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ABSTRACT

Perspective-induced deformations on otherwise uniformly
textured surfaces can be used to compute surface normals of
objects from monocular images. This is shape-from-texture.
Traditional shape-from-texture algorithms are based on
image features like blobs and lines, and it is hard to predict
how well the algorithms will work on real data. Newer algo-
rithms are based on local spatial frequency representations,
which can be characterized mathematically from beginning
to end. We summarize our spectrogram-based algorithm, and
show how we can characterize the performance of the algo-
rithm based on the program parameters and the underlying
texture.

ANALYZING SHAPE-FROM-TEXTURE RESULTS

Texture is an important monocular shape cue for auto-
matic, computerized measurement and understanding of 3D
scenes from 2D images. Shape-from-texture algorithms
compute surface orientations of uniformly textured objects
from images. The advantages of using this cue are that the
method is based on passive sensing, it can be insensitive to
lighting variations, and no stereo matching is required (in
fact, stereo matching is especially difficult in large, highly
textured regions). The disadvantages are that uniformly tex-
tured regions must first be segmented from the image for the
algorithm to work, and that it is generally hard to predict
how well the algorithms will work on a given texture with
given program parameters. We address the first problem in
{4], and this paper addresses the second problem.

The most promising new approach to shape-from-texture
is local spatial frequency analysis, illustrated in Figure 1 and
Figure 4. This idea was begun by Bajcsy and Lieberman[1]
in 1976, when they showed that local Fourier transforms can
be used to characterize the perspective-induced frequency
changes on a uniform texture. Further work on actually com-
puting surface normals was done by Jau and Chin[3], Brown
and Shvaytser{2], Super and Bovik[9], Malik and Rosen-
holtz[6], and Krumm and Shafer[5].

The main advantage of these local spatial frequency
shape-from-texture algorithms over their older, feature-
based counterparts, is that the new algorithms use a low-
level representation of the image (e.g. spectrogram, wave-
lets, Gabor decomposition). Older algorithms used inher-
ently error-prone and often heuristic-dependent feature

0-7803-2127-8/94 $4.00 ©1994 IEEE 322

Steven A. Shafer

The Robotics Institute
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213
sas@cs.cmu.edu

detectors. Feature-detection is hard to characterize mathe-
matically, which makes the algorithms themselves hard to
characterize. The local spatial frequency approach, however,
requires no feature detection, so simple mathematics can be
applied all the way from the image to the final result.

This “analyzability” presents new opportunities for char-
acterizing and improving shape-from-texture algorithms. We
show in this paper how to predict how well our spectrogram-
based algorithm works (in terms of surface normal variance)
as a function of the underlying texture and the relative posi-
tion of the texture patches we choose to analyze. This ability
to characterize the algorithm’s performance means that we
can optimize the algorithm’s parameters for best results and
that we can pass uncertainly information to higher-level
image understanding modules. This is important, because
older shape-from-texture algorithms could not be analyzed
in closed form, and therefore there was little warning when a
result was seriously wrong.

Figure 1: A texture image used for variance
experiments. The light patches show the power
spectra of the underlying image region. The slight
shift in frequencies between the two patches is used
to find the object’s surface normal. The noisy sinu-
soid is at 60° .
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Figure 2: Geometry of camera and surface

SPECTROGRAM-BASED SHAPE-FROM-TEXTURE

This section describes our shape-from-texture algorithm.
It is based on the image spectrogram - a set of windowed
power spectra taken over the image. Figure 1 shows an
image with two power spectra superimposed over the pixels
used to compute them. Our algorithm exploits the perspec-
tive-induced frequency shifts to compute surface normals,
based on the assumption that the frontal texture is uniform.

We assume a pinhole camera pointed at a uniformly tex-
tured surface, as shown in Figure 2. Our algorithm begins by
computing power spectra in two, 64x64 patches of the
image, as shown in Figure 1. We call these power spectra
S, (u,v) and S, (u,v) , and they are centered at image
coordinates (x;,y,) and (x,,y,) . We show in [5] that the
power spectra are approximately related by an affine trans-
formation:

S, (a,u+byv,au+byv) =S, (u,v) N
The affine parameters are functions of the gradient-space
variables (p, g) representing the surface normal:

(2

a,

b, = Bq [ (~drp) (pAx +qAy) —dg (gAx—pAy) +q (p*+4%) (Y, = %))

a, = Bp[(drq) (pAx+qAy) —dp (qAx—pAy) +p (p*+¢7) (X~ 03]

b, = B[(~d?r) (p*+q?) +dr (p’x,+pqy, + p4*x, + ¢°y)) —dpq (qAx-pAy) +pq (P2 + 4D (x,y,- %91 ]
where

B - px, +4qy, —-d
dr(p*+q?) (px,+ gy, - d)?

r=AJpl+qgr+1

Ax = x,—x,

Ay =y, -y, 3)
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Bl (=d?r) (p?+ q?) +dr (p°x, + P2qy, + pqx, + 4y,) +dpq (qAx~pAy) —pq (p*+¢*) (X, -xy)1]

The only unknowns in these equations are (p, q) , the sur-
face normal. Our algorithm works by searching over the
space of surface normals, finding the one whose correspond-
ing affine transform (Equation (2)) best satisfies Equation
(1). We measure the similarity using the sum of squared dif-
ferences (ssd):

ssd(p,q) = 3,9, {S,[a;(p.@u+b (P, D)V,
a,(p,@)u+by(p,@v] -
2
S,[u,v] } @
where the sums are taken over the 2D domain of discrete fre-
quencies, and where we have written the affine parameters as
explicit functions of the surface normal. Our solution is the
(p, q) that generates the smallest ssd. Our tests in [5] show
an average error of about 3.6° on images of periodic tex-
tures taken in the lab.

The strength of this algorithm is its simplicity. Basing the
algorithm on a local spatial frequency representation means
it requires no feature detection and very few “magic num-
bers.” Its simplicity also makes it possible to predict its per-
formance analytically.

VARIANCE EXPERIMENTS

In our experiments with our shape-from-texture algorithm,
we noticed that the variance of the result was dependent on
the underlying texture and the relative locations of the two
power spectrum patches. Not all textures gave good results,
and not all placements of the patches gave good results. We
conducted two experiments to determine the effects of these
two variations.

We performed controlled experiments on a simple, syn-

thetically generated, flat plate rotated to

(p,q) = (0.257,0.257) witha sinusoidal texture mapped
on. One of the images is shown in Figure 1. We added uncor-
related, Gaussian noise with a standard deviation of 10 to
simulate real camera noise and to induce variations in the
results for our tests. (The gray level range was [0,255].) For
our first experiment, we tested
the effect of varying the texture
by rotating the sinusoid angle
0, through 170° inincrements
of 10°. At 8, = 0° the stripes ran vertically up the plate,
while at 6, = 90° they ran horizontally across the plate.
Our experiment consisted of computing the surface normal
100 times for each texture angle. New random noise was
added to the uncorrupted image before each run of the algo-
rithm.

The results of this test are shown in Figure 3. The dots
indicate the variance in the results. For both p and g, the
maximum variance occurs at 8, = 90°. At this angle, the
stripes run almost horizontally through the power spectrum
patches. Any change in surface normal in this configuration
will cause only a small change in the power spectra, so noise
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Figure 3: Experimental (dots) and predicted (solid
curve) variances for varying texture angle.

dominates the solution. A change in p will be more apparent
than a change in g, so the variance for ¢ is higher. This
experiment shows, in a controlled way, that some textures

give better results than others when doing shape-from-tex-
ture.

Our second experiment tested the effect of the relative
positions of the two power spectrum patches. The data for
this experiment is shown in Figure 4. The textured plate is
the same as one of those used for the first experiment, with
8, = 50°. We put one power spectrum patch at the center
of the plate, and we let the other one move along a circle
around the first in increments of 10°. We designated the
angle to the second patch as 8, .We computed surface nor-
mal 100 times for each 8, adding new random noise to the
uncorrupted image before each run.

The results of this second experiment are shown in Figure
5. The variance is maximum when a line connecting the two
patches is parallel to the stripes of the texture. This is
expected, since, at this angle, the power spectra will be rela-
tively insensitive to changes in the surface normal.

Figure 4: Data used for second experiment. The

position of one of the power spectrum patches was
moved around a circle.
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Figure 5: Experimental (dots) and predicted (solid

curve) variances for varying angle between power
spectrum patches.
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VARIANCE PREDICTION

This section shows how we can predict the variance of the
solutions in order to attach an uncertainty to the result. In
order to predict the variance, we examine the shape of the
ssd surface around the minimum point. A sharp or shallow
depression corresponds to a low or high variance, respec-
tively.

We follow the recipe in Numerical Recipes[8] for predict-
ing the variance of our results based on the ssd surface. We
designate (p ,q ) as the location of the minimum. The
Hessian of the ssd surface at this point is

2 2

D (o q") ~ssd (%, g*
apzssd (p*, %) apaqssd (p*, q*)
2

&)

ool
T2

—a—ssd (p*, q%) —aissd (r*, q%)
dpoq ’ 0g? ’

If the errors in the power spectra are normally distributed,
then the covariance matrix of the solution will be the inverse
of the Hessian. This covariance matrix defines an ellipse in

(p, @) thatis approximately the same shape as the constant-
ssd contours of the ssd surface around the minimum point.
The directions of the axes of the ellipse are given by the
eigenvectors of the inverse Hessian, and the lengths of the
axes are the eigenvalues. The variances along p and g are
given by the projection of the ellipse onto the p and g axes.
Our power spectra errors are not normally distributed, so this
analysis is only approximate. This also means we can only
approximate the covariance up to a scale factor. This is still
useful for predicting the relative variance of solutions for
different situations.

‘We model the sinusoidal texture as a unit amplitude, com-
plex sinusoid with frequency (u,, v;) , whose Fourier trans-
form is & (u — ug, v —v,) . This frequency will be warped to

(u#;,v) and (u,, v,) on the two patches we analyze in the
image. We showed that these two frequencies are approxi-
mately related by an affine transformation. If we use a Gaus-
sian windowing function é(cpr;—% (x2+ y2)] j/ 1%, then
the power spectrum patches wilt be

S;(u,v) =exp[-2nl2((u—u)?+ (v-v)?]

‘We can write out the full ssd function using the above rela-
tionship along with Equations (2), (3), and (4). Space limita-
tions and common sense prevent us from writing out this
equation. The partial derivatives for the Hessian would take
many pages. We expanded the equations with Macsyma,
converted them to Mathematica, and used it to produce C-
language expressions for our program.

We numerically computed eigenvalues and eigenvectors
of the resulting Hessian matrices. The projections of the
eigenvalue-scaled eigenvectors gave the predicted variances
up to a common scale factor, which we estimated with a
robust estimation algorithm.
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The results of our variance prediction are given as solid
curves in Figure 3 and Figure 5. It is clear that the predic-
tions show the same trends as the actual variances.

The same analysis could be done for textures that are more
complicated than our simple sinusoids. Our procedure illus-
trates that the analysis can be done and that it successfully
predicts the algorithm’s performance.

This work is similar to that of Malik and Rosenholtz[7], in
that they also predict variances in their spectrogram-based,
shape-from-texture algorithm. Whereas they do a sensitivity
analysis on the parameters connecting the power spectrum
patches, we do our analysis on the full algorithm. Therefore,
our results account for the texture itself, while theirs ignores
this effect. As our analysis shows, the texture has a signifi-
cant effect on the variance of the solution.

REFERENCES

{1] Bajcsy, Ruzena and Lawrence Lieberman. “Texture Gra-
dient as a Depth Cue.” Computer Graphics and Image
Processing 5 (1976): 52-67.

[2] Brown, Lisa Gottesfeld and Haim Shvaytser. “Surface
Orientation from Projective Foreshortening of Isotropic
Texture Autocorrelation.” IEEE Transactions on Pattern
Analysis and Machine Intelligence 12 (June 1990): 584-
588.

[3] Jau, Jack Y. and Roland T. Chin. “Shape from Texture
Using the Wigner Distribution.” Computer Vision,
Graphics, and Image Processing 52 (1990): 248-263.

[4] Krumm, John and Steven A. Shafer. “Segmenting Tex-
tured 3D Surfaces Using the Space/Frequency Represen-
tation.” Spatial Vision, 1994, to appear.

[5] Krumm, John. “Space/Frequency Shape Inference and
Segmentation of Textured 3D Surfaces.” Ph.D. disserta-
tion, Carnegie Mellon University, December 1993. Also
as technical report CMU-RI-TR-93-32.

[6] Malik, Jitendra and Ruth Rosenholtz. “A Differential
Method for Computing Local Shape-From-Texture for
Planar and Curved Surfaces.” Computer Vision and Pat-
tern Recognition Conference, June 1993, 267-273.

[7] Malik, Jitendra and Ruth Rosenholtz. “Computing Local
Surface Orientation and Shape From Texture for Curved
Surfaces.” University of California, Computer Science
Division (EECS), Report No. UCB/CSD 93/775, March
1994.

[8] Press, William H., Brian P. Flannery, Saul A. Teukolsky,
and William T. Vetterling. Numerical Recipes: The Art of
Scientific Computing, First Edition, Cambridge Univer-
sity Press, 1986.

[9] Super, Boaz J. and Alan C. Bovik. “Shape-from-Texture
by Wavelet-Based Measurement of Local Spectral
Moments.” IEEE Conference on Computer Vision and
Pattern Recognition, 296-301, June 1992.




