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Figure 1: High quality all-hex meshes generated by our method. Comparisons with CubeCover [Nieser et al. 2011] and volumetric
PolyCube [Gregson et al. 2011] demonstrate that the hex meshes by our method are superior in mesh quality (the minimal scaled Jacobian of
hexes is shown in the figure, bigger is better) and singularity placement (see the zoom-in views for comparison).

Abstract

Decomposing a volume into high-quality hexahedral cells is a chal-
lenging task in geometric modeling and computational geometry.
Inspired by the use of cross field in quad meshing and the CubeCover
approach in hex meshing, we present a complete all-hex meshing
framework based on singularity-restricted field that is essential to
induce a valid all-hex structure. Given a volume represented by a
tetrahedral mesh, we first compute a boundary-aligned 3D frame
field inside it, then convert the frame field to be singularity-restricted
by our effective topological operations. In our all-hex meshing
framework, we apply the CubeCover method to achieve the volume
parametrization. For reducing degenerate elements appearing in
the volume parametrization, we also propose novel tetrahedral split
operations to preprocess singularity-restricted frame fields. Experi-
mental results show that our algorithm generates high-quality all-hex
meshes from a variety of 3D volumes robustly and efficiently.
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1 Introduction

All-hex meshes possess nice numerical properties, such as a reduced
number of elements and high approximation accuracy in physical
simulation and mechanical engineering [Shimada 2006; Shepherd
and Johnson 2008], but it is still a challenging task to automatically
decompose a general 3D volume with complex boundary into high-
quality hex elements [Owen 1998]. It is generally accepted that a
high-quality all-hex mesh should have three properties: (1) Bound-
ary conforming. The generated all-hex mesh should conform to the
boundary surface of the 3D volume. (2) Feature alignment. Feature
edges in the input 3D volume should be aligned. (3) Most important,
low distortion. A single inverted hex can ruin finite element simula-
tion. To achieve this point, singularities, the interior edges with other
than four incident hexes in an all-hex mesh, should be introduced
and embedded in the interior of the volume to reduce distortion.

Recently several methods have been proposed for the generation of
high-quality all-hex meshes. Octree-based method [Maréchal 2009]
and volumetric PolyCube [Gregson et al. 2011] embed axis-aligned
boxes into the 3D volume to produce all-hex meshes. However,
since these two methods do not generate interior singularities,
large distortion might be introduced in the resulting all-hex meshes.
Another approach, CubeCover [Nieser et al. 2011], generates
all-hex meshes with the guidance of a valid 3D frame field via
global parametrization. It first constructs a 3D frame field with the
assistance of manually designed meta-mesh, computes a volumetric
parametrization guided by this field, and then extracts an all-hex
mesh accordingly. However, for a 3D volume with complex
boundary, it requires a lot of manual efforts for a skilled user to
design a suitable meta-mesh that can characterize the complex
geometry. How to generate a valid frame field automatically
is still an open problem. Recently Huang et al [2011] design
boundary-aligned 3D frame fields for guiding hex meshing but
generate only hex-dominant meshes, not all-hex meshes.

In this paper we present a method for generating a high-quality
all-hex mesh from a given tetrahedral mesh. A key ingredient of
our work is a novel frame field called singularity-restricted field
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(SRF). It is known that 24 types of singularities can be found in
a frame field that locally describe the orientational change of the
frame field. However, only ten types of these 24 can exist in a valid
all-hex structure [Nieser et al. 2011]. We call a frame field an SRF
if its singularities belong to these ten types. A basic advantage of
the SRF is that it is essential for all-hex meshing because only an
SRF can admit a valid all-hex structure. Another advantage of the
SRF is that it can be constructed under relatively weak conditions.
We present a technique for converting an arbitrary frame field to
an SRF under reasonable assumptions (see Section 3.3) about the
input frame field and the underlying tetrahedral mesh. Finally, the
SRF has an important practical advantage: with careful volume
parametrization, a smooth SRF almost always leads to successful
all-hex meshing in practice despite the fact that the SRF is not
theoretically sufficient for all-hex meshing. We have verified this
practical advantage through extensive testing.

Another crucial component of our algorithm is the SRF-guided vol-
ume parametrization, which can effectively deal with degenerate
and flipped elements in the parametrization domain. These ele-
ments lead to missing and erroneous iso-lines and thus make extract-
ing an all-hex mesh extremely difficult. Our technique combines
a degenerate-element preprocessing step for volume parametriza-
tion and an edge collapse operation on the iso-curve network. The
degenerate-element preprocessing step detects and fixes most de-
generate elements before parametrization by eliminating unsuitable
combinations of singular edges. We resolve most issues raised by
flipped elements by collapsing erroneous edges from the iso-curve
network whose vertices share the same parametrization coordinate.

We have developed a system for all-hex meshing based on our al-
gorithm and found the system works well in practice based on our
testing of a wide variety of natural objects and CAD models. For
all the objects and models tested, our algorithm generates all-hex
meshes successfully and the resulting meshes are of higher quality
than those produced by existing methods. The comparisons in Fig-
ure 1 show that the shapes of hex elements in our results are more
cube-like than those produced by CubeCover [Nieser et al. 2011]
and volumetric PolyCube [Gregson et al. 2011]. In particular, our
results (Figure 1-a&c) do not exhibit the surface singularities or
distortion possessed by the results in Figure 1-b&d. Quantitatively
our results are also significantly better as measured by the mesh
quality Jmin (the minimum of the scaled Jacobian).

2 Related Work

All-hex meshing has been studied for several decades. Thorough
surveys are available in [Owen 1998; Shimada 2006; Shepherd and
Johnson 2008]. Most methods used in industry, such as multiple
sweeping [Shepherd et al. 2000], paving and plastering [Staten et al.
2005] are still semi-automatic and require the user to decompose
the model for suitable mappings. Sheffer ef al. [1999] develop an
automatic method to decompose the volume by Voronoi graph but
the computation is very sensitive to the boundary. Carbonera and
Shepherd [2006] give a constructive approach to constrained hex
meshing by using Geode-Template. In general, generating a high-
quality and boundary-conforming hex mesh for a complex model
takes hours or days even for a skilled user since the partition and
sizing is crucial to the mesh quality. Due to the simplicity and ro-
bustness, the grid-based methods are still dominating in the meshing
community. Maréchal [2009] presents a novel Octree-based method
to reduce the distortion of hexes and preserve sharp edges. Another
approach is based on PolyCube which maps the volume to several
jointed boxes [Tarini et al. 2004; Han et al. 2010]. Recently Gregson
et al. [2011] present a volumetric PolyCube method to convert a
volume to an all-hex mesh and further reduce the overall distortion
greatly. However these methods inherit the intrinsic disadvantages of

grid-based methods, i.e. the choices of box orientations and placing
all singularities on the boundary surface, which may still introduce
large distortion and mis-matched features.

Quadrilateral meshing has gained great success by using surface
parametrization techniques [Tong et al. 2006; Kélberer et al. 2007;
Bommes et al. 2009]. Both Kalberer et al. [2007] and Bommes
et al. [2009] present theoretical and practical approaches to find a
proper surface parametrization based on a cross field defined on the
triangular surface. It is natural to consider how to extend the quad
meshing technique to hex meshing. Nieser ef al. [2011] generalize
QuadCover [Kilberer et al. 2007] to 3D. The Morse-Smale complex
technique [Dong et al. 2006; Huang et al. 2008] is another approach
for quad meshing, but to the best of our knowledge there is no clear
theoretical result on its 3D generalization to all-hex meshing.

Frame field is N-coupled vectors defined at every point in the
N-dimensional space. It is also called a cross field if the N-coupled
vectors form an orthonormal frame. The cross field in surface has
been studied thoroughly in [Palacios and Zhang 2007; Ray et al.
2008; Ray et al. 2009; Crane et al. 2010] for surface meshing and
texture mapping. However, there is little work on 3D frame field
compared to the surface case. Nieser et al. [2011] design the frame
field using meta-mesh, whose creation is manual and hard to design
for complex volumes. Huang et al. [2011] construct a boundary-
aligned frame field by modeling its smoothness with a convenient
spherical-harmonic representation.

3 Singularity-Restricted Field Computation

In this section, we first introduce the singularity of a 3D frame
field as described in [Nieser et al. 2011] and define the singularity-
restricted field in Section 3.1. Since it is difficult to directly compute
an SRF, we present an efficient method to compute a boundary-
aligned 3D frame field in Section 3.2 and apply topological opera-
tions to convert a frame field to an SRF in Section 3.3.

3.1 Singularity-Restricted Field

A 3D frame F is defined by an ordered tuple of three vectors
{U,V, W} Frame F is called right-handed if U x V- W > 0.
Two right-handed frames F'; and F'; are casted to an equivalent class
if F'; can be permuted to F';, or reversely. It is known that there are
24 equivalent classes since the permutations form the chiral cubical
symmetry group G (any map in SO(3) which maps coordinate axes
to coordinate axes).

Given an input tetrahedral mesh V bounded by a closed triangular
surface S, right-handed frames defined on each tet form a discrete
3D frame field. For two adjacent tets s and t with one common face,
we characterize the closeness of the associate frames Fs and F'¢ by
the best permutation defined as follows:

gt := argmin ||[Us|Vs|Ws] — [Ue| Ve |[W P ||p, (1)
Peg

where || - || 7 is the Frobenius matrix norm. We call Ils¢ the matching
matrix of Fs and Fy.

The singularity of a 3D frame field is naturally defined on the edge of

the tet mesh. For an interior edge e, the concatenation of matchings

between all adjacent tets (to, .. ., tx, to) defines the type of e:
type(e, tO) = Htkto © Htk—ltk o+ ollg e, oIyt - ()

e is called a singular edge if its type is not the identity matrix.



We call the curve network formed by the singular edges a singular
graph and the vertices on the singular graph singular vertices. The
singular graph of a 3D frame field has a nice property:

Proposition 1 Any singular edge of a singular graph does not end
inside the volume.

Proof: see Appendix A. B

We call a 3D frame field singularity-restricted if its type of edges
fall into the set R := {I,R% RY R* | k € {1,2,3}}, where
R, Ry, Ry represent the 90 degree rotations around u—, v—, w—
coordinate axes, respectively. These restricted edge types are de-
manded by valid all-hex structures [Nieser et al. 2011]. We call
edges with types in R proper, in G /R improper.

Remark: The singularity-restricted
property is essential but not sufficient to
induce an all-hex structure whose irregu-
lar edges comply with the singular graph ‘
of the field. The existence of all-hex / &
structures is affected by the global com- f&”"\ =
binatoric topology of the singular graph. —p——

For instance, in the right inset, the singu-

lar graph prohibits the existence of all-hex meshes due to triangle
loops. Finding the sufficient condition of the existence of all-hexes
for an arbitrary SRF is beyond our scope.

3.2 Boundary-aligned 3D Frame Field Generation

Automatic generation of 3D frame fields is non-trivial since it is
difficult to measure the smoothness of a 3D frame field. Unlike the
cross field on surface [Ray et al. 2008; Bommes et al. 2009; Crane
et al. 2010], the smoothness of a 3D frame field cannot be encoded
by only one parameter. Mathematically, the smoothness of two
frames F's, F'y should reflect the closeness from the transformation
between Fs and F, to the chiral cubical symmetry group G. We
extend the permutation approach in [Liu et al. 2011] to measure the
smoothness of a 3D frame field.

Smoothness. Two adjacent frames Fs and F are deemed to be
perfectly smooth, if they can be permuted to each other, i.e.,

[Us|Vs|Ws] = [Ue|Ve|We| Py,

where Pg¢ € G represents a column permutation. For two arbitrary
frames Fs and F¢, we approximate the column permutation by
Pt = [Us|Ve|W] "} [Us| Vo |Ws]. We define the closeness from
P. t0 G as

Eae =3 [HPutl-1i]) + H(Pucli, )|
£ 37 [(Buelis 1 =17 o (Pael i) — 1)7]
+ (det(Pst) — 1)

where Pst[i, -] and Pst[-, 7] denote the i-th row and column vector
respectively, and H(n) = n2n2 + nan? + n?nZ. The first term is
used to constrain that there is only one nonzero component in each
row or column of Pgt, the second term enforces the row/column
vectors be unit vectors, the third term imposes the constraint that
Fs and F¢ keep the same orientation. If we restrict the frame
field to be orthonormal, Fs¢ can be simplified by removing its
second and third term, and the inverse of matrix is avoided due to
[Ue|Ve[We] ™ = [Ue[Ve[We]"

Compared with the smoothness measure proposed in [Huang
et al. 2011] where they integrate the squared difference
(H([Us|Vs|Ws)Tn) — H([Us|Vs|W¢]T1))? over the unit sphere
52, our formulation performs the measurement on the transforma-
tion directly without any integration. Actually it is not difficult to
derive that our measurement on the orthonormal frame field is ex-

3 : 167
actly the same as Huang ef al.’s integration up to a scale of <7t

Proposition 2 [f frames ¥'s and ¥ are orthonormal frames, we
have

/S2 (H([Us|Vs|W] ") — H([Ue|[Ve|We]"n))* dn
_ 16m i
T 315

i=1

[H(Puclil) + H(Purli, )]

Proof: It is known that H(R”n) = H () for any rotation matrix R.

The integration on the left side can be rewritten as [, (H (Pstn) —

H(n))? dn. We represent Pg; by Rx (o) Ry (8)Rz(7y) in XY Z
Euler angles. Thus the equality can be easily verified by symbolic
computation. We provide the expanded form of the right side of the
equality in Appendix B. l

Frame field initialization. For the purpose of boundary-
conforming hex meshing, one direction of the boundary frames
should be the surface normal. Thus we design the boundary tet
frames by surface normals and a smooth surface cross field, for
instance, a principal-direction dominant frame field. We then propa-
gate the boundary tet frames into interior tets. For any interior tet, its
frame is assigned to be the same as the one of its nearest boundary tet.

Frame field optimization. The initial frame field is usually non-
smooth around the medial axis of the volume due to our simple
frame propagation scheme. We further smooth the frame field by
minimizing the following energy function:

E=%"Y Ea 3)

e s,teN(e)

Here N (e) denotes the one ring tets around the tet edge e. Any two
frames in \ (e) are picked to compute their smoothness. We notice
in the experiments that this choice makes the frame field smoother
than only minimizing the summation of Fs; between adjacent tets.
We represent the orthonormal frame as follows:

e Any interior frame is represented by the column vectors of
R, (a)Ry(0)R:(7), where a, 8, ~ are Euler angles.

e Any boundary frame is represented by {cosf - T1 + sin6 -
To,—sin@ - Th + cos @ - To, N}. T1, T are orthonormal bases
of boundary triangular face and NV is the face normal. This repre-
sentation helps to fix the normal direction in the optimization.

For a non-orthonormal frame field, we represent each frame using
three pairs of spherical angles (a1, 1), (a2, 82), (s, 83). as and
B3 of a boundary frame are fixed during the optimization.

We minimize the nonlinear function E by the efficient L-BFGS
method [Liu and Nocedal 1989] which only requires the function
value and its gradient. The gradient of £ can be computed easily
via matrix algebra (M 1) = —M~H(OM)M ™, 8(det(M)) =
det(M) Trace(M ~"OM) and the chain rule. In experiments, the

o Ei1—E; —
convergence criterion is set as W < 10™* and E converges
i

in less than 300 iterations. Figure 2 demonstrates three optimized
frame fields on an ellipsoidal volume.



Figure 2: Three kinds of 3D frame fields on an ellipsoidal volume.
The singular graphs are in black on the first row. The second and
third rows show the hex meshes and singular structures (interior
iso-surfaces passing through singular edges) respectively.

Remark. Although the smoothness measure of two adjacent or-
thnormal frames in [Huang et al. 2011] is the same to ours, their
formulation of the objective function of field optimization is not the
direct summation of Fs; as defined in Eqn 3. In Section 6, we shall
show the advantage of our formulation that can generate smoother
frame fields.

3.3 Singularity-Restricted Field Conversion

Since there is no global control like the meta-mesh used in [Nieser
et al. 2011], the edge types of a frame field do not always fall into
the restricted types R := {I, R R¥ RE | k € {1,2,3}}. In
this section, we propose two operations, matching adjustment and
improper singular edge collapse, to convert a 3D frame field to a
singularity-restricted field.

3.3.1 Matching adjustment

Since the initial matching Ils¢ is computed by the local information
only (see Eqn. 1), it might introduce improper singular edges. Hence,
for any triangular face (shared by s, t) which contains improper
singular edges, we perform the following steps to greedily adjust its
matching Ils¢ until no matching can be changed:

1. Sort all 24 possible permutation matrices {P;} corresponding
to G by ascending order according to the value ||[Us|Vs|Wg] —
[Ue|[Ve|[We P/ |2

2. Tentatively replace IIs¢ by each sorted P; and recompute the
types for the three triangular edges. If all of them fall into R
with at least one being the identity, P; is accepted as the new
matching matrix.

3. if all P; fail the singular type criterion in Step 2, restore the
original matching matrix ITs¢.

Notice that triangular face A, may contain two singular edges
17(}, q7 with the same type 7 € R, we can reduce the number of
proper singular edges by reusing the matching adjustment algorithm
with a simple modification: in step 2, we replace Ils by each sorted
P until AApq,- has only one proper singular edge.

This greedy operation can eliminate most improper singular edges
without changing the topology of the tet mesh, leaving the rest
improper singular ones to the following improper singular edge
collapse operation.

C

Figure 3: Edge split operation. By splitting edge ac at its middle
point m, every tet around ac is divided to two small tets. Let the
frames of small tets inherit the original frames of its parent tets, the
matching matrices associated to the split faces containing a or c
are not changed and the matching matrices associated to other split
faces are identity. It is easy to derive that am and mc keep the same
edge types as ac and other new edges connecting m are nonsingular
by Eqgn. 2. For instance bm is nonsingular and am has the same
edge type as ac before splitting.

3.3.2 Improper singular edge collapse

Edge collapse is the most 8 TN
effective operation used in @
tetrahedral mesh simplifica- 7
tion [Trotts et al. 1998]. It >
is intuitive to resolve the

improper singular edge issue by collapsing them. The right inset
shows the collapse operation on edge e. However it is challenging
to keep other edge types unchanged and preserve the validity of the
tet mesh topology during the collapsing process. In this section, we
first present our edge collapse operation for SRF conversion under
the assumption that the edge is always collapsible, then discuss how
to handle uncollapsible edges.

Collapsible improper singular edge. Under the assumption that
improper singular edges are always collapsible, the following algo-
rithm eliminates all of them.

e Input: a collapsible improper singular edge ab.

e Step 1. For each tet face Aabc adjacent to ab, we examine
whether both ac and bc are proper singular edges. If yes, we
split one of them (see Fig. 3), otherwise directly go to Step 2.
This step guarantees that any tet face adjacent to ab does not
contain two proper singular edges. It is essential to hold this
property otherwise two proper singular edges may be collapsed
to an improper singular edge after collapsing edge ab. See more
detailed analysis in Appendix C.

e Step 2. Collapse edge ab directly. The step reduces the number
of improper singular edges at least by one.

The correctness of this algorithm is proved in Appendix C.

Uncollapsible improper singular edge. It is well known that
arbitrary edge collapse can make the topology of the tet mesh invalid
if the intersection of the links of two vertices does not equal to the
link of the edge [Dey et al. 1999]. According to the link condition,
the uncollapsible improper singular edges can be categorized into
two cases.

e CASE I. The vertices of an improper singular edge are on the
boundary of the tet mesh. The edge cannot be collapsed, other-
wise the boundary surface of the tet mesh is changed.

e CASE Il For an improper singular edge pq, denote V as the
intersection of the neighboring vertices set of p and q. pq is
uncollapsible, if there exists a vertex v in V such that the triangle
vpq is not a face of any tet. Such a triangle is called unsuitable
triangle. Figure 4-left illustrates an uncollapsible edge pq and
an unsuitable triangle vpq.



Unlike tetrahedral simplification which does not allow to create new
tets, we can convert most uncollapsible improper singular edges
of the second case to be collapsible by introducing an edge split
operation according to the following proposition.

Proposition 3 An uncollapsible improper singular edge pq can
be converted to be collapsible, if all the unsuitable triangles (if
there is any) associated to pq contain at least one non-improper
edge. Such a pq can be converted to be collapsible by splitting the
non-improper edge of each unsuitable triangle, and the number of
improper singular edge is not increased by this operation.

The constructive proof of Proposition 3 is illustrated in Figure 4.
There is only an extremely rare case that prohibits the above
conversion: if an improper singular edge e is associated to an
unsuitable triangle whose three edges are all improper, it is not
possible to convert e to be collapsible since the edge split operation
does not reduce the number of improper singular edges. However
this extreme case happens only theoretically and we never meet this
case in practice. CASE I can be also avoided in practice since we
discretize the volume with a high quality and uniform sampled tet
mesh by TetGen (http://www.tetgen.orqg) and the frames
on the boundary are relatively smooth due to the way of frame
initialization. In our experiments, all the improper singular edges
are collapsible by our novel operations.

pv pv

Figure 4: The left figure shows an uncollapsible edge pq. If we
collapse it, the face Asrv will no longer be shared by any pair of
tets. So the topology of the tet mesh is violated. However we can
make pq collapsible by splitting edge pv or qv. On the right figure,
the edge qv is split. Tet qrsv is decomposed into two tets. It is
easy to see that collapsing pq will not trigger invalid tet topology.
After splitting, we assign the same frame of tet qrsv to tet qrsb
and vrsb. The new edges rb and sb are nonsingular due to this
assignment. Similarly other new edges appearing in the tets around
qv are nonsingular. The types of the rest untouched and split edges
keep unchanged.

We demonstrate the matching adjustment and improper singular
edge collapse operations on the singular graph in an ellipsoidal
volume (see Figure 5). In our experiments, the number of improper
singular edges is usually small, thus the quality of the tet mesh is
not degraded greatly by edge collapse operation. We notice that
a very few tets may have negative volumes due to edge collapse
without choosing the middle point of edges carefully, we can further

Figure 5: Left&Right: the singular graph of the frame field in an
ellipsoidal volume before and after applying matching adjustment
and edge collapse. Improper singular edges (in red) are collapsed
(see the red zoomed-in views) and some proper singular edges are
straighten by matching adjustment (see the blue zoomed-in views).

apply tet mesh quality improving techniques [Brewer et al. 2003] to
reposition the vertices. In practice all the tets have positive volumes
after improvement.

4 SRF-guided Volume Parametrization

Frame guided volume parametrization is an important step to achieve
all-hex meshes. Since our SRF-guided volume parametrization is
based on the CubeCover approach, we briefly review it here.

A volume parametrization of V is an atlas of maps f : V — R3,p —
(u,v,w)". f is piecewise linear and represented by f|p on each
vertex p of each tet. The integer grids in R? induce a hex tessellation
of the volume V.

For two adjacent tets s and t with one common face, f can have
different values on their shared face but the values need to be re-
lated by a transition function so that hex meshing is possible in the
parametric domain, i.e.,

f|t :Hstf|s+gst (4)

where gst represents an integer translation of the cube grid and is
called gap in literature. Ilg¢ is the matching matrix between the
frames defined on s and t . The gradient field of f: (Vu, Vv, Vw)
also defines a piecewise constant frame field over the volume. A
good volume parametrization f should align its gradient field to the
given 3D frame field as close as possible.

With the frame field and the matchings prepared, it is ready to set up
a volume parametrization as introduced in [Nieser et al. 2011]:

i D 5
r?}f;vot ¢ ©)

subject to Eqn. 4. Here Dy = ||hVus — Ug||> + ||h Ve — Vi||? +
|hVws — Wi, voly is the volume of tet t and h is the length
scale of the parametrization set by the user.

However it is non-trivial to ensure a non-degenerate and flipped
element-free parametrization. In this section, we first introduce
an adaptive rounding algorithm to efficiently solve the volume
parametrization and reduce the round-off error in Section 4.1, then
study the presence of degenerate elements and propose a novel
preprocessing algorithm to reduce degenerate elements greatly in
Section 4.2.

4.1 Adaptive rounding algorithm

To extract an all-hex mesh, integer variables, such as the two non-
rotational coordinates of the vertices on the singular edges and the
gaps gst, should be introduced into the volume parametrization.
They can guarantee that the singular edges appear in the hex mesh
and the integer iso-lines in the volume are seamless. In addition,
for achieving the boundary conforming property, the w-coordinates
of each boundary triangular face should be the same integer value
(notice that W directions of the boundary frames are set as surface
normals). Therefore, the total number of variables is 12N, + 3N
with 3Ny + 3Ny + N, being integers. Here V. denotes the number
of tets, N¢r; denotes the number of interior triangular faces, N,
denotes the number of boundary triangular faces and N, denotes the
number of integer variables associated with the singular vertices.

As pointed out in [Nieser et al. 2011], the integer variables for gap
gst can be eliminated by subtracting two linear equations (4) on
each edge to reduce the number of integer variables greatly, i.e.,

fle(p) = fle(a) = st (fls(p) — fls(a)- ©)
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Figure 6: Left: a torus model with its singular graph. Right: the
hex mesh generated from the CubeCover algorithm. The missing
hexes are due to non-matched integer gaps.

The CubeCover approach minimizes Eqn. 5 under the above new
constraints by two steps: (1) directly round integer variables; (2)
solve non-integer variables. However the direct rounding strategy
might introduce large distortion, and the new constraints can in-
duce non-matched integer gaps in some exetreme cases as shown in
Figure 6 due to the missing constraints by the above substraction.

We propose to solve the volume parametrization via an adaptive
rounding method similar to [Bommes et al. 2009] so as to reduce
the distortion and avoid non-matched integer gaps.

Our volume parametrization includes three steps:

1. Compute a global volume parametrization with the reduced linear
system without enforcing integer constraints.

2. Adaptively round the integer variables associated with the singu-
lar vertices and boundary triangular faces.

3. Compute the integer gaps via adaptive rounding.

‘We detail each step as follows:

Step 1. To remove the translational freedom of variables, a spanning
tree 7' is first computed in the tet mesh and the gaps between adjacent
tets in 7" are set to 0. We also impose the linear constraints (Eqn. 6)
to reduce the number of variables. For each interior triangular face
Apgr shared by s, t: If the gap is 0, the constraint is f|¢ = Ils¢ f|s;
otherwise, it is

Fle() = fle(q) = Use(fls(p) — fls(a));
Fle(®) = fle(r) = Tse(fls(p) — fls(r))-

On the boundary triangular face Apgr, the constraint is

Fle@)w = fle(@w, fle®@)w = fle(r)w-

The number of variables can be reduced by applying an integer
Gaussian elimination on the collection of these linear constraints
C. A continuous solution is then computed by solving the reduced
linear system derived from Eqn. 5. This step is the same as the first
step of CubeCover [Nieser et al. 2011].

Step 2. We adaptively round all the integer variables to their nearest
integers in three steps: (1) If the difference between the continuous
solution of the variable X and its nearest integer J is less than
10~4, we fix X to J. If no X is fixed, we only round the integer
variable which has the smallest difference. (2) We substitute the
fixed variables into the linear constraints C' and solve Eqn. 5 by the
conjugate gradient method again. Iterate this step until all the integer
variables are fixed.

Step 3. Notice that Eqn. 6 does not represent all the constraints from
Eqn. 4. The constraint on each interior triangular face Apgr should
be added back to complete the original linear constraints:

fle(p) = st fle(p) + gst- (7)

Notice that the CubeCover method computes the gaps by direct
rounding gst := f|e(p) — Ilse f]¢(p) without preserving the con-
sistency of linear constraints, thus it may result in non-matched

gaps (see Figure 6). We propose to maintain the integer property
of the gaps via the above adaptive rounding method. For all the
fixed gaps, we append their corresponding linear constraints 7 to C
and minimize Eqn. 5. We run this procedure iteratively until all the
constraints (Eqn. 7) are appended to C'.

4.2 Degenerate elements

Degenerate elements, i.e. the elements with zero volume in the para-
metric domain, are a big obstacle to hex meshing, since the isolines
in the parametric domain will break on the degenerate elements. We
first study their presence and then develop topological operations to
reduce them.

For a triangular face Aabc shared by tets s and t, it follows by Eqn.
5 in [Nieser et al. 2011]:

fls@) = type(ab,s) - fls(a) + gv;
Fls®) = type(ab,s) - fls(b) + gav;
fls(a) = type(at,s) - fls(a) + Gac;
Tlele) = type(at,s) - fla(c) + gacs
Ts0) = type(be,s) - f1a(b) + g
fls(0) type(be,s) - fls(c) + gue

Eliminating gaps gab, gac, gve results in a linear system:

(1~ type(ab,s)) - (/] 0
I- type@, s)) - (fls(a) = fls(e)) = 0; ®
(I — type(be, s)) - (f 0

Let us start with a simple example. Assume the types of the three
edges are

%
type(a%7 s) = I; type(bc,s) = Ra; type(a_é7 s) = Ry.

By substituting these types into the above linear system, we have
fls(a) = f|s(b) = fls(c). Thus the parametrization image of s and
t are degenerate. We apply a similar analysis to all other possible
combinations of three edge types and list all the degenerate cases in
Appendix D. From the table, we conclude that in the following two
cases, the triangular faces are mapped to be degenerate.

e A triangular face contains three singular edges, for instance, a
face with edge types { Ru, Rv, Ruw }-

e A triangular face contains only two singular edges whose match-
ing matrices share the same rotation axis, for instance, a face with
edge types {I, R,, R3}.

Note that if a triangular face contains a nonsingular edge and two
singular edges whose matching matrices does not share the same
rotation axis, it is not mapped to be degenerate, such as a face with
edge types {I, Ry, Ry }.

In practice a tet can be degenerate due to the integer rounding. For
instance, a tet containing three singular vertices but without any
singular edge could be degenerate if the rounding procedure makes
these singular vertices have the same u-, v- integer coordinates.
Another degenerate case happens on the boundary tet where all the
four vertices of the tet are on the boundary. Due to the boundary
constraints imposed in the parametrization, this kind of boundary
tets are mapped to be degenerate always.

So considering the above degenerate cases, we develop two opera-
tions : face-split and tet-split, to handle them.



Figure 7: Left&Right: parametrization without and with our pre-
processing. The degenerate tets are rendered in red and the flipped
tets are in green. The pre-processing removes all the degenerate tets
lar edge, insert its centroid as a

in parametrization. N
new vertex and split each of its " 'U
adjacent tets, e.g. t, into 3 tets t1, t2, t3 (see the inset). The frames
of t1, t2, t3 inherit that of t so that the new edges are nonsingular.
This operation ensures that every triangular face has at most one
singular edge.

7N
the parametrization due to the
boundary constraints. We thus

split it into four tets t1, to, t3, t4 by inserting its centroid as a new
vertex. Again, the frames of t; inherit that of t so that the 4 new
edges are nonsingular.

Face-split. For any triangular
face f with more than one singu-

Tet-split. A tet t with more
than two faces on the volume
boundary will be degenerate in

Remark: Notice that our degenerate analysis on triangular faces is
only locally done on Eqn. 4 and the integer rounding may still lead
to zero-volume tets, we cannot guarantee that the volume parameter-
izations is degenerate-free after applying these operations. But in
practice, most degenerate tets are avoided in the parametrization, for
instance, see the example in Figure 7.

4.3 Flipped Elements

Besides degenerate elements, flipped elements, i.e. the elements
with negative volume in the parametric domain, are another obstacle
in all-hex meshing. In surface quad meshing, Bommes et al. [2009]
propose an iterative method to suppress flipped elements by re-
weighting the objective function according to the element distortion.
However, this method may not converge and cannot guarantee a
flip-free parametrization. We tested a similar strategy in our volume
parametrization and it was unable to reduce the number of flipped
elements significantly. Hence, instead of solving this problem in vol-
umetric parametrization, we leave the processing of flipped elements
to the meshing step.

5 All-Hex Mesh Extraction

Given a parameterized tetrahedral volume, the hex elements can
be extracted by tracing integer-valued parametric iso-curves in the
volume. All-hex meshing can be easily achieved from a flip-free
parametrization since the integer iso-curve network admits a valid all-
hex structure under this situation. However, the existence of flipped
elements may lead to multiple vertices in the iso-curve network
which are mapped to the same point in the parametric domain. These
vertices result in erroneous edges in the iso-curve network and in
consequence introduce non-hex elements. These erroneous edges
should be collapsed from the iso-curve network.

Let us take the surface quad meshing as an example first. The flipped
element in Figure 8-a leads to an erroneous edge (the red edge in
Figure 8-b) which introduces non-quad faces. However, a simple

edge collapse operation can fix the topology of the iso-curve network
and restore a complete all-quad mesh (Figure 8-c).

Figure 8: (a) An iso-curve network on a parameterized triangu-
lar mesh. The red triangle is mapped to a flipped element in the
parametrization domain). The yellow vertex and the green vertex
are mapped to the same point in the parametrization plane. (b) Two
pentagons appear in the curve network if we extract polygonal faces
directly. (c) Quad faces can be restored easily by collapsing the
erroneous edge.

For extracting an all-hex mesh from the parameterized volume with
flipped tets, the above simple edge collapse strategy can be applied.
We list the steps as follows. We first record the parametrization
coordinates of each vertex of the iso-curve network. Notice that a
vertex x in the iso-curve network may have several parametrization
coordinates, for instance, x is a singular vertex. We denote the set
of these parametrization coordinates as S,. Then for any edge pq in
the iso-curve network if S, [ Sy # 0, we collapse pq to repair the
topology of the iso-curve network. A typical example is shown in
Figure 9 where three yellow vertices a, b, c satisty Sq () Sb [ Se #
(. After collapsing edges ab and ac, the missing hexes can be
recovered. This simple strategy usually works well when flipped
tets are isolated in the volume. But if there exist a large amount
of connected flipped tets, the iso-curve network cannot be repaired
easily. In Section 7, we show a failure case.

Figure 9: (a) Due to the presence of flip tets, it is not possible to
recover hexes in the orange region from the iso-curve network since
three yellow vertices form a triangular face. (b) Collapse edges
among three vertices. (f) The missing hexes are recovered.
Feature preserving and quality improvement. The generated
hex mesh may still suffer large distortion in the vicinity of singu-
larities due to integer rounding. An iterative hex mesh smoothing
scheme similar to [Zhang et al. 2005] is thus applied to improve the
quality of the hex mesh: (1) Any interior vertex is updated to the
centroid of its neighbor hexes. (2) On the hex mesh boundary, any
vertex is updated to the centroid of its neighbor quads, and projected
back to the input volume boundary. The feature curves are projected
on the recognized features of the boundary surface. The quality
of the smoothed hex mesh is then further improved by Mesquite
software [Brewer et al. 2003].

6 Experiments and Comparisons

Our method is tested on various CAD models and natural shapes on
a 2.4GHz Intel Xeon CPU with 12GB of RAM and the results are
compared with CubeCover [Nieser et al. 2011] and PolyCube [Greg-
son et al. 2011]. Statistics and timings are reported in Table 1.
The boundary frame fields in our experiments are initialized with
principal-dominant cross fields on boundary surfaces to capture the
geometry feature of the input shapes. The edge scale h used in the



Jave = 0.911, Jmin = 0.351 Jave = 0.911, Jpnin = 0.19

(a) Our method

(b) Volumetric PolyCube

Jave = 0.930, Jumin = 0.138
(d) Volumetric PolyCube

Jave = 0.940, Jmin = 0.293
(c) Our method
Figure 10: Comparisons with volumetric PolyCube [Gregson et al.
2011] on fertility and Stanford Bunny. We can see from cut views
that our results have more appropriate singularity placement.

volume parametrization is the average edge length of the tetrahedral
mesh. In all our experimental results, we use orthonormal frames
and make the number of hexes generated by our method as close
as possible to other methods in comparisons. However, since the
number of hexes is affected by edge scale h, types and locations of
singularities, our method may produce more hexes. In such cases,
we also provide the quality evaluation of the subdivided hexes of
other methods (see Table 1). The qualities of hex meshes in this
paper are all improved by Mesquite.

Figure 2 shows three meshing results on an ellipsoid initialized with
different boundary frame fields. The first and third rows illustrate the
corresponding singular graphs of frame fields and singular structures
of hex meshes respectively.

Figure 1&10 show that our hex-meshing results have better quality
than volumetric PolyCube [Gregson et al. 2011] on the volumes of
rod, fertility and Stanford bunny. Since the corners of the PolyCube
are the sources of singularities, we can see that there are many
irregular vertices on the boundary of the hex meshes from volumetric
PolyCube. For instance, volumetric PolyCube introduces more
singularities on cylindrical-like regions than our method.

In Figure 11, we compare our results with CubeCover [Nieser et al.
2011]. For the fandisk model, Nieser et al. use the coordinate axis
direction to guide the frame field. In this way, the resulting mesh
is equivalent to using PolyCube which is a single box. Therefore
there are only boundary singularities in their result. We initialize
the frame field with a feature-aligned cross field, thus the resulting
mesh has less distortion due to the interior singularities. For the
rocker arm model, Nieser et al. create a complex meta-mesh with
designed singularities. But the resulting hex mesh still have 17
inverted elements. Our method places singularities automatically in
proper positions, thus leads to a hex mesh with better quality.

More hex meshing results are shown in Figure 12. All the hex
meshes shown in the paper are provided in the supplemental material
in VTK formats.

Frame field guiding. We allow the user to guide the frame field
generation by placing guiding boxes (Figure 13). The frames of
the tets inside the boxes are set to be three local direction vectors of
those boxes. The nonsmooth frame transition near to the boundary
of boxes can be smoothed out by our frame field optimization. In
Figure 2, we show a frame field modified by a guiding box in the

Jave = 0.902
Jmin = 0.073

(b) CubeCover

(a) Our method
Jave = 0.866 Jave = 0.950
Jmin = 0.209 Jmin = —0.761

LR
YA
55552

(c) Our method

(d) CubeCover

Figure 11: Comparison with CubeCover [Nieser et al. 2011] on
fandisk and rocker arm shown with cut views.

right. Another important usage of guiding boxes is to eliminate un-
desirable singularities of a frame field. In hex meshing, we may not
want to introduce many singularities inside some narrow or complex
parts of the volume. However, our propagation-based frame field
initialization likely generates singular edges around the medial axis
of the volume, and most of them cannot be eliminated by frame opti-
mization. We can put guiding boxes at those regions to redefine the
frame field there. For instance, we use guiding boxes to modify the
frames inside the narrow ears of Bunny (Figure 13-a) and the head
of rock arm (Figure 13-b) to reduce singularities. The resulting hex
meshes are presented in Figure 10-c and Figure 11-c respectively.

Robustness of SRF conversion. To demonstrate the robustness
of our SRF conversion algorithm, we have tried our SRF conversion
on a random frame field of an ellipsoidal volume(32320 tets,
6825 vertices). The orthonormal frames in the interior tets are
initialized randomly, while the boundary frames are initialized with
a principal-dominant cross field and surface normals. The resulting
frame field induces 775 proper singular edges and 61 improper
singular edges. After SRF conversion, the new frame field induces
753 proper singular edges only. The modified volume contains
31930 tets and 6766 vertices. In the process of SRF conversion, we
did not meet any uncollapsible improper singular edges that cannot
be handled by our method.

Comparison with [Huang et al. 2011].  Our smoothness function
(Eqn. 3) is the summation of the original smoothness measure. How-
ever, Huang et al. formulate the smoothness energy function as the
integral of the gradient of the spherical harmonic coefficients, which
is not a direct representation of the original smoothness measure.
Their approach may result in a less smooth frame field. We use a
simple example to demonstrate the advantage of our method. Fig-
ure 14-left shows a singular graph of a spherical volume (194k tets)
that is generated by Huang er al.” method. The singular graph
contains many zigzagged singular curves and two improper singular
edges. We further optimize this frame field using our smoothness
function and result in a smoother singular graph that does not contain
improper singular edges as shown in Figure 14-right.



(a) Bone (b) Impeller

(c) Joint (d) Hanger

Figure 12: Cut views of bone, impeller, joint and hanger hex-meshes
generated by our method.

() (b)

Figure 13: Guiding boxes on the ears of Stanford Bunny and the
head of rocker arm.

7 Conclusion

In this article we present a high-quality all-hex meshing frame-
work based on a SRF guided volume parametrization. We model
the smoothness of 3D frame fields efficiently for optimization and
present effective topological operations for SRF conversion that is
essential to all-hex meshing. We also improve volume parametriza-
tion technique by reducing degenerate elements and handling flipped
elements in hex mesh extraction.

Limitations. The main drawback of our work is that we have no
theoretical guarantee that volume parametrization from an SRF leads
to an all-hex structure. The sufficient condition of the existence of
all-hex structures requires more deep topological study and is still an
open problem for further research. Another theoretical issue is that
our SRF representation cannot support high order singularities since
integer k used in R only encodes the fractional part of singularity.
Thanks to our initialization method, the high order singularities do
not appear in practice. But it is interesting to study how to represent
high order singularities. A possible solution is to extend the concept
of period jump [Ray et al. 2008] to 3D.

As mentioned in Section 5, a large amount of connected flipped
elements prohibit all-hex meshing. We show an example in
Figure 15 that we are unable to retrieve an all-hex mesh. But
notice that the topology of the singular graph does not admit the
existence of an all-hex structure, it might explain the appearance

Figure 14: Left: a singular graph in a spherical volume generated
by [Huang et al. 2011]. The red edges are improper singular edges.
Right: our optimization result.

Figure 15: Left: The singular graph consists of two spiral and close
curves inside a torus volume. Right: the tets mapped to negative
volumes in the parametrization are rendered.

of large flipped elements. How to determine the existence of all-hex
meshing from the topology of the singular graph is an interesting
topic for future research.

Similar to parametrization-
based surface quad meshing,
our hex meshing method
also suffers the misalignment
problem (see the right inset)
since the global control of
singularities is not considered.
We plan to generalize the ideas of [Bommes et al. 2011] to solve
this problem.
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Appendix

A. The proof of Proposition 1

‘We shall prove Proposition 1 by contradiction. Assume a singular tet edge ﬁ ends
at interior vertex p and denote the set of the tets containing p as S. Since S is
homeomorphic to a sphere, all the triangles of S which do not contain p form a genus-0
triangular mesh M. Select q as the root node, one can construct a spanning tree G pz
on the vertices of M. The complement of G a7 is a dual spanning tree called G AC/I We
illustrate G'ps and GJC\;, in Figure. 16. Since each edge of GJC\;, corresponds to two
adjacent tets, by traversing G ff the frames of all the tets can be reoriented such that
the matching matrices of the adjacent tets on G(]\j/[ are the identity. Now we investigate
other matching matrices associated with G 7. Geometrically, each leaf edge of G ps
connects two adjacent tets and each leaf node of G s corresponds to a tet edge e
containing p. From the assumption that only the root node of G'p; corresponds to
the singular tet edge ﬁ e is nonsingular obviously. We conclude that the matching
matrix associated with each leaf edge must be the identity by Eqn. 2. We can remove
all the leaf edges and nodes from G j7, our conclusion is still true for the updated G' 5.
This removement can be applied on G s recursively and results that ﬁa is nonsingular.
Thus the assumption is violated. ll

Figure 16: The spanning tree G s is in red and the dual spanning
tree G$ is in green.

B. Smoothness measure of an orthonormal field

Ly [HPwl i) + HPwli D] = 5%(564 + 112cos (28) —
84 cos (4y) — 196 cos (48) — 14 cos(—4v +48) — 14cos (4y +48) —
56 cos (28 — 4v) — 56 cos (28 + 4v) —84 cos (4a) —cos (4o + 4y — 48) —
cos (4da — 4y +4B) — cos(da —4y —4B) — cos(da+ 4y +48) +
28 cos (4 — 23 + 4v)+28 cos (4o + 23 — 4v)+28 cos (4o — 23 — 4vy)+
28cos (4o + 2B +4v) — 70cos(—4v +4a) — TO0cos(4y + 4a) —
l4cos (—48 +4a) — 14cos (48 +4a) — 56cos(—28+4a) —
56 cos (28 + 4a) — 8sin(4da — 38 +4v) + 8sin(da+ 38+ 4y) +
8sin (4o — 38 — 4v) — 8sin (4o + 38 — 4v) + 56sin (4da — B + 4v) —
56 sin (4o + B + 4v) — 56 sin (4o — B — 4v) + 56 sin (4o + B — 4v))

C. Edge collapse operation

Under the assumption that improper singular edges are collapsible, we prove that the
edge collapse operation is capable to eliminate all improper singular edges.

Assume the edge e := D103 contained by tet t is improper. Denote the four
opposite tets of t to the four vertices {v1, v2,v3,va} by s1, 82,83, S4 respec-
tively and O(s;e) and N(s;e) are the preceding and latter tet of s around
the edge e. We illustrate these tets and vertices in Figure 17. The loops of

the neighboring tets of v4v3, v1v4, v2v4 are {s2,t,s1,...,O0(s2;0403),s2},

{t,s3,...,0(s2;v104),s2,t} and {t,s1, N(s1;v204),...,ss,t}, respec-
tively. We have type(vav3,s2) = HO(SQ;W)SQ o ... o0 Ilts; o Tls,t,
type(vivi, t) = Ilsye o HO(Sz;W)SQ o ... o Iltsy, type(vavi, t) =
szt 0. .. 0l N(sysa507) © Llesy -

Figure 17: The tets around e before and after collapsing viv3. v1
and v are merged to V.

o Ils,s,. Since

After collapsing e, type(m,SQ) is Ho(s2;m) o ...
= Ilts, o Ils,¢ according to our algorithm, the edge type of v3v1 is not

IIs
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changed. For the new edge v, vj, its neighboring tets are the union of the original
loops of v1v4 and vav; excluding t and s3, i.e., {s2,s1,...,O0(s2;v,v41),s2}.
We have type(v,vi,s2) = HO(SQ:W)Sz o ... o Ilsys;. Notice that
O(s2;v5v4) = O(s2; v1v4), we can obtain type(viv4, t) o type(vavi, t) =
H;;t o type(v«vi, s2) o Ils,+ by a simple calculation. Thus we have

-1

type(vyvi, s2) = Mgyt 0 type(vivi, t) o type(vzvi, t) o H52t'

Now we list the possible edge types of v, vj.

e If viv or vavy is improper, v, v4 could be improper or proper.
e If one of v1v4 and v2vj is nonsingular and another one is proper singular, v, vi
must be proper. The case can be easily verified by matrix multiplication.

Note that there is no such case that type(1ﬁ1>7 t) and type(1ﬁi7 t) are proper
singular due to the preprocessing in Step 1. From the above analysis, we conclude
that, no matter what the type of D104 is, the number of improper singular edges is
not increased. This conclusion is also true for all the other affected edges. Since e
is eliminated eventually, the number of improper singular edges decreases at least by
one. Thus our algorithm can eliminate all the improper singular edges by applying edge
collapse iteratively. ll

D. Degenerate singular combination

Triangular faces with singular edge types in the following table are mapped to be
degenerate in the parametrization. Here the numbers {0, 1, ..., 9} represent the
singular types {I, R,,, Ri, Rﬁ, Ry, R%, R%, Ry, Ri), Ri)} respectively. We
provide Maple code for reproducing the result in the supplemental material.

©o,11) (012 (13 (022 (023 (033 044 (045 (046) (055
0,56) (0,6,6) (0,7,7) (0,7.8) (0,790 (0.8,8) (08,9 (09,9 (i,j.k)

Table 2: Degenerate singular combination. (i,j,k) represents
arbitrary combination of three different integers in {1,2,...,9}.
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