any characteristics of an end-user’s expected physical location during interaction 

with a machine learning system. 

An end-user’s expected Surroundings can impact their attention to training as well as where and when 

feedback or guidance is required. For example, some context-aware computing systems can only receive 

in situ guidance from end-users. In such cases, care must be taken to display feedback or request guidance 

appropriately (e.g., so as to avoid untimely interruptions). 
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3.2 Design Dimensions 

In this section, we present several dimensions outlining how previous systems and research have designed 

end-user interaction with machine learning (for various interaction goals and contexts of use). These 

design dimensions can help us systematically navigate the space of interaction techniques that have been 

previously explored. In addition, these dimensions can potentially expose open areas of research and new 

opportunities for design. 

We loosely group these dimensions into three high-level categories representing the fundamental 

characteristics of the iterative cycle between an end-user and a machine learning system: system 

feedback, end-user control, and temporal. Neither the categories nor individual dimensions here are 

necessarily independent. For example, the feedback technique supported can influence the control 

techniques that are achievable. Similarly for individual dimensions within a category. However, loosely 

categorizing our dimensions in this way facilitates understanding and discussion of this space. 

3.2.1 System Feedback 

System feedback refers to how the system illustrates its current understanding of the concept being 

trained. This category generally corresponds to how the machine learning can communicate to the end-

user. 

Feedback Type 

Feedback Type refers to which elements of the interactive machine learning process the system is 

communicating to the end-user about. These elements can include the following: 

 Output: refers to feedback about the learned model’s predictions on the data (e.g., recommender and 

relevance feedback systems present items the system predicts might be of interest to the user). Output 

feedback can also include information about the system’s confidence in its predictions or 

understanding (e.g., Herlocker et al, 2000; Kulesza et al, 2011; McNee et al, 2003). Output feedback 

is the most common form of feedback in existing interactive machine learning systems because it 

hides much of the complexity of the underlying algorithm.  

The organization of Output feedback has also been well-studied in the literature. For example, 

previous work has compared organization techniques for displaying recommendations and relevance 

feedback lists including ranked lists, n-best lists, and clusters to show diversity of feedback (e.g., Pu 

and Chen, 2006; McGinty and Smyth, 2003; Gass et al, 2009; Harrison and Klein, 2007; McSherry, 
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2004). Other organization techniques include in situ predictions (e.g., Fails and Olsen’s Crayons 

(2003) shows pixel level predictions via highlighting over an image). 

 Input: refers to feedback about items or information that has been provided to the system and is 

impacting its learning. For example, some systems can present an end-user with a history of 

observations that are affecting its model of the user. Input feedback also includes provenance 

information about what input data has affected the current prediction (e.g., Billsus et al’s FXPALBar 

(2005) highlights words on a page being viewed that are triggering the current recommendation).  

 Features: refers to feedback about the features being used in the machine learning. This includes 

what features the system might know about or what features it might be computing as important (e.g., 

by displaying weights on features as in Kulesza et al (2011)). 

 Logic:  refers to feedback about the machine learning’s internal processing. For example, Lim and 

Dey’s system (2010) generated explanations by displaying paths through a decision tree taken to 

come to the current predictions. In another example, Herlocker et al (2000) examined feedback 

revealing the nearest neighbors identified and used to infer recommendations in their collaborative 

filtering system. 

 Processing State: refers to information about the state of the machine learning’s processing, 

independent of the inner workings of the algorithm. For example, Maes and Kozierok’s intelligent 

personal assistant (1993) uses facial expressions on an animated agent to convey different processing 

states of the system (e.g., an “alert” expression conveys that the system is observing the users actions 

and a “thinking” expression conveys that the system is in the process of computing a prediction). 

Feedback Type is a recognized and relatively well studied dimension in the end-user interactive machine 

learning literature, particularly in regards to designing for transparency and understandability (see Section 

2.2). Often Feedback Types are discussed in terms of whether the feedback is about the inner workings of 

the machine or is independent of the system’s underlying reasoning (i.e., white or black box feedback, 

respectively). 

Feedback Granularity 

Feedback Granularity refers to the level of detail over a Feedback Type presented by the system to 

illustrate its understanding. Granularity can range from coarse- to fine-grained feedback. Examples of 

coarse-grained feedback include aggregations, summative visualizations, and abstractions (e.g., 

summaries of model predictions or quality as in our CueT system discussed in Chapter 6). Examples of 
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finer-grained feedback include presenting some or all of the actual output data (e.g., ranked lists of items 

in relevance feedback systems) or features (e.g., Kulesza et al, 2011).  

Feedback Variety  

Feedback Variety simply refers to the range of feedback types presented in an interface. This dimension 

ranges from a single feedback mechanism (e.g., a ranked list in relevance feedback systems) to more 

complex systems presenting multiple views over the data (e.g., our work on CueFlik discussed in Chapter 

4 presents multiple views and histories over the interactive machine learning). 

Update Visibility  

This dimension refers to how apparent the effects of a person’s actions are during the interaction process 

or how obvious it is that there has been some kind of update to the system. For example, in the CueFlik 

system (2008), every new example image provided by an end-user results in a model update and this 

update is made explicit via a reshuffling of the data. On the other hand, the effects of new ratings on a 

user model are typically not immediately observable in most recommender systems. However, it is often 

implied that these systems have incorporated the new user input in some way (e.g., some systems display 

a polite “thank you” to acknowledge that the input has been received). In other cases, feedback maybe 

entirely hidden from an end-user, particularly when system designers do not intend or want the user to be 

aware that they are being observed. For examples, some intelligent tutoring systems might want to hide 

feedback about the learning process in order to prevent users from gaming the system (Baker et al, 2006).  

Push versus Pull Feedback  

This dimension refers to whether feedback is offered or presented automatically by the system or whether 

it must be requested by the user. In some cases, a variety of feedback mechanisms are present but at 

different levels of availability. For example, Lim and Dey’s context aware computing system (2009) will 

predict and present detected activities but a person must request additional details (e.g., why explanations 

of system behavior). 

3.2.2 End-User Control 

End-user control refers to the means by which an end-user can guide or influence the machine learning’s 

behavior and understanding. Therefore, this category corresponds to directed communication from the 

end-user to the machine.  

Note that some of the control dimensions identified here directly correspond to system feedback 

dimensions (e.g., granularity, variety). However, system feedback techniques do not always dictate what 

end-user controls are available. In fact, much of the research on system feedback has focused on one way 
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communication from the machine to the end-user (e.g., classifier explanations that do not allow 

manipulation or editing as in Herlocker et al, 2000, Lim et al, 2009 and Tullio et al, 2007). In these cases, 

separate control mechanisms are provided for guidance to the learning. We therefore consider system 

feedback and end-user control as separate categories. 

Control Type  

Control Type refers to what elements of the machine learning the end-user can manipulate to guide the 

system: 

 Input: includes selecting and labeling the examples from which the system will learn. This is the 

most common form of control and is the technique used by most real-world interactive machine 

learning systems (e.g., ratings in recommender systems). This dimension also includes the creation or 

demonstration of new examples (along with their labels) such as in programming by demonstration 

and context-aware computing systems. 

 Output: refers to control over model output or predictions that are not fed back into the learning 

process. Examples include manual editing of a learned program in a programming by demonstration 

system before it is used for automation and approving an intelligent system’s classifications before 

automated actions are taken (e.g., approving of email predictions before filing).  

 Features: refers to control over the features the system might use to represent the data. This includes 

control over feature generation, selection, and weighting (e.g., Druck et al, 2009; Raghavan and 

Allan, 2007; Wong et al, 2011). For example, Wong et al (2011) allowed end-users to explicitly 

define relevant features for a document classifier by highlighting words in a page. This also includes 

interaction with features for the purpose filtering the input or output of the model data (e.g., Secord et 

al, 2010, our ReGroup system discussed in Chapter 5).  

 Classes: similar to control over features, this refers to the creation, destruction, or manipulation of 

classes used by the system. For example, in Hearst et als Scatter/Gather system (1995), a person can 

select clusters of interests and remove irrelevant ones. Similarly, with our CueT system (see Chapter 

6), a person can create new classes for the system to use in making future recommendations. This 

dimension also includes control over class boundaries (e.g., Ware et al, 2001, Kapoor et al, 2010). 

 Parameters: refers to control over any other parameters of a machine learning algorithm. Few end-

user systems have provided controls over algorithm parameters because of the recognized 

complexities of such algorithms, particularly for people with little to no machine learning experience 
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(Norman, 1994). One example is Ware et al’s (2001) system which provides control over the 

parameters of a decision tree learner (e.g., by interactively specifying when and how to split a node) 

and was targeted at novice users with little machine learning expertise. Similarly, Fiebrienk et al’s 

Wekinator (2009) enables users to inspect and configure different algorithm parameters, but again is 

targeted to machine learning novices. 

Control Granularity  

Control Granularity refers to the level of control over instances of a type. For example, input labels can 

be coarse or fine grained (e.g., likes or dislikes versus continuous rating scales in recommender systems 

(Amoo and Friedman, 2001; Swearington and Sinha, 2002; Cosley et al, 2003)). Labels can also be 

directional (e.g., dynamic critiquing in recommender systems as in McCarthy et al, 2005). Input examples 

themselves can also be provided to the system in varying quantities. For example, in most recommender 

systems items are labeled one at a time. In contrast, Fails and Olsen’s Crayons (2003) allows end-users to 

quickly label multiple pixels in as single broad brush stroke over an image. 

Explicit versus Implicit Control  

This dimension refers to whether a person is explicitly providing guidance to the system or whether it is 

happening passively and potentially without user awareness. For example, object labels and ratings are 

explicit forms of control, whereas relevance feedback based on behavioral observations are implicit. This 

is a well-studied dimension in interactive machine learning research (e.g., in research on relevance 

feedback, recommender systems, and adaptive systems). 

Mandatory versus Elective Control 

This dimension refers to whether or not control is required from the user at any point during the 

interaction process. For example, in traditional active learning, the system may not continue operating or 

evolving without explicit user input. In contrast, user feedback is typically optional in commercial 

recommender systems (although often encouraged and incentivised), so the user can choose if and when 

they want to provide it.  

Guidance  

When controls are provided, this dimension refers to the amount of direction the system provides the end-

user in steering the system. Guidance can come in many forms, including system suggestions of what to 

do next or interface scaffolding that restricts or influences what a user can or cannot do at any given step.  

Guidance is a well-studied dimension in the interactive machine learning literature. For example, active 

learning is a form of guided control in that the system solicits specific information from the end-user (e.g., 
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labels). This information is then used to update the underlying model. A more flexible example is that of 

Wolfman et al’s SMARTEDIT system (2001), which suggests or requests certain types of examples 

which the user can provide or ignore in a mixed-initiative fashion. Another example of this mixed 

initiative approach to guidance is Kulesza et al’s What You See is What You Test (WYSIWYT) method 

of prioritizing and highlighting system predictions that are likely to be wrong in their AutoCoder text 

annotation system (2011). Here, the user is directed to certain examples which they can either fix or 

ignore and find their own examples to correct. The AutoCoder system also takes an additional step of 

propagating user labels (corrections) to nearby examples, thereby also taking part in controlling the 

machine learning.  

In some cases, guidance or restrictions are unintended but result as an artifact of system feedback. For 

example, recommender systems that present n-best lists restrict the examples a person can provide to 

further guide the system. As a result of this, some researchers have explored alternative ways of 

presenting examples that provide more diversity in the recommendations presented and therefore provide 

more options for control (e.g., McGinty and Smyth, 2003; Pu and Chen, 2006). Other examples of 

potentially unintended guidance are systems that probe the user for feedback with questions that might 

influence their response (e.g., questions like “is this relevant to you” and “do you like this” might elicit 

different responses). In fact, Cosley et al (2003) showed that recommendations themselves (and the 

explanations used to promote them) can influence a person’s responses. Therefore, it might be argued that 

few systems provide complete freedom in end-user control. However, some come close. For example, 

relevance feedback systems that provide access to all of the data might be considered unguided, but 

because these systems most often order the data based on similarity or confidence, they still influence the 

control provided.  

Control Variety  

As with Feedback Variety, this dimension simply refers to the variety of end-user controls presented in 

the interface. For example, some recommender systems might provide both explicit and implicit controls 

over the learning or multiple forms of explicit control (e.g., ratings and comments on items). 

Direct versus Indirect Control  

This dimension refers to the level at which the system adheres or appears to adhere to a user’s feedback. 

This dimension is typically dependent on the choice of machine learning algorithm used and the 

complexity of the system in which the interactive machine learning is embedded. For example, in Stumpf 

et al’s (2008) email classifier, end-users were allowed to adjust weights on individual features used in the 

learning algorithm. However, they became frustrated when these seemingly simple adjustments did not 
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have the desired effect on the system’s behavior (which was due to the fact that system updates were 

based on a combination of the user provided weight and the system’s internal weighting). To avoid such 

frustration, some researchers have designed techniques to more directly incorporate user feedback in 

interactive machine learning systems (e.g., Kulesza et al, 2011; Kapoor et al, 2010). For example, Kapoor 

et al’s ManiMatrix (2010) attempts to directly adhere to end-user control adjustments (which can be 

“locked” by the user to emphasize their expectation that the system should obey their feedback) and 

notifies the user when their adjustments cannot be achieved due to complex dependencies in the 

algorithm. 

3.2.3 Temporal 

The temporal category is concerned with dimensions relating to time, such as when interactions might 

occur between an end-user and a machine learning system and how often.  

Note that the temporal dimensions discussed in this category are sometimes dictated by the context of 

system use. For example, an inherently sporadic Data Source might dictate when system feedback can be 

made available (see Timing of System Feedback below) or when end-user control is obtainable (see 

Timing of End-User Control below). In these cases, temporal dimensions might be considered more like 

constraints that must be met (i.e., design factors) rather than flexible design decisions. However, in many 

cases observed in the literature (as will be discussed below), temporal aspects have been manipulated by 

system designers and therefore we present them here as design dimensions. 

Timing of End-User Control  

This dimension refers to when and how often end-user control is provided. For example, some adaptive 

and recommender systems require user feedback up front before they can make any initial predictions. 

These systems also typically accept ongoing user feedback.  

This dimension is often dependent on control Guidance. For example, sometimes a system might demand 

feedback in certain situations or at specific intervals (e.g., Tullio et al, 2007; Horvitz et al, 2004). In other 

cases, the user determines the timing of control (e.g., elective and in situ feedback in recommender and 

context-aware computing systems). 

Timing of System Updates  

This dimension refers to when and how often the system updates its model. The Timing of System 

Updates could be driven by the end-user or the system itself. For example, an end-user could explicitly 

tell the system to update (e.g., via an ‘Update’ button). Alternatively, a system might only update at 

scheduled intervals or after a specific number of examples have been provided (Ghorab et al, 2011).  
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System Memory  

System Memory refers to how long end-user feedback affects the behavior of the system. For example, 

many user model-based interactive machine learning systems include a policy for forgetting user 

feedback or a sliding window in order to better model potentially changing user interests or needs (e.g., 

Crawford et al, 2001; Fogarty and Hudson, 2007; Montaner et al, 2003). 

Control Direction  

This dimension refers to the direction of end-user control supported in the interactive machine learning 

cycle. End-user control in the forward direction includes enabling end-users to supply additional item 

labels. Backward control typically refers to whether or not revision or reversal of actions is supported. 

Most interactive machine learning systems primarily support forward interaction. Our work on supporting 

model exploration in CueFlik is one example where multiple control mechanisms are provided for both 

forward and backward control (see Chapter 4 for more details).  

Feedback Direction  

Analogous to control direction, this dimension refers to whether system feedback is reflective or 

predictive (i.e., displaying what did happen versus what will happen or both).  

Most interactive machine learning systems are reflective, displaying the current prediction which is 

typically the result of incorporating the most recent end-user interaction into the model being learned. 

Other mechanisms for reflective feedback include showing progress (e.g., Kulesza et al, 2011), showing 

change in model predictions (e.g., Stumpf et al, 2008), and showing histories of update stages (e.g., our 

work on model exploration in CueFlik discussed in Chapter 4). 

Less common is feedback in the forward direction which might show a preview of how the model or 

system will change as a result of a potential user action. Some examples of forward feedback include 

explanations supporting “what if” type questions which display how the system will behave as a result of 

alternative input as well as “how can I” questions which explain how an end-user might achieve a desired 

outcome (e.g., Lim and Dey, 2009).  

One reason predictive feedback is rare is because of the computational expense of computing alternative 

outcomes, particularly over large datasets. However, previews could help end-users provide more 

effective control (e.g., by helping people select appropriate actions for achieving desired outcomes 

(Kulesza et al, 2011)). Therefore, more research in reducing computational costs might be valuable, such 

as previewing approximations of what might happen or preloading expected alternatives. 
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Human Learning  

Human Learning refers to an end-user’s potentially evolving mental model of how an interactive machine 

learning system works. As discussed in Section 2.2, an end-user’s mental model can be influenced by the 

design of a system (e.g., by tutorials (Kulesza et al, 2012) or system feedback (Tullio et al, 2007; 

Borgman, 1986; Muramatsu and Pratt, 2001; Kulesza et al, 2010; Kulesza et al, 2012)). Therefore, care 

must be taken on this dimension so as to better manage end-user expectations and enable effective 

guidance during the interactive machine learning process. 

3.3 Discussion and Limitations 

This chapter presented a novel design space for end-user interaction with machine learning. In particular, 

we identified and discussed factors affecting the end-user interactive machine learning loop and outlined 

dimensions that have been explored in the design of existing systems and research.  

It should be noted that not all of our identified design factors must be considered when designing a new 

end-user interactive machine learning system. For example, the Evolutionary Needs design factor often 

only applies after model deployment (e.g., after a reusable model is developed and embedded in an 

application). Therefore, this design factor would not typically affect systems involving disposable models 

or models intended to be fixed once created (see our work with CueFlik in Chapter 4 for an example). 

Instead, this design space is intended to give researchers and developers insight into what factors might 

contribute to the success or failure of a new end-user interactive machine learning system and to assist 

and inspire them during design by outlining dimensions considered in previous systems. 

We also do not assign an importance value on any design factor presented in this chapter as this is 

generally dependent on domain specific factors affecting the context of use of the end-user interactive 

machine learning. However, we do encourage assessment of the impact of relevant design factors as well 

as the prioritization of these in order to help evaluate tradeoffs on potential design solutions. For example, 

a prioritization of reusability (i.e., the Intended Product of interaction) and model accuracy (i.e., 

Performance Requirements of the system) over the desired Interaction Focus might lead to a design that 

favors accurate assessment via detailed Feedback Granularity and control Guidance over a less intrusive 

or simplistic interaction.  

This design space was informed by many related works involving end-user interactive machine learning 

(as discussed in Chapter 2) as well as our own experiences designing end-user interactive machine 

learning systems (discussed in Chapters 4 to 6). However, as discussed in Chapter 2 on Related Work, 

many other fields have used or are starting to use some form of end-user interactive machine learning in 
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their systems and research (e.g., human-robot interaction, natural language processing, data mining). 

Therefore, we do not claim this design space to be exhaustive. On the contrary, examining other systems 

and research might reveal additional factors and dimensions that should be considered when designing 

end-user interactive machine learning systems.  

In addition, this design space was not developed via a formal analysis (e.g., we did not take a grounded 

theory approach). However, a formal examination might improve upon the design space as presented. For 

example, a systematic review of all related end-user interactive machine learning-based systems by 

multiple independent coders might reveal additional design factors or might eliminate, combine, and 

verify factors and dimensions presented here. We therefore advocate such an analysis as future work (see 

Chapter 7). 

Finally, as mentioned in the beginning of this chapter, this design space is intended to be descriptive, not 

prescriptive. In Chapter 7, we begin to hypothesize about how to design end-user interactive machine 

learning with respect to various design factors presented here and suggest opportunities for future 

research. 

  



45 

 

 

 

 

Chapter 4  
Web Image Classification with CueFlik 

The ubiquity of image capture devices along with the desire and ease of information sharing has led to an 

explosion of images available on the Web. However, searching and filtering through these vast image 

stores remains difficult because image search is still largely based on keywords, despite the fact that 

images typically lack the metadata to support keyword based sorting and searching. For example, Web 

image search is typically based on keywords taken from Web pages, photo sharing sites rely upon 

tagging, and personal photo software typically uses only automatically captured metadata (e.g., time-

stamps and GPS). Such information is insufficient for visually characterizing images (visually different 

images may have the same keywords, and visually similar images may have very different keywords). 

Consider a person who issues the query “beach” at the photo sharing site Flickr, hoping to find scenic 

pictures of natural beaches taken from above during the day. Such a query is well beyond the capabilities 

of widely-deployed systems, so the person will be left to manually sift through many irrelevant images 

(images of sunsets seen from the beach, people partying in beach houses, and hotel-lined resort beaches).  

To aid end-users in image search, experts and developers have manually created several image classifiers 

for use as automatic image filters in search engines. For example, many popular search engines such as 

Google.com and Bing.com provide preset filters for visual concepts such as photographs, clipart and 

faces. However, there is currently no scenic concept available for automatic image filtering in major 

search engines. Moreover, it is impossible for developers to anticipate all of the visual concepts people 

may ever be interested in searching for. 

CueFlik is an end-user interactive machine learning application that was developed to enable end-users to 

create reusable image classifiers themselves (Fogarty et al, 2008). These classifiers can then aid end-users 

during Web image search by re-ranking keyword-based search results according to the visual 

characteristics learned by the classifier. For example, after issuing a keyword query for “beach” in 
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CueFlik, a person can provide a few examples of the desired scenic images and a few examples of non-

scenic images in order to create a scenic classifier. Once trained, the classifier can then be applied to sort 

scenic images to the top. Furthermore, this scenic classifier can then be applied not only to “beach”, but 

also to other search queries such as “mountain”, “water”, or “sky”. Whenever applied, the scenic 

classifier helps to quickly find images with the same visual qualities as the examples used to train it. 

CueFlik became our first test bed for exploring new ways of designing the end-user interactive machine 

learning process. In this chapter, we first describe the state of the art and related work in image search and 

classification. Next, we summarize fundamental aspects of the CueFlik system itself. The details of the 

original CueFlik system can be found in Fogarty et al, 2008. We then discuss the design factors affecting 

end-user interaction with CueFlik with respect to our design space presented in Chapter 3. These design 

factors influenced our explorations in designing end-user interaction with CueFlik. These explorations 

targeted three important aspects of the interactive machine learning process: (1) illustrating the system’s 

current understanding of a learned concept (Amershi et al, 2009), (2) guiding end-users to select effective 

training examples (Amershi et al, 2009), and (3) enabling end-user exploration of multiple potential 

models (Amershi et al, 2010). We conclude with a summary of our work on designing end-user 

interaction with CueFlik. 

4.1 State of the Art in End-User Driven Image Search and Classification 

The current state of the art in image search on the Web mostly involves a combination of keyword search 

and filtering based on predefined concepts such as photos, faces or clipart. Many popular search engines 

have also recently started to provide a feature for finding similar images (e.g., the “Show similar images” 

option in Bing.com and “Similar” option in Google.com). This feature enables a person to pivot on a 

particular image to display additional images that are most similar to the pivot image (i.e., the nearest 

neighbors of that image). In contrast, CueFlik enables an end-user to train a reusable model for 

recognizing a class or type of image. 

More similar to CueFlik are technologies such as Apple’s iPhoto and Facebook’s tag suggestions feature 

which enable the training of face classifiers to aid in photo tagging (Mitchell, 2011; Breen, 2011). For 

example, Facebook’s tag suggestions feature learns from manually tagged faces to train face classifiers 

which it can then use to automatically suggest tags on unlabeled images. Tag suggestions are presented to 

the end-user (in groups of similar photos or by highlighting faces identified as the same person in a 

variety of photos), for verification before they are accepted as actual tags. Unlike these systems that only 

allow training of face recognizers, CueFlik enables end-users to train a wide variety of visual concepts. 
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Related work in the research literature includes Chen et al’s system (1999) for interactive clustering and 

browsing of images. This system is analogous to the Scatter/Gather system for interactive browsing of 

large document collections (e.g., Hearst et al, 1995; Cutting et al, 1992). In Chen et al’s system, the 

system automatically clusters images based on both image and text-based features and then presents those 

clusters to the end-user for perusal. As a person selects clusters of interest, the system will iteratively re-

cluster the images. This process continues until images of interest are found by the user. In contrast, 

CueFlik is intended for the creation of reusable image classifiers rather than as a search and browsing tool 

(although, it could potentially be used for search as well). 

Minka and Picard’s FourEyes system (1996) is more similar to CueFlik in that it enables iterative training 

of image classifiers. As with Chen et al’s system, FourEyes presents end-users with automatically 

generated clusters of images based on pre-defined combinations of features and then the user selects 

clusters of interest. However, unlike in Chen et al’s system, user feedback in FourEyes is used for feature 

selection and re-weighting in a classifier rather than for selecting data that will then be re-clustered. The 

FourEyes classifiers can then be used for automatically annotating images in a database. CueFlik differs 

from FourEyes in that it learns feature weights for image classifiers entirely from user interaction with its 

machine learning system, as opposed to requiring experts to pre-define feature combinations which 

FourEyes uses as a basis for feature selection and re-weighting. Furthermore, our work with CueFlik 

examines a variety of different techniques for displaying system feedback and obtaining end-user 

guidance during the interactive machine learning process. 

4.2 CueFlik 

CueFlik (Figure 4.1) enables end-users to interactively train visual concepts for use as reusable image 

classifiers. End-users train CueFlik by iteratively providing examples of images with and without the 

desired visual characteristics. During the iterative training process, CueFlik presents examples illustrating 

its current understanding of the desired concept and end-users use this presentation to decide how to 

further improve the system’s understanding. 

Each CueFlik concept is defined as a nearest-neighbor classifier. During the training process, CueFlik 

uses its current version of this classifier to re-rank a set of images according to their likelihood of 

membership in the positive class, defined as the distance to the nearest positive example divided by the 

sum of the distance to the nearest positive and negative example.  
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Note that CueFlik’s nearest-neighbor classifier requires a method for determining the distance between 

two images. In most nearest-neighbor applications, this distance metric is carefully tuned by an 

application developer based on their knowledge of the problem. In our case, however, we cannot know 

what notion of similarity will be appropriate for an end-user’s desired concept. CueFlik’s concept 

learning is therefore formulated as a metric learning problem, wherein the system uses the provided 

examples to learn a distance metric as a weighted sum of component distance metrics. CueFlik currently 

includes component metrics based on histograms of pixel hue, saturation, and luminosity, an edge 

histogram, a global shape histogram, and a texture histogram. Formally, CueFlik minimizes the function: 

 

where D(i, j) is the distance metric computed as a weighted sum of CueFlik’s component metrics. The 

first two terms correspond to within-class distances and favor minimizing distance between examples of 

the same class. The third considers all examples and favors maximum separation. The combination thus 
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Figure 4.1: CueFlik is an end-user interactive machine learning system that enables end-users to train 

visual concepts for use as reusable image classifiers. This figure shows CueFlik’s interface while an 

end-user trains a product photo visual concept. End-users train CueFlik by iteratively providing 

example images with and without the desired visual characteristics (left). CueFlik also presents 

examples illustrating its current understanding of the desired concept (right) and end-users use this 

presentation to decide how to proceed in training. 
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favors weights collapsing each class while maximizing distance between classes. Figure 4.2 illustrates a 

hypothetical space learned from two positive examples and one negative example. 

4.3 Design Factors Affecting End-User Interaction with CueFlik 

An end-user’s intended goal in interacting with CueFlik is to train a reusable classifier (i.e., the Intended 

Product of interaction is a reusable model). Therefore, we assume they will be willing to dedicate time 

and effort to training CueFlik to recognize an intended visual concept (i.e., interactive training is their 

primary Interaction Focus). However, we also aim to minimize the overall time required to accurately 

train CueFlik as end-users will likely get frustrated if the system takes too long to understand the end-

user’s intended concept.  

We expect that end-users will have a relatively clear visual concept in mind before their interaction with 

CueFlik begins (i.e., Concept Flexibility will be fixed). This visual concept is what they aim to train 

CueFlik to recognize. Also, because CueFlik models are intended for reuse, we assume that end-users will 

aim for accurate recognition of a concept (i.e., accuracy Performance Requirements are important). Note 

that this is a somewhat subjective factor which depends on where CueFlik models will actually be used 

(e.g., for low risk filtering in search engines versus object detection in camera-based applications). 

However, for our purposes we directed end-users to aim for accuracy during our evaluations of CueFlik in 

efforts to simulate these assumed Performance Requirements. 

We also assume that an end-user will interact with CueFlik in a desktop or laptop environment where they 

will have a relatively large Display Size available for communication with the system. 

CueFlik operates over images represented by purely image-based features (i.e., the Nature of the Data). 

Images are straightforward to visualize directly, however the individual features of an image are not (e.g., 

histograms of pixel hue and edge histograms). CueFlik is also designed to operate over a relatively small 

 

Figure 4.2: CueFlik learns a classifier by finding a distance metric that collapses positive 

and negative examples together while pushing apart the two classes. The learned distance 

metric is then used to rank unlabeled images by their proximity to positive examples. 
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and fixed set of images (i.e, the Data Source is static and Volume is small), on the order of 1000 images in 

our experiments. While this set is relatively small (in the big data sense), it still large enough to impact 

system feedback (as inspecting a set of images this size would still be tedious and time-consuming). 

CueFlik is intended for any end-user (i.e., Individual Differences should not play a role in how successful 

an end-user will be in training). In addition, end-users are not expected to have any Machine Learning 

Experience prior to interacting with CueFlik. End-users are also not expected to be familiar with the data 

set (i.e., they will likely not have previously seen any images over which CueFlik operates). However, 

because images are simple to inspect in relation to a person’s intended visual concept, they could be 

considered Domain Experts.  

Some design factors outlined in Chapter 3 were not applicable for our explorations with CueFlik. For 

example, because our explorations with CueFlik focused on end-user ability to train accurate and reusable 

models, we did not explore the Evolutionary Needs design factor. However, it should be noted that an 

end-user could continually adapt a trained model within the CueFlik environment. Similarly, while 

CueFlik classifiers could potentially be shared once created, Model Ownership was not the focus of our 

explorations. 

4.4 Illustrating the System’s Understanding While Soliciting Effective 

Training Examples 

A fundamental issue in end-user interactive machine learning is illustrating the system’s current 

understanding of a learned concept (i.e., System Feedback as discussed in Section 3.2.1). An effective 

illustration can help people assess the quality of the current concept and in turn inform whether and how 

they proceed in training. When the actual data over which a system operates is used to illustrate the 

system’s understanding (e.g., via some organization of Output examples or predictions, see Output Type 

of System Feedback in Section 3.2.1.), then that data can also be used as a source for future training 

examples (i.e., for End-User Control as discussed in Section 3.2.2). When this is the case, it is important 

that the data presented both effectively illustrates the system’s current understanding and also provides 

the user with informative examples to choose from in further guiding the system. 

Prior work with CueFlik compared two methods of illustrating the current version of a learned visual 

concept using Output predictions from the machine learning: the standard and the best and worst matches 

method (Fogarty et al, 2008). The standard method (originally termed the single panel method) provided 

access to the entire set of images, ranked by their likelihood of membership in the positive class (left in 

Figure 4.3). This is analogous to the traditional information retrieval technique of presenting a ranked list 
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of all of the data from which a person can select examples to label for relevance feedback. The best and 

worst matches method (originally termed the split panel method) instead showed only a small set of 

images split across two panels, a best match panel and a worst match panel (right in Figure 4.3). The best 

match panel showed a small number of high-certainty positive images (images extremely near positive 

training examples). The worst match panel showed a small number of high-certainty negative images 

(images extremely near negative training examples). 

A formal evaluation with real end-users found that participants using the best and worst matches 

presentation created CueFlik concepts of significantly higher quality, using significantly fewer training 

examples, and in significantly less time than participants using the standard method. One explanation for 

this improvement over the standard method is that best and worst matches better convey CueFlik’s 

current understanding by illustrating both the positive and negative regions of the space defined by the 

currently learned concept (as opposed to focusing on the positive region in a rank ordered list).  

However, best and worst matching examples are also extremely similar to already labeled training 

examples (as shown on the left in Figure 4.4). Therefore, they actually poorly illustrate the range of 

examples being classified as either positive or negative (right in Figure 4.4). In addition, end-user 

provided labels on best and worst matches provide the learning algorithm with little additional 

 

Figure 4.3: Prior work with CueFlik compared two methods of illustrating the current version of a 

learned visual concept. The standard method (left) presented examples ranked by their likelihood of 

membership to the positive class. The best and worst matches method (right) instead showed only a 

small set of the best and worst matching examples (i.e., examples predicted as positive or negative with 

high-certainty by CueFlik). An evaluation in prior work showed that the best and worst matches 

technique led end-users to train better models than the standard presentation. 
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information during the interactive training process because the system is already highly certain that these 

examples are either positive or negative.  

This analysis led us to explore new strategies for selecting examples that both provide the end-user with 

representative overviews of the positive and negative regions (to better illustrate the system’s current 

understanding) while also providing the machine learning algorithm with high-value examples during 

training. Therefore, in this exploration, we specifically examined new strategies for organizing images for 

the purposes of System Feedback (i.e., we experimented with several strategies for System Feedback on 

Output) as well as for guiding the end-user to select informative training examples (i.e., to help provide 

Guidance over End-User Control).  

In Section 4.4.1 we describe our new overview-based strategies and explain details about how we 

compute them. Then, in Sections 4.4.2 to 4.4.4, we present our evaluation of these strategies with real 

end-users and discuss the implications of our results. 

4.4.1 Overview-Based Example Selection 

Semi-Supervised Classification 

Before we can compute overviews of the positive and negative regions of the space defined by a learned 

concept, we must first detect these regions. That is, we must separate the unlabeled instances into positive 

and negative regions. A naïve approach would be to apply a nearest neighbor classifier with the current 

learned distance metric. The limitations of this can be seen in Figure 4.2, where some of the unlabeled 

instances are clearly in the negative cluster but are also closer to a labeled positive example than they are 

to any labeled negative example (those on the edge nearest the middle). Because we are focused on 

 

Figure 4.4: The best and worst matches technique for illustrating the currently learned concept 

presents an end-user with examples very close to already labeled training examples (left). Therefore, 

this technique poorly illustrates the range of examples being classified as either positive or negative by 

CueFlik’s currently learned model (as can be seen on the right in the figure above). 
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providing overviews of the positive and negative regions, it is important we preserve such relationships 

among unlabeled instances. 

Therefore, we detect the positive and negative regions by employing a semi-supervised classification 

method that exploits the distribution of both labeled and unlabeled data (Zhu, 2005). Motivated by graph-

based methods, we extend the nearest neighbor method to use the underlying data distribution. We create 

a k-nearest-neighbor graph in which each example (i.e., each image) is a vertex and edges are created for 

the k nearest neighbors of each example (we informally found good performance for many values of k, 

and arbitrarily set k to 10 in our evaluation). The weight of each such edge is the distance between the 

corresponding instances according to the current learned distance metric. We then use the graph to 

compute geodesic distance, the shortest weighted path in the k-nearest-neighbor graph, between labeled 

instances and each unlabeled instance. The positive region is then defined as all instances with a geodesic 

distance to a labeled positive training example that is less than their geodesic distance to a labeled 

negative example, and all other instances are included in the negative region. Because geodesic distance 

considers both labeled and unlabeled data, the resulting separation represents the underlying distribution 

more reliably than approaches that consider only labeled training examples. 

Global Overview Method 

Our first strategy for illustrating the system’s current understanding while soliciting high-value training 

examples presents a global overview, selecting examples that provide good coverage of the positive and 

negative regions. Figure 4.5 presents the intuition behind this, showing orange crosses illustrating ten 

instances selected to provide a global overview of the positive region. The same process is applied 

 

Figure 4.5 Our global overview technique for illustrating the currently learned concept selects 

examples that provide good coverage of the positive and negative classes (see selected examples 

marked by orange crosses on the left above). These examples are then presented to the end-user in 

CueFlik (right) to more accurately illustrate the range of examples being classified in each region. 
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separately to create overviews for the positive and negative regions. 

More specifically, we approach the problem of creating a global overview as a sensor-placement problem 

(Krause et al, 2008). Each example can be thought of as a possible sensor location where a probe could be 

placed to sense how well the concept being trained fits the surrounding space. Given a sensor budget (the 

number of examples we want to use to provide an overview), we choose a set that provides maximum 

information about the concept the end-user is attempting to train. Intuitively, our approach builds upon 

the observation that instances that are close to each other can be expected to share similar properties; thus 

our selection scheme utilizes the principle of maximizing the information theoretic criteria of mutual 

information. In particular, our aim is to select a subset of instances that share the highest mutual 

information with the rest of the high-dimensional space and is therefore most representative of the full set. 

However, selecting such a set is NP-complete, and a greedy and myopic selection procedure maximizing 

mutual information gain is the best possible approximation (Krause et al, 2008). We therefore employ this 

approach.  

Formally, we consider a Gaussian Process perspective with covariance function (alternatively, kernel 

function): 
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where G(i, j) is geodesic distance in a k-nearest-neighbor graph based on the current learned distance 

metric, and G2 is the square of each element in G. Because of the negative exponent, kij measures 

similarity between instances i and j and ranges from 0 (infinitely far apart) to 1 (at the same location). The 

matrix K therefore encodes similarity and how well information flows in the space. Including i in an 

overview provides a good representation of instances where kij is high, but is unrepresentative of the 

portion of the space where kij approaches zero.  

At each step in the greedy selection, given the existing set of selected instances S and unselected instances 

U, we select the instance that maximizes the gain in mutual information on the remainder of the 

unselected instances: 
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where KS,S is the similarity matrix among S, KU-i,U-i is the similarity matrix among U excluding i, and Ki,S, 

KS,i, Ki,U-i, and KU-i,i are each similarity vectors between i and the respective sets. The numerator 

characterizes the similarity of i to the previously selected examples and the denominator characterizes the 

similarity of i to other currently unselected examples. Choosing i that maximizes the ratio selects an 

example that is farthest from previously selected examples (most dissimilar to those previously selected) 

but also central to the unselected examples (most representative of those currently unselected). 

Projected Overview Method 

Our second strategy presents instances selected after they have been projected onto a set of principal 

dimensions corresponding to the major axes of variation in a dataset. Figure 4.6 illustrates this, showing 

two principal dimensions with five examples selected for each. This strategy was intended to convey 

variation along feature dimensions being classified as either positive or negative (i.e., System Feedback is 

on Features of the data). 

The approach is similar to Principal Component Analysis or Multi-Dimensional Scaling, except that we 

want a method that corresponds to the structure of the underlying data (for much the same reasons that we 

motivated semi-supervised classification). We therefore apply an ISOMAP-based non-linear projection 

technique (Tenenbaum et al, 2000), which selects principle dimensions using geodesic distance in a k-

nearest-neighbor graph. The process of selecting principal dimensions is identical to that used in Multi-

Dimensional Scaling, except using geodesic distance. 

 

Figure 4.6: Our projected overview technique for illustrating the currently learned concept selects 

examples along principal dimensions of each class (left). Examples selected along each dimension are 

displayed in rows in CueFlik’s interface (right). This technique is designed to convey variation along 

principal dimensions of a region. 
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After obtaining a set of principal dimensions, it might seem that we could apply the same sensor-

placement strategy from the previous section to each one-dimensional space to choose instances that 

illustrate that principal dimension. The problem with such an approach, however, is that it leaves selection 

completely unconstrained in the other dimensions. Although we are trying to select image instances to 

illustrate variation along a single principal dimension, examples selected in this way may do a poor job of 

conveying the intended variation because they may also vary in many other dimensions. We therefore 

derive a new scheme to select examples that provide coverage of a single principle dimension but also 

vary as little as possible in all of the other principal dimensions. We find i maximizing: 
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where K is the similarity matrix for the principal dimension for which we are currently selecting a set of 

representative examples and    is the similarity matrix for all of the other principal dimensions. The left 

term again prefers examples farthest from previously selected examples but also central to unselected 

examples in the current principal dimension. The right term prefers selected examples that are similar to 

each other in all other dimensions. Maximizing the product selects examples that span a particular 

dimension and are similar to each other in all other dimensions. In Figure 4.6, this additional term is 

responsible for the roughly collinear set of selected instances for each principal dimension. 

Using Neighbors to Illustrate Commonalities  

While our global and projected overviews present representative examples from both the positive and 

negative regions, they do not convey a notion of why the system may be classifying any given image as 

positive or negative. Therefore, to help illustrate the image characteristics influencing the system’s 

classifications, we experimented with pairing both our global and projected overview examples with their 

nearest neighbors (see Figure 4.7). Here, our intuition was that a group of similar (i.e., nearby) instances 

would help an end-user recognize their common characteristics and better interpret an overview (e.g., a 

group of images with a similar hue but varying in shape would indicate the system is being influenced by 

that particular hue). This strategy therefore conveys aspects of CueFlik’s underlying machine learning 

(i.e., System Feedback is on Logic). This strategy also encourages labeling entire groups of similar images 

as positive or negative in a single action (i.e., course-grained Control Granularity) for potentially faster 

training.  
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Downsampling for Performance 

Both overviews require inversion of similarity matrix K, an expensive operation. To maintain interactive 

speeds during the interactive machine learning process, we randomly downsample the number of 

instances in the positive and negative regions before creating overviews. The success of overviews in our 

evaluation shows this is not problematic, but it is likely important that this be random to preserve the 

original distribution. Parallel matrix inversion algorithms can leverage the increasing number of cores in a 

typical computer, and the degree of downsampling could be automatically adjusted to maintain 

responsiveness on a particular computer. Our evaluation fixed downsampling to 200 images in each of the 

positive and negative regions. In conditions that display neighbors, the neighbors are taken from the 

original full set of images. 

 

Figure 4.7: We experimented with pairing both our global and projected overview examples with their 

nearest neighbors (neighbor examples are shown as yellow triangles on the left above). For the global 

overview with neighbors technique (top right), CueFlik displays groups of examples (i.e., a selected 

global overview example along with its nearest neighbors) as rows in its interface. For the projected 

overview with neighbors technique (bottom right), CueFlik displays examples selected along each 

projection as rows as before, and displays groups (i.e., a selected example along with its single nearest 

neighbor) as columns along each row. Neighbors are designed to better convey why a selected example 

is being classified as positive or negative (by illustrating common visual characteristics in a group). 
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4.4.2 Evaluation 

We conducted a within-subjects experiment to evaluate our new overview-based strategies and compare 

them to the best performing strategy from previous work (i.e., the best and worst matches strategy 

presenting examples that the system is highly certain are either positive or negative). The experiment was 

a 2 (Global vs. Projected) × 2 (NoNeighbors vs. WithNeighbors) design with an additional 

BestAndWorstMatches baseline condition.  

Interface Conditions 

We tested a total of five interfaces in our experiment, intentionally holding constant the number of images 

displayed so results were not confounded by this factor: 

 Baseline/ BestAndWorstMatches. Presented the 42 highest-certainty images from both the positive 

and negative regions (see Figure 4.4). This strategy yielded the best results in prior work (Fogarty et 

al, 2008). 

 GlobalNoNeighbors. Selected 42 images from both the positive and negative regions using our global 

overview method (see Figure 4.5). 

 GlobalWithNeighbors. Selected 6 images from both the positive and negative regions using our 

global overview method, and presented each of them together with 6 neighbors (see top of Figure 

4.7). 

 ProjectedNoNeighbors. Projected both the positive and negative regions onto 6 principal dimensions 

accounting for the greatest variance, and selected 7 images to illustrate the variation in each principle 

dimension (see Figure 4.6). 

 ProjectedWithNeighbors. Projected both the positive and negative regions onto 3 principal 

dimensions accounting for the greatest variance, selected 7 images to illustrate the variation in each 

principle dimension, and presented each together with a single neighbor (see bottom of Figure 4.7). 

The BestAndWorstMatches and Global interfaces sorted images (and groups of images) in order of their 

certainty. The Projected interfaces sorted principal dimensions by the amount of variance explained by 

the dimension and then sorted images within each dimension into a spectrum. 

Tasks 

Participants trained two concepts per interface condition, using queries and corresponding concepts 

developed for the previous CueFlik evaluation (Fogarty et al, 2008). Each task consisted of approximately 
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1000 images corresponding to a query (e.g., “drink”, “sky”) and a set of ten target images printed on a 

sheet of paper and labeled with a target concept (e.g., “pictures with products on a white background”, 

“pictures with quiet scenery”). Participants were asked to create a concept such that the target images 

would be highly ranked if they were actually contained in the image set. Target images were originally 

well distributed across the ranking of the result set so that improvement in their ranking could be used as 

a measure of the quality of the trained concept. Importantly, the target images were filtered from the 

result set so that participants could not see how their current learned concept ranked the targets. 

Study Design and Procedure 

We ran participants in pairs, with each working on an identical 3.16 GHz quad-core Dell T5400, with 8 

GB of RAM and 512 MB Video, running Windows XP, and using 24” Dell monitors at a resolution of 

1920×1200.  

Before beginning, the experimenter demonstrated how to use CueFlik to build a simple rule favoring 

images with a vertical aspect ratio. We used the GlobalWithNeighbors condition for the demonstration so 

that we could explain that some interfaces would group images and that participants could guide the 

system by selecting individual images, ctrl-selecting multiple images, or selecting grouped images. 

Participants then practiced training a simple concept (images of maps within a query for “Seattle”) using 

the first interface condition that they were to interact with during the main portion of the study. 

Because we did not expect queries would lead directly to carryover effects, and because we wanted to 

ensure balanced coupling of interface conditions with queries, we fixed the order of queries in the 

experiment. We manually categorized target concepts as easy or difficult and then pseudo-randomly 

selected queries such that the first task in each interface condition would be an easy concept and the 

second task would be a difficult concept. The ordered query pairs were: “character” (clipart) and “sky” 

(quiet scenery), “drink” (product photo) and “bill” (portrait), “car” (product photo) and “crowded” 

(cluttered), “stereo” (product photo) and “disco” (brightly colored), and “tennis” (clipart) and “sea” 

(quiet scenery). 

The order of interface conditions was counterbalanced using a Latin square design. Each participant 

trained the pair of easy and difficult tasks before proceeding to the next interface. For each task, 

participants were given a printout containing the target images labeled with the target concept and clicked 

a button to begin. This was in order to simulate a defined visual concept that the user would be expected 

to have in mind when training CueFlik (Concept Flexibility). 
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Participants were told to perform each task as quickly and accurately as possible (to simulate expected 

accuracy Performance Requirements of the interaction process). They could also click on a button in the 

interface to advance to the next task if they felt their concept was not improving. We also imposed a 

maximum time limit of 4 minutes (indicated 20 seconds prior by a visual warning), after which the task 

would self-advance. After each task, a dialog appeared giving the participant’s final score on the task 

(computed as the final mean ranking of the targets in the image set, inverted and converted to a 

percentage).Participants were then given a new printout and began the next task. All actions were 

timestamped and logged. 

After each interface condition, participants were given a short questionnaire asking for their level of 

agreement (on a 5-point Likert scale) with five short statements regarding the interface they had just used. 

The questionnaire also asked the participants to briefly explain what they thought CueFlik had been doing 

each time they gave it more training examples, asked what they thought would help improve the interface 

they had just used, and asked for any other comments. A different short questionnaire at the end of the 

experiment asked for overall aspects of CueFlik that participants liked, disliked, or would like improved. 

Participants 

Twenty people (ten female, ages 20 to 48) volunteered. None were colorblind, and all had 20/20 or 

corrected to 20/20 vision. We attempted to recruit a balance of image search novices (performing no more 

than one image search every week) and image search experts (performing more than five searches 

weekly), obtaining seven self-reported novices and thirteen self-reported experts. The experiment lasted 

approximately 90 minutes, and participants were given a software gratuity for their time.  

4.4.3 Results 

We analyze our results using four dependent measures. Consistent with prior work (Fogarty et al, 2008), 

we define Score as the mean ranking of the target images by a learned concept. A lower score indicates a 

higher-quality concept that ranks targets closer to the top of the query results. We define Time starting 

from the button click that began each task. Because participants could label multiple images per action 

(e.g., by dragging grouped images or ctrl-selecting multiple images or groups), we define NumImages and 

NumActions as the number of images or actions used to train a concept. 

We perform all of our analyses using mixed-model analyses of variance. All of our models include 

Participant and Query as random effects. Modeling Participant accounts for any variation in individual 

performance, and modeling Query accounts for any difference in the difficulty of queries or their 

associated concepts as well as any learning, fatigue, or other potential carryover effects between tasks 
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(because our experiment fixed query order). Throughout this section, we report least-squared means 

obtained from our mixed-model analyses. 

BestAndWorstMatches versus Overview 

We first compared our baseline BestAndWorstMatches condition to all of our Overview methods (i.e., 

aggregating data for our four Overview methods). Mixed-model analyses reveal an apparent tradeoff: 

participants using Overview interfaces create concepts with a significantly better final Score (178 vs. 223, 

F1,170 = 8.86, p ≈ .003) but spend significantly more Time training their final concept (197 sec vs. 176 

sec, F1,170 = 7.72, p ≈ .006) in comparison to the BestAndWorstMatches interface. We found no 

difference in the NumImages or NumActions for the final concept.  

We observed during our experiments that participants often continued providing additional training 

examples even when they did not seem to be further improving a concept. This obviously adds to the 

Time, NumImages, and NumActions used to train a final concept, and we believed it could also negatively 

impact the Score of a final concept. We therefore further analyze the point where participants obtained 

their Best learned concept, defined as the first point at which their Score for a task was within 5% of the 

best Score they achieved at any point during that task. This metric detects both well-defined peaks as well 

as the beginning of gradual-sloping plateaus. Figure 4.8 plots this perspective, showing the average 

BestScore and BestTime for each interface and their corresponding FinalScore and FinalTime. For the 

sake of readability, Figure 4.8 plots Score Improvement, obtained by subtracting Score at each plot point 

from the initial Score. We now analyze these and the Decay from Best to Final (the time, images, and 

actions spent continuing to train a model after achieving BestScore as well as the resulting negative 

impact on FinalScore). 

Mixed-model analyses show that BestScore is significantly better for Overview interfaces than for 

BestAndWorstMatches (128 vs. 149, F1,170 = 6.52, p ≈ .012) and that participants reach their BestScore 

in the same amount of Time (108 sec vs. 120 sec, F1,170 = 1.11, p ≈ .294). We also saw a marginal effect 

on NumActions, with Overview interfaces requiring marginally less actions to reach the significantly 

better BestScore (6.39 vs. 8.63, F1,170 = 3.89, p ≈ .050). We found no difference in NumImages to 

BestScore. 

Examining the Decay from Best to Final, a mixed-model analysis shows Overview interfaces result in 

marginally less ScoreDecay than the BestAndWorstMatches interface (49 vs.74, F1,170 = 3.44, p ≈ .065), 

even though the Overview interfaces result in both greater DecayTime (89 sec vs. 56 sec, F1,170 = 9.92, p 
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≈ .002) and DecayActions (8.03 vs. 5.30, F1,170 = 7.49, p ≈ .007) than BestAndWorstMatches. We found 

no difference in the number of DecayImages. 

We defer discussion of freeform feedback, but analyses of our post-condition questionnaire Likert scales 

found no significant differences for BestAndWorstMatches versus Overview. 

Examining OverviewMethod and Neighbors 

To examine differences among our Overview interfaces, we exclude data from our baseline 

BestAndWorstMatches condition and conduct a series of mixed-model analyses with fixed effects 

OverviewMethod (Global vs. Projected), Neighbors (NoNeighbors vs. WithNeighbors), and their 

interaction OverviewMethod × Neighbors. In all cases, effects include either OverviewMethod or 

Neighbors, but not both and not their interaction. We therefore only report the effecting treatment (i.e., 

removing the non-effecting treatment and the interaction from each analysis). 

We first examined our Final measures, finding interfaces with NoNeighbors yielding a significantly better 

Final Score than interfaces WithNeighbors (159 vs. 197, F1,131 = 10.7, p ≈ .001). We also find that 

Global overviews led participants to spend significantly less Time training a Final concept than Projected 

 

Figure 4.8: Our Overview techniques led participants to train better Best models with 

CueFlik than the Best Matches technique (the best performing technique from prior work). 

In addition, our Overviews reduced the magnitude of Decay on our participants Final models. 
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overviews (187 sec vs. 206 sec, F1,130 = 10.1, p ≈ .002). There were no significant effects on 

NumImages or NumActions. 

Examining the Best concepts shows that interfaces with NoNeighbors result in a significantly better Best 

Score than WithNeighbors (119 vs. 138, F1,130 = 9.34, p ≈ .003). We also find that participants require 

marginally less time to reach their BestScore for interfaces WithNeighbors than with NoNeighbors (99 sec 

vs. 117 sec, F1,130 = 3.21, p ≈ .076). There were no significant effects on NumImages or NumActions. 

This pair of Neighbors results is shown in Figure 4.9, a close-up of the Best region from Figure 4.8. The 

finding that NoNeighbors interfaces yield a better BestScore than WithNeighbors, together with the 

finding that Overview interfaces yield a better BestScore than BestAndWorstMatches, implies a transitive 

relationship between NoNeighbor interfaces and BestAndWorstMatches. A mixed-model analysis of 

variance confirms NoNeighbors overviews result in a significantly better BestScore than 

BestAndWorstMatches  (119 vs. 149, F1,91 = 10.67, p ≈ .002). Similarly, a mixed-model analysis of 

variance shows WithNeighbors overviews require marginally less Time to reach a BestScore that is as 

good as the BestAndWorstMatches BestScore (99 sec vs. 120 sec, F1,91 = 2.97, p ≈ .088). 

 

Figure 4.9: Examining differences among our Overview interfaces. NoNeighbors interfaces led 

participants to select training examples that result in significantly better Best, while WithNeighbors 

interfaces result in marginally faster model training. 
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Examining the Decay from Best to Final, we find only that interfaces WithNeighbors resulted in 

marginally more DecayActions than interfaces with NoNeighbors (8.79 vs. 7.28, F1,129 = 2.91, p ≈ .091). 

There were no significant effects on ScoreDecay, DecayTime, or DecayImages.  

Analyses of our post-condition questionnaire Likert scales showed marginal effects of Neighbors. 

Participants agreed marginally more with “I felt confused or frustrated when trying to create rules” for 

the WithNeighbors interfaces than the NoNeighbors interfaces (2.5 vs. 2.1, F1,1 = 3.03, p ≈ .086) and 

marginally less with “I felt that this method was easy to use” (3.8 vs. 4.1, F1,1 = 2.80, p ≈ .098). 

4.4.4 Discussion and Future Work 

Our experimental results substantiate our hypothesis that providing an overview of positive and negative 

regions leads end-users to select better training examples when interacting with CueFlik. Using the same 

amount of Time, NumImages, and NumActions, participants using Overview interfaces trained Best 

concepts that were significantly better than those trained using the BestAndWorstMatches interface, the 

best-performing interface from prior work (Fogarty et al, 2008). Notably, this prior work shows that the 

split BestAndWorstMatches approach performs significantly better than presenting the full image set and 

found no effect of presenting uncertain images identified using active learning heuristics (Fogarty et al, 

2008). Furthermore, although participants using Overview interfaces spent significantly more Time and 

NumActions in the Decay from Best to Final, their ScoreDecay was still less than that of the 

BestAndWorstMatches interface. This lower rate of Decay per unit of Time and Actions provides further 

evidence that our Overview interfaces led participants to select better training examples (i.e., Overviews 

effectively Guided End-User Control). 

Our WithNeighbors overviews were intended to provide context in which end-users could better interpret 

why the system was classifying images as either positive or negative, as well as the possibility of quickly 

training a concept by labeling entire groups of similar images in one step. WithNeighbors overviews did 

require marginally less Time to obtain a BestScore as good as that for BestAndWorstMatches, but 

NoNeighbor interfaces had significantly better Scores for both their Best and Final concepts. A potential 

commonality here might be that the BestAndWorstMatches and WithNeighbors interfaces are less 

effective because they less effectively convey variation with a set of images. In addition to our 

performance analyses, this interpretation is supported by negative responses to WithNeighbors on our 

questionnaire scales and by participant feedback for these interfaces of the tone “there were nowhere near 

enough images – too many were duplicated” and “give more options of photos so filtering them will go 

faster/easier”. Showing variation or diversity has proven to be an effective feedback organization strategy 

in relevance feedback and recommender systems (see Section 3.2.1) as it enables end-user to more 
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quickly navigate to desired items and avoid undesired items. Our results suggest that variation is also 

useful for enabling end-users to find appropriate items for training a reusable model. 

Interestingly, the same emphasis on variation that leads end-users to choose better examples may also 

make it more difficult to assess how well the current version of a learned concept is performing (because 

the overview provides more insight into less central portions of a positive or negative region). This 

potentially suggests a separation of System Feedback from End-User Control mechanisms, however, 

further investigation into this hypothesis is necessary. 

All of the interfaces suffered from some Decay. Participant feedback included many comments of the 

form “it was weird, sometimes it would start out doing really well, but as I kept going it did worse” and 

“it is hard to know if more data is better as I should probably stop occasionally to see the results as I am 

going”. However, our Overview interfaces marginally reduced the impact of that decay on concept Score, 

but also had greater DecayTime and DecayActions. This problem led us to our second exploration with 

CueFlik examining the potential for end-user exploration and revision of the model space as will be 

discussed next. 

4.5 Examining Multiple Potential Models 

During our first exploration with CueFlik, we observed that participants sometimes continued providing 

training examples even when they did not seem to be further improving a concept. Participant feedback 

indicated that they often inadvertently directed CueFlik towards undesired behaviors (e.g., “it was weird, 

sometimes it would start out doing really well, but as I kept going it did worse”). We hypothesized that 

this was partly due to an implicit assumption in prior research about how people should interact with 

machine learning. Machine learning systems learn by generalizing from examples of classes of objects. 

Prior research has thus focused interaction on prompting a person to answer “what class is this object?” 

(e.g., Tong and Chang, 2001; MacKay, 1992). Such an approach permits simulated experiments with 

fully-labeled datasets. However, treating a person simply as an oracle neglects human ability to revise and 

experiment. We therefore hypothesized that a more effective approach may be asking a person to consider 

“how will different labels for these objects impact the system in relation to my goals?”  

Consider a person attempting to use CueFlik to train a “portrait” concept, as in Figure 4.10. Given a large 

and diverse set of images, the person may label images that are clearly portraits as positive and images 

that are clearly not portraits (e.g., line drawings) as negative. These are unambiguous given the person’s 

goals. However, they may also encounter images that are more ambiguous, such as a close up of a 

person’s face on a magazine cover (middle of Figure 4.10). This image features a prominent face, but also 
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a variety of surrounding graphics the person does not intend as part of the “portrait” concept. We propose 

that a person should be able to experiment with either potential labeling (i.e., positive or negative), 

compare the resulting concepts, and then decide upon a label that guides the system to learn the desired 

concept. 

Comparison of alternatives is a proven technique in human-computer interaction (e.g., Norman, 1988), 

but has not been explored in the context of people interacting with machine learning.  Deleting training 

examples, whether explicitly, by undo, or by rolling back to a previous model, is a poor fit from the 

machine learning perspective because it deletes information that has already been made available to the 

machine learning system. General machine learning tools support comparison of different model 

parameterizations for a given set of data (e.g., Weka, see Witten and Frank, 2005), but do not support 

comparing models as they evolve during interactive training. Furthermore, such tools target people skilled 

in statistical machine learning rather than the general end-user. 

Therefore, in our second investigation with CueFlik, we examined the impact of end-user comparison of 

multiple potential models during the interactive machine learning process. This exploration therefore 

examines Temporal aspects of the interactive machine learning process. Specifically, we examine 

techniques for realizing both the forward and backward Control Direction (see Section 3.2.3).  

 

Figure 4.10. Our second exploration with CueFlik examined end-user comparison of multiple potential 

models based on the insight that whether or not this magazine cover is a portrait may be less important 

than which resulting model is preferable. 
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In Section 4.5.1, we present our techniques for supporting model comparison and exploration during the 

interactive machine learning process. Then, in Section 4.5.2 to 4.5 we present our evaluation, results and 

discussion of these techniques. 

4.5.1 Supporting Model Comparison and Revision 

To enable model exploration, we augmented CueFlik with a history visualization showing recently 

explored models and support for revision. The history visualization (bottom, Figure 4.11) contains a plot 

of each model’s estimated quality, updated after every end-user interaction (e.g., labeling examples). 

Because there is no ground truth model (this is exactly what the system is trying to learn from the end-

user), model quality is estimated using leave-one-out-cross-validation on the current set of training 

examples (which represent a sample of the desired model behavior), with confidence intervals computed 

according to a binomial distribution (Kohavi, 1995). The history also shows snapshots of each model’s 

top ranked images for visual comparison. Therefore, the history shows feedback about CueFlik’s 

underlying model at different levels of Feedback Granularity (see Section 3.2.1). The history is intended 

to help people visually compare and assess the relative quality of the models they have trained. 

We provide three mechanisms for supporting revision of a person’s currently trained model. First, a 

person can undo or redo actions. Second, a person can remove labels of individual examples if they feel 

the example could be hurting the model’s performance. Finally, a person can click directly on a data point 

or snapshot in the history visualization to revert back to that model. The person can then continue 

providing examples from that stage, effectively enabling a simple branching mechanism for exploring 

multiple models. Conceptually, revision extends the traditional feedback loop by allowing a person to 

branch off and explore different alternatives as a part of determining how to best obtain their desired 

concept. That is, revision enables end-user control in both the forward and backward Control Direction 

(see Section 3.2.3). 

Both our history visualization and revision capabilities also provide an end-user with a Variety of System 

Feedback (see Section 3.2.1) and End-User Control (Section 3.2.2) mechanisms during the interactive 

machine learning process. 
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4.5.2 Evaluation 

We conducted an experiment to understand how people would use our history and revision enhancements 

to examine multiple potential models in CueFlik and to determine the effectiveness of a revision-based 

approach to interactively training a machine learning system.  

 

Figure 4.11: To enable end-user exploration of multiple potential models during the interactive 

machine learning process, we augmented CueFlik with a history visualization (bottom of figure) and 

support for revision. Revision mechanisms include undo and redo (top right), removal of labeled 

examples (left), and clicking directly on the history visualization to revert back to previous models 

(bottom of figure). 

 

Figure 4.12: Close-up of CueFlik’s history visualization. The history visualization includes snapshots of 

the top ranked images taken after every action (bottom) along with a plot of each models estimated 

quality (top). Quality estimates are computed using leave-one-out cross validation on labeled 

examples. 
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We used a 2 (History vs. No History) × 2 (Revision vs. No Revision) within-subjects design (with 

conditions counterbalanced using a Latin Square). We followed a study procedure analogous to our 

previous exploration (see Section 4.4.2). Again, participants were asked to train the system as accurately 

and quickly as possible and all actions in CueFlik were timestamped and logged. 

Nineteen participants (8 female, ages 18-45) volunteered for thus evaluation (a twentieth was unable to 

attend as scheduled) and were given a software gratuity for their time. 

4.5.3 Results 

Analysis of logged data from our experiment shows that participants made use of our revision 

mechanisms to explore multiple potential models in CueFlik. When the history visualization was 

available, participants made revisions in 68% of their tasks. To make revisions, participants used the 

undo/redo feature in 19% of tasks, the remove label feature in 5% of tasks, and the ability to rollback to 

previous models via the history in 42% of tasks. When the history visualization was not available, 

participants made revisions in 41% of tasks. Interestingly, their usage of the undo/redo and remove label 

features increased to 30% and 11%, respectively, likely because these were the only revision mechanisms 

that were available in this condition.  

For the tasks in which people made revisions when the history was available, 3% of their total actions 

(labeling examples and revision of any kind) were undo/redo actions, 1% were removing labels, and 9% 

were rolling back via the history. Without history, they relied more on the undo/redo and remove label 

features, using undo/redo in 11% of actions and removing labels in 3% of actions. This suggests 

participants were able to make progress by providing CueFlik with examples, but in some cases felt it 

necessary to explore or revert back to previous models. 

To analyze the impact of our revision and history enhancements on participant ability to effectively train a 

concept, we measured their Time to complete each task, the NumImages and NumActions taken to train 

their final models, and their final model Scores. As in our first evaluation, Score is defined as the mean 

ranking of the target images by the final learned concept, where a lower score indicates a higher-quality 

concept (i.e., targets are nearer the top of ranked examples). We perform these analyses using mixed-

model analyses of variance. All of our models include History (History vs. NoHistory), Revision 

(Revision vs. NoRevision), and their interaction History×Revision as fixed effects. To account for any 

variation in individual performance, query difficulty, or other carryover effects, we include Participant 

and Query as random effects.  
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Our analyses reveal that participants spent more Time creating models with History available (160 vs. 146 

seconds, F1,118=3.93, p = .049) and performed more NumActions with History than without (17.2 vs. 

15.1, F1,118 =4.55, p = .035). There was no effect of History on Score. Participants also performed more 

NumActions when Revision capabilities were enabled compared to NoRevision (17.2 vs. 15.2, 

F1,118=4.08, p = .046). There were no effects of Revision on Time or NumImages. In terms of final 

Scores, we found that participants created better models with Revision (211 vs. 242, F1,119 =3.57, p = 

.061). There were no interaction effects on any of our dependent measures. 

4.5.4 Discussion and Future Work 

Our evaluation shows that participants made use of revision mechanisms while interactively training a 

machine learning system and that this led them to achieve better final models in the same amount of time 

(even while performing more actions). Furthermore, being able to examine and revise actions is consistent 

with how people typically expect to interact with their applications. One participant commented that 

without revision “it felt a little like typing on a keyboard without a backspace key, like stabbing myself in 

my eye with a pen”. Therefore, this exploration provides evidence for the benefits of enabling end-users to 

both direct and revise their interactions with a machine learning system (i.e., interact in both the forwards 

and backwards Control Direction). This aspect of the Control Direction design dimension therefore 

warrants examination in other interactive machine learning-based systems.  

In contrast, our history visualization enhancement led participants to spend more time and perform more 

actions to train concepts without improving overall model quality. While some participants seemed to 

find the history helpful for examining different models (e.g., “[the visualization was] helpful to see if I 

was heading in the right direction”), observations during the study and other participant comments 

indicate that the plot was generally distracting (e.g., “I felt like I was concentrating too much on the line 

graph.”). Although the plot used an accepted machine learning metric to estimate model reliability (leave-

one out cross validation accuracy), end-users seemed to use it less like an approximation tool for helping 

them interpret model quality and more like a quantity to maximize (e.g., “I wanted the graph to go up 

instead of concentrating on [the ranked results]”). This underscores the impact of a person’s 

understanding (or lack thereof) of the capabilities and limitations of machine learning systems (i.e., 

Machine Learning Expertise). Future work might therefore examine alternative methods for conveying 

estimated quality or methods for improving a person’s mental model of the capabilities of the system (i.e., 

examining the Human Learning design dimension).  

Note that participants did use the history for reverting back to previous models, suggesting that the history 

may be beneficial as an additional facility for enabling revision (e.g., “[the history] helped because when 
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I started to get off track I could always go back and try a different route”). In addition, the fact that 

participants used all mechanisms for revision when they were available suggests a benefit of providing 

multiple methods of end-user control (i.e., Control Variety). However, we hypothesize that future designs 

should consider balancing Control Variety with Guidance as providing too many mechanisms for control 

might make it more difficult to select the most effective option. 

4.6 Summary 

Our explorations with CueFlik examined various design dimensions for supporting end-user interactive 

machine learning of accurate and reusable models. Because interactive machine learning is expected to be 

a person’s primary focus during interaction with CueFlik, we were able to present end-users with a 

variety of System Feedback information as well as End-User Control mechanisms.  

Our first exploration (Section 4.4) examined different techniques for organizing system Output 

predictions which in turn affected end-user selection of Input examples to further train the system. Our 

results show that our Overview-based organization technique improved end-user ability to train accurate 

models compared to the best performing technique from previous work (which was shown to perform 

better than the standard technique used in many recommender and relevance feedback systems of 

providing end-users with ranked lists of examples to convey system feedback). 

Our second exploration (Section 4.5) mainly experimented with the Temporal Control Direction design 

dimension by examining various techniques for providing end-user exploration of multiple potential 

models in CueFlik. Our evaluation results show that support for revision and exploration helped people 

train better CueFlik models than when revision was not available.  

Many of the design techniques we presented in this chapter are not necessarily specific to the image 

classification problem. For example, our Overview-based example selection technique and support for 

revision could potentially be used for other domains involving example based training. Therefore, 

important opportunities remain to examine and extend these strategies in the context of end-user 

interactive machine learning in other applications.  
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Chapter 5  
Access Control in Social Networks with ReGroup 

Social networking sites present a conflict between our desire to share our personal lives online and our 

concerns about personal privacy (Rosenblum, 2007; Sheehan, 2002; Gross and Acquisiti, 2005). Well-

known examples of privacy blunders include being fired for posting critical comments about a boss 

(Chen, 2010), public posting of intimate conversations (Parker, 2011), and oversharing embarrassing 

photos with potential employers (Korkki, 2010). Major sites have therefore begun advocating 

customizable friend groups as the latest tool to help control with whom we share (e.g., Ortutay, 2011 and 

Pogue, 2011).  

The currently-advocated approach to custom group creation is to pre-categorize friends in advance of 

sharing decisions. For example, Google+ friends must be manually organized into “Circles” before 

content can be shared with them (Pogue, 2011). Katango’s friend-sorting application (Kincaid, 2011) and 

Facebook’s “Smart Lists” feature (Ortutay, 2011) attempt to aid categorization by automatically 

generating potential groups based on pre-defined feature combinations assumed to reflect common 

categories of friends (e.g., listed workplace to represent people with whom you might work with and 

frequency of appearance in news feeds to represent people with whom you might be close). These 

generated groups can then be edited for correctness.  

Pre-defined groups may suffice for configuring filtered views of update streams and news feeds, but 

usable security recommendations argue that privacy controls for shared content should operate in context 

of that content (Lederer et al, 2004; Palen and Dourish, 2003; Smetters and Good, 2009; Whalen et al, 

2006). This is because prior research has shown that willingness to share varies widely based on both the 

recipients of shared content and on the content itself (Olsen et al, 2005). For example, a person’s 

definition of a “close friend” may change when sharing a personal photograph versus inviting people to a 

dinner party. Furthermore, Jones and O’Neill (2010) recently showed that groups created for generic 
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purposes only partially overlap with in-context decisions about sharing particular pieces of content. Ill-

conceived groupings can therefore lead to information leakage, over-restriction, or additional work to 

revise pre-defined groups in-context.  

In this chapter, we present ReGroup (Rapid and Explicit Grouping), a novel system that applies end-user 

interactive machine learning to help people create custom, on-demand groups in online social networks 

(Amershi et al, 2012). ReGroup works by observing a person’s normal interaction of adding members to 

a group while learning a probabilistic model of group membership which it uses to suggest both 

additional members and group characteristics for filtering a friend list.  

In the next sections, we first describe the state of the art and related work in access control and privacy in 

online social networks. Next, we discuss the design factors affecting end-user interaction with ReGroup. 

Then, we describe ReGroup and discuss the challenges we faced as a result of these identified factors in 

designing for effective end-user interaction with ReGroup’s machine learning, including (1) how to 

suggest people while preserving end-user control, (2) how to indirectly train an effective classifier, (3) 

how to deal with unlearnable groups, (4) how to integrate human knowledge through interaction with both 

examples and features. Finally we present an evaluation of ReGroup with real end-users and discuss the 

implications of ReGroup’s new approach to social access control. 

5.1 State of the Art in Social Access Control 

Privacy continues to be a concern in online social networks. Traditional mechanisms for specifying social 

network access control have been too inexpressive (e.g., allowing access to pre-defined lists of “Friends”, 

“Friends of Friends”, or “Everyone” in Facebook) or tedious and error-prone (e.g., manual selection from 

an alphabetical list of friends (Slee, 2007; Pachal, 2011; Siegler, 2010)). This has motivated research on 

alternative methods. For example, Toomim et al (2008) examine guard questions testing for shared 

knowledge and McCallum et al (2007) examine automatically inferring access control roles from email 

communication. 

Recent interest has developed in automatic detection of communities within social networks (e.g., Jones 

and O’Neill, 2010; Kincaid, 2011; MacLean et al, 2011; Ortutay, 2011; Bacon and Dewan; 2011). The 

assumption in such work is that detected communities will overlap a person’s eventual sharing needs. 

SocialFlows (MacLean et al, 2011) automatically creates hierarchical and potentially overlapping groups 

based on email communication. These groups can then be edited via direct manipulation and exported to 

Facebook and Gmail. Katango’s friend sorting application (Ortutaty, 2011) and Facebook’s Smart Lists 
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(Kincaid, 2011) feature also follow this model by providing a set of automatically generated friend groups 

which can then be manually edited for correctness.  

Jones and O’Neill (2010) recently evaluated the feasibility of automatically generated groups by 

comparing manually defined groups with automatically detected network clusters. They found their 

automatically-detected clusters only partially overlapped with manually-defined groups by 66.9% on 

average, suggesting a need for considerable manual refinement. After following up with their participants, 

they further discovered that predefined groups only partially correspond to in-context sharing decisions. 

For example, in-context sharing decisions only overlapped with manually defined groups by 77.8-90.8% 

and only overlapped with automatically generated groups by 33.8-76.1%. In contrast, our focus is on 

custom, on-demand group specification via end-user interactive machine learning and is therefore better 

aligned with usable security recommendations (Lederer et al, 2004; Palen and Dourish, 2003; Smetters 

and Good, 2009; Whalen et al, 2006).  

Prior work facilitating on-demand access control in social networks includes Gilbert and Karahalios’s 

research (2009) on modeling relationship or tie strength between individuals based on network structure, 

communication, and shared profile data. Predicted tie strength could potentially inform privacy levels for 

protected content. In contrast to modeling relationships, Bernstein et al’s FeedMe system (2010) models 

user interest using term-vector profiles in order to recommend people with which to share particular 

pieces of content. Our work differs from these in that ReGroup iteratively learns a model based on end-

user provided examples and feedback. By iteratively updating the underlying model, ReGroup can tailor 

its group member recommendations to the specific group a person is currently trying to create.  

More similar to our approach of defining groups by example is Gmail’s “Don’t forget Bob!” feature, 

which recommends additional email recipients based on a few seed contacts and a social graph 

constructed from previous email (Roth et al, 2010). However, ReGroup provides more control over its 

suggestions by continuing to iteratively update its underlying model based on further examples. 

Most similar to our work is Fang and LeFevre’s interactive machine learning-based privacy wizard for 

online social networks (2010). Their wizard employs active learning to construct a privacy classifier that 

maps item-friend pairs to allow or deny actions. ReGroup differs in that we use end-user interactive 

machine learning as a tool for helping people select members of a group rather than for creating a robust 

classifier. As a result, ReGroup’s design aims to balance end-user flexibility and control with speed as 

opposed to an active learning approach which prioritizes speed potentially at the expense of user 

experience (Baum and Lang, 1992). Furthermore, ReGroup preserves end-user desired control of group 
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membership (Gross and Acquisti, 2005) by requiring explicit approval of group members instead of 

delegating control to a classifier. 

5.2 Design Factors Affecting End-User Interaction with ReGroup 

Our objective with ReGroup is to help people create groups on-demand and in-context. Therefore, we 

envisioned ReGroup models as being disposable in that they would only be used to help a person create 

their current group (i.e., the Intended Product of the interaction is ReGroup’s group member predictions). 

Furthermore, new models would be required for each new group to make appropriate recommendations 

for a person’s in-context needs. In addition, a person’s primary goal in using ReGroup is to create a 

group. Therefore, their Interaction Focus is on the formation of a group, not the accurate training of a 

model. However, ReGroup still needs to learn an accurate model in order to make appropriate 

recommendations. This greatly impacts our design of ReGroup’s learning as will be discussed in the 

following sections. 

A person interacting with ReGroup is assumed to have a clear idea of the group they are trying to create 

(i.e., the intended concept is Well-Defined). However, a person may not be able to easily recall everyone 

they wish to add. This proves to be an important benefit of ReGroup’s recommendation ability (see 

Section 5.6 discussing the results of our evaluation of ReGroup). Also, because privacy is a primary 

concern in access control in social networks (e.g., sharing information with the wrong people should be 

avoided), we assume that it is worse to add incorrect people to a group than it is to forget to add someone. 

Therefore, we aim for precision over recall in ReGroup’s design (i.e., precision is an important 

Performance Requirement). We also aim for efficiency in creating groups (so as to provide an 

improvement over the state of the art technique of manual group creation). 

We assume a person will interact with ReGroup in a desktop or laptop environment where relatively large 

Display will be available to present system feedback. 

In terms of constraints that must be met in ReGoup’s design, ReGroup needs to operate over data 

available from a social network (e.g., demographic and communication information between friends). The 

Nature of the Data from a social network can often contain many missing or inaccurate fields because 

people often choose not to supply information, have strict privacy settings, or are inconsistent with their 

online activity. The features that are available about individual friends will, however, likely be familiar to 

a person as they reflect characteristics of those friends. The Data Source is assumed to be static and 

relatively small in Volume as the average person has approximately 230 friends in their online social 

networks (Goo, 2012).  
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We aim for ReGroup to be accessible by any user of a social network (i.e., no Machine Learning 

Experience is required and Individual Differences should not play a role). ReGroup users are also 

assumed to be Domain Experts as the data set they are interacting over are friends they are assumed to 

know to some degree. 

5.3 ReGroup 

ReGroup uses end-user interactive machine learning to help people create custom groups on demand in 

online social networks. In this section, we first illustrate with an example how a person can create a group 

with ReGroup. We then discuss the challenges inherent to interactive machine learning for group creation 

with respect to the design factors identified above and discuss how we address these in ReGroup. 

5.3.1 Example Usage Scenario 

Sally wants to advertise a confidential research talk to relevant friends at the University of Washington, 

so she decides to use ReGroup to create a private group for the advertisement. To start, she thinks of a 

friend she knows will be interested in the talk and searches for them by name (via a search box, left in 

Figure 5.1). She adds this friend by clicking on them in the display (right in Figure 5.1). ReGroup learns 

from this example and then tries to help Sally find other friends to include. It re-organizes her friend list 

such that friends who are more likely to be included in the group are sorted to the top of the display. Sally 

now sees several other friends who would be interested in the talk and adds them to her group all at once 

(by drag-selecting and then clicking the Add Selected button, right in Figure 5.1). With these additional 

examples, ReGroup learns more about the group being created and again reorganizes Sally’s friend list to 

help her find additional friends.  

As ReGroup learns about the group Sally is creating, it also presents relevant group characteristics she 

can use as filters. For example, given the currently selected friends, ReGroup believes Sally might want to 

include other people that live in Washington State, that tend to have several mutual friends with her, and 

that work at the University of Washington (top of Filters display on the left in Figure 5.1). Although not 

everybody Sally wants to include works at the University of Washington (e.g., some are students), she 

agrees that they all likely live in Washington. She clicks the “Current State: Washington” filter, which 

causes ReGroup to remove people who do not live in Washington from the ordered list of Sally’s friends. 

This helps Sally by reducing the number of people she must consider when finding friends to include in 

her group. 
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Sally continues interacting with ReGroup in this way, explicitly adding group members and filtering 

when necessary, until she has included everyone to whom she wants to advertise. 

5.3.2 Identifying Features 

ReGroup’s ability to suggest group members is powered by its interactive machine learning component. 

Machine learning works by discovering patterns in examples. A system is therefore strongly influenced 

by the quality of information contained in the representations of those examples (i.e., the features).  

We based our features on related work on social networks (e.g., Gilbert and Karahalios, 2009). We also 

conducted an online survey of Facebook and Google+ users to identify common groups we could support. 

We distributed the survey to our own Facebook and Google+ contacts, obtaining 69 responses 

(21 Facebook and 48 Google+) describing 244 custom groups (32 Facebook and 212 Google+). Facebook 

and Google+ advocate creating custom groups in advance, so the groups identified in our survey may not 

resemble groups people would create with an on-demand system (i.e., the composition of permanent 

 

Figure 5.1: ReGroup uses interactive machine learning to help people create custom, on-demand 

groups in online social networks. This figure shows important aspects of ReGroup’s interface. As 

a person selects group members (top), ReGroup suggests additional members by ordering that 

person’s remaining friends by their probability of being added to the current group (bottom 

right). ReGroup also suggests relevant group characteristics for use as filters to narrow down a 

friend list (see five suggested filters on the top left). 
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groups may differ from groups created in context). However, these gave a starting point from which to 

distill potential features. 

Table 5.1 presents the 18 features currently used by ReGroup, together with an example group the feature 

might help support. In this research, we endeavored to support common groups as part of demonstrating 

the potential for interactive machine learning in social access control. Our features are therefore meant to 

enable our research with ReGroup and are not intended to be exhaustive. 

5.3.3 Suggesting People while Preserving End-User Control 

ReGroup’s group member suggestions are realized by a Naïve Bayes classifier (Domingos and Pazzani, 

1997). Each friend is represented by a set of n feature-value pairs (Table 5.1). The probability of each 

friend being a member of the group   is then computed via the following Bayesian formulation: 

Table 5.1: This table lists the 18 features used by ReGroup’s interactive machine learning 

(left) along with examples of groups each feature may help support (right). 

Feature Description/Examples 

Gender, Age Range “Sorority friends”, “People my age” 

Family Member “People I’m related to” 

Home City, State and Country “Friends from my hometown” 

Current City, State, Country “Anyone I know who lives nearby” 

High School, College, 

Graduate School 
“Anyone from my department at school” 

Workplace “CoWorkers” 

Amount of Correspondence 

Number of Inbox, Outbox and Wall messages 

sent and received. “People I socialize with 

regularly” 

Recency of Correspondence 
Time since latest correspondence. “Friends I 

currently interact with” 

Friendship Duration 
Time since first correspondence [X]. “Friends 

I’ve known over 10 years” 

Number of Mutual Friends “My group of closest friends” 

Amount Seen Together 

Number of photos a person and friend are 

both tagged in and number of events in which 

both were invited. “People I see on a regular 

bases” 
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where  (            ) is the likelihood of a friend with feature values            being a member of  , 

 ( ) is the prior probability of any friend belonging to  , and the denominator is the probability of seeing 

the set of feature values in the data and serves as a normalizing constant.  

The Naïve Bayes assumption considers each feature to be conditionally independent given the class, 

reducing the likelihood computation to: 

 (            )  ∏ (    )

 

   

 

where the probability of a group member having a particular feature value,  (    )  can be estimated by a 

frequency count of the number of current group members having that feature value over the total number 

of current group members. We also use Laplace smoothing here to improve performance in the presence 

of limited training data.  

Although the independence assumption is often violated in real-world data, Naïve Bayes has been shown 

to work well in many practical applications (Domingos and Pazzani, 1997). Naïve Bayes also gracefully 

handles missing data and allows for a straightforward interpretation of features, both important design 

factors impacting ReGroup (i.e., Nature of the Data as discussed in Section 5.2). 

ReGroup’s classifier is re-trained every time a person adds friends to a group. ReGroup then reorders a 

person’s remaining friends according to who is most likely to also belong to the group as computed by the 

updated classifier. To preserve end-user control during interaction with ReGroup’s classifier, we also 

made the design decision that people must explicitly approve every group member before they are added 

to a group. This decision also better supports the precision Performance Requirement than having 

ReGroup automatically add suggested friends.  

5.3.4 Indirectly Training an Effective Classifier 

Effective training of machine learning systems requires both positive and negative examples. Therefore, a 

system focused on training an effective classifier will be designed to solicit explicit positive and negative 

examples (e.g., as in CueFlik discussed in Chapter 4). However, as discussed in Section 5.2, a person’s 

primary goal with ReGroup is to create a group (i.e., their Interaction Focus is on group creation). 

Therefore, the classifier is a disposable side effect, and a person is not concerned about its generalization 
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(i.e., the Intended Product of interaction is ReGroup’s group member predictions, not the model itself). 

This was confirmed in our study presented later in this chapter, wherein participants primarily scanned the 

interface for positive examples (we observed 2077 positive examples compared to only 89 negative 

examples). 

To mitigate the effects of people primarily providing positive examples, we designed ReGroup to obtain 

implicit negative examples during interaction process (see Implicit End-User Control in Section 3.2.2). 

When a person selects a group member from an ordered list of friends, ReGroup increases the probability 

that the skipped friends (i.e., friends preceding the selection in the ordered list) are not intended for the 

group. This is achieved by assigning the preceding friends implicit negative labels for use in ReGroup’s 

group membership computations. However, this heuristic is not always correct (e.g., a person’s gaze may 

be immediately drawn to a friend further down in the list, without having viewed or decided upon the 

preceding friends). Therefore, an implicit negative example contributes only a partial frequency count, α, 

in ReGroup’s computation of  (   ). ReGroup also still computes a group membership probability for 

each implicitly labeled friend and ranks them. We found that setting α=0.2*n, where n is the number of 

times a friend is skipped, worked well in practice. 

5.3.5 Minimizing Frustration Caused by Unlearnable Groups 

While experimenting with early versions of ReGroup, we observed that skipped friends would sometimes 

continue bubbling back up in the ordered list during group creation. Further examination revealed that this 

occurred when a person had all the characteristics of the group, as modeled by the classifier, but was 

skipped for some reason not captured by the system (e.g., a person planning a surprise party would 

obviously not invite the guest of honor). Implicit negative examples are not powerful enough to prevent 

repeated suggestion of such friends because of their high similarity to the many positive examples.  

This problem occurs in all machine learning systems when the hypothesis language is insufficiently 

expressive to model the true concept (i.e., the features in the data are not powerful enough to represent all 

concepts). For interactive machine learning in ReGroup, however, it can cause serious frustration as a 

person can quickly grow tired of repeatedly skipping the same friend. We addressed this with an explicit 

penalty term,  , in our group membership estimation as follows: 

 (   )   (   )     

where   is the number of times a friend was skipped. Our preliminary experiments showed that setting 

 =0.9 achieved the desired effect (i.e., reduced the likelihood of a skipped friend continuing to be highly 

ranked when ReGroup could not learn the true concept). 
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5.3.6 Decision-Theoretic Filter Suggestions 

Most end-user interactive machine learning systems focus only on interaction with examples. However, 

because we assume that people are familiar with characteristics of their friends (i.e., they are Domain 

Experts) and have knowledge about the shared properties of the groups they are trying to create (i.e., they 

have defined concepts in mind, Concept Flexibility), we hypothesized that enabling interaction with 

features of the machine learning might accelerate the group creation process. 

We chose to realize end-user interaction with features in ReGroup using faceted search (Hearst, 2006), a 

popular method for helping people find objects in collections (e.g., www.amazon.com, www.yelp.com). 

With faceted search, people find objects by filtering a collection based on feature values. ReGroup 

provides two ways for people to filter friends by feature values:  

 Via a suggested list of five top feature value filters (top of Filters display, left in Figure 5.1). 

 Via a static, hierarchical list of all feature value filters (bottom of Filters display, left in Figure 5.1).  

Previous methods for ordering filters have used metrics like hit count (e.g., Hearst, 2006), query 

keywords (e.g,. www.yelp.com), query logs and click through data (e.g., van Zwol et al, 2010), 

navigation cost (e.g., Li et al, 2010), or user models defined by explicit ratings of documents (e.g., Koren. 

2008). However, none of these are appropriate for our problem domain. We therefore formulate the 

problem decision-theoretically.  

Intuitively, we want ReGroup to suggest filters that will reduce effort required during group creation. A 

suggested filter must therefore represent the intended group well (i.e.,  (     ) must be high). However, 

this alone does not guarantee that a filter will prune unwanted friends. We therefore combine this with the 

expected utility of a filter as follows:  

 (  )   (     )                 (  )  

Here, we use information gain (Mitchell, 1997) to approximate the potential time savings of activating a 

filter. That is, features with high information gain tend to have a larger number of distinct feature values 

distributed across the data. Therefore, the higher the information gain of a feature, the more likely the 

corresponding filter will prune unwanted friends (i.e., by eliminating people with feature values different 

from the value represented by the filter). We use this formulation in choosing the top five filters to 

suggest, as well as in reordering feature values within the static list.     
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5.3.7 Gracefully Handling with Missing Data 

As discussed in the section on design factors affecting ReGroup (Section 5.2), missing data is rampant in 

the domain of online social networks. This can lead to unpredictable behavior in machine learning 

systems. The Naïve Bayes classifier gracefully handles missing data by ignoring features with missing 

values when computing group membership probabilities. However, missing data can still adversely 

impact the usefulness of ReGroup’s filters. For example, missing data could result in incorrectly filtered 

friends after applying a filter (e.g., when filtering on “Seattle”, a friend who lives in Seattle might be 

filtered because they have not supplied location information to their social networking site). Missing data 

could similarly result in incorrectly preserved friends after filtering (e.g., when filtering on “Seattle”, a 

friend who lives in Austin might be retained because they have not supplied any location information).  

ReGroup attempts to estimate missing values from the data by using a classifier to predict corresponding 

feature values conditioned on all other available features. Then, when applying a filter, ReGroup only 

eliminates friends who are guaranteed to be ineligible (i.e., have provided some value other than the filter 

value). For friends with missing data, ReGroup indicates its uncertainty in its data estimates by displaying 

a question mark under a person’s name in the interface (see Figure 5.1). If a person hovers over a question 

mark, ReGroup displays a tooltip showing its guess for the corresponding filter value for that friend. 

ReGroup thus avoids incorrectly eliminating friends while reducing irritation by displaying guesses for 

incorrectly retained friends.  

5.3.8 Implementation Details 

ReGroup is implemented using Facebook’s Application Platform (http://developers.facebook.com/) and a 

Firefox Greasemonkey script (http://www.greasespot.net/). ReGroup uses Facebook’s Application 

Platform to access relevant information about a person and their friends (pertaining to the 18 features used 

by ReGroup’s interactive machine learning listed in Table 5.1), while the Greasmonkey script allows 

ReGroup to run within a person’s own Facebook account.  

ReGroup is not publicly available (i.e., only people participating in our evaluation could access the 

Facebook Application and use the Greasemonkey script installed on the study computer in our lab). 

ReGroup accessed a participant’s Facebook information only after they provided explicit and informed 

consent and only for enabling its interface, staying within Facebook’s Terms of Service. 

5.4 Evaluation 

We conducted an evaluation to explore tradeoffs between end-user interactive machine learning for on-

demand custom group creation and Facebook’s current approach of allowing manual selection from an 

http://developers.facebook.com/


83 

 

 

 

alphabetical list or searching by name (Slee, 2007). We also wanted to compare a design including our 

feature-based interaction with a more typical design using only example-based interaction. That is, we 

particularly wanted to evaluate End-User Control techniques involving both Input examples and Features 

compared to control involving only Input examples. 

Interface Conditions 

We evaluated the following interfaces: 

 Alphabet. A person can scroll through an alphabetically ordered list of friends, selecting people as 

they scroll. They can also search by name. This is equivalent to Facebook’s current on-demand, 

custom group creation. 

 Example-Only. Each time a person adds a friend to the group, the list of friends is reordered based on 

ReGroup’s current estimation of group membership probability. People can also still search for 

friends by name. 

 Example-Attribute. The full ReGroup design, enhancing the Example-Only with our decision-

theoretic techniques for feature-based interaction. 

Study Design and Procedure 

We ran a within-subjects study, counterbalancing order of interface conditions using a Latin square 

design. At the beginning of the study, we told participants they would be testing new tools for helping 

people create custom groups in Facebook. We also explained the tools would work in their own Facebook 

accounts and that they would be testing the tools by creating groups of their own friends. At this point, 

participants were informed about what data would be accessed and how it would be used for our 

evaluation and to enable the interfaces during the study. We continued only after they provided written 

consent and granted our Facebook Application permissions to access their data.  

Next, prior to seeing any interface, participants were asked to think of six groups they could create during 

the study. We chose this approach to ensure groups were meaningful, as assigned groups may not 

correspond to distinctions a person would make among their friends (i.e., artificial groups would likely 

impact Concept Flexibility). When thinking of groups, participants were instructed to imagine they were 

about to post a new comment or share a new photo and only wanted to share it with a select group of 

friends. We also provided them with a list of ten example groups based on frequent responses to our 

online survey (e.g., “home town friends”, “close friends”). Participants were told they could select from 

this list, create a variation, or create entirely different groups.  
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Resulting groups ranged from typical (e.g., “Family”, “CoWorkers”) to more unique and nuanced (e.g., 

“Older Faculty Members”, “People I Care About”).We also asked participants to estimate group size 

(“small”, “medium” or “large”). Estimated size was used by the experimenter to balance groups with 

interface conditions. The experimenter sorted groups by estimated size and assigned them to conditions in 

order (thus evenly distributing groups across conditions by size).  

The experimenter then demonstrated ReGroup (using the full Example-Attribute interface) with the 

experimenter’s own Facebook account. Participants were told they would use three variations of the 

ReGroup interface. Before each condition, the participant practiced with the corresponding interface by 

creating a simple gender-based group. After the practice, participants created two of their groups, one at a 

time (they were not told which groups they would create until they were about to create them). To avoid 

exhausting participants, we limited each group to a maximum of 4 minutes (we did not inform 

participants of this limit, but simply asked them to stop if they reached it).  

All interface actions were time-stamped and logged. All participant information and logged data was 

stored anonymously, using unique identifiers, on a secure server accessible only by the researchers. After 

each group, participants completed a short questionnaire containing 5-point Likert scales (1=strongly 

disagree, 5=strongly agree) about the group they just created in the interface they just used (e.g., “I was 

happy with the group I just created”). At the end of the study, participants filled out a final questionnaire 

asking them to compare the different versions they tested (e.g., “Rank the versions to indicate which was 

your favorite”) and to comment on their overall experience. The study lasted 1 hour and participants were 

given a $20 Amazon gift certificate for their participation.  

Participants and Data 

Twelve people (four female, ranging in age from 18-34) were recruited for the study via a call for 

participation sent to relevant university mailing lists. As a result, all of our participants were technically 

savvy, but ranged from undergraduates to staff members from a variety of disciplines (e.g., Computer 

Science, Psychology, Design). We required participants have an active Facebook account they had used 

for at least one year with at least 100 friends. This was to help ensure participants would be active enough 

on Facebook for ReGroup to be potentially useful.  

As expected, participants varied in their composition and number of friends (mean=385.4, min=136, 

max=781) and their activity on Facebook (ranging from every day to a few times a month). Our 

participants also showed an average of 36.3% missing data with respect to ReGroup’s implemented 

features. 
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5.5 Results 

We performed all of our log and Likert scale data analyses using a nonparametric repeated measures 

analysis of variance, after aligning the data according to the aligned rank transform (Wobbrock et al, 

2011) to preserve interaction effects due to having participants create two groups per condition. We also 

performed post-hoc pairwise comparisons when a significant effect was observed. To analyze our final 

ranking questions, we used a randomization test of goodness-of-fit (Manly, 1997) which is more robust 

against smaller sample sizes than a standard Chi-Square test. For each test, we ran 10,000 Monte Carlo 

simulations. Table 5.2 and Table 5.3 show the per-condition means and standard deviations for all metrics 

used in our log and Likert scale data analyses, respectively. Table 5.3 also shows the number of 

Table 5.2: Mean and standard deviations of all metrics used in our log data analysis. Metrics 

with *’s indicate a significant effect was observed. 

 Alphabet 
Example-

Only 

Example-

Attribute 

Final Time* 163.0/63.4s 196.9/56.8s 216.0/35.8s 

Final Group Size 25.3/24.8 34.0/40.6 27.2/22.1 

Mean Select Time  8.6/3.9s 13.9/16.3s 15.9/16.5s 

SD Select Time* 9.4/6.5s 13.5/8.5s 19.7/15.1s 

Mean Position* 171.8/87.2 58.1/78.9 38.5/48.8 

SD Position* 101.7/56.1 41.1/33.3 40.5/41.1 

Single Selections 18.0/27.0 8.5/6.2 7.9/5.1 

Multi-Selections* 0.4/0.8 2.8/2.9 2.8/3.0 

Search-Selections 4.3/4.7 2.1/2.7 2.0/2.1 

Table 5.3: Likert mean and standard deviations (1=strongly disagree, 5=strongly agree) and 

ranking (number of participants) responses. Metrics with *’s indicate a significant effect was 

observed. 

 Alphabet 
Example-

Only 

Example-

Attribute 

Happiness 3.9/0.9 3.9/1.1 4.0/0.7 

Easiness* 2.6/1.0 3.2/1.2 3.3/0.8 

Quickness* 2.3/1.0 3.0/1.2 3.4/1.0 

Favorite* 1 0 11 

Best Helped* 3 1 8 
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participants choosing each condition for each of our ranking questions. We discuss all of our quantitative 

analyses in the context of our qualitative observations and feedback from participants. 

We analyze our study data in terms of the overall time taken and final group sizes, the speed and effort of 

selecting group members, and interface element usage. Note that we cannot evaluate group accuracy 

because no adequate ground truth is available or obtainable. Asking participants to re-create Facebook or 

Google+ groups could bias their notion of those groups. Alternatively, asking participants to verify group 

completeness would require exhaustive labeling (recognized as error-prone and analogous to list scrolling 

in the Alphabet condition).  

Final Times and Group Sizes 

Overall, participants created 72 groups with a total of 2077 friends. Examining the Final Time taken to 

create groups, our analysis shows a significant effect of interface condition (F2,55=6.95, p≈.002). Post-hoc 

pairwise analyses reveal that participants using the Alphabet interface took significantly less time to 

create groups than when using both the Example-Only (F1,55=5.93, p≈.018) and Example-Attribute 

(F1,55=13.4, p≈.0006) interfaces. There was no difference in Final Time between Example-Only and 

Example-Attribute conditions. One explanation for participants taking less time in the Alphabet condition 

is that both of the reordering conditions (Example-Only and Example-Attribute) required additional time 

to update the display when reordering or filtering. Another contributing factor could be that participants in 

the Alphabet condition often attempted to recall friends by name to avoid scrolling through their entire list 

of friends (e.g., “I was surprised how useless alphabetical ordering is, but keyword search was very 

useful”). This may have resulted in people forgetting to include some friends and stopping early. 

Interestingly, participants who resorted to scrolling through the full list often felt like they missed people 

(e.g., “umm, I guess that’s it”, “there’s probably more, but oh well”). One participant also explicitly 

commented “It’s too easy to forget about people when it’s ordered alphabetically.”  

Difficulty recalling friends in the Alphabet interface could have resulted in the shorter Final Times in that 

condition. However, one would then also expect to see larger Final Group Sizes in the reordering 

conditions because of their ability to surface relevant people, favoring recognition over recall (e.g., 

“Reordering makes it much faster than alphabetical because it reminds you of people without having to 

do an exhaustive search” and “Reordering helps me quickly pick friends in the first rows. Filters keep me 

from frequent scrolling”). However, our analysis showed no significant difference in Final Group Size 

across conditions. Further analysis showed the presence of a ceiling effect in all conditions, suggesting 

that participants were often cut short of the time they needed to complete their groups, which could 

account for the lack of difference in Final Group Size. This effect was also more pronounced in the 
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reordering conditions (16.7%, 33.3% and 45.8% of interactions were cut short in the Alphabet, Example-

Only, and Example-Attribute conditions, respectively). 

Speed and Effort in Selecting Group Members 

To compare the time between group member selections, we had to account for the fact that participants 

could add friends individually or in bulk (i.e., a multi-select action). In the case of a multi-select, we 

assigned the time between the action and the previous group member selection to the first friend in the 

multi-selection and assigned a time of zero to the rest of the friends. We did not see an effect of interface 

condition on Mean Select Time. We did however see a difference in SD Select Time (F2,55=7.78, p≈.001), 

with post-hoc pairwise comparisons showing significant or marginal differences in all cases: Alphabet 

was less than Example-Only (F1,55=2.83, p≈.09) and Example-Attribute (F1,55=15.5, p≈.0002), and 

Example-Only was less than Example-Attribute (F1,55=5.07, p≈.03).  

Although we did not see an effect of condition on Mean Select Time, the average Mean Select Time was 

smallest in Alphabet (see Table 5.2). This is partially an artifact of the time needed to update the display 

in the reordering conditions. In Example-Attribute, a display update can also occur as a result of a filtering 

action. As this confounds our analysis of Select Time, we decided to measure the position in the display of 

each group member immediately before selection as a proxy for effort level. That is, if position is low, a 

friend was closer to the top of the display and therefore required less effort to locate. We saw a significant 

effect of condition on Mean Position (F2,55=39.1, p≈.0001), with post-hoc pairwise comparisons showing 

that the Mean Position in Alphabet was significantly greater than in both Example-Only (F1,55=47.8, 

p≈.0001) and Example-Attribute (F1,55=67.7, p≈.0001). We also saw a significant difference in 

consistency of position as measured by SD Position (F2,55=19.6, p≈.0001), again with SD Position being 

significantly greater in Alphabet compared to both Example-Only (F1,55=2.81, p≈.0001) and Example-

Attribute (F1,55=31.8, p≈.0001). Lower positions indicate that people had to scroll less to search for 

friends in the reordering conditions because these conditions sorted potential group members closer to the 

top of the display for easy recognition and access. As expected, the Mean Position of selected friends in 

the Alphabet condition was roughly half, 44.6%, of the average number of Facebook friends of our 

participants and their SD Position was highly varied because group members were often evenly 

distributed throughout the entire alphabetical list.  

Our questionnaire results provide additional evidence of reduced effort in the reordering conditions. 

Analyses of our Likert scale questions show an effect of condition on perceived levels of Easiness 

(F2,55=4.33, p≈.018), with the both the Example-Only and Example-Attribute interfaces being perceived as 

easier to use than the Alphabet interface (F1,55=5.74, p≈.02 and F1,55=7.18, p≈.01, respectively). Similarly, 
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we found a significant effect of condition on perceived Quickness (F2,55=6.63, p≈.003) in creating groups, 

again with Example-Only and Example-Attribute interfaces being perceived as quicker than Alphabet 

(F1,55=5.80, p≈.02 and F1,55=12.74, p≈.0008, respectively). We saw no difference in terms of perceived 

Easiness or Quickness between Example-Only and Example-Attribute. Perceived Easiness and Quickness 

in the reordering conditions is likely due to these interfaces automatically surfacing relevant friends (e.g., 

“Sometimes it really looked as if the system was reading my mind!”). 

Behavioral Differences and Feature Usage 

In all interfaces, participants could select friends to include one at a time (Single Selections), several at a 

time (Multi-Selections), or by searching for them by name (Search-Selections). Our participants used all 

of these features in each condition, however they searched for friends by name and added friends one by 

one less often in the reordering conditions compared to the Alphabet condition. In addition, we found a 

significant effect of condition on the number of Multi-Selections (F2,55=10.9, p≈.0001) with the Example-

Only and Example-Attribute conditions both showing increased Multi-Selections compared to the 

Alphabet condition (F1,55=17.4, p≈.0001 and F1,55=15.4, p≈.0002, respectively). Increased 

Multi-Selections and fewer Single and Search-Selections in the reordering conditions is likely due to these 

interfaces making friends easier to add as a group by sorting relevant friends to the top of the display and 

filtering out irrelevant friends (in Example-Attribute).  

Our logged data also showed that participants used the suggested and static filters when they were 

available (in Example-Attribute). Participants selected Suggested Filters 1.9 times on average (SD=1.3), 

selected Static Filters 0.9 times on average (SD=1.3), and Unselected Filters that they had previously 

selected 2.3 times on average (SD=2.8). Our observations showed that participants sometimes used the 

filters in clever and unexpected ways, such as selecting them temporarily to find a certain set of friends 

and then unselecting them to find others. One participant commented that the “Filters helped me guide the 

tool”. Other comments indicate that the suggested filters served as an explanation of how the system was 

working (e.g., “The filters helped me understand what patterns the tool was discovering, and thus helped 

understand the tool’s behavior”). This indicates that along with helping people find group members, filter 

suggestions can also serve as a means for providing System Feedback on some of the Logic behind 

ReGroup’s interactive machine learning. 

5.6 Discussion and Future Work 

Although a significant majority of our participants rated the full ReGroup interface (i.e., Example-

Attribute) as their overall Favorite (χ2=18.5, p≈.0001) and felt that it Best Helped them create groups 

(χ
2
=6.5, p≈.04), participants did become frustrated when ReGroup was unable to model the group well, as 
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this essentially resulted in having to search through an unordered list for group members (e.g., “Ordering 

is useful for some lists, annoying for others” and “though I liked the filters, I think they didn’t work in 

some cases”). As with all machine learning based systems, the ability to model a concept is highly 

dependent upon the quality of the underlying data (e.g., the expressiveness of the features and the 

availability of data). Additional features should improve ReGroup’s performance in this regard, but 

missing data is still inherent to social networks. Future work might therefore aim to detect such cases and 

degrade gracefully (e.g., by suggesting an end-user resort to traditional methods for searching for group 

members). 

Interestingly, some participants could tell why ReGroup was not working well in some cases (e.g., 

“Groups that all have something in common that is tracked by Facebook (i.e., college) were easier to 

create than a group of people who are seemingly unrelated based on Facebook information.”). This 

indicates that people can understand certain aspects of interactive machine learning-based systems (in this 

case the impact of the data on a system’s capabilities). This therefore also suggests further exploration of 

the potential to exploit Human Learning to enable more effective use of these systems (e.g., by enabling 

end-users to determine when and interactive machine learning system can help versus when it is incapable 

of doing so). 

While ReGroup’s group member recommendations helped reduce the amount of effort required to find 

friends to add to a group, we observed that some people became frustrated with ReGroup’s shuffling of 

friends after every interaction. One participant commented that “reordering is often frustrating - 

occasionally the person I want to add disappears from the top of the suggestions list just because I 

clicked on someone first.” This suggests re-evaluation of our approach to the Timing of System Updates 

design dimension which we set to update after every user action. That is, because a person’s primary 

Interaction Focus with ReGroup is to create a group, the disruption caused by reordering too frequently 

(regardless of whether it accurately reflects an update to the system) could increase end-user frustration 

and therefore should be mitigated in the future. 

Overall, our evaluation showed that different interfaces worked well for different kinds of groups (e.g., 

“[My favorite version] depended on the group I was creating”). We observed, and participants reported, 

that the Alphabet condition appeared to work well for small groups whose members could be easily 

recalled by name (e.g., family members with the same name, co-authors of a paper, and members of a 

cross-country team). In contrast, the reordering conditions worked better for larger and more varied 

groups (e.g., childhood friends, local friends or friends from particular regions of the world, college 

friends, former and current colleagues, people in a particular field of work, and friends with a professional 
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relationship). One participant noted that for “most of the small groups that I wanted to create, I already 

knew the list in my head [so] alphabetical was easiest. However, for larger groups, reordering was most 

efficient.” A likely result of this is that we found no significant difference in terms of overall participant 

Happiness with their final groups created in each condition. Therefore, we advocate integrating 

ReGroup’s novel interactive machine learning techniques together with traditional methods used in online 

social networks to support a wider range of potential groups. 

Also, it should be noted that although a person’s primary focus in interacting with ReGroup is on creating 

groups rather than on training a robust classifier, a classifier as a by-product of group creation could 

enable automatic group maintenance as relationships change over time. Therefore, future work might 

evaluate the accuracy of ReGroup’s classifiers for group maintenance and design additional interaction 

techniques to support this task. 

5.7 Summary 

This chapter has presented ReGroup, a novel system we developed that employs end-user interactive 

machine learning to help people create custom groups on-demand in online social networks. Our work 

with ReGroup addressed several design challenges associated with interactive machine learning in the 

domain of social access control (e.g., dealing with missing data inherent to social networks). In addition, 

we specifically experimented with support for End-User Control over both Input examples (i.e., group 

members) and Features (i.e., filters), finding that people were able to and liked interacting with both 

Control Types because of their familiarity with the underlying data. 

Overall, our evaluation of ReGroup showed that different group creation techniques helped in creating 

different kinds of groups. For example, the traditional search-by-name approach is efficient for small, 

well-defined groups where members are easy to recall by name. ReGroup’s support for recognition over 

recall, embodied by both its group member and filter suggestions, helps for larger and more varied 

groups. Therefore, we advocate integrating ReGroup’s novel techniques together with traditional methods 

used in online social networks to support a wider range of potential groups. 
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Chapter 6  
Computer Network Alarm Triage With CueT 

Triaging alarms is the first line of defense for modern computer networks. Triage is the process by which 

the multitude of low-level alarms (e.g., high link utilization, fan failure) generated by individual devices 

are grouped and prioritized. These groups are then inspected by network engineers for problems with the 

network. Grouping related alarms, which likely stem from the same problem, helps engineers by reducing 

the number of issues they need to investigate and giving them a broader view of the problem than what an 

individual alarm provides. It is critical that triage is fast and accurate so engineers are not misled and 

problems can be identified and resolved quickly. 

Many automated systems have been developed for alarm triage (see Gardner and Harle, 1996 or Steinder 

and Sethi, 2005 for reviews). However, despite years of effort, these systems are never fully accurate due 

to the complexity of the problem. Large networks have thousands of diverse devices, each generating a 

different set of alarms. Further, because each network is different and the set of devices within a network 

changes with time, it is very challenging to develop systems that work across networks. Therefore, to 

cope with the inherent inaccuracy of automated systems, networks invariably employ human operators (so 

called “Tier 1” operators) for alarm triage. These operators are required to sift through the thousands of 

alarms per day that can be missed by automation. 

In this chapter, we explore a fundamentally different approach to alarm triage – end-user interactive 

machine learning. That is, because human operators need to be involved in the triage process anyway, we 

ask if we can learn from their actions and in turn use that learning to assist them. By learning 

continuously and in situ from operator actions, the assistance provided could better fit the network and its 

unique practices as well as evolve with the network.   
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This chapter is organized as follows. First we describe the state of the art and related work in alarm triage. 

Here, we also describe our own observations of the triage process in the network operations center of a 

large organization that we were working with. Then, we describe the design factors affecting end-user 

interaction with machine learning for interactive alarm triage. Next, we present CueT, a novel system we 

developed that uses interactive machine learning to help network operators during the triage process 

(Amershi et al, 2011). Unlike most prior interactive machine learning systems, CueT operates in a 

dynamic environment where the data and classes of interest are unknown a priori and evolve constantly. 

Therefore, in describing CueT, we also discuss the unique challenges of designing end-user interactive 

machine learning under these constraints. These challenges include: (1) making recommendations for a 

stream of data and constantly evolving groups, and (2) visualizing recommendation quality to reduce 

operator errors. We then present an evaluation of CueT with real network operators and discuss the results 

and implications for our findings. 

6.1 State of the Art in Alarm Triage 

Most research in network monitoring and alarm correlation has focused either on visualizations or 

automated solutions in isolation. Researchers have recently proposed visualization systems for network 

monitoring and diagnosis (e.g., Fisher et al, 2008, Lakkaraju et al, 2004). For example, Fisher et al’s 

Visual-I system (2008) uses visual grouping and scatterplots to highlight correlations between multiple 

devices and problems. While these systems leverage human visual and cognitive abilities to process data 

and look for patterns, our approach combines visualization and interactive machine learning in order to 

further reduce the cognitive effort of manually identifying patterns in large data sets. Helping automate 

pattern discovery can increase operator efficiency and accuracy, necessary for these time critical 

problems. 

Automated alarm correlation (also related to root cause analysis and fault localization) has long been an 

active area of research because of the complexity of the problem and the potential impact on the industry 

(Gardner and Harle, 1996; Steinder and Sethi, 2005). Most solutions to this problem have taken the form 

of expert defined rules or models (e.g., Appleby and Friedman, 2001; Brugnosi et al, 1993; Gardner and 

Harle, 1996; Jakobson and Weissman, 1993; Liu et al, 1999). Such approaches require manual 

configuration of rules which can be difficult to obtain, are not robust to new situations, and require 

frequent maintenance (Gardner and Harle, 1996; Steinder and Sethi, 2004). In contrast, our interactive 

machine learning approach can handle general alarm correlations that require alarm grouping based on 

similarity. 
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Some researchers have explored automatically learning rules or models from data that can then be used 

for automated alarm correlation and filtering (e.g., Klementtinen et al, 1999; Steinder and Sethi, 2004). 

However, most of these approaches require extensive training periods and must be retrained whenever the 

network topology changes (Steinder and Sethi, 2004). In contrast, our approach is based on a dynamically 

changing model that is constantly learning from human guidance. We argue that human input is critical 

during the alarm correlation process because of the inherently inconsistent and ambiguous nature of the 

problem (Gardner and Harle, 1996), which is a contributing factor to why alarm correlation is still an 

open area of research.  

While today’s commercial systems employ some of these previous techniques for alarm triage and 

filtering (e.g., EMC Ionix, HP OpenView, Yemini et al, 1996), most companies still require teams of Tier 

1 operators to manually triage the thousands of remaining alarms unhandled by these existing systems. 

We visited the network operations center of one such large organization on multiple occasions to 

understand current triage practices with one of these commercial systems. We first talked informally with 

the center’s managers to get a broad understanding of the process. We then closely observed two Tier 1 

operators (1 female) for an hour each as they were triaging alarms using the current tool employed at this 

network operations center, and asked them questions during and after the observations.  

The current tool used at the network operations center that we studied is a combination of two pieces: (1) 

an automated rule-based engine that selects alarms to be shown to Tier 1 operators and labels those 

alarms (e.g., alarm severity level) and (2) a table-based UI for operators to triage alarms using labels and 

other features (see Figure 6.1).  

Our investigation revealed three main failings of the current process. First, the rule-based engine is hard 

to configure and keep up-to-date as the network evolves. As a result, thousands of alarms must still be 

manually triaged by operators every day. While triaging, the operators largely ignored the tool’s output, 

except for some basic information like alarm severity that is used for prioritizing which alarm to focus on 

next. Much of this information is not computed by the tool but is directly configured by network 

managers. 

Second, the triage process is highly manual in part because network managers often have specific 

instructions on how operators should temporarily handle certain types of alarms. These instructions are 

based on how managers expect the network to behave as they are making changes behind the scenes. 

They are typically conveyed in a formal document known as a whiteboard which is updated daily and 

which operators are instructed to review before beginning a new workday. Such special case instructions 
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make it hard to develop tools for assisting with alarm triage. This difficulty applies not only to the 

traditional methods, but also to our approach as short-term special cases create noise in our learning 

model. 

Third, the table-based visualization for the current triage process is rudimentary and inefficient. The 

alarms are presented as rows in a table that can be ordered by alarm attributes (e.g., severity). Another 

table in a different window shows the recently created alarm groups. The operators need to switch 

between these two windows to handle an alarm.  

In addition, we learned that some alarm attributes are more important than others for the triage process. 

Understanding the importance of alarm attributes helps us not only choose the right features for the 

machine learning algorithm but also design appropriate visual representations (see Section 6.3 below).  

Although we studied only one network in detail, our conversations with network managers (who have a 

broader view of the industry and have also worked with other networks) confirm that the processes at this 

network are similar to those of many others in operation today.  

 

 

Figure 6.1: Current state-of-the-art tool used for displaying computer network alarms in a network 

operations center we observed. Each network alarm is presented as a row in the table and is color 

coded by severity. A separate tool with a similar interface is used for displaying tickets. 



95 

 

 

 

6.2 Design Factors Affecting End-User Interaction with CueT 

The alarm triage process involves grouping and prioritizing a continuous stream of alarms. Moreover, 

new problems are constantly arising manifesting in new groups that must be created and are unknown a 

priori. Therefore, CueT’s underlying model must continually evolve to handle these new problems (i.e., 

the Evolutionary Needs of the model are significant). 

In addition, it is assumed that a network operator’s primary goal in using CueT is to accurately triage 

alarms. That is, the operator’s Interaction Focus is on making triage decisions on each incoming alarm (as 

opposed to a focus on training an accurate model). In addition, triage accuracy and speed are vital in the 

alarm triage process (i.e., CueT’s Performance Requirements include both accuracy and speed). 

Therefore, CueT must be designed to help operators make accurate triage decisions quickly. 

As with our previous systems, we expect operators to interact with CueT via a desktop or laptop 

environment with a large Display Size available for communication. 

CueT must operate over streaming network data (i.e., the Data Source is streaming). In addition, the 

Nature of network data yields a variety of heterogeneous features pertaining to information available from 

network alarms. These features include the device name, event type, and alarm severity (as discussed 

further in our presentation of CueT). The Volume of alarms that the system and operator must handle is 

also relatively large (on the order of 1000s of alarms per day). 

The operators themselves are not expected to have any Machine Learning Experience but do have 

Domain Expertise about computer networks in general, the overall configuration of their particular 

network, and the alarm triage process. These operators are also triaging as part of their employment and 

are being paid for their time (i.e., they may not be intrinsically Motivated to accurately or efficiently 

triage). 

It should be noted that many operators might be triaging alarms at any given time. However, we did not 

consider the Collaboration factor in designing CueT, leaving design innovation for groups of operators as 

future work. 

6.3 CueT 

CueT consists of two complementary components: (1) a stream-based interactive machine learning engine 

for making triage recommendations and (2) an interface to assist operators in inspecting and interpreting 

those recommendations and feeding operator actions back into the learning engine. We will refer to the 

alarm currently being triaged as the “incoming alarm,” a group of one or more related alarms that have 
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already been triaged as a “ticket,” and the current set of tickets that are being used for recommendations 

(and have not been discarded yet) as the “working set of tickets.” 

6.3.1 Stream-Based Interactive Machine Learning  

One key element of CueT’s interaction scenario is that it resides in a dynamic environment, where both 

the alarms and tickets being generated are constantly changing. Thus, our scenario is fairly different than 

the classical machine learning setting, where the classes are fixed and known a priori and the classifier 

operates in an assumed static environment. We tackle these challenges due to the dynamic environment 

and ever evolving set of classes (i.e., the working set of tickets) in CueT’s design. 

Our approach builds on nearest neighbor classification. In particular, CueT provides triage 

recommendations for an incoming alarm via a nearest-neighbor strategy that orders the working set of 

tickets by their similarity to that alarm. Similarity is measured using a distance function that can adapt 

based on operator actions. 

Although the nearest neighbor strategy can help match incoming alarms with existing tickets, there is no 

easy way to identify that a new ticket needs to be spawned. We extend the classification module to 

include a mechanism for recommending when an incoming alarm should spawn a new ticket and include 

this recommendation in CueT’s ordered list of recommendations.  

New tickets are interactively spawned and added to the working set when a human operator judges that an 

incoming alarm is unrelated to any existing ticket (i.e., is part of a new problem). Additionally, old tickets 

are dynamically discarded from the working set over time, simulating the effect of problems represented 

by those tickets as being resolved. This also serves to reduce interference among existing tickets in the 

working set. Therefore, an operator has control over both Input examples (i.e., alarms) and Classes (i.e., 

tickets) in CueT’s interactive machine learning. 

Recommending Existing Tickets 

CueT measures similarity between the incoming alarm and a ticket in the working set of tickets by 

computing the average distance between the incoming alarm and each alarm in the ticket. CueT then 

orders the tickets by their average distance to the incoming alarm and uses this ordering of tickets in its 

display of triage recommendations (discussed in Section 6.3.2). 

Distance between alarms is measured using 17 individual distance metrics, each of which represents 

alarm similarity along a feature attribute. These 17 distance metrics were found to be relevant and 
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important for triage during our initial observations of Tier 1 operators (see Section 6.1). The operators 

typically inspect the following alarm attributes:  

 Device Name (e.g., ab1-cd2-ef3-gh4) 

 Device Type (e.g., Router, Switch) 

 Element Type (device part needing attention, e.g., Port) 

 Name (includes Device Name and additional information such as the Element that needs attention, 

e.g., Port-ab1-cd2-ef3-gh4) 

 Severity (an integer ranging from 1 to 5 representing highest to lowest priority, respectively) 

 Event Name (e.g., Fan-3-Failed, High Utilization) 

From these attributes, CueT computes 17 string-based distance metrics described below. Our simulations 

described below show that these string-based distance metrics effectively capture an operator’s practice of 

visually comparing the attribute values of alarms. Further, because large organizations often follow 

standard device naming conventions (e.g., the “ab1” in ab1-cd2-ef3-gh4 typically indicates the location of 

the device (Spring et al, 2002)), some of our string-based metrics implicitly encode topological 

information about the underlying network structure (e.g., device ab1* is likely to be near device ab2*). If 

organizations do not include topological information in device names, such information is typically 

available in network configuration data, from where it could be easily extracted and used to compute the 

following metrics. 

For alarm attributes Device Name, Name, and Event Name, as well as the four standard component parts 

of the Device Name (e.g., ab1-cd2-ef3-gh4 is divided into ab1, cd2, ef3, and gh4), CueT computes two 

string-based distance metrics. These include the edit distance and the longest common substring (LCS) 

converted to a distance according to: 

di,j = maxlength (i, j) − si,j 

where si,j is the length of the longest common substring between strings i and j. This amounts to fourteen 

metrics in total. 

We include both edit distance and LCS because they have complementary strengths. For example, LCS is 

a good measure for strings that encode location. Devices “ab1*” and “ac1*” are likely in different 
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locations. For these, LCS distance (which is 2) better captures that these are different than edit distance 

(which is 1). As described below, our method of learning the combination of these individual metrics will 

reduce the effect of any irrelevant metric (edit distance in this case). 

For alarm attributes Device Type, Element Type, and Severity, CueT computes one string matching 

distance metric each (amounting to three metrics in total). This distance metric returns 0 if the attribute 

values are the same or 1 if they are different. 

We combine these 17 distance metrics using Mahalanobis distance, which parameterizes distance 

between any alarms u and v, represented as d dimensional feature vectors, by a d×d positive definite 

covariance matrix A: 

Distance (u, v) = (u - v)
T A (u - v) 

This function effectively weights the 17 distances by the matrix A, which encodes their relative 

importance for alarm classification and the correlations between them. 

We learn the parameters of the matrix A from operators using an online metric learning algorithm, 

originally derived for nearest neighbor classification in static environments (Jain et al, 2008). We extend 

the procedure to dynamic scenarios where both the number and type of classes are varying. In particular, 

given a stream of alarms, each labeled with the ticket that it was triaged into, we incrementally update the 

matrix A by encoding the labels as constraints indicating that the incoming alarm and each alarm in the 

target ticket should be near each other. When an alarm spawns a new ticket, no update is made to the 

matrix A (however, this does change the working set of tickets). To learn the parameters of A, we 

initialize it to the identity matrix (and set the regularization parameter η to .001) and then update the 

parameters as we observe triage actions. We continue this process for N alarms, where N is determined 

empirically from our simulation experiments described below, and then fix the distance function. The 

final covariance matrix AN is used in making recommendations for the remaining data. 

Intuitively, the parameters learned for the matrix A reflect the importance and correlations among the 

individual distance metrics best explaining the human operator’s actions. The advantage of learning the 

matrix A from data is that it does not require expert tuning, which can be difficult to obtain and does not 

evolve with the network (Gardner and Harle, 1996; Steinder and Sethi, 2004).   

Recommending Starting a New Ticket 

CueT maintains a threshold distance for starting a new ticket based on information about when operators 

spawn new tickets. When an operator spawns a new ticket for an incoming alarm, the distance between 
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this alarm and the nearest ticket in the working set is stored. We experimented with several strategies for 

computing the threshold distance from these stored distances. They include taking the minimum and 

average over various window sizes of the most recently stored distances (including a window of all the 

distances). We found that taking the minimum within a window of the five most recent stored distances 

performs best. That a small window size performs better than larger sizes likely stems from the fact that 

thresholds need to reflect the dynamically changing distribution of tickets in the metric space. 

For each incoming alarm, CueT computes the latest threshold distance using the strategy above and 

inserts a “start new ticket” recommendation into its ordered list of recommendations according to this 

distance. 

Spawning New Tickets and Discarding Old Tickets 

When an operator determines that an incoming alarm is part of a new problem, a new ticket is created and 

added to the working set. CueT also automatically discards old tickets, simulating the resolution of 

problems. We use a windowing mechanism to discard old tickets. In particular, we fix the window size to 

N, which is the number of alarms used for learning our covariance matrix. Therefore, any time the number 

of unique alarms in the working set of tickets exceeds N, we remove the oldest ticket in the set. Spawning 

new tickets and discarding old ones means that the working set of tickets used for machine learning based 

recommendations is continually evolving as an operator interacts with CueT. 

Simulation Experiments 

In this section, we present the results of experiments that simulate human interaction with CueT’s 

interactive machine learning component. For our experiments, we obtained alarm triage data from a 

network operations center at a large organization that monitors a network with approximately 15,000 

devices. This data was labeled by Tier 1 operators through their manual triage process. To evaluate 

CueT’s interactive machine learning component over a long period, we use data spread across several 

months. In particular, we use data from the first day of each month between January and August 2010 

(inclusive) except for May and July when the network had recording problems. This data set contains 

338,218 alarms of which 8,719 are unique and are mapped to 1,281 unique tickets. 

To simulate human interaction and compute the accuracy of CueT’s learning, we processed alarms in the 

data in the order in which they occurred. For each alarm, we first compute an ordered list of 

recommendations that we use to measure accuracy. Then, we obtain the actual label for the alarm and 

either add the alarm to an existing ticket or create a new ticket. If we add the incoming alarm to an 

existing ticket and we have observed fewer than N alarms, we update AN as described previously. If we 
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start a new ticket, we update the threshold distance for starting new tickets and update the working set of 

tickets. Finally, if we determine that the working set has exceeded the window size of N alarms, we 

discard the oldest ticket in the set. 

We measure recommendation accuracy for each incoming alarm by comparing the recommendations to 

the ground truth (all of the alarm triage data observed before reaching the current incoming alarm, 

without discarding any tickets). There are two types of correct recommendations: 

 Correct New Ticket. CueT recommends a new ticket be created and the alarm’s label shows that a 

human operator actually created a new ticket for that alarm. 

 Correct Existing Ticket. CueT recommends an existing ticket and that ticket is the alarm’s actual 

label. 

If neither of these is true, we record the recommendation as incorrect. Note that because the nature of the 

problem we are dealing with requires that we operate in a moving window, some of our errors may be the 

result of discarding tickets (e.g., recommending a new ticket when the correct ticket is in the ground truth 

but no longer exists in the working set of tickets). 

Because multiple tickets may be the same distance away from an incoming alarm, we compute 

recommendation accuracy as whether or not the alarm’s actual label appeared within the set of ticket 

recommendations a given distance away from the alarm or closer. For example, if CueT predicts two 

different ticket recommendations as being equally closest to the incoming alarm (“Top 1 distance” away) 

and if the correct label is one of the two tickets then we consider this a correct recommendation at the Top 

1 distance. Similarly, a recommendation is correct at the Top 2 distance if the correct label is within the 

set of tickets recommended at the Top 2 distance away from the incoming alarm or less (e.g., at the Top 1 

distance). We experimented with accuracy within the Top 1, 2, 3 and 4 distances from the incoming 

alarm. 

We ran ten simulations over our data, varying the number of alarms N used in both learning the distance 

function parameters AN as well as in the window size for discarding old tickets. Figure 6.2 (left) illustrates 

CueT’s accuracy within the set of tickets recommended at the Top 1, 2, 3, and 4 distances from incoming 

alarms averaged over all the simulation trials. Figure 6.2 (middle and right) also shows the average 

number and percentage of tickets (out of N) presented at each of the Top 1 to 4 distances. From these 

results it appears that presenting tickets in the Top 3 distances achieves a good balance between relatively 

high accuracy and a small number of tickets being presented. Therefore, for our user study described 
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later, we fix CueT to recommend tickets for an incoming alarm within the Top 3 distances from that 

alarm. 

CueT’s accuracy at the Top 3 distances over the various values of N that we experimented with (10, 20, 

30, 40, 50, 100, 150, 200, 250, and 300) appears to peak at an N value of 30 alarms (see Figure 6.3). 

Therefore, for our user study, we set N=30 in our interactive machine learning engine. 

6.3.2 Visualizing Recommendations in CueT’s Interface 

As illustrated in Figure 6.4, CueT’s interface consists of two main views: the Alarm View on the right 

displays alarms as they stream in from the network and the Ticket View on the left displays CueT’s ticket 

recommendations.  

 

Figure 6.2: Results from our simulated experiments evaluating CueT’s interactive machine learning 

component. On the left is CueT’s accuracy within the set of tickets recommended within the Top 1, 2, 

3, and 4 distances from each incoming alarm, averaged over all simulation trials. The middle and 

right-most graphs show the average number and percentage of tickets (out of N) presented at each 

distance, respectively. These results show that presenting tickets within the Top 3 distances achieves a 

good balance between high accuracy and a small number of presented tickets.  

 

Figure 6.3: This figure displays CueT’s accuracy (at the Top 3 distances) during our simulated 

experiments for various window sizes N. From this graph we see that CueT’s accuracy peaks at a 

window size of 30. Therefore, we set N=30 in our subsequent user study with real network operators. 
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When operators click on an alarm in the Alarm View, CueT displays its recommendations for that alarm 

in the Ticket View. Because triage accuracy is a critical Performance Requirement of CueT, we designed 

CueT to include an illustration of its confidence in its triage recommendations, which it displays in its 

Ticket Distance Overview visualization. Operators can then inspect the recommendations and 

visualizations to determine how to triage the alarm (i.e., by either adding it to an existing ticket or starting 

a new ticket). Operators triage the alarm by dragging and dropping it onto the appropriate ticket in the 

Ticket View.  

CueT’s interface also contains a Search View (bottom left in Figure 6.4) through which operators can 

search for existing tickets by entering a search string as they do with their current system for triaging 

alarms. Operators can add alarms to tickets appearing in the Search View just as in the Ticket View. This 

is again important for triage accuracy as it allows an operator to use traditional means for triaging an 

alarm if they disagree with CueT’s recommendations.  

 

Figure 6.4: CueT uses interactive machine learning to help operators triage alarms streaming in from a 

computer network. This figure shows CueT’s interface. Alarms streaming in from a computer network 

are displayed on the right. CueT’s triage recommendations for each alarm appear on the left along 

with a visualization of CueT’s confidence in those recommendations (far left). Device names and other 

alarm information are blurred for security reasons. 
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Alarms and Alarm View 

Our initial observations of operators helped us determine the importance of certain alarm attributes. 

Severity and Notification Time, most viewed by operators when determining which alarm to triage next, 

are displayed prominently. As shown in Figure 6.4 (right), Severity (on a scale of 1-5) is encoded on the 

left of an alarm by color: red (most severe), orange-red, orange, yellow, and white (least severe). The 

Notification Time attribute is emphasized in bold and displayed at the top right-hand side of the alarm.  

Operators often work under a service level agreement that defines the time limit within which an alarm 

must be triaged. CueT highlights when an alarm has passed this limit by overlaying a pattern on the 

Severity display as in the alarms at the top of the Alarm View in Figure 6.4.  

Operators also sometimes use the Count attribute of an alarm to determine which alarm to deal with next. 

The Count attribute represents the number of duplicate alarms observed and many duplicates sometimes 

signal a severe problem. CueT represents Count by the length of the horizontal bar at the bottom of the 

alarm (color coded by Severity of the alarm). In addition, if duplicates are observed, the time when the 

most recent duplicate was observed is displayed in gray at the bottom right of the alarm.  

Alarm Name is also emphasized in the alarm in bold as this attribute is used most often when comparing 

alarms to existing tickets and deciding how to triage. The rest of the alarm information, including Device 

Type, Event Name, and a description of the event is displayed less saliently in the alarm in gray. This 

layout allows operators to visually scan and compare alarms by Severity, Time, and Count while still 

being able to digest the rest of the alarm information in a compact representation. 

Alarms are displayed in the Alarm View as they stream in from the network. Because operators often 

miss important alarms that appear off of the screen, the Alarm View includes an Alarm Overview (far 

right in Figure 6.4) that provides awareness of all alarms still requiring triage even if they are off the 

screen. This overview displays one rectangle per alarm, color coded by that alarm’s Severity and possibly 

the pattern if that alarm has passed its service level agreement. The heights of the rectangles automatically 

adjust so as to always display all of the alarms currently available for triage. The rectangles are presented 

in the order that alarms are displayed in the Alarm View, where alarms can be sorted by any attribute of 

the alarm. This allows the overview to act as a scroll bar for easy alarm navigation. 

Tickets and Ticket View 

Tickets are a collection of related alarms (left in Figure 6.4). Each ticket has a parent alarm, which is 

manually determined by a human operator and typically represents either the most severe or the first 

alarm in the ticket. The label at the top of the ticket is color coded by Severity of the ticket’s parent alarm. 
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The ticket label also includes the ticket’s unique ID, automatically generated by the system at the time of 

creation. In addition, the ticket label displays two numbers in parenthesis: the number of unique alarms 

within that ticket followed by the total number of duplicates across those alarms. Unique alarms and 

duplicates are dually represented in the ticket as a series of horizontal bars (similar to the Count display in 

the alarm representation). Each bar corresponds to a unique alarm and the length of the bar reflects the 

number of duplicates for that alarm. Each bar is also color coded by Severity of the corresponding alarm. 

Immediately below the ticket label is information about the ticket’s parent alarm along with the ticket 

description. Below the parent alarm is the best matching alarm within the ticket to the incoming alarm 

(next to the star icons in Figure 6.4). This serves as an explanation for why CueT is recommending that an 

operator triage an alarm into a given ticket (i.e., it conveys some aspect of CueT’s underlying Logic, 

namely the alarm most similar to the incoming alarm in a given ticket). Thus, ticket representations 

displayed in the Ticket View are tailored for each alarm. Operators can also click on a ticket to display all 

the alarms currently grouped within the ticket. New ticket recommendations are displayed as empty ticket 

stubs with a gray label and text within the ticket displaying “Start New Ticket.” 

Each time the operator clicks on an alarm to triage in the Alarm View, CueT generates its ticket 

recommendations for the selected alarm and displays them in the Ticket View. They are shown in order of 

increasing distance from the alarm as per the distance function described previously. By default, and as 

determined by our simulation results, the Ticket View initially displays only the tickets within the Top 3 

distances from the alarm being triaged. This helps to balance operator load and the probability of these 

tickets containing the correct recommendation. CueT allows operators to reveal more tickets to inspect 

using the Ticket Distance Overview visualization.  

Displaying Quality to Reduce Operator Error 

The Ticket Distance Overview (far left in Figure 6.4) is designed to provide operators with an estimate of 

its confidence in its recommendations so that operators can determine the necessity of inspecting more 

tickets. Each bubble in the Ticket Distance Overview corresponds to a ticket. The vertical position of the 

bubbles relative to the top of the overview reflects the distance between the alarm being triaged and each 

ticket within the working set. That is, the closer the bubble is to the top, the better a match the 

corresponding ticket is for the alarm with respect to our distance function. Also vertical positions of the 

bubbles correspond to the ordered list of recommendations in the Ticket View. Vertical distances are 

normalized so as to fit all of the existing tickets within the display. Thus, the positions of the bubbles 

display relative distances between tickets rather than absolute distances. Horizontal positioning is only 

used to minimize overlap of bubbles that are of equal or near equal distance to the incoming alarm.  
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Bubbles that are positioned near each other are comparable in terms of their similarity to the alarm 

currently being triaged. In this case, the overview should encourage operators to inspect all of the 

comparable tickets, important for accurate triage (i.e., for CueT’s Performance Requirements). To enable 

operators to inspect more tickets when necessary, CueT provides a horizontal green bar allowing them to 

set the distance threshold for the tickets to be displayed in the Ticket View. It divides the bubbles into a 

visible region (above the bar and corresponding to visible tickets in the Ticket View) and the invisible 

region (faded bubbles below the bar and corresponding to tickets not currently visible in the Ticket 

View). Operators can drag this bar vertically to reveal and inspect other tickets within the Ticket View. 

6.4 Evaluation 

We conducted an evaluation to examine the effectiveness of CueT for alarm triage as compared to the 

traditional method of manually ticketing alarms. For the Traditional condition, we replicated the 

commercial system used by our network operators (see Figure 6.1). As in the commercial system, 

participants could keyword search the tabular view of existing tickets to add incoming alarms or create 

new tickets. Adding alarms to existing tickets or creating new tickets is achieved by right clicking on a 

row in the table of alarms and selecting the corresponding action from a popup menu. The commercial 

system has separate windows for displaying alarms and searchable tickets, both using a tabular format. To 

avoid the overhead of switching between windows (a problem we observed during our initial 

observations), our version of the Traditional interface combines both of these views in one window as in 

CueT. This combination provides a fairer evaluation of the current practice, as the two-window issue is 

easy to fix.  

Data 

For our study we used part of the data that we used for our simulation experiments (January 1, 2010 data). 

To compare two interfaces, we created two data sets from this data. To ensure that each set includes 

comparable numbers, distributions and types of alarms and tickets, we extracted alternating unique 

alarms. We also simulated the correct assignment of alarms to tickets for alarms not being shown, as 

CueT relies on a dynamically changing working set of tickets. Therefore, Data Set 1 included odd alarms 

(and we simulated the correct assignment for even alarms) and Data Set 2 included even alarms (and we 

simulated the correct assignment for odd alarms). Each data set contained 80 unique alarms to be triaged 

by our participants, as our pilot study showed that was a manageable number of alarms to triage in about 

20 minutes. For demonstration and practice in each condition, we also created two additional data sets 

(Demo Set 1 and Demo Set 2) from the April 1, 2010 data using this same approach.  
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Study Design and Procedure 

We conducted a within-subjects study, with each participant performing alarm triage using both CueT and 

the Traditional method. We compared CueT to the Traditional method in terms of accuracy, speed, and 

user preference. To avoid learning, fatigue, or other carryover effects, we counterbalanced the 

presentation order of the two interfaces.  

We ran participants individually or in pairs depending on their schedule. Each participant worked on a 2.7 

GHz dual-core Windows 7 laptop with 4 GB RAM. We attached a 20.1’’ Samsung monitor at a resolution 

of 1200x1600 (i.e., in a portrait orientation) to each laptop, as well as a mouse and keyboard. We turned 

the laptop away from participants so they could only look at the attached monitor and use the attached 

mouse and keyboard. When we ran pairs, we faced their desks away from each other to minimize 

disturbance. 

Before each condition, the experimenter demonstrated each interface using Demo Set 1. Then the 

participants were allowed to practice triaging alarms using Demo Set 2 until they were comfortable with 

the interface and had practiced triaging several alarms, for a maximum of 5 minutes. 

In each condition, participants were asked to triage all 80 presented alarms as accurately and quickly as 

possible to simulate an actual usage scenario. We also asked them to triage alarms in the order that they 

normally would (i.e., they could triage the alarms in any order, but are encouraged to triage high severity 

alarms and alarms that have passed their service level agreement first). All interface actions were time-

stamped and logged. 

After each condition, participants were given a short questionnaire about the interface they just used. The 

questionnaire included 7-point Likert scale questions asking participants for their level of agreement with 

statements about the interface used (e.g., “Overall, I am satisfied with this system.”) and specific 

questions about the CueT interface if they had just used that interface (e.g., “The ticket recommendations 

were useful.”). It also asked participants to list three things that they liked and three that they would like 

improved about the interface. At the end of the session, a final questionnaire asked participants to select 

which interface they preferred and explain why. 

The experiment lasted about 90 minutes and participants were given a gratuity of $20 worth of dining 

coupons. To encourage participants to triage alarms quickly and accurately, we also offered a prize of an 

additional $20 worth of dining coupons for the person who performed the best in terms of speed and 

accuracy in each condition. 
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Participants 

We recruited eleven people (two female, ages 28 to 44) plus one male pilot from the network operations 

team. Our participants were not currently working as Tier 1 operators, though six of them were self-

proclaimed experts at the alarm triage process and four said they were proficient. One said he was a 

beginner. We could not recruit active Tier 1 operators because of their tight work schedule and because 

many work outside of the country.  

6.5 Results 

Performance: Accuracy and Speed 

We analyze our logged data in terms of accuracy and speed. Accuracy is computed as the percentage of 

alarms correctly triaged out of the total presented. Correctness of participant labels is measured against 

the ground truth labels. 

We compute two measures for speed: Time on Screen and Time to Ticket. The former is the time between 

when an alarm appeared on screen and when the participant completed the triage operation for that alarm. 

Along with Accuracy, it is a key measure of triage performance and is used to formulate service level 

agreements that the monitoring team offers. For instance, a possible guarantee may be that for 95% of 

alarms Time on Screen would be under 5 minutes. Note that both CueT and Traditional present multiple 

alarms on screen simultaneously and operators need not triage alarms in the order in which they appear on 

screen. Therefore, Time on Screen is affected by the order in which an operator decides to triage an alarm. 

Thus, for a detailed view of triage behavior, we also study Time to Ticket, which is time between 

successive triage actions regardless of order.  

For Accuracy, Time on Screen, and Time to Ticket, we perform paired-samples t tests. We report means 

and standard deviations throughout.  

Our analyses showed that participants were able to triage alarms faster with CueT than with the 

Traditional interface while maintaining the same level of accuracy. Participants were significantly faster 

with CueT than Traditional in terms of Time on Screen (M=107.7s, SD=127.7s vs. M=277.8s, SD=168.5s, 

t(10)=4.43, p=.001) and in terms of Time to Ticket (M=10.1s, SD=2.69s vs. M=12.9s, SD=3.79s, 

t(10)=3.26, p=.009). There was no significant difference in terms of accuracy between the CueT and 

Traditional conditions (M=71.8%, SD=17% vs. M=76.4%, SD=8%).  

Our data included a type of alarm that required special handling. Operators are usually instructed to 

always create a new ticket for each such alarm, regardless of similarity to other alarms. Only a few 

participants asked us how to triage such alarms, to which we responded that they should triage as normal. 
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The logged data shows that such alarms were handled unevenly by participants. Some rapidly created new 

tickets for these alarms without inspecting recommendations (in CueT) or searching for related tickets (in 

the CueT or Traditional condition). Others triaged these alarms based on similarity. These alarms reduce 

CueT’s accuracy because its model does not handle exceptional cases. Despite this, our results show that 

CueT’s accuracy is no worse and its speed is much better.  

We also re-did our analysis after removing 39 of these exceptional alarms from the data to evaluate 

CueT’s performance in the absence of special cases. Our corrected analyses of variance show that 

participants were still faster with CueT but also more accurate than the Traditional condition (see Figure 

6.5). The accuracy with CueT versus the Traditional condition was 81.3% (SD=6%) vs. 72.4% 

(SD=12%), (t(10)=2.29, p=.045). The participants were significantly faster with CueT at triaging in terms 

of both Time on Screen (M=86.9s, SD=69.2s vs. M=176.2s, SD=85.2s, t(10)=4.63, p=.001) and Time to 

Ticket (M=9.9s, SD=3.1s vs. M=15.7s, SD=4.6s, t(10)=6.52, p<.001).  

Subjective Preference 

We analyze our post-condition questionnaires using Friedman Chi-Square tests. CueT was favored 

significantly more than Traditional in terms of overall satisfaction (χ
2
(1,N=11)=9.0, p=.003), how much 

participants liked using the system (χ
2
(1,N=11)=11.0, p=.001), whether they felt that they could 

efficiently ticket alarms with the system (χ
2
(1,N=11)=6.4, p=.011), and whether they felt the system was 

easy to use (χ
2
(1,N=11)=11.0, p=.001) (Figure 6.6). 

Regarding CueT-specific features, participants tended to agree with the statements “The ticket 

recommendations were useful” (5.81 avg.) and “The Distance Overview was useful” (5.36 avg.). In 

addition, all of our participants chose CueT as their preferred system for network alarm triage.  

 

Figure 6.5: Results from our user study comparing CueT to the Traditional state-of-the-art approach 

for alarm triage. This figure displays Accuracy (left), Time on Screen (middle), and Time to Ticket 

(right) comparisons. All differences shown here are significant. Error bars represent standard error. 

From these graphs we see that CueT outperformed the Traditional method in terms of both accuracy 

and speed. 
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6.6 Discussion and Future Work 

Our results show that real network operators can triage alarms significantly faster with CueT than with 

their traditional method. When considering general alarms as well as exceptional cases, CueT reduces the 

Time on Screen of alarms by 61.2% on average. When excluding exceptional cases, the savings on Time 

on Screen are reduced to 50.7%. Savings are lower without exceptional cases because such cases require 

an action that can be performed quickly and without deliberation (e.g., rapidly creating new tickets 

without looking for similar tickets).  

Time on Screen is also affected by the order in which an operator triages alarms. Thus, CueT’s Alarm 

Overview, designed to facilitate awareness of alarms remaining in the queue of alarms to be triaged, 

likely contributed to the Time on Screen savings. In listing the things they liked about CueT, one 

participant commented that “Having the alert change colors as it approached [service level agreement] 

helps with prioritization.” 

For Time to Ticket, CueT enables a savings of 21.6% when considering general and exceptional alarms, 

and a savings of 36.8% when considering only the general alarms for which CueT is designed to handle. 

Participants relied heavily on CueT’s recommendations to triage alarms, performing only 4.6 manual 

searches on average throughout their sessions with CueT (compared to 84.6 searches on average with the 

traditional method). Only one participant ever ticketed an alarm via dragging and dropping the alarm onto 

CueT’s Search View. Therefore, as Time to Ticket measures the time between ticket actions, savings in 

Time to Ticket can be attributed to CueT’s ability to provide operators with appropriate suggestions about 

how to ticket each alarm. To put this in perspective, assuming 10K alarms per day and a time savings of 

5.8s per alarm (36.8%), CueT’s estimated cumulative time savings using this measure amounts to about 

20 operator days per month. 

 

Figure 6.6: Questionnaire results from our user study comparing CueT to the Traditional approach. 

Questions were 7-point Likert scale. Questions with *’s indicate the difference between CueT and 

Traditional were significant. These results show that CueT was favored by network operators on all 

subjective questions.  
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As our observations of operators revealed, exceptional cases are a reality in network operations. CueT 

currently cannot automatically exclude exceptional cases from its dynamically changing model. 

Remarkably, when considering general alarms along with exceptional cases, no significant decrease in 

overall accuracy is observed. This suggests that CueT does not adversely affect operator ability to address 

exceptional cases. Furthermore, although including exceptional cases in CueT’s dynamic model may 

cause interference in recommendation accuracy for general alarms, CueT still performed significantly 

better in terms of accuracy than the traditional method for the general case (81.3% versus 72.4%, 

respectively). This result points at the robustness of using triage recommendations from human-guided 

interactive machine learning based models. Furthermore, as interference can negatively affect CueT’s 

recommendation accuracy, it is fair to regard CueT’s performance results from our evaluation as a lower 

bound on its potential for improving alarm triage. It may be possible for network administrators to reduce 

some of this noise by creating temporary rules to automatically remove exceptional alarms, and we 

recommend such a facility as future work. Despite the potential for interference, nine of our eleven 

participants commented that CueT’s recommendation ability was one of the things they most liked about 

the system (e.g., “Recommendations done by the system for appropriate tickets was very useful.”).  

In terms of their subjective preference, all participants preferred CueT over the traditional method. The 

only questions for which there was no significant difference between CueT and the traditional method 

were whether the use of color was appropriate and whether the system was easy to learn. As with CueT, 

the traditional method also makes use of color coding to indicate severity of alarms. CueT however takes 

an additional step in overlaying information about the operator’s service level agreement on the colored 

area of an alarm. In terms of being easy to learn, our participants were all already familiar with the 

traditional system of manually triaging alarms. Despite this, they were still able to learn and start using 

CueT in a matter of minutes. 

We believe CueT’s tight integration between interactive machine learning and visualization is key to its 

success. As with other distance-based recommendation systems, multiple tickets in CueT can be equally 

distant from an alarm. Presenting recommendations as a traditional list would therefore require arbitrarily 

ordering tickets and would likely mislead operators. To ensure high accuracy, CueT’s Ticket Distance 

Overview visualization was specifically designed to show estimates of recommendation quality and 

encourage operators to inspect comparable tickets. Further, the coupling between machine learning and 

visualization makes it easy for operators to provide feedback to the system and keep the model up-to-date. 

However, additional studies that compare CueT’s machine learning with and without visualization would 

shed more light on the value of this integration. We therefore suggest as future work a longitudinal 
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investigation of operator confidence in the recommendations and the effects on operator vigilance in 

carefully inspecting those recommendations with and without visualization. 

Also, as mentioned in Section 6.2, we did not consider the fact that several operators could be employed 

for alarm triage at any given time (i.e., we did not consider the Collaboration design factor in this 

exploration). Collaboration has the potential to significantly impact the design of CueT and would be an 

important area for future research. For example, future work might consider an alarm allocation scheme 

to appropriately distribute alarms and tickets to different operators based on either alarm similarity or 

operator expertise. In such a case, the system might also include a technique for reviewing and 

understanding triage decisions of other operators as this may affect the performance of the system and the 

ability of operators to triage. 

6.7 Summary 

In this chapter we presented CueT, a novel system that combines visualizations and interactive machine 

learning to deal with a highly dynamic environment where the groups of interest are not known a-priori 

and evolve constantly (i.e., where the Data Source is streaming and the Evolutionary Needs of the 

interactive machine learning are significant and ongoing). In addition, CueT operates under strict 

Performance Requirements where speed and accuracy are critical. 

We implement CueT in the context of triaging network alarms to assist network operators in the complex 

task of alarm triage. Our evaluation demonstrates that CueT increases operator accuracy as well as speed 

compared to the state of the art approach of manual alarm triage. All of our study participants preferred 

CueT over the traditional method, a sentiment that is reflected in one participant’s comment: “the new 

system compared to the old is hands down better.” While CueT is designed for triaging alarms, we 

believe that the lessons learned from our work could extend to other scenarios where humans need to 

organize continuous streams of data (e.g., email, social network feeds). 
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Chapter 7  
Conclusion 

This dissertation aims to advance our understanding of how to design effective end-user interaction with 

machine learning. To this end, we outlined a design space characterizing the factors impacting the 

interactive machine learning process (Chapter 3) and presented our own explorations of how to design end-

user interactive machine learning in three new scenarios (Chapters 4 to 6). In this chapter, we begin to 

generalize from our experiences by proposing guidelines for the design of future systems and by identifying 

open challenges and opportunities for future research. Finally, we conclude with a summary of this research. 

7.1 Proposed Guidelines for Future Systems 

When an end-user’s primary Interaction Focus is on training an accurate or reusable model, we 

should provide them with a Variety of System Feedback and End-User Control Mechanisms.  

In our explorations with end-user interactive machine learning for image classification in CueFlik (Chapter 

2), we experimented with several new ways of designing System Feedback and End-User Control. In 

particular, we included a Variety of complex feedback and control mechanisms (e.g., overview-based 

example selection, a history of previous models, and revision capabilities) and found that these did not seem 

to overwhelm our participants during our evaluations. Moreover, our participants used all mechanisms 

whenever they were available (e.g., participants made use of all three revision mechanisms in our second 

CueFlik exploration) and complained when control was restricted or lacking in diversity (e.g., “give more 

options of photos so filtering them will go faster/easier” and “[without revision] it felt a little like typing on 

a keyboard without a backspace key”).  

We hypothesize that our participants were willing and able to attend to and use multiple feedback and 

control mechanisms because their primary Interaction Focus with CueFlik was to train an accurate and 

reusable model. That is, because a person is expecting to dedicate time and effort to training a model in 

CueFlik, they were willing to tolerate more complex feedback and desired more control. Conversely, 



113 

 

 

 

complex feedback and control mechanisms may be inappropriate when training is a secondary goal or when 

the model is disposable (e.g., as during interaction with ReGroup as discussed in Chapter 3).  

Feedback and Control Variety should be balanced with appropriate levels of Guidance on how to best 

improve the system. 

While people might be willing to tolerate or may desire a Variety of feedback and control mechanisms when 

training accurate and reusable models, we also recommend balancing variety with appropriate levels of 

Guidance on how to effectively use those mechanisms. For example, our explorations with CueFlik 

(Chapter 2) demonstrated that our overview-based feedback mechanisms guided people to select better 

examples during training compared to when selection was less restricted. Yet, participants still pursued a 

range of different training strategies using these overviews. Some participants placed varying emphasis on 

providing positive or negative examples. Some participants tended to reinforce the system’s predictions, 

while others corrected it. Finally, some participants labeled examples one at a time, while others would 

select a dozen examples before giving them all the same label. We saw a similar diversity of training 

strategies in our second CueFlik exploration presenting end-users with a variety of comparison and revision 

capabilities (e.g., some participants explored models in a depth first manner while others explored using a 

breadth first approach). We hypothesize that some training strategies are more effective than others for 

creating accurate models.  Therefore, while a Variety of feedback and control mechanisms might be 

beneficial or desired when interaction is a person’s primary focus, opportunities remain for identifying 

effective strategies and steering an end-user towards these while maintaining their sense of control and 

flexibility. 

Concise summaries of model quality can facilitate training of accurate models; however, summaries 

should not mislead or misrepresent the system’s capabilities.  

We designed and evaluated several new techniques for summarizing model quality during end-user 

interactive machine learning in a variety of scenarios. For example, both our overview-based feedback 

techniques in CueFlik (Chapter 4) and our distance overview in CueT (Chapter 6) contributed to participant 

ability to assess and guide the machine learning in each scenario. However, the plot of a model’s estimated 

quality in CueFlik’s history visualization proved to be distracting to participants in our second CueFlik 

exploration. Although the plot used an accepted machine learning metric to estimate quality (leave-one out 

cross validation on the current training data), end-users in our evaluation placed too much trust in the quality 

score (even when error bars were included). For example, one participant commented “I wanted the graph 

to go up instead of concentrating on [the results]”. Therefore, while machine learning experts might 

place correct emphasis on such estimates, care must be taken to consider the target user’s expectations or 

mental models of machine learning when designing summaries of model quality.  
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Light-weight explanations of model quality should be favored over more complex explanations when 

interaction is not a person’s primary focus.  

Previous research on explanations for interactive machine learning systems have explored the utility of 

detailed descriptions or dialog-based explanations to convey system behavior (e.g., Lim et al, 2009; 

Stumpf et al, 2007; Tullio et al, 2007). Kulesza et al (2011) further advocates that explanations should be 

manipulable and not overly simplistic. However, complex explanations can impede efficiency. 

Furthermore, while end-users might tolerate complex explanations when interaction with the machine 

learning is their primary focus, we hypothesize that lighter-weight explanations might be equally effective 

and preferred when training is not a person’s primary task. For example, ReGroup’s filter suggestions 

(Chapter 5) did not demand end-user attention like dialog-based explanations, however, they still served 

useful for helping our study participant’s understand the system’s behavior (e.g., “The filters helped me 

understand what patterns the tool was discovering, and thus helped understand the tool’s behavior”). 

Future work might therefore explore other light-weight explanation facilities when designing systems in 

which training is not a person’s primary task.  

Interactive machine learning systems should fail gracefully when the underlying algorithm cannot 

sufficiently capture an end-user’s desired concept. 

Machine learning systems can rarely perfectly model an end-user’s desired concept. When the underlying 

modeling language is expressive enough to adequately model the true concept, system feedback 

techniques such as summaries of model quality can help end-users assess and guide the system’s 

understanding. However, further measures should be taken when a desired concept is beyond the 

capabilities of the system in order to prevent wasted time and effort. For example, we designed 

ReGroup’s machine learning to avoid repeated recommendations of skipped people when the system 

could not capture the desired group (see Section 5.3.5). Future work might investigate additional 

techniques for detecting when the system cannot model the intended concept and possibly alerting a user 

to these situations to minimize frustration. For example, Horvitz (1999) advocated explicitly modeling 

uncertainty about an end-user’s goals in order to scope automated services when uncertain.  

Alternatively, when a person’s primary focus during interaction is on some domain specific goal (e.g., not 

the training of an accurate model), alternative methods for achieving those goals should be provided when 

possible. For example, we provided mechanisms for end-users to manually search for friends by name in 

ReGroup when the system was not displaying a desired friend (Chapter 5). Similarly in CueT, operators 

could search for groups via the traditional search interface if appropriate recommendations were not being 

shown (Chapter 6). Such alternative facilities can enable end-users to progress towards their goals even 

when adequate modeling by the system is not possible. 



115 

 

 

 

7.2 Open Challenges and Opportunities for Future Research 

Many challenges and opportunities remain for advancing our understanding of how to design end-user 

interaction with machine learning systems. For example, all of our explorations examined end-user 

interaction with machine learning over a large screen provided by a traditional desktop environment. 

However, as mobile devices become more ubiquitous and computing moves off the desktop, opportunities 

remain for exploring the design of end-user interactive machine learning in these more restricted Interaction 

Environments. Similarly, understanding how to design end-user interaction with machine learning over very 

large Volumes of data will become increasingly important as big data becomes more prevalent. 

The impact of personal Motivation (see Section 3.1.2) on an end-user’s ability to train effective machine 

learning systems also warrants further investigation. For example, a person intrinsically motivated to use 

machine learning for their own purposes (e.g., to create a classifier for their own personal use) might be 

more inclined to carefully interact with the system (e.g., to inspect and verify a learned model) than a person 

employed to do so (e.g., our CueT operators discussed in Chapter 7). If this is the case, then new techniques 

for incentivizing or engaging less motivated users to carefully attend to system feedback or provide accurate 

guidance should be explored.  

Further exploration of the impact of Machine Learning Experience on end-user acceptance of machine 

learning systems and their ability to train effective models is also necessary. This is particularly important as 

people begin to gain more experience and proficiency in interacting with machine learning systems. For 

example, we observed in our explorations that people were able to understand certain aspects of the machine 

learning after interacting with a system for some time (e.g., some participants using ReGroup were able to 

tell why the system was or was not working in some cases).  If such experiences increase end-user empathy 

towards machine learning systems or enable end-users to more effectively interact with them, then the 

current emphasis on fostering user trust and acceptance of machine learning systems (discussed in Section 

2.2) might be misguided and unnecessary. Instead, focus might turn to designing interaction differently for 

varying levels of expertise. 

Important opportunities also remain for scaling up the impact and usability of data by leveraging groups or 

crowds of people to collaboratively drive interactive machine learning systems. For example, our 

exploration with CueT (Chapter 6) assumed one operator would be triaging alarms at any given time. 

However, most network operations centers employ multiple operators to triage alarms. Therefore, 

examining the Collaboration design factor, particularly in understanding how to coordinate the efforts of 

multiple people interacting with a machine learning system, is an open and important area of future work.  
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Furthermore, as interactive machine learning becomes more prevalent in our everyday applications, people 

should be able to share and re-use machine learned models rather than starting from scratch. For example, 

imagine an online repository where people can post, tag, rate, and search for CueFlik trained image 

classifiers. Alternatively, imagine a browser plug-in that automatically presents a person with potentially 

useful end-user created classifiers in the context of search, social media, or other data-intensive multimedia 

applications, allowing a person to choose to apply a classifier based on its rating and description. People 

should also be able to bootstrap, build upon, and combine previous models to configure more sophisticated 

data processing and automated behaviors. To achieve these possibilities, we must understand how people 

can meaningfully describe, compare, and search for existing machine learning models, how models can be 

generalized or transformed for new situations and purposes, and how we can create composable models to 

enable more powerful automation. 

Finally, while in the previous section we began to hypothesize about guidelines for designing future 

systems, future work should further progress towards a more prescriptive design space. For example, future 

work might examine similar design solutions (e.g., such as those identified in Section 3.2) in different 

scenarios defined by our design factors outlined in Section 3.1. For instance, CueFlik’s feedback and control 

capabilities should be evaluated in a system in which interactive machine learning is not a person’s primary 

goal, in order to see how receptive people are to these levels of feedback and guidance in different scenarios. 

Similarly, ReGroup’s feature-based feedback technique should be evaluated for different types of data. Such 

research can further advance our understanding of how to design effective end-user interaction with 

machine learning. 

7.3 Conclusion 

Machine learning is the key to unlocking powerful information contained in the vast amount of data we now 

have available to us. However, the complexity of machine learning has largely restricted its application and 

use to experts and skilled developers. For example, trained developers can employ machine learning over 

data to automatically detect objects of interest, organize information, and understand and predict behaviors. 

In contrast, the most a typical person can currently do with large amounts of data is search over it. 

This dissertation examines the fundamental process by which everyday people can interact with machine 

learning, known as end-user interactive machine learning. While most recent work has focused on 

demonstrating the utility of end-user interactive machine learning in specific applications, this dissertation 

investigates how the end-user interactive machine learning process should be designed. In particular, this 

dissertation pushes the boundaries of what end-users can do with machine learning by designing new 

techniques and systems involving end-user interactive machine learning in three new application scenarios. 
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In addition, this dissertation characterizes general design factors that impact and constrain an end-user’s 

interaction with machine learning-based systems. Together, these contributions move us beyond ad-hoc 

designs for specific applications and provide a foundation for future researchers and developers of end-user 

interactive machine learning systems. 
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