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Abstract
This paper presents a semi-automated methodology for gen-
erating geometric proof problems of the kind found in a high-
school curriculum. We formalize the notion of a geometry
proof problem and describe an algorithm for generating such
problems over a user-provided figure. Our experimental re-
sults indicate that our problem generation algorithm can ef-
fectively generate proof problems in elementary geometry.
On a corpus of 110 figures taken from popular geometry text-
books, our system generated an average of about 443 prob-
lems per figure in an average time of 4.7 seconds per figure.

1 Introduction
Learning in mathematics is more deeply rooted when a stu-
dent is able to view a problem from multiple perspectives:
graphically, numerically, and algebraically. High school ge-
ometry is particularly interesting in this regard because it
combines the implicit visual perspective and deductive logic
skills. This paper presents a technology to enhance geometry
education. In particular, we present a technique for automat-
ically generating fresh geometry proof problems from the
figures of given problems.

Generating fresh problems that have specific solution
characteristics (such as difficulty level, use of a certain set
of concepts) is a difficult task for the teacher. Automating
this has several benefits. First, it can help avoid copyright
issues. It is illegal to make photocopies of a textbook and
may not be legal to publish an original problem from a text-
book on a course website. A problem generation tool can
provide instructors with fresh problems (that have charac-
teristics similar to that of the original problem) for use in
their assignments, exams, or lecture notes. Second, it can
help prevent cheating in classrooms or online education plat-
forms (with unsynchronized instruction) since each student
can be provided with a different problem but with the same
characteristics. Third, it can be used to generate personal-
ized workflows for students. If a student solves a problem
correctly, then the student may be presented with a problem
that is more difficult than the last problem, or exercises a
richer set of concepts. If a student fails to solve a problem,
then the student may be presented with simpler problems to
identify, reinforce, and master core concepts.
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We formalize the notion of a geometry proof problem,
which consists of a figure, some assumptions about the
figure, goals that need to be established about the figure,
and the set of axioms that need to be used. We propose a
semi-automated methodology for generating such problems.
Given a figure and a set of axioms, our problem generation
technique produces a set of problems over that figure in the
form of pairs of assumptions and goals. Such problems, gen-
erated across a large set of figures provided by the user, can
be stored in a database along with their characteristics. This
empowers users to query the database with specific charac-
teristics to obtain custom problems.

Our problem generation technique operates in three steps.
First, it produces a hypergraph (Definition 2) that represents
all possible proofs for all possible problems over a given
pair of user-provided figures and axioms. The hypergraph
construction requires enumerating all facts that are true of
the figure as nodes in the hypergraph. Furthermore, a set of
source facts is connected to a target fact using a directed
hyperedge labeled with a user-provided axiom if the axiom
can be used to deduce the target fact from the source facts.
Then, the tool systematically enumerates all minimal sets of
assumptions (Algorithm 1). An assumption is a fact about
the figure, and informally, a set of assumptions is minimal if
every assumption is non-redundant. Finally, for any minimal
set of assumptions I , the tool systematically enumerates all
possible goal sets G such that (I,G) is an interesting prob-
lem (Algorithm 2).

We evaluated the effectiveness of our problem generation
algorithm on 110 figures taken from various geometry text-
books. Our algorithm generated an average of 443 problems
in an average time of 4.7 seconds per figure. We also ob-
served that there were several problems with same charac-
teristics across various figures.

This paper makes the following contributions:

• We formalize the notion of a geometry problem (§2) and
motivate some problem generation interfaces (§3).

• We present a technique for generating proof problems
over a given geometric figure (§4).

• We describe experimental results illustrating the efficacy
of our problem generation interfaces and our problem
generation algorithm (§5).



Axiom Name Premises Conclusion(s)
Midpoint Def. Midpoint(M , AB) AM = MB

Angle Addition ∠ABC,∠CBD ∠ABC + ∠CBD
Exterior(D,∠ABC) = ∠ABD

Vertical Angles Intersect(X,AB,CD) ∠AXD ∼= ∠CXB,
∠AXC ∼= ∠BXD

Side-Side-Side ∆ABC,∆DEF , ∆ABC ∼= ∆DEF
AB ∼= DE,BC ∼= EF

CA ∼= FD
Alt. Int. Angles CD ‖ EF , ∠ENM ∼= ∠NMD,

Intersect(M,AB,CD), ∠FNM ∼= ∠NMC
Intersect(N,AB,EF )

Figure 1: Example of Axioms

2 Preliminaries
Informally, a geometric figure is a pictorial representation
of a collection of geometric objects (points, lines, circles)
in a specific orientation with each other. Internally, we rep-
resent geometric figures using first-order logic constraints
which can be derived by analyzing a pictorial representa-
tion. We work in a first order language with arithmetic,
with constants ranging over points. We omit a full descrip-
tion of the logical language and illustrate it through ex-
amples. Our logic consists of relations such as between-
ness Between(A,B,C), congruence, and equality relations
on line segments or angles. For ease of readability, in the
following examples, we also use derived predicates such
as Triangle(A,B,C) (the three points form a triangle, de-
noted ∆ABC), Collinear(A,B,C) (points are collinear),
RightAngle(A,B,C), etc.

We compute internal representations from pictorial rep-
resentations of a figure. We assume that input figures are
drawn to scale but the problem instances we generate will
not assume that figures are drawn to scale. Thus, in the in-
ternal representation for a figure Fig, we distinguish between
implicit and explicit facts. Implicit predicates only provide
orientation (or “betweenness”) information but not relation-
ships on measurements. Explicit predicates provide relations
based on measurement and may not hold when the figure is
distorted. For example, implicit predicates would state that
ABC is a triangle or that line segments AB and CD inter-
sect at M , and explicit predicates would state AB = CD or
∠ABC is a right angle. Technically, implicit predicates are
those facts about the figure provable in ordered geometry
(Coxeter 1969), and explicit predicates are those facts prov-
able in Euclidean geometry minus the implicit ones. For a
figure Fig, we write I(Fig) for the set of implicit facts and
E(Fig) the set of explicit facts.

A geometry axiom is a Horn clause whose ground in-
stances are implicit or explicit predicates. That is, an ax-
iom consists of a set of premises and a conclusion. The
free variables in an axiom are (implicitly) universally quan-
tified. Given an axiom A, we say that A derives a predicate
p from a set P of predicates if there is an instantiation of the
premises of A with P and the conclusion with p. Fig. 1 gives
some examples of geometry axioms.
Definition 1 (Geometry Problem). Let Fig be a figure,
let I(Fig) be the set of implicit facts, and let Axm be a

set of geometry axioms. A geometry (proof) problem over
(Fig,Axm) is a pair (I,G), where the assumptions I ⊆
E(Fig) and goals G ⊆ E(Fig) are sets of explicit facts such
that I ∩ G = ∅ and I(Fig) ∪ I ∪ Axm imply each g ∈ G
using first-order reasoning.

In the above definition, we require the disjointness condi-
tion between I and G to ensure problems are non-trivial, and
the derivation condition to ensure problems have solutions.
A geometry problem (I,G) over (Fig,Axm) is interesting if
no strict subset of I together with I(Fig) can establish every
goal in G using Axm. An interesting problem is strict if G is
minimal, i.e., (I,G′) is not interesting for any strict subset
G′ ( G. Observe that an interesting problem where G is a
singleton is strict. An interesting geometry problem (I,G)
over (Fig,Axm) is complete if for any predicate p ∈ E(Fig),
I(Fig) ∪ I ∪ Axm derives p. A complete problem is strict if
it is not complete for any strict subset G′ of G. Fig. 2 gives
some examples of interesting and complete geometry prob-
lems.

Let (I,G) be a problem over (Fig,Axm). A proof that
I(Fig)∪Axm∪I derives G consists of first-order derivations,
one for each g ∈ G, whose root is labeled g, whose leaves
are elements of I(Fig) ∪ E(Fig) and whose internal nodes
are obtained by instantiating an axiom from Axm. Our prob-
lem generation algorithm will search through many proofs.
Hence, we use a hypergraph representation for all possible
derivations. Since the set I(Fig) is fixed, we do not represent
nodes for them.

Definition 2. A saturated hypergraph H(Fig,Axm) for a
pair (Fig,Axm) is a hypergraph whose nodes consist of
all predicates in E(Fig) and whose edges are of the form
(P, p,A), where P ⊆ E(Fig) is a set of explicit predicates,
p ∈ E(Fig) is an explicit predicate, and A ∈ Axm, such that
there exists a set Q ⊆ I(Fig) such that A derives p from
P ∪Q.

For a set T ⊆ E(Fig), we define Derive(T ) =
{g ∈ E(Fig) | T ∪ I(Fig) ∪ Axm |= g}. The set Derive(T )
coincides with the set of nodes reachable in the hyper-
graph H(Fig,Axm) starting from the set T of nodes. Thus,
Derive(T ) can be computed for every set T ⊆ E(Fig) in
time polynomial in the size of the hypergraph.

3 Problem Generation Interface
Before we present our problem synthesis algorithm, we pro-
vide a user’s view to interacting with our system. The user
provides a geometry figure drawn to scale and a set of ax-
ioms as inputs to the system, and can specify parameters to
generate a desired set of problems with specific features.

3.1 Features of a Geometry Problem
A geometry problem P = (I,G) over a pair (Fig,Axm) has
several features such as:
• The objects of the figure Fig and their properties I(Fig),
E(Fig), e.g., the number of points, triangles, etc.

• The size of the goal set |G|.
• The type of the goal, e.g., congruent triangles, equal seg-

ments, etc.



Consider figures (Fig1,Axm) and (Fig2,Axm) shown
in (a) and (b) below, respectively and Axm is the the
common set of axioms. The original textbook problem
is (I,G) where I = {4ABE ∼= 4ACD and G =
{4ADE ∼ 4ABC}.
Fig1 is indistinguishable from Fig2 save points
D,D′, E,E′, and consequently X,X ′. Specifically,
in Fig2 D′ is the midpoint of segment A′B′;
similarly E′ is the midpoint of A′C ′. That is,
I(Fig1) = I(Fig2) while E(Fig1) 6= E(Fig2)
since {Midpoint(D′, A′B′),Midpoint(E′, A′C ′)} ⊂
E(Fig2).

(a)
(Fig1,Axm)

B

A

C

D E

X

(b)
(Fig2,Axm)

B′

A′

C′

D′ E′

X′

For (Fig1,Axm) and (Fig2,Axm) we will generate
the exact same set of problems (I, {g1}) where I =
{∆ABE ∼= ∆ACD} and g1 may be any of the follow-
ing example propositions.

• 4ADE ∼ 4ABC

• ∠BCD ∼= ∠CBE

• 4DBC ∼= 4ECB

• 4BCX is Isosceles

• 4DEX is Isosceles
• DE ‖ BC

• ∠DEA ∼= ∠CBA

• 4BDX ∼= 4CEX

Since I completely defines Fig1, all problems (I, {g1})
are strictly complete problems. Whereas I does
not define Fig2 since it is not possible to prove
Midpoint(D′, A′B′) nor Midpoint(E′, A′C ′). There-
fore, for Fig2 all problems in (I, {g1}) are simply in-
teresting problems.

Figure 2: An Example of Strictly Interesting and Strictly
Complete Problems

• Quantitative features of a proof, such as depth of a proof
(i.e., the longest path from the assumptions to the goal
in the proof), the width of a proof (maximal number of
nodes in a level in the proof), the number of deduction
steps (i.e., the number of hyperedges in the proof), and
the number of axioms used. These features can be com-
puted from the representation of proofs in the saturated

hypergraph.
• A subset of Axm that occurs in every proof of the prob-

lem.
• Whether the problem is complete or not.
Our system allows defining arbitrary features as long as they
are efficiently computable from the syntactic description of
the problem or from the hypergraph representation.

3.2 Query Interface to Problem Generation
We propose an interface where the teacher can specify
a relational query over the set of problem features and
obtain a corresponding set of problems. We describe a
semi-automated methodology to support this interface. Our
methodology requires manual input of (Fig,Axm) pairs. For
each such pair, we generate the set of all interesting prob-
lems using the problem generation technique described in
(§4). This set of problems, along with their features, popu-
late a relational database. We may then query the database
using a standard relational query (§5 gives examples of such
queries with results in Fig. 10).

A student or teacher may define their own pair (Fig,Axm)
either using their own creativity or from textbooks, to gen-
erate fresh problems corresponding to that pair. In that re-
spect, our methodology has a multiplicative effect: starting
from the figure of a problem, our algorithms generate many
more problems over the same figure.

4 Algorithm for Problem Generation
Our algorithm for problem generation has three steps. In the
following exposition, we focus on clarity rather than perfor-
mance. The enumeration of problems is exponential in the
worst case; we show in (§5) that nevertheless, the enumera-
tion can be performed successfully in practice.

4.1 Step 1: Hypergraph Construction
The input to the algorithm is a geometry figure Fig drawn to
scale and a set of axioms (Horn clauses). The algorithm in-
ternally computes the sets I(Fig) and E(Fig) and constructs
the saturated hypergraph for (Fig,Axm). The hypergraph is
used to compute Derive(T ) queries for sets T ⊆ E(Fig) in
the subsequent steps of the algorithm.

4.2 Step 2: Minimal Assumption Generation
A set T ⊆ E(Fig) is minimal if either T = ∅ or for each
t ∈ T , we have that T \ {t} is minimal and Derive(T ) 6=
Derive(T \ {t}). Minimality is a necessary condition for an
interesting problem.

In the second step, the problem synthesis algorithm sys-
tematically enumerates all minimal sets of assumptions. Al-
gorithm 1 shows a simple fixed-point procedure to compute
the set of all minimal sets.

4.3 Step 3: Strictly Interesting Problem Synthesis
The final step enumerates, for each minimal set of assump-
tions I , all possible goal sets G such that (I,G) is a strictly
interesting problem.

We present the third step as the non-deterministic proce-
dure Algorithm 2. It takes as input a figure Fig and axioms



Algorithm AllMinimalSets(Fig,Axm)
Input: Figure Fig, axioms Axm
Output: Set of all minimal sets of E(Fig)

1: AllSets = {∅}
2: Old = ∅
3: while AllSets 6= Old do
4: Old = AllSets
5: for all I ∈ AllSets do
6: for all f ∈ E(Fig) s.t.

Derive(I) 6= Derive(I ∪ {f}) do
7: AllSets = AllSets ∪ {I ∪ {f}}
8: end for
9: end for

10: end while
11: return AllSets

Algorithm 1: Algorithm AllMinimalSets

Axm, as well as a minimal set I of explicit predicates. It
computes a strictly interesting problem by “growing” a set
G of goals and returns (I,G) as the generated problem. Ini-
tially, the set G is empty (line 1). While the current set of
goals is not strong enough to ensure the problem is interest-
ing (line 2), the algorithm generates a new goal. To generate
a new goal, the algorithm finds (non-deterministically, line
3) an assumption f that is not used to prove the current set
of goals and finds (non-deterministically, line 5) a goal that
is derivable using I but not without this assumption. Notice
that since I is minimal, the set T on line 4 is non-empty.
However, to ensure the condition I ∩ G = ∅, we choose g
from the set T \ I on line 5, which may be empty.

By construction, Algorithm 2 ensures that returned prob-
lems are strictly interesting. For the returned pair (I,G),
since the while loop exits, we know that every f ∈ I is
necessary to prove some goal in G; hence (I,G) is inter-
esting. Further, the problem is strictly interesting since the
algorithm returns a minimal set of goals G.

The non-deterministic choices of the algorithm are de-
noted by the choose operator, which selects an element of
a set (if non-empty), and fails otherwise. By iterating over
possible non-deterministic choice, the algorithm can gener-
ate every possible strictly interesting problem with assump-
tion I .

Finally, in order to generate a complete problem, we can
check that the input I to procedure GenProblem can derive
all explicit facts, i.e., Derive(I) = E(Fig).

Theorem 1. (1) Algorithm AllMinimalSets(Fig,Axm)
returns the set of all minimal sets for (Fig,Axm).
(2) [Soundness] Let I be a minimal set. If Algo-
rithm GenProblem(Fig,Axm, I) returns (I,G) then (I,G)
is a strictly interesting problem over (Fig,Axm). (3) [Com-
pleteness] Let (I,G) be a strictly interesting problem
for (Fig,Axm). Then there is a possible run of Algo-
rithm GenProblem(Fig,Axm, I) that returns (I,G).

Fig. 2 shows some problems that were automatically gen-
erated by our algorithm.

Algorithm GenProblem(Fig,Axm, I)
Input: Figure Fig, axioms Axm, minimal set I ⊆ E(Fig)
Output: Strictly interesting problem (I,G)

1: G = ∅
2: while ∃f ∈ I s.t. G ⊆ Derive(I \ {f}) do
3: f = choose({f ∈ I | G ⊆ Derive(I \ {f})})
4: T = Derive(I) \Derive(I \ {f})
5: g = choose(T \ I)
6: G = G ∪ {g}
7: end while
8: return (I,G)

Algorithm 2: Algorithm GenProblem

5 Experimental Results
Benchmark We ran our problem generation algorithm on
a set of 110 figures taken from standard mathematics text-
books in India (Sinclair and Dikshit 2006b; Sinclair and
Dikshit 2006a) as well as textbooks and workbooks pop-
ular in the United States (Boyd 2006; Larson et al. 2007;
McDougal 2007; Jurgensen, Brown, and Jurgensen 1988).
We used a uniform set of axioms for all of our experiments;
this set included axioms related to parallel lines, congruent
triangles, similar triangles, etc.

The distribution of these 110 figures described by the size
of the implicit facts per figure, |I(Fig)|, is a bimodal dis-
tribution with modes around 40 and 75 and mean 46.5. The
bimodal distribution indicates our attempt to balance our ex-
periments with simple as well as more complex figures.

The distribution of these 110 figures described by the
number of deduced facts per figure, |E(Fig)|, is a positively-
skewed distribution (mean 108, median 82, and standard
deviation 96.7) that indicated few figures result in a large
hypergraph making our problem generation algorithm often
run efficiently in practice.

Effectiveness of our problem generation algorithm
GenProblem We now present evaluation of our problem
generation algorithm GenProblem with respect to the num-
ber of problems that it generates as well as the time taken to
generate those problems. We ran our experiments on a lap-
top with Intel Core i5-2520M CPU at 2.5GHz with 8 GB
RAM on 64-bit Windows 7 operating system.

We modified GenProblem to only generate problems
where |G| ≤ 2. This is because our preliminary prototype
encountered memory issues with |G| > 2 since the prob-
lem generation procedure is exponential in |G|. (We hope
to resolve this issue with a more optimized implementation
in the future.) For each (Fig,Axm) pair, we fixed I to be the
minimal set of assumptions that corresponded to the original
textbook problem description corresponding to the figure F .
For the 110 figures we observed a mean of 2.3 assumptions
per figure with standard deviation 1.1; Fig. 3 presents statis-
tics on the size of this fixed minimal set per figure.

Given a set of assumptions I over a pair (Fig,Axm), we
determine the Boolean classification whether I completely
defines Fig. We may informally describe a complete prob-
lem as a problem that is not open to interpretation. That
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Figure 3: Number of assumptions |I| per original textbook
problem (I,G)

is, complete problems are ideal for formal assessments. On
the other hand, interesting problems are more malleable and
therefore more applicable to homework or in-class investiga-
tions. Textbook problems are generally a mix of interesting
and complete problems. We found for only 45 of 110 fig-
ures, the original textbook problem associated with it was
complete. We expected a larger number of complete prob-
lems, but found that when drawing figures into our front-end
slate, we were more likely to construct figures with unin-
tended facts (e.g. points were likely to be midpoints, trian-
gles likely to be isosceles or equilateral). This psychological
factor lead to a greater number of original textbook problems
being classified as interesting (but not complete).

Our methodology results in a large multiplicative effect:
from a single pair (Fig,Axm) we are able to generate many
problems. For the 65 of 110 original textbook figures that
were classified as corresponding to interesting (but not com-
plete) problems, we generated a total of 1309 and an average
of 20.1 strictly interesting problems (I,G) where |G| = 1;
the associated distribution is shown in Fig. 4. For the remain-
ing 45 of 110 original textbook figures, which were classi-
fied as corresponding to complete problems, we generated a
total of 877 and an average of 19.5 strictly complete prob-
lems (I,G) where |G| = 1 with distribution in Fig. 5. For
|G| = 2, we generated 14760 strictly complete problems
and 31801 strictly interesting (but not complete) problems.
When |G| = 2 we have an empirical validation of the expo-
nential growth in the number of generated problems. For a
fixed set of assumptions I , the definition of a strict problem
dictates |I| ≥ |G| for any G. Since many of our original text-
book problems had |I| = 1, many figure pairs (Fig,Axm)
cannot generate problems with more than a single goal. The
corresponding distributions (shown in Fig. 6 and Fig. 7) are
heavily skewed with mean 489 and median 84 for strictly
interesting (but not complete) problems as well as mean 328
and median 49 for strictly complete problems.

GenProblem took an average time of 4.7 seconds (with
standard deviation of 10.5 seconds) per (Fig,Axm) pair to
generate the above mentioned problems with |G| ≤ 2.
For a given (Fig,Axm) pair, the majority of the processing
time is in construction of the saturated hypergraph. There-
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Figure 4: Number of strictly interesting problems where
|G| = 1 generated per pair (Fig,Axm)

0 10 20 30 40

0

20

40

60

80

100

Figure Pairs (Fig,Axm)

N
o.

St
ri

ct
ly

C
om

pl
et

e
Pr

ob
le

m
s

(|G
|=

1)

Figure 5: Number of strictly complete problems where
|G| = 1 generated per pair (Fig,Axm)
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Figure 6: Number of strictly interesting problems where
|G| = 2 generated per pair (Fig,Axm)

fore, we expect a correlation between the number of ex-
plicit facts for F and the amount of time to process. As
the worklist construction of H(Fig,Axm) requires that we
compare each newly deduced node against all existent nodes
in H(Fig,Axm), we expect hypergraph construction to be
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Figure 7: Number of strictly complete problems where
|G| = 2 generated per pair (Fig,Axm)
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Figure 8: Problems Per Pair (Fig,Axm) for Query Q =
{steps = 6 to 10,width = 4 to 8}

quadratic in the number of nodes in H(Fig,Axm); we have
a strong quadratic correlation with coefficient r2 = 0.7785.

Effectiveness of our methodology Once all problems are
generated from all pairs (Fig,Axm), we can obtain problems
with similar features across different figures. Let’s consider
two distinct use-cases from perspectives of a teacher and a
student.

Consider the scenario where a teacher wants to generate a
set of problems for students to review before the final exam.
The teacher might construct a query Q to obtain problems
that are (1) medium-to-hard (6 to 10 deductive steps) with
(2) average width (4 to 8), and (3) contain a single goal. Q
returns a total of 706 problems from our database with an
average of 6.4 problems per pair (Fig,Axm); the graph in
Fig. 8 details the number of problems per pair that satisfy Q.
Fig. 9 shows a sample of those 706 problems.

Now let’s consider a common scenario for a student
preparing for an exam that will test on say proving triangles
congruent using any technique. In this case, the student may
specify a series of queries Qi capturing problems of increas-
ing difficulty as measured by the number or kind of deduc-
tive steps required. Each Qi also specifies that the problem
should have a single goal g that makes use of Congruent Tri-

Consider the pair (Fig,Axm) where Fig is the figure be-
low and Axm is our common set of axioms. The original
problem from the textbook over (Fig,Axm) is (I,G),
where

I =

{Midpoint(M,BD),

AM = MC,

RightAngle(B,C,D)}

G =

{4BMC ∼= 4DMA,

RightAngle(A,D,C),

4ADC ∼= 4BCD,

2BM = AC}.

A

D C

B

M

The query Q generates several new problems of the
form (I ′, g′) over the pair (Fig,Axm), where I ′ = I
and g′ takes on any of the following propositions.

• CD is an altitude of4ADC

• RightTriangle(A,D,C)

• ∠CDB and ∠MAD are complementary

• AD ⊥ CD • AD ‖ BC

Figure 9: Problems satisfying query Q = {|G| = 1, steps =
6 to 10, steps = 4 to 8} over a given geometric figure.

Number Over
i Query: Qi Problems (Fig,Axm)
1 {s = 1− 2, G} 23 22
2 {s = 3− 7, G} 73 50
3 {s = 6, d = 4,w = 5, G} 1 1
4 {s = 6, d = 4− 5, G} 54 28
5 {s ≥ 10, G} 26 14

Figure 10: Problems and Figures Satisfying Student Queries
(s = steps, d = depth, w = width, G = {∼= 4s})

angles predicate. These queries Qi are discussed below with
the query results enumerated in Fig. 10.

The student begins by specifying the query Q0 =
{ steps = 1 to 2, g} and is provided one of the 23 problems.
Assuming success with a few practice problems, the stu-
dent seeks a series of more difficult problems and defines
Q1 = {steps = 3 to 7, g}. After completing some of the 73
possible interesting problems that match Q1, the student en-
counters a problem that is intriguing in its structure. As a
point of interest and practice, the student defines a query
based on the parameters of the problem just completed:
Q2 = {steps = 6, depth = 4, width = 5, g}. The result of the



query is that there is no other problem with the defined char-
acteristics. Instead, the student relaxes the restrictions result-
ing in Q3 = {steps = 6, depth = 4 to 5, g} and acquires 26
problems. Finally, the student may provide a query that re-
quires the proof problem to have more than 10 deductions
steps: Q4 = {steps ≥ 10, g}. After successfully complet-
ing one or more of these 26 problems, the student can be
confident in their preparation for the exam.

6 Related Work
There are two categories of related work that we discuss be-
low. (Gulwani 2014) describes some of this related work in
more detail.

Technology for Geometry Education Automated ge-
ometry theorem proving (consisting of several techniques
such as Wus method (Wen-Tsün 1986), Grobner basis
method (Kapur 1986), and angle method (Chou, shan Gao,
and Zhang 1994)) is one of the most successful areas of au-
tomated reasoning. Traditional automated geometry theorem
proving systems tend to produce arbitrary proofs in the un-
derlying logical domain that may not be readable and may
be beyond the vocabulary taught in the class. Tutoring ori-
ented systems such as Geometry Expert (Gao and Lin 2004)
and Geometry Explorer (Wilson and Fleuriot 2005) allow
students to create geometry constructions and use interactive
provers to check and prove properties of those constructions.
(Gulwani, Korthikanti, and Tiwari 2011; Itzhaky et al. 2013)
even present techniques for automatically synthesizing ge-
ometry constructions given logical constraints that relate the
various objects in the construction.

Our system can be used to solve those proof problems
that do not require construction of any new object in the
given geometric figure. It uses a relatively simple method-
ology of hypergraph reachability to check whether the goal
can be reached from the assumptions. The novelty of our
system lies in the hypergraph construction and associated
algorithms over it that enables generation of various inter-
esting problems.

Automatic Problem Generation (Singh, Gulwani, and
Rajamani 2012) describes a problem generation technology
for generating problems that are similar in structure to a
given algebraic identity proof problem. The underlying tech-
nology leverages continuity of the underlying domain of al-
gebraic expressions, and uses extension of polynomial iden-
tity testing to check the correctness of a generated prob-
lem candidate on a random input. In contrast, the domain
of Boolean valued geometry predicates is non-continuous or
discrete, and hence requires a different technology of check-
ing whether a given problem is interesting or complete. Fur-
thermore, our technology also enables solution generation.

(Andersen, Gulwani, and Popovic 2013) describes a prob-
lem generation technology for procedural domain, which
includes problems commonly found in middle-school math
curriculum such as subtraction and greatest common divi-
sor computation. The underlying technology leverages test
input generation techniques (Anand et al. 2013) to generate

problems that explore various paths in the procedure that the
student is expected to learn. In contrast, we address prob-
lem generation for a conceptual domain, where there is no
step-by-step decision procedure that the student can use to
solve a problem, but it requires creative skills such as pat-
tern matching.

(Ahmed, Gulwani, and Karkare 2013) describes a prob-
lem generation technology for natural deduction problems.
The underlying technology involves offline generation of a
Universal proof graph (which is a hypergraph that represents
all possible inference rule applications over propositions of
bounded size) and then traversal of this graph to generate
problems with certain features. Our hypergraph is similar in
that it represents all possible applications of the various ax-
ioms, but its problem specific nature makes it much smaller
and allows us to enumerate all interesting problems apriori
and store them in a database to enable efficient identification
of problems with specific features.

7 Conclusions and Future Work
This paper shows how to automatically generate geometry
proof problems of the kind that are common in high-school
curriculum. Automatic problem generation can be an impor-
tant component of personalized workflow creation in intelli-
gent tutoring.

There are several directions for future work. (a) Auto-
matic figure generation: Our semi-automated methodology
for problem generation requires the user to provide figures,
with respect to which we generate problems. It would be
useful to automatically generate such figures. (b) Natural
language generation: Our problem generation tool generates
problems at the level of logical predicates. It would be use-
ful to translate the logical predicates into an equivalent, but
succinct, natural language description in the form of a word
problem. (c) Deployment and user studies: We would like
to deploy our tool as part of personalized problem genera-
tion system and measure its effectiveness in improving stu-
dent learning. (d) Application to other subject domains: We
feel that our hypergraph-based problem generation approach
can be adapted to work for other subject domains where the
goal is to derive a new fact (or even compute some desired
value) using a series of steps starting from some set of facts.
This includes various non-inductive proof domains includ-
ing those in geometry, algebra, and logic.
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