
Automated Data Extraction using Predictive Program Synthesis

Mohammad Raza
Microsoft Corporation

One Microsoft Way
Redmond, Washington, 98052

moraza@microsoft.com

Sumit Gulwani
Microsoft Corporation

One Microsoft Way
Redmond, Washington, 98052

sumitg@microsoft.com

Abstract

In recent years there has been rising interest in the use of
programming-by-example techniques to assist users in data
manipulation tasks. Such techniques rely on an explicit input-
output examples specification from the user to automatically
synthesize programs. However, in a wide range of data ex-
traction tasks it is easy for a human observer to predict the
desired extraction by just observing the input data itself. Such
predictive intelligence has not yet been explored in program
synthesis research, and is what we address in this work. We
describe a predictive program synthesis algorithm that infers
programs in a general form of extraction DSLs (domain spe-
cific languages) given input-only examples. We describe con-
crete instantiations of such DSLs and the synthesis algorithm
in the two practical application domains of text extraction and
web extraction, and present an evaluation of our technique on
a range of extraction tasks encountered in practice.

1 Introduction
With the ever-increasing growth of data in the world, recent
years have seen rising interest from both academia and in-
dustry in the use of automatic programming techniques to
address the problem of data wrangling: the challenge faced
by data scientists to cope with data in a multitude of for-
mats from different sources and to bring this raw data into a
form that is amenable to their analysis tools. Such data pre-
processing is a time-consuming activity (responsible for up
to 80% of time in some cases (Kandel et al. 2011)) and most
often requires programming skills in order to write robust
extraction or transformation scripts.

This is where automated generation of such programs can
be extremely beneficial - both to speed up the wrangling pro-
cess and also to make it accessible to a wide range of data
analysts and knowledge workers who are not skilled pro-
grammers. In comparison to more opaque automated infer-
ence techniques for data processing where the user has lit-
tle understanding of the inferred transformations, automatic
program synthesis has the advantage of reusability (one-off
learning of lightweight scripts that can be stored and applied
to similar datasets in future), as well as transparency and ed-
itability: transformations are programs inspired from classi-

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

cal programming languages that can be manually edited if
required.

Towards this goal, many recent works have explored var-
ious programming-by-example (PBE) approaches (Lieber-
man 2001; Gulwani, Harris, and Singh 2012; Raza, Gul-
wani, and Milic-Frayling 2014; Manshadi, Gildea, and Allen
2013; Lau et al. 2003). In PBE, users can specify their in-
tended task by giving some input-output examples, from
which the system attempts to automatically generate a pro-
gram in some domain-specific language (DSL) that satisfies
the given examples. A notable commercial success in this
area is the Flash Fill feature in Microsoft Excel that is based
on the PBE technique of (Gulwani 2011).

However, PBE approaches depend on an explicit intent
specification from the user about the task that they want to
perform, which often requires the user to correctly under-
stand the examples that will help the system to infer the cor-
rect program, and can also require significant manual effort
from the user in many kinds of tasks. In this work, we iden-
tify and address a wide range of data extraction tasks where
the system can operate without explicit examples specifica-
tions and generate extraction scripts in a purely predictive
manner, based on the properties of the input data alone. This
can hence be seen as inference from input-only examples
rather than input-output examples. We first illustrate such
extraction scenarios in two concrete application domains
that we investigate here, before discussing the predictive ap-
proach and its benefits in more detail.

Text extraction. Figure 1 shows a text extraction scenario,
where the input data set (shown at the top) contains entries
from a web server log. Each row is a text string that contains
values such as the client IP address, date, etc, which are sep-
arated by various delimiting regions that are particular to this
log format. The goal is to extract these values into separate
columns as shown in the table at the bottom of the figure,
where the columns representing the delimiting regions are
highlighted.

In simple text-based formats such as CSV (Comma-
Separated Values), such an extraction task is relatively easy
as there is usually a fixed single-character delimiter used to
separate data values. But in general, as shown in Figure 1,
there can be any number of arbitrary string delimiters used
in the same dataset, and a particular string may even be used

Figure 1: A sample text extraction from a server log (left) into a tabular representation (right)

Figure 2: A text extraction task faced by an Excel user

as a delimiter in some places but not in others. For exam-
ple, in Figure 1 the “/” character is a delimiter separating the
HTTP protocol version, but should not act as a delimiter in-
side the URLs. Hence it is not possible to simply split by
all occurrences of a particular string. In fact, in many cases
there is actually no delimiting string between two data val-
ues. For example, Figure 2 shows the extraction task from
a user in an Excel help forum who is struggling to separate
numeric values from units of measurement in a dataset with
a lot of variability. In this case there are obviously no delim-
iting characters, so the goal is actually to find the zero-length
delimiting regions which are single points in the string de-
fined by the context of having a number on the left and a
letter on the right side.

Web extraction. Another automated data extraction do-
main is the extraction of tabular information from web
pages, especially in cases where there is no explicit visual
(row by column) table present in the web page. For exam-
ple, Figure 3 shows the task of extracting the results of an
Amazon product search, where each result item has numer-
ous fields such as title, date, various prices, etc that are not
laid out in an explicit row by column table. These fields,
some of which are missing for some items, are represented
in the DOM (Document Object Model) tree structure of the
web page using different formatting properties rather than
simple HTML table tags. And some fields, such as “new”
and “used” prices, actually have no difference in formatting
and can only be distinguished by examining the text content.

Hence, as every such website uses different representa-
tions of tabular information, dedicated extraction scripts are
required in each case. Although there has been much work
on automatically detecting tables based on particular tags
or visual properties (Krüpl, Herzog, and Gatterbauer 2005;
Gatterbauer and Bohunsky 2006; Chu et al. 2015), extrac-
tion of arbitrary non-visual tables has mostly been explored
with the help of user-provided examples, such as (Tengli,

Yang, and Ma 2004) and the Flash Extract system (Le and
Gulwani 2014).

Predictive program synthesis. The extraction scenarios
described above have been addressed by the various PBE
approaches that require the user to specify their intention
through explicit examples of the desired extraction. How-
ever, in all of these scenarios it is easy for a human to predict
the desired extraction by just observing the input data itself,
without any need to be told what to extract. Such predictive
intelligence has not yet been explored in program synthe-
sis research, and is what we address in this work: automatic
learning of extraction programs from input-only examples.
The predictive approach we propose here has a number of
advantages over previous PBE-based techniques:

• Reducing user effort in giving examples. In the scenar-
ios in Figures 1 and 3 there are more than 10 extracted
fields, and in practice it is normal for some log files to
have around 50 fields. PBE systems such as Flash Fill and
Flash Extract can normally require 2 or 3 examples per
field, which can therefore lead to significant manual ef-
fort on the part of the user to complete an extraction task.

• Less reliance on user understanding of system require-
ments. In PBE approaches users are not aware of which
examples would be most useful to the learning system,
given all the variability in the data. For example, in Flash
Fill users usually give examples on the top few rows, from
which the system can often learn a program that is over-
specific to the given examples, and therefore fails at a later
row somewhere in the dataset.

• Using all of the input data for learning. PBE approaches
work from a very small number of input-output examples
to reduce the manual effort for users. In contrast, the pre-
dictive approach we describe here can utilise the many
more inputs available in the data to infer the common pat-
terns as well as the variability present in the data.

• Allowing batch processing. The need for manual interven-
tion from the user in PBE approaches prevents the possi-
bility of large scale automation of data processing tasks.
For example, if the user has to process a large collection of
datasets in different formats or pages from different web-
sites, then they would need to manually provide examples
for every new kind of format that is encountered.

In the next section, we begin by defining a general form of
DSLs for performing data extraction, in which programs are
structured as a combination of independent sub-programs

Figure 3: A non-visual table extraction from a webpage of shopping results (left) into a tabular representation (right)

for different data fields. We illustrate this with the concrete
DSLs that we have designed for the text and web extraction
domains, which are based on classical languages such as reg-
ular expressions and CSS (Cascading Style Sheets) selectors
and can express the range of transformations illustrated in
the scenarios above. We then describe our novel predictive
synthesis algorithm for inferring programs in an extraction
DSL given an input dataset. This is a domain-agnostic algo-
rithm which operates by generating programs up to semantic
equivalence in an efficient bottom-up fashion, and uses the
notion of a correspondence relation between sub-programs
as the central ranking principle. We describe concrete instan-
tiations of the algorithm and ranking relations for the text
and web domains, and in the following section we describe
the evaluation of our technique on practical test scenarios
obtained from log files, real users and the web. We end with
a discussion of conclusions and future work.

2 Data Extraction DSLs
The design of the domain specific language (DSL) is an
important component of any program synthesis approach,
as there is always a delicate trade-off between expressiv-
ity (ability to address a range of practical use cases) and
tractability (efficiently generating correct programs). In this
section we describe a general form of DSLs for performing
data extraction tasks, and then illustrate this with the con-
crete DSLs that we have designed for the text and web ex-
traction domains. An extraction DSL is defined as a context-
free grammar of the form

(ψ̃N , ψ̃T , ψstart ,R)

where ψ̃N is a set of non-terminal symbols, ψ̃T is the set
of terminal symbols, ψstart is the start symbol and R is the
set of non-terminal production rules of the grammar. Every
symbol ψ is semantically interpreted as ranging over a set
of values JψK, which can be standard types such as integers,
strings, arrays, etc. Each production rule r ∈ R represents
an operator in the programming language, and is of the form

ψh := Op(ψ1, . . . , ψn)

where Op is the name of the operator, which takes parameter
types given by the body symbols ψi ∈ ψ̃N ∪ ψ̃T and returns
a value of type given by the head symbol ψh ∈ ψ̃N . Hence

the formal semantics of the DSL is given by an interpretation
of each rule r as a function

JrK : Jψ1K×, . . . ,×JψnK→ JψhK
where ψh is the head symbol and ψ1, ..., ψn are the body
symbols of the rule operator. A program P of type ψ is any
concrete syntax tree defined by the DSL grammar with root
symbol ψ. A complete program has the root symbol ψstart .
Any derivation from a non-root symbol is a sub-program.

We impose two structural constraints on extraction DSLs
that are oriented towards the data extraction task. Firstly,
there exists a global variable that is available to the seman-
tics of all operators in the programming language, which
holds the input data on which the extraction task is being
performed. This input variable has a fixed type I. For in-
stance, this type can be a text string in the text extraction
domain or the DOM tree of a webpage in web extraction.
The semantics of each rule r in an extraction DSL with head
symbol ψh and body symbols ψ1, ..., ψn is defined with re-
spect to the input variable:

JrK : JIK× Jψ1K×, . . . ,×JψnK→ JψhK
Secondly, we require that there is a unique top-level rule

in the DSL that has the start symbol as the head, and that this
rule is of the form

ψstart := Opt(ψf , . . . , ψf)

for some Opt and ψf . This models an extraction task as a
program that consists of a top-level operator Opt that com-
bines the results of different field-level sub-programs that
work at the level of individual fields in the input data. For
example, in the text extraction task, the field-level programs
identify the logic for detecting particular delimiters between
data values, while the top-level operator combines these
different delimiters to produce the list of extracted values.
In the case of web extraction, the field-level sub-programs
identify the selection logic for particular fields in the web-
page, and the top-level operator combines these individual
selection lists into an aligned table of values. We next illus-
trate these concepts with the concrete extraction DSLs we
have designed for text and web extraction.

Text Extraction DSL
Figure 4 shows the DSL Lt for text extraction, which is
based on delimiters and regular expressions for detecting ex-
traction patterns. The symbols of the grammar are shown

@start string[] spl := SplitByDelimiters(d , . . . , d)

Pair〈int, int〉[] d := c | LookAround(r , c, r)

Pair〈int, int〉[] c := Str(s) | StrWs(s)

Pair〈int, int〉[] r := Empty() | Tok(t) | Concat(r , r)

string s

RegexToken t

@input string

Figure 4: The DSL Lt for text extraction

with their associated semantic types and the start symbol
is explicitly marked. The input is a text string containing
values possibly separated by delimiting regions, and the
output (start symbol) of a program is an array of the ex-
tracted substrings. The top-level operator in this case is the
SplitByDelimiters function which uses a number of differ-
ent delimiter programs to produce the final splitting of the
string. Each delimiter program computes a sequence of de-
limiting regions represented as a pair of start and end posi-
tions in the input string.

A delimiter program is either a match of a constant
string (exact matches with Str or matches including sur-
rounding whitespace with StrWs) or a contextual delim-
iter LookAround(r1, c, r2) that matches occurrences of a
constant string when it occurs between regular expression
matches r1 and r2. For example, a program that splits by “;”
and any occurrences of “,” including the surrounding whites-
pace is given as

SplitByDelimiters(Str(“;”),StrWs(“,”))

On an input string “a;b, c;d, e;f” this will produce the output
[“a”, “;”, “b”, “, ”, “c”, “;”, “d”, “, ”, “e”, “;”, “f”]. A contextual de-
limiter with an empty string can address zero-length delim-
iter scenarios such as in Figure 2, where the desired extrac-
tion task can be accomplished with the following delimiter
program that detects the boundaries between numbers and
letters:

LookAround(Tok([0-9]),Str(“”),Tok([A-Za-z]))

Web Extraction DSL
Figure 5 shows the DSL Lw for extracting tabular data from
web pages, which is inspired by the CSS selector language.
In this case the input is the DOM tree of a webpage, and the
output is table of text values that are extracted, such as the
table illustrated in Figure 3. Each field-level sub-program
selects all the nodes for a particular field in the webpage
(a column of the desired table), and the top level operator
ExtractTable aligns each of these selections into the final
table.

The selection logic for fields is based on CSS selectors,
and includes operators for getting descendant nodes, right
siblings, and filtering nodes by tag type, class name, ID, text
content and child node positions. Note that the DSL does
not bias towards any particular tag types such as table or list
elements. For example, the selector for the first column in

@start string[][] tbl := ExtractTable(c, . . . , c)

DomNode[] c := AllNodes() | Descendants(c) |
RightSiblings(c) | filter

DomNode[] filter := Tag(tg ,c) | Class(cl ,c) | ID(id ,c)

| Text(t , c) | NthChild(n, c) |
NthLastChild(n, c)

string tg , cl , id , t

int n

@input DomTree

Figure 5: The DSL Lw for web extraction

the extracted table in Figure 3 is a simple class name filter

Class(“s-access-detail-page”,AllNodes())

while the selector for the ratings (column 8) requires a
deeper tree search:

Class(“a-icon-alt”,Descendants(Class(“a-row”,AllNodes())))

3 Predictive Synthesis Algorithm
In this section we describe the predictive program synthesis
algorithm that generates an extraction program from input-
only examples. The general algorithm is parametric in a
number of domain-specific properties (including the DSL)
which can be provided as configuration parameters for par-
ticular domain instantiations.

In summary, for a given DSL and a set of input exam-
ples, the algorithm performs a systematic search to com-
pute the semantically distinct values that can be generated
by field-level programs in the DSL up to a certain size
bound. This search is similar to previous bottom-up syn-
thesis approaches such as (Katayama 2007; Raza, Gulwani,
and Milic-Frayling 2015), but unlike previous approaches it
utilizes certain operator-specific functions to gain orders of
magnitude improvement in complexity, thereby making the
synthesis tractable for practical DSLs such as Lt and Lw.
After this semantic state space exploration, the final step is
to perform a ranking to obtain the collection of field-level
programs that will be used by the top-level DSL operator.
Unlike previous program synthesis approaches, this ranking
of field programs is not based solely on the properties of
individual programs, but on correspondences that hold be-
tween different programs. Intuitively, in the absence of any
output specification, the main ranking criterion is to prefer
programs that identify maximal structure in the input data.
We do this by finding the largest collection of field-level ex-
tractions that align well with one another, for some notion of
alignment that is relevant to the data domain.

The general algorithm is shown in Figure 6. The param-
eter Ī holds the m input examples I1,..., Im. For instance,
in the text domain each input example may be a string in
a spreadsheet row, while in the web domain each example
would be the DOM tree of a single webpage. The other pa-
rameter C is the configuration parameter, which defines five

1: function PredictiveSynthesis(Ī ,C)
2: let Ī = (I1, . . . , Im)

3: letC.DSL = (ψ̃N , ψ̃T , ψstart ,R)
4: let rt ∈ R be the top rule ψstart := Opt(ψf , . . . , ψf)

5: let M : ψ̃N ∪ ψ̃T → P(Σ) map symbols to sets of states
6: for each ψ ∈ ψ̃T do
7: M [ψ]←{((v)m, v) | v ∈ C.ExtractLiterals(Ī , ψ̃T)}
8: for (iter = 0; iter < C.MaxDepth; iter ++) do
9: for each r ∈ R\{rt} do

10: let r be ψh := Op(ψ1, . . . , ψn)
11: if C.LiftFuncs[r] 6= null then
12: σ̃ ← C.LiftFuncs[r](Ī ,M [ψ1], . . . ,M [ψn])
13: else
14: σ̃ ← LiftGeneric(Ī ,M , r)

15: σ̃new ← {(v̄, P) ∈ σ̃ | ¬∃P ′.(v̄, P ′) ∈ M [ψh]}
16: M [ψh]← M [ψh] ∪ σ̃new

17: ((v̄1, P1), . . . , (v̄k, Pk))← C.Rank(M [ψf])
18: return Opt(P1, . . . , Pk)

Figure 6: Program synthesis algorithm

configuration properties for the algorithm: DSL, MaxDepth,
ExtractLiterals, LiftFuncs and Rank, which we shall de-
scribe in turn.

The DSL is the domain-specific language (as defined in
section 2) in which programs will be synthesized. The top-
level rule and the field programs symbol ψf is determined at
line 4. Line 5 initializes a map M from symbols to a set of
states which will be used to maintain the values generated
by different programs on the given inputs. A state σ ∈ Σ of
type ψ is of the form (v̄, P), representing a tuple of values
v̄ = (v1,..., vm), where each vi ∈ JψK is the value generated
on input Ii by program P of type ψ. We use σ̃ to denote a set
of states and denote all states of type ψ by Σ(ψ). We now
describe the algorithm in three phases: state space initializa-
tion, search and ranking.

Initialization

The state map is initialized with literal values for each of the
terminal symbols of the DSL (lines 6 and 7). This is done
using the ExtractLiterals function, which computes literal
values for each terminal type from the given input data. For
instance, for the web DSL Lw, the literals for tg , cl , id and t
are respectively determined by all the tag types, class names,
ids and text content of all the nodes in all of the input web-
pages, and numeric values for n are determined by the max-
imum number of child nodes of any node.

For the text DSL Lt, constant string values for s can be
determined as any substrings of the inputs, but in practice it
is more effective to restrict these to special character strings
as these are normally used as delimiters. The regular ex-
pression tokens t we consider are standard regex patterns
for numbers, lower or upper case letters, special characters,
date/time, etc. At line 7, the states for each terminal symbol
are initialised with the extracted literal values (where (v)m

represents a value tuple of m occurrences of the same value
v, since a literal has the same value on any input).

1: function LiftGeneric(Ī ,M , r)
2: let Ī = (I1, . . . , Im)
3: let r be ψh := Op(ψ1,..., ψn)
4: let result = ∅
5: for each ((v̄1,P1),..., (v̄n,Pn)) ∈ M [ψ1]×...×M [ψn] do
6: for k = 1 . . .m do
7: vk ← JrK(Ik, v̄1[k],..., v̄n[k])

8: result ← result ∪ {((v1,..., vm),Op(P1,..., Pn))}
9: return result

Figure 7: Generic lifting function for operator rules

Search
At line 8 we begin the bottom-up exploration of the state
space. This is bounded by the MaxDepth configuration pa-
rameter, which imposes a bound on the depth of the syntax
tree of the programs we consider. We determine the value
used for the MaxDepth parameter in a particular domain
based on an empirical evaluation, taking the maximum depth
that yields sufficiently expressive programs in the given DSL
in practical running time. Given the existing set of states at
each iteration, for each rule r other than the top rule, at line
15 we compute the set σ̃new representing the new distinct
values created by application of the rule over the existing
values. This rule application is hence a lifting of the rule
operator semantics function JrK to sets of states, that is, a
function with signature:

JIKm × P(Σ(ψ1))× . . .× P(Σ(ψn))→ P(Σ(ψh))

where I is the input type of the DSL. A generic way of im-
plementing this lifting function for an arbitrary rule is with
the procedure LiftGeneric defined in Figure 7, which simply
computes the cross product over all the parameter sets and
applies the rule semantics over all combinations of value tu-
ples. Although it is rule-agnostic, this naive combinatorial
approach can be prohibitively expensive in practice. Signif-
icant complexity reduction can be gained by using specific
lifting functions for certain kinds of operators, which can be
specified using the configuration parameter LiftFuncs map-
ping certain rules to their lifting functions. The algorithm
uses the lifting function if one exists (line 12), or else de-
faults to the generic function (line 14).

Examples of lifting functions exist in both the text and
web domains. Most of the filter operators in the web DSL
Lw benefit from specific lifting functions, and an example
for the ID operator is shown in Figure 8. In this case, given
a set of ID values and a set of node sets, the naive approach
would be to filter every node set by every ID. However, the
only useful results will be for IDs that actually exist in any
of the nodes. This is achieved by the method in Figure 8 by
traversing each node set only once, and maintaining a map
from all ID values encountered to the nodes that have that
ID. Hence formally we go from complexity that is quadratic
in the sizes of σ̃1 and σ̃2 to linear in these sizes. Similar
complexity reductions can be made for other filter operators
in Lw.

In the text domain, lifting functions play a vital role for
the Concat and LookAround operators in Lt. For example,

for Concat we have an existing set of regexes that match on
the input strings, and would like to find all concatenations
of these regexes that also match on the input strings. While
the naive approach is to simply check all pairs, the optimal
lifting function traverses the set of regex matches and builds
a map from end positions to the regexes matching on those
end positions. A second linear traversal can then check for
all regexes that start at these end positions, so that only pairs
of regexes that actually have adjacent matches on the input
strings are ever considered. A similar technique is used in
the case of LookAround, where triples instead of pairs of
matches are considered.

Ranking
The ranking function Rank is the final configuration parame-
ter, which selects the field-level programs that the algorithm
uses to construct the final extraction program with the top-
level operator (line 18). The general principle behind our
ranking functions is the notion of inter-subprogram corre-
spondence. Unlike previous ranking approaches that exam-
ine properties of individual programs, the idea behind the
correspondence relations for extraction DSLs is to detect
maximal structure in the input data by finding the largest col-
lection of field-level extractions that align well with one an-
other. The ranking function finds such maximal collections
of states.

In the web domain, the main correspondence relation that
we use is based on an interleaving relationship between the
sequence of DOM nodes that are extracted by different field-
level programs. Formally, states (v̄1, P1) and (v̄2, P2) satisfy
the interleaving relation if we have v̄1 = (s1,..., sm) and
v̄2 = (s′1,..., s

′
m) and Interleave(si, s

′
i) holds for all i.

Each si and s′i is an array of nodes DomNode[] that is the
result of the field extraction programs P1 and P2 on the ith
input, and Interleave(s, s′) holds iff
• ∃N. |s| = |s′| = N and
• node s[j] is before s′[j] in document order, for 0 ≤ j < N

• node s′[j] is before s[j + 1], for 0 ≤ j < N − 1

This interleaving relation captures the common pattern on
web pages with structured information where a sequence of
records occurs in document order, and each record contains
nodes for particular fields that are similarly formatted. We
note that this strategy assumes that the document order in
the DOM tree corresponds to the visual rendering of infor-
mation on the web page, which is an assumption that holds
in a large majority of web pages but not always (in our
evaluation we found a single example of such a webpage
where the document order did not correspond to the visual
order). Also, in addition to the interleaving relationship, we
also impose preferences on more structured patterns where
the nodes of all the fields share a common ancestor node.
This prefers common patterns in webpages where records
are grouped under separate DOM nodes, such as DIV of TR
tags. Although we give preference to these more structured
patterns, we do not depend on them as in many cases such
common ancestor nodes do not exist.

In the text domain, the main correspondence relation we
use is based on consistent disjoint alignment of delimiters

1: function LiftFuncs[rid](I , σ̃1, σ̃2)
2: idSet ← {v | (v̄, v) ∈ σ̃1}
3: result ← ∅
4: for each ((s1, . . . , sm), P) ∈ σ̃2 do
5: let M : JidK→ (DomNode[])m

6: for k = 1 . . .m do
7: for each node ∈ sk do
8: if node.ID ∈ idSet then
9: add node to M [node.ID][k]

10: for each v ∈ domain(M) do
11: result ← result ∪ {(M [v], ID(v, P))}
12: return result

Figure 8: Lifting function for the ID filter operator in Lw

across all inputs. Formally, states (v̄1, P1) and (v̄2, P2) sat-
isfy the relation if we have v̄1 = (d1,..., dm) and v̄2 =
(d′1,..., d

′
m) and

Ordering(d1, d
′
1) = . . . = Ordering(dm, d

′
m) 6= null

Each di and d′i is an array of integer pairs Pair〈int, int〉[]
determined by delimiter programs P1 and P2 on the ith
input, where each pair represents a region in the input
string that is an occurrence of the delimiter. We define
Ordering(d1, d2) = `, where ` = null if any delimiter re-
gions in d1 and d2 overlap, and otherwise ` ∈ {0, 1}|d1|+|d2|

is a list of binary numbers representing the left-to-right or-
dering of all of the delimiter regions from d1 and d2. For
example,

Ordering([(1, 4)], [(3, 7)]) = null

because the two delimiter regions overlap, while

Ordering([(2, 3), (7, 9)], [(4, 6), (13, 15)]) = (0, 1, 0, 1)

because the two delimiters occur disjointly in an alternating
fashion.

In the maximal alignment analysis, we also give prefer-
ence to non-zero-length delimiters by only considering zero-
length delimiter programs if consistently occurring non-
empty delimiters cannot be found. This is to avoid over-
splitting of data in cases where actual delimiting strings are
present. In practice, the desired extraction can also be con-
trolled by the user through iterative splitting and merging, as
we describe in the next section.

4 Implementation and Evaluation
We have implemented our generic predictive synthesis algo-
rithm as a new learning strategy in the PROSE framework
(Polozov and Gulwani 2015), which is a library of program
synthesis algorithms that allows the user to simply provide a
DSL and other domain-specific parameters to get a PBE tool
for free. We implemented our particular systems for both the
text and web extraction domains in this way, with a user in-
terface implemented in a Microsoft Excel add-in.

The text extraction feature implemented for Excel is
called ColumnSplit. Using this feature, the user can select
a column of textual data in the spreadsheet, and then click a
“Split” button, at which point the system learns a program in

Number of extracted fields (primary) 10.3
Number of extracted fields (secondary) 3.45
Number of non-extracted fields 0.2
Execution time, full system (seconds) 4.20
Execution time, without lifting functions (seconds) 210.73

Figure 9: Text extraction average performance results

the text extraction DSL to perform a splitting of the column
data into different field columns (as shown in Figures 1 and
2). However, different users may have different preferences
for the degree of splitting they would like (e.g., whether or
not to split a date into day, month, year). If data has not been
split enough, the user can select an output field column and
split it further. On the other hand, the user can highlight any
number of adjacent columns and click a “Merge” button to
simply merge the columns and undo the unwanted splits.

For web extraction tasks, we implemented a similar Ex-
cel add-in called WebExtract. Using this feature, the user
can specify the URL of a webpage, and then click an “Ex-
tract” button, at which point the system learns an extraction
program in the web DSL and displays the extracted table in
the spreadsheet (as in Figure 3). WebExtract can be used to-
gether with ColumnSplit to perform further text-based split-
ting on columns that have been extracted by WebExtract.

Evaluation of ColumnSplit
For evaluation in the text domain, we collected a set of 20
benchmark cases from product teams, help forums, as well
as real users in our organization who provided us with data
sets on which they would like to perform extraction. A lot of
these datasets come from various log files such as from web
servers, but also include other text-based datasets. The goal
of our evaluation was to measure the maximum number of
fields our system can extract.

The average performance results of our system on these
benchmarks are shown in Figure 9. There were an average of
13.95 fields per dataset, of which 10.3 were detected on the
first attempt (primary), 3.45 were extracted by further split-
ting on some of the columns (not more than three levels of
splitting required in any test case), and 0.2 could not be ex-
tracted at all. All the non-extracted fields were in a single test
case, which was a task involving different numbers of fields
on different inputs. With such possibly-missing fields it is in
general not possible to determine the desired alignment of
fields as there are different alternatives, so such tasks may be
better handled by some kind of output specification from the
user such as examples. The average execution time per task
was 4.2 seconds, although 16 tasks were completed in under
2 seconds. Memory usage was observed to approximately
double at each iteration of the synthesis algorithm, which re-
mained under tractable limits as the algorithm maintains the
state space of programs up only up to semantic equivalence
over the given input states.

For comparison, we also evaluated our system without
using the operator-specific lifting functions as described in
Section 3, and observed the drastic increase in execution
time to an average of 210 seconds per task. We also investi-

Number of extracted fields (individually) 5.85
Number of extracted fields (subsumed) 0.9
Number of non-extracted fields 0.25
Execution time, full system (seconds) 6.41
Execution time, without lifting functions (seconds) 27.04

Figure 10: Web extraction average performance results

gated the dependence of our system on the presence of the
standard data type tokens supplied to the DSL Lt. Recon-
ducting our experiment with just five basic regular expres-
sion tokens (numbers, lower case letters, upper case letters,
alphanumeric and special characters), we found all fields
were extracted in 14 of the 20 test cases, and most fields
in the other cases as well.

Evaluation of WebExtract
In the case of web extraction, we evaluated our system on
a collection of 20 webpages that contain tabular data not
represented using explicit HTML table tags. The evaluation
results are shown in Figure 10. Our system extracted 5.85
fields per page on average. However, some (0.9) of the fields
on the page were not extracted as individual fields but “sub-
sumed” into other fields (e.g. a parent node containing two
child nodes for different fields was extracted as one field).
An average of 0.25 fields were not extracted at all, which
happened only in 4 webpages. The average execution time
was 6.41 seconds per task, although 15 tasks completed in
under 2 seconds. Execution time increased to 27 seconds
without the use of lifting functions for the filter operators,
again showing significant performance degradation and why
previous bottom-up synthesis approaches cannot be used in
our predictive setting for either the text or web domains.

All of our evaluation cases involved extraction from a sin-
gle webpage (learning the extraction program from a sin-
gle input), although our algorithm can work with multiple
inputs as in the case of text extraction. Providing multiple
webpages as inputs may be helpful in cases where websites
have a large number of similarly formatted pages that of-
ten have slight variations in formats. Our algorithm can take
them as multiple inputs to learn generalized programs appli-
cable across all pages, but we have not explored such sce-
narios in this work.

5 Conclusion
We have described a novel predictive program synthesis
technique for data extraction tasks. This includes a general
form of extraction DSLs, a synthesis algorithm designed in
a domain-parametric fashion, as well as concrete DSLs and
algorithm instantiations in the practical application domains
of text and web extraction. Our evaluation shows the effec-
tiveness of our approach in practical extraction scenarios,
and its benefits over previous PBE approaches which require
manual effort in providing examples as well as correct un-
derstanding of system requirements from the user.

Apart from PBE techniques, various natural interaction
paradigms have been explored in recent work, such as pro-
gramming by natural language (PBNL) systems (Kushman

and Barzilay 2013; Manshadi, Gildea, and Allen 2013;
Gulwani and Marron 2014) and various mixed-initiative ap-
proaches (Allen et al. 2007; Kandel et al. 2011; Raza, Gul-
wani, and Milic-Frayling 2015). However, all of these ap-
proaches depend on some kind of explicit intent specifica-
tion from the user e.g. PBNL approaches often suffer from
inaccurate or ambiguous user descriptions and vocabulary
mismatch. The key difference in the predictive approach we
present here is to not rely on explicit intent specification
from the user, which works well for extraction tasks. In this
respect the predictive approach can be seen as one part of
a broad spectrum of approaches for different kinds of tasks:
predictive approaches may be effective for extraction, while
examples may be useful for transformation tasks and natural
language interfaces may be useful for querying.

In another respect, we have yet to explore the combina-
tion of the predictive approach together with output exam-
ples given by the user. This would be analogous to semi-
supervised learning in the PBE setting, as opposed to the
fully supervised learning of traditional PBE systems and the
purely unsupervised learning we have proposed in this work.
PBE techniques, although capable of addressing transforma-
tions that go beyond extraction, have generally relied on the
small number of input-output examples provided by the user,
without making use of all the additional inputs available in
the dataset. Only in recent work (Singh 2016) have signals
from additional inputs been shown to improve the ranking of
a PBE system. However, it is unclear how strong these ad-
ditional input signals are by themselves, especially in com-
parison to our predictive approach which can function in a
purely unsupervised manner without the need for any out-
put examples. It will therefore be interesting to explore the
use of our predictive analysis to infer global alignments and
variability in the input data, and use this information to im-
prove the ranking of previous PBE systems. For example, if
the predictive analysis yields that a certain delimiter occurs
regularly throughout all inputs, then programs utilizing that
delimiter may be ranked higher by the PBE system, even if
the user has only provided a single output example which
does not disambiguate between different candidate delim-
iters to use.

A different direction for future work is to explore the ap-
plicability of our generic framework for predictive synthe-
sis to other practical application domains. Richly format-
ted documents such as XML-based formats (DOCX, ODF,
PPTX, etc) may be addressed using DSLs similar to the
X-Path language, perhaps following the technique of least
general generalizations over input states as in (Raza, Gul-
wani, and Milic-Frayling 2014). Extraction from PDF docu-
ments may be explored with DSLs that include geometrical
co-ordinate constructs. It will also be interesting to inves-
tigate the case of plain unstructured text files where record
boundaries are not predetermined, as previously addressed
by non-predictive PBE approaches such as (Le and Gulwani
2014). While the DSL Lt we presented for text extraction
addresses the case of structured log files where row bound-
aries are given, we may potentially address the case of un-
determined row boundaries with a generalization of Lt. in
which records are inferred using an interleaving-style rela-

tion similar to the one we used for web extraction with Lw.
Semantically-based extractions (Singh and Gulwani 2012a;
2012b) are yet another domain where input data alone may
yield useful extraction patterns. In general, it will be interest-
ing to explore the applicability of the predictive approach to
most extraction domains previously addressed by PBE tech-
niques.

References
Allen, J. F.; Chambers, N.; Ferguson, G.; Galescu, L.; Jung,
H.; Swift, M. D.; and Taysom, W. 2007. Plow: A collabora-
tive task learning agent. In AAAI, 1514–1519. AAAI Press.
Chu, X.; He, Y.; Chakrabarti, K.; and Ganjam, K. 2015.
Tegra: Table extraction by global record alignment. In Sel-
lis, T. K.; Davidson, S. B.; and Ives, Z. G., eds., SIGMOD
Conference, 1713–1728. ACM.
Gatterbauer, W., and Bohunsky, P. 2006. Table extraction
using spatial reasoning on the css2 visual box model. In
AAAI, 1313–1318. AAAI Press.
Gulwani, S., and Marron, M. 2014. Nlyze: Interactive pro-
gramming by natural language for spreadsheet data analysis
and manipulation. In Proceedings of the 2014 ACM SIG-
MOD International Conference on Management of Data,
SIGMOD ’14, 803–814. New York, NY, USA: ACM.
Gulwani, S.; Harris, W. R.; and Singh, R. 2012. Spreadsheet
data manipulation using examples. Commun. ACM 55(8).
Gulwani, S. 2011. Automating String Processing in Spread-
sheets using Input-Output Examples. In Principles of Pro-
gramming Languages (POPL), 317–330.
Kandel, S.; Paepcke, A.; Hellerstein, J. M.; and Heer, J.
2011. Wrangler: interactive visual specification of data
transformation scripts. In Tan, D. S.; Amershi, S.; Begole,
B.; Kellogg, W. A.; and Tungare, M., eds., CHI, 3363–3372.
ACM.
Katayama, S. 2007. Systematic search for lambda expres-
sions. In van Eekelen, M. C. J. D., ed., Revised Selected
Papers from the Sixth Symposium on Trends in Functional
Programming, TFP 2005, volume 6, 111–126. Intellect.
Krüpl, B.; Herzog, M.; and Gatterbauer, W. 2005. Using
visual cues for extraction of tabular data from arbitrary html
documents. In WWW ’05: Special interest tracks and posters
of the 14th international conference on World Wide Web,
1000–1001. New York, NY, USA: ACM.
Kushman, N., and Barzilay, R. 2013. Using semantic uni-
fication to generate regular expressions from natural lan-
guage. In HLT-NAACL, 826–836. The Association for Com-
putational Linguistics.
Lau, T. A.; Wolfman, S. A.; Domingos, P.; and Weld, D. S.
2003. Programming by Demonstration Using Version Space
Algebra. Machine Learning 53(1-2):111–156.
Le, V., and Gulwani, S. 2014. Flashextract: A framework
for data extraction by examples. In PLDI.
Lieberman, H., ed. 2001. Your Wish is My Command: Pro-
gramming by Example. Morgan Kaufmann Publishers.

Manshadi, M. H.; Gildea, D.; and Allen, J. F. 2013. Inte-
grating programming by example and natural language pro-
gramming. In desJardins, M., and Littman, M. L., eds.,
AAAI. AAAI Press.
Polozov, O., and Gulwani, S. 2015. FlashMeta: a framework
for inductive program synthesis. In Aldrich, J., and Eugster,
P., eds., OOPSLA, 107–126. ACM.
Raza, M.; Gulwani, S.; and Milic-Frayling, N. 2014. Pro-
gramming by example using least general generalizations.
In AAAI.
Raza, M.; Gulwani, S.; and Milic-Frayling, N. 2015. Com-
positional program synthesis from natural language and ex-
amples. In IJCAI.
Singh, R., and Gulwani, S. 2012a. Learning Semantic String
Transformations from Examples. PVLDB 5(8):740–751.
Singh, R., and Gulwani, S. 2012b. Synthesizing Number
Transformations from Input-Output Examples. In Madhusu-
dan, P., and Seshia, S. A., eds., Computer Aided Verification
(CAV), volume 7358 of Lecture Notes in Computer Science,
634–651. Springer.
Singh, R. 2016. BlinkFill: Semi-supervised Program-
ming by Example for Syntactic String Transformations. In
PVLDB, 816–827.
Tengli, A.; Yang, Y.; and Ma, N. L. 2004. Learning table ex-
traction from examples. In Proceedings of the 20th interna-
tional conference on Computational Linguistics, COLING
’04. Stroudsburg, PA, USA: Association for Computational
Linguistics.

