
What It Means for a Concurrent Program to

Satisfy a Specification:

Why No One Has Specified Priority

Leslie Lamport
Computer Science Laboratory

SRI International∗

2 July 1984
minor revision 27 October 1984

Abstract
The formal correspondence between an implementation and its

specification is examined. It is shown that existing specifications that
claim to describe priority are either vacuous or else too restrictive to
be implemented in some reasonable situations. This is illustrated with
a precisely formulated problem of specifying a first-come-first-served
mutual exclusion algorithm, which it is claimed cannot be solved by
existing methods.

pri·or′i·ty (pr̄ı·ŏr′̆ı·t̆ı), n.; pl. -ties(-t̆ız). 3. Order of
preference based on urgency, importance, or merit. [1]

1 Introduction

Specification and Implementation

A formal specification method should reduce the question of whether a pro-
gram satisfies its specification to a precisely formulated mathematical prob-
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lem. This reduction is what distinguishes a formal method from an informal
one. Most researchers developing specification formalisms have concentrated
upon the formal semantics of the specification language, apparently believing
that such a semantics, together with a formal semantics for the programming
language, provides the necessary reduction. However, formal semantics for
the specification and programming languages are not enough; one must also
define the correspondence between the two semantics.

As a trivial example, consider a program to compute the square of an
integer. The specification might be given in terms of mathematical integers,
while the program’s semantics might be defined in terms of bit strings.
To determine if the program meets its specification, we must define the
correspondence between the implementation-level semantic concept of bit
string and the specification-level concept of integer. Although this is easy
to do, it is important that it be done; a program that expects input values
to be in two’s-complement representation may produce an incorrect answer
when given an input value encoded in sign-magnitude representation.

For sequential programs, specified in terms of input and output values,
the correspondence between implementation and specification concepts is,
in principle, simple: it is just a mapping between two domains of values.
However, this is not the case for concurrent programs, where the specifi-
cation involves the program’s behavior. The granularity of operations can
be very different at the two levels; an atomic operation at the specification
level may correspond to a large number of atomic program operations. The
formal correspondence between the two semantic levels requires careful ex-
amination. In this paper, I consider the implications of this correspondence
for the particular problem of specifying priority.

Priority

In concurrent systems, priority denotes the order of preference in which pro-
cesses obtain service. It may be based upon the nature of the service being
requested, the importance of the requesting process, or the order in which
requests are issued. All popular methods for specifying concurrent systems
allow one to write simple specifications that appear to describe priority.
However, I will show that, depending upon how they are interpreted, these
specifications are either too restrictive to be implementable in all situations
or else they are vacuous, being satisfied by any program.

I will concentrate upon a particular example of priority: first-come-first-
served (FCFS). There is nothing special about FCFS—the same problem
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arises in specifying other types of priority; FCFS just provides a simple,
well-studied case. It is also an important case; the Ada language requires
an FCFS queuing discipline in the implementation of the rendezvous mech-
anism, and problems in formally specifying this requirement may be of some
interest to the Ada community.

My claim that current methods cannot specify priority is a controversial
one, and provokes arguments when presented to computer scientists. I have
therefore formulated a challenge to those who feel that they know how to
specify priority: the specification of a precisely-defined FCFS mutual exclu-
sion algorithm. I believe that anyone claiming to have a general method for
specifying concurrent programs should be able to write the required specifi-
cation. By a “general” method, I mean one that permits implementations in
a reasonably broad class of programming languages. Given some particular
programming language having an FCFS synchronization primitive, it is easy
to specify FCFS priority for programs written in that language by requir-
ing the implementation to use the FCFS primitive. To prevent this kind of
“cheating”, the challenge specifies two simple programming languages that
must be handled.

The challenge is presented first, before any explanation of what makes
specifying priority difficult. I urge the reader to study it and decide if
it is reasonable before reading the rest of the paper. There are no tricks
in the challenge; the problem that arises in trying to specify priority is a
fundamental one. For a cry of “foul” to be taken seriously, it should be
issued on the basis of the challenge alone, not on the ensuing discussion.

2 The Challenge

Let Blaise be a simple concurrent programming language with an atomic
assignment statement, concatenation ( ; ), if and while statements with
atomic tests, a cobegin, and integer and boolean shared variables, but with
no explicit synchronization or communication commands. The cobegin is
assumed to be fair, meaning that a nonterminated process will eventually
execute its next atomic operation, but no bound is assumed on the relative
execution speeds of the different processes. All classical shared-variable
multiprocess algorithms can easily be written as Blaise programs.

Let the language Tony be the same as Blaise except with no shared
variables, instead using CSP-style communication primitives. Moreover,
assume an appropriate fairness requirement on communication so that a
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Blaise program can be simulated in the obvious way by a Tony program in
which shared variables are replaced by extra processes.1 Reading the value
of a Blaise shared variable is simulated by a “?” operation in the Tony
program, and writing its value is simulated by a “!”.

Mutual exclusion algorithms that can be written in Blaise have been
studied for years [3], and there is a general agreement that certain algorithms
are FCFS and others are not. It is less clear what it means for a Tony
program to be FCFS, but it is easy to write Tony programs that are obviously
not FCFS—for example, an algorithm with a central scheduling process that
does not always grant requests in the order it receives them.

The challenge is to specify program statements entryp and exitp, for
p = 1, . . . , 17, such that if the statement

entryp”; critical section; exitp (1)

is embedded in the sequential process πp, then

cobegin π1 ‖ . . . ‖ π17 coend

is an FCFS mutual exclusion algorithm in which πp requests entry to its
critical section by initiating the execution of (1). (There may also be decla-
rations of the shared variables in a Blaise program and extra processes in a
Tony program.) The specification, and the specification method, must have
the following properties.

1. For any Blaise or Tony implementations of the entryp and exitp state-
ments, the method defines a mathematical formula C and a formal
system L such that the implementation satisfies the specification if
and only if C is a valid formula of L.

[This is a precise statement of the requirement that a formal method
reduce the question of whether a particular program satisfies the spec-
ification to a well-defined mathematical problem.]

2. (a) Any Blaise implementation that is generally regarded to be an
FCFS mutual exclusion algorithm must satisfy the specification.

(b) A Tony simulation of such a Blaise program must also satisfy the
specification.

1Without some fairness constraint on communication, a Tony program cannot guaran-
tee the fairness condition for a Blaise process that accesses a shared variable.

4



3. Any Blaise or Tony program that is generally regarded not to be an
FCFS mutual exclusion algorithm must not satisfy the specification.

I will attempt to answer all serious responses to this challenge. To meet
the challenge, you must provide the specification and indicate how one con-
structs the C and L of condition 1 for any Blaise or Tony program. I will
then attempt to present one or more programs that violate condition 2 or
3, in which case you must show that these conditions are not violated. The
construction of C and L and the refutation of my counterexamples need not
be given in full mathematical detail, but they must be rigorous enough to
convince a competent computer scientist that a completely formal exposition
is, in principle, possible.

3 What’s So Hard About The Challenge?

Why Current Methods Don’t Work

Let us now consider how one might specify the FCFS condition of the chal-
lenge. Intuitively, FCFS means that requests to enter the critical section
are serviced in the order in which they are issued. To specify this more pre-
cisely, one must recognize two kinds of operations—a request operation and
a critical section operation. To each critical section operation there corre-
sponds a request operation, issued before it by the same process. We identify
operations by subscripts, letting request i and critical sectioni denote corre-
sponding operations. The FCFS priority condition is usually expressed as
follows:

(∗) For any distinct operations critical section i and
critical sectionj, if request i precedes request j then critical section i

must precede critical sectionj.

The operations request i and request j need not be atomic actions. The condi-
tion “request i precedes request j” means that request i finishes before request j

begins. If these operations are nonatomic, then they can be concurrent,
meaning that neither precedes the other. In this case, condition (∗) does
not specify the order of the operations critical sectioni and critical sectionj .
Allowing the request operations to be nonatomic means that the order of
service does not matter (is not specified) if the requests are issued “too close
together”.
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All the formal specification methods I know of—including [4], [5], [8],
[11], [13], [14], [15], [16], [17], and [18]—specify FCFS with condition (∗),
although the formal expression of this condition differs with the different
methods. These differences are irrelevant to the fundamental problem with
condition (∗).

To verify that a Blaise program satisfies (∗), one must state what Blaise
operations correspond to the operations request i and critical section i. The
critical section i operation clearly corresponds to an execution of the criti-
cal section, but what about the request i operation? Let enter i denote the
operation by which a process initiates execution of its entryp statement, so
enter i is an execution of the atomic action that puts the process’s control
at the beginning of that statement—in other words, the last atomic action
before the process executes entryp. What is the relation between the atomic
action enter i and the operation request i? There are two possibilities:

1. enter i equals request i, making request i an atomic action.

2. enter i is the first action of the nonatomic operation request i.

I will examine each of them in turn.
In the first case, where request i is the atomic action putting the process

at its entryp statement, condition (∗) cannot be satisfied by any implementa-
tion. There is no way for two entry statements to determine in which order
they were entered. Hence, no algorithm can ensure that the critical section
operations occur in the order required by condition (∗).

It might seem unfair not to make enter i part of the the entryp statement,
and one might define enter i to be the first atomic action of entryp. However,
this does not solve the problem because an atomic action of a Blaise pro-
gram can either read or write a shared variable, but cannot do both. Thus,
if request i is the atomic action enter i, then the request i operation cannot
both announce the process’s desire to enter its critical section and check for
the presence of other processes waiting to enter their critical sections.2 If
the two operations request i and request j occur too close together, no algo-
rithm can determine which one happened first, even though the semantics
of Blaise specifies that they occur in some definite order. Hence, a Blaise
implementation still cannot satisfy condition (∗).

Now consider the second case. If enter i is only the first action of the
request i operation, when does the operation end? This question is not an-

2This appears to be a folk theorem, having been known to a number of people but
never published.
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swered by the specification. Since the end of the request i operation happens
while executing the entryp statement, which is provided by implementor, he
must be the one who decides where the request i operation ends. In order
to prove that his implementation meets condition (∗), the implementor may
define the end of the request i operation to be anywhere he wishes. In partic-
ular, he can define request i to include the entire execution of the statement
entryp. With this definition, any algorithm that enforces mutual exclusion
of critical section operations trivially satisfies condition (∗). Thus, in this
case, the condition is vacuous.

What Does Priority Really Mean?

What do we mean when we say that something is an FCFS algorithm?
FCFS was defined in [10] by condition (∗), under the interpretation in which
request i is a nonatomic operation, with the following additional constraint:

(†) The request i operation does not involve any waiting for other processes.

To prove that his program is FCFS, the implementor is free to define request i

any way he likes so long as condition (†) is satisfied. For a Blaise program,
in which “busy waiting” is the only kind of waiting possible, (†) is satisfied
if the execution of request i takes a bounded number of program steps.3

There is no obvious way to define absence of waiting for a Tony program,
which can make it difficult to decide whether or not a Tony program is
an FCFS algorithm. This is the reason the challenge requires that a Tony
simulation of an FCFS Blaise program be regarded as FCFS. The simulation
can be viewed as a “compiled version” of the Blaise program, and it is
reasonable to expect the compiled version of an FCFS program also to be
an FCFS program.

To specify FCFS, one needs both (∗) and (†), so one must be able to
define what waiting means. Moreover, the definition of waiting should be
independent of the programming language, since the specification of the
request i operation should not depend upon how entryp and exitp are imple-
mented. For example, entryp and exitp might call subroutines that invoke
special-purpose hardware to perform the necessary synchronization.

Specifying other kinds of priority poses exactly the same difficulty as
specifying FCFS. Consider the classical readers/writers problem with writer

3Note that this does not mean that the execution takes a bounded length of time;
Blaise does not guarantee any bound on how long a process may wait before executing
one step.
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priority [2]. In this problem, a process that has issued a request to write has
precedence over a reader that has not yet begun to read. Letting start.rd i

denote the operation of starting to read, this is expressed as follows.

(∗′) For any operations writei and read j , if request i precedes start.rd j then
write i must precede read j.

Condition (∗′) has the same trouble as condition (∗). If request i is the
operation enter i that begins the request, then no Blaise program can meet
this specification. On the other hand, if the implementor is allowed to
define the endpoint of this operation, then condition (∗′) is vacuous because
request i can be defined to extend until the beginning of writei.

4 A Closer Look at Specification

An Informal Look

The difficulty in specifying priority should convince the reader that we need
to examine more closely what it means for a program to implement a specifi-
cation. To write a specification, there must be an object to be specified and
a well-defined interface between the object and its environment. We can ask
for a specification of a telephone exchange because we know both the object
to be specified (the exchange) and its interface with the environment (the
wires leading to the telephones on the exchange and to other exchanges). It
is meaningless to ask for a specification of the solar system because we have
no idea what the interface is between the solar system and its environment.

I will call the object being specified a “module”. A complete specification
of a module must contain all the information needed to determine if a par-
ticular implementation is correct, where correctness means that the module
interacts properly with its environment. An examination of the specifica-
tions presented to illustrate most methods—for example, the specification
of a queue (bounded buffer) in [8], [17], or [18]—reveals that they are incom-
plete. From these specifications, one cannot tell whether the operations are
initiated by calling a subroutine or by raising a voltage on a wire. A pro-
gram and a piece of hardware cannot both interact properly with the same
environment. Only in [11] is the interface specified, being defined as a sim-
ple subroutine-calling mechanism, but there was no explanation of why this
implementation-level detail was introduced into a paper on specification.

A complete specification must have two parts: a specification of the
module’s interface and a specification of its internal behavior. The internal
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behavior can be specified in terms of high-level abstractions like queues
and write operations. However, since the interface determines whether an
operation is initiated by calling a Pascal subroutine named put or by raising
the voltage on line number 7 to 4.5±1 volts, it must be specified in terms of
implementation-level concepts like subroutine names and voltages. We want
to make the interface specification as small as possible, specifying as much
as we can in terms of the internal behavior, which can be described with
nice, high-level concepts; but the interface specification is necessary. Most
specification methods ignore the interface and consider only the internal
behavior.

The implementor should have complete freedom in implementing the ob-
jects and operations that describe the internal behavior. If the specification
contains an internal operation that puts an object on a queue, then the
implementor can define that operation to be the act of storing an item in
an array, of adding it to a linked list, or of setting the voltage levels on the
wires leading to some special device. On the other hand, the interface must
be completely specified at the implementation level. The need to partition
a specification into an internal part, which is implementation-independent,
and an interface specification, which depends upon the implementation, was
recognized in [6], and is embedded in the Larch system [7].

In the challenge, the interface is described by requiring the implementa-
tion to consist of Blaise or Tony entryp and exitp statements that are used
in a particular way. Because I ignored the problem of how shared variables
and extra processes are declared, I could pretend that the Blaise and Tony
implementations had the same interface specification. In a more formal ap-
proach, the interface would have to be specified somewhat differently for the
two languages.

A Formal View

As described in condition 1 of the challenge, a formal method for proving
that an implementation meets its specification must convert the specification
and its implementation into a mathematical formula C in some formal system
L such that the implementation is correct if and only if C is a valid formula
of L. I now give a very vague, high-level discussion of how this is done.

A formal specification is written in a language having a formal semantics,
which means that the specification can be translated to a mathematical
object S in some formal system S. Similarly, a formal semantics for the
implementation language describes the implementation as a semantic object
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I in a formal system I. To be able to speak formally about the correctness of
the implementation, there must be a mapping F from objects in the system
S to objects in the system I, so that F(S) is an object of I. The object F(S)
is the formal representation of the specification in the semantic domain of
the implementation.

The formal system L of the challenge is the system I, and the formula M
that expresses the correctness of the implementation is the formula of I that
means “I satisfies F(S)”. Exactly how M is constructed from F(S) and I
depends upon the specification method. I will illustrate with two examples:
a pure axiomatic approach and a pure behavioral approach.

In a pure axiomatic approach, an axiomatic semantics is given for both
the specification and the implementation. An axiomatic semantics defines S
to be a formula of the logical system S—the conjunction of all the “axioms”
comprising the specification—and I to be a formula of I. The mapping F
is a function from the formulas of S to those of I. For example, suppose the
specification is in terms of the value of a queue q, which is implemented
with an array a. To talk about the correctness of the implementation, for
every possible value a of the array a we must know the value Q(a) of q that
it represents.4 For any formula R of S, the formula F(R) of I is obtained
by substituting Q(a) for q in R. Thus F(R) is obtained by translating the
statement R, which is an assertion about the specification-level object q,
into an assertion about the implementation-level object a.

In this approach, M is the formula I ⊃ F(S). In other words, the im-
plementation is correct if and only if the axioms comprising the semantics
of the implementation imply the axioms of the specification, after the lat-
ter are translated by F into assertions about the implementation. This is
discussed at greater length in [12] for one particular axiomatic method.

In a pure behavioral approach, the formal semantics of the implemen-
tation and specification are sets of behaviors: S is the set of all behaviors
allowed by the specification, I is the set of all behaviors that could be pro-
duced by the implementation, and S and I are formal systems for reasoning
about sets of behaviors. For a behavior b in the specification domain, F(b)
is the corresponding behavior in the implementation domain. In the mutual
exclusion example, the operation critical section i is a single action in the
behavior b; it corresponds to a set of actions in F(b)—namely, the set of all
the Blaise program steps in a single execution of the critical section.

4The mapping Q may be partial, since Q(a) need only be defined for values a of a that
can arise during the program’s execution.
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One can define the formula M to be I ⊂ F(S), where F(S) = {F(b) :
b ∈ S}. In other words, the implementation is correct if and only if ev-
ery possible behavior of the implementation is allowed by the specification.
Some specification methods define M to be I = F(S), requiring that the
implementation be able to produce all the behaviors described by the spec-
ification.

There are other possibilities—for example, an axiomatic semantics for
the specification and a behavioral semantics for the implementation. In any
case, the definition of correctness of the implementation involves the map-
ping F . For the specification of FCFS, the mapping F is what determines
which operations at the implementation level correspond to the specifica-
tion’s request i operation. A complete specification must include not only S,
but also the part of F that determines the interface. For the queue exam-
ple, it is this part of F that specifies whether one puts an element in the
queue by calling a subroutine or raising a voltage level. Correctness means
that there exists some F , part of which is determined by the specification,
such that F(S) satisfies I. The implementor is free to define the rest of F ,
specifying the correspondence between the implementation and the internal
part of the specification any way he wishes in order to prove the correctness
of his implementation. The specification places no constraint on any part of
the implementation other than the interface.

5 Conclusion

Having described the difficulty in specifying priority, it would be nice if I
could either explain how it can be done or else prove that it is impossi-
ble. Unfortunately, I can do neither. I believe that one cannot write a
satisfactory general specification of priority—one that works for a variety of
implementation domains. The difficulty in expressing priority arises from
the requirement that the request operation should involve no waiting for
other processes. Waiting is an implementation-level concept that I feel can-
not be expressed in a general way. However, this conjecture, like Church’s
thesis, is not susceptible to formal proof. At best, one can prove only that
some particular formalism cannot express priority.

If priority is not expressible by current formal specification techniques,
how should we specify concurrent systems? Priority is generally regarded to
be a fundamental concept that must be specified. Must we add new primi-
tives to express it? My tentative answer is no. I believe that priority cannot
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be expressed precisely in those situations when it is not a fundamental prop-
erty.

Remember that condition (∗) does express FCFS priority if the request i

operation is interpreted to be the interface operation enter i. The atomicity
of enter i is irrelevant; what matters is that request i be the interface opera-
tion. Priority is a basic system requirement only when its effect is directly
visible to the user, which is the case only when the request operation is
externally visible—that is, when it is part of the interface. For example,
suppose we want transactions issued by certain users to receive higher pri-
ority. The request operation can then be defined as the entire sequence of
actions performed by the user in issuing the request, from the first keystroke
to his notification that the request has been accepted by the system.

When the request operation is not externally visible, then priority is a
mechanism, not an end in itself. In the internal specification, we give writers
priority not because correctness requires them to have precedence, but rather
to ensure that they receive adequate service. For example, a common use of
writer priority is to guarantee absence of starvation—a waiting writer even-
tually writes despite a continual stream of readers. What we need to specify
is the required service, not the mechanism used to achieve it. The absence
of starvation belongs to a fundamental class of properties, known as liveness
properties, that are easily expressed in temporal-logic based methods like
the ones of [8], [11], [13], [16], [17], and [18]. It is the basic requirement that
should be specified, not the priority mechanism used to achieve it.
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