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Temporal logic is a formal system for specifying and reasoning about concurrent programs. It provides a uniform
framework for describing a system at any level of abstraction, thereby supporting hierarchical specification and

verification.
1. INTRODUCTION

1.1. The Answer

The question posed in the title has a simple answer: tem-
poral logic is a good method for specifying and reasoning
about a concurrent program. The purpose of this paper is
to explain why. It is primarily about my method for using
temporal logic, but also discusses some other approaches.

Temporal logic is a branch of formal logic that is new
to many of you. When advocating a new formalism, one
usually argues that it is simple, natural and easy to use.
Temporal logic is a rather simple extension of classical logic,
and it does provide a natural way of describing the temporal
behavior of a program. However, learning to use a new
formalism is never easy because it requires learning to think
in a new way. You probably found it hard at first to use the
V and 3 of predicate calculus; only after changing your way
of thinking did the formalism become simple and natural.
Learning to reason about programs in terms of temporal
logic is just as hard as learning to use V¥ and 3. Moreover,
there are other formalisms that at first seem more natural
than temporal logic; you would probably find them easier
to learn.

If temporal logic is ‘not simpler and more natural than
other methods, why should we use it? Although there are
many reasons why I like temporal logic, there is one that
is paramount: temporal logic supports hierarchical specifi-
cation and reasoning in a simple, natural way. Experience
has shown that the best way to describe a complex sys-
tem is through a hierarchy of levels of abstraction, start-
ing from a high-level specification and ending with the im-
plementation in some programming language. Each level
is a specification of the next lower level and an implemen-
tation of the next higher one. Temporal logic provides a
single logical system for describing the program at any level
of abstraction—from the highest-level specification through
the programming-language implementation. A statement
about the program at one level is a meaningful statement
about any lower level. Thus, hierarchical design methods
are supported directly, with no extra mechanism needed to
link the different levels of description.

*This work was supported in part by the National Science
Foundation under grants MCS-7816783 and MCS-8104459.

The remainder of this section explains in vague generalities
how temporal logic differs from other approaches. Subsequent
sections describe what temporal logic is, how it is used to
specify programs, and how it supports hierarchical specifi-
cation.

1.2. How Do You Say “Maybe” in Temporal Logic?

Natural languages are very expressive and very imprecise.
You can express any property of a program in English—for
example, you can say that it is cute—but it is hard to be
sure that someone else will understand exactly what you
mean. Formal languages are not very expressive, but they
are precise. You can’t say very much in a formal language,
but what you can say is completely unambiguous.

A temporal logic is a formal language for expressing tem-
poral properties. A number of different temporal logics have
been studied by logicians and computer scientists [20], but
there is one that | find useful for specifying and reasoning
about concurrent programs. This temporal logic allows you
to express two kinds of properties of a program.

o Safety properties, which assert that the program
does not do something bad.

o Liveness properties, which assert that the program
does eventually do something good.

Partial correctness (the program does not produce the wrong
answer), mutual exclusion (two processes are not in their
critical sections at the same time), and deadlock-freedom
(the program does not reach a deadlocked state) are safety
properties. Termination (the program eventually does ter-
minate) and starvation-freedom (a process eventually re-
ceives service) are liveness properties.

Safety and liveness are not the only properties of a program
that are of interest. For example, one might like to know
the program's probability of terminating, or whether it is
cute. However, 1 do not know of any practical method for
reasoning about such properties. I do know how to reason
about safety and liveness properties, and those are the only
ones that | consider.

One type of property that is not of interest is the possibility
that the program might do something. We want to speci-
fy not that the program might produce the right answer,
but that it must do so. Because many formalisms cannot




658 L. Lamport

express liveness properties, they have led people to consider
such “possibility” properties instead. If you can’t prove
that the program must do something, proving that it might
do it is the next best thing. Since temporal logic can express
liveness, we do not need to talk about possibilities. In fact,
the temporal logic I use cannot even express such properties;
you can't say “maybe” in this temporal logic.

Temporal logic was developed to describe the order in which
things must happen rather than the actual times at which
they bhappen. To talk about real time, one can introduce
the notion of a clock. Real-time properties of programs
can then be expressed as safety properties; for example, the
assertion “the program must respond to an input within ten
milliseconds” can be expressed as “the clock cannot reach
ten milliseconds after the time of the last input without
an output being produced”, which is a safety property.
Liveness properties, which state that something must even-
tually happen, follow from the physical nature of time—
the ten milliseconds must eventually elapse. A somewhat
different method of applying temporal logic to real-time
programs was used in [2], where the number of program
steps executed replaces real time.

1.3. Axioms or Models?

There are two ways to specify a program:

o Describe an abstract model that tells how the pro-
gram should behave.

o State what properties the program should have.

F will call the first approach constructive and the second
aziomatic. Since one can describe an abstract model by
stating its properties, there is no way to formalize this
distinction. Nevertheless, it is useful to classify methods
in this way. Perhaps the most elegant example of a con-
structive method is Milner's Calculus of Communicating
Systems [15]. Temporal logic is an axiomatic method.

Hierarchical specification poses a problem for constructive
methods. As an example, consider the specification of a
queue. At a high level, the queue operations consist of
adding an element to or removing one from the queue. A
constructive specification uses a model in which these are
the elementary operations. At the implementation level,
each queue operation is performed by executing many pro-
gram steps. The individual program steps are this level's
elementary operations; they are the elementary operations
in a constructive specification of the implementation. What
does it mean for the program to correctly implement the
specification? In the constructive approach, the answer re-
quires a definition of what it means for a sequence of lower-
level operations to correctly implement -a single high-level
operation. This may not be easy, since actions from other
parts of the program may be executed concurrently with
the actions that implement the queue operation. Section 4
explains how temporal logic specifications avoid this prob-
lem.

There is another problem facing constructive methods. They
specify a program essentially by writing another, presumably
simpler, program. However, concurrent programs that seem

simple can exhibit quite unexpected behavior. How can we
be sure that we understand the program if its specification
says only that it behaves like some other program which we
may not understand?

Axiomatic methods attempt to overcome this difficulty by
stating directly what properties the program must have.
They will succeed only if the properties are easy to un-
derstand. The challenge facing the axiomatic approach is
therefore to express the required properties so they are both
precise and understandable.

1.4. Operations or States?

In an axiomatic specification, one expresses the properties
that the program must have as assertions in some formal
logical system. What should these assertions talk about?
Two possibilities arise:

e What operations are performed by the program.
e How the state of the program changes.

At first, talking about operations seems the more natural
approach. However, the work of Floyd and Hoare on se-
quential program verification demonstrated the benefits of
thinking in terms of states rather than operations. Hence,
methods were developed for state-based, assertional reason-
ing about concurrent programs [8], [17].

In the seven or eight years I have used assertional methods
to reason about concurrent programs, the following has
occurred over and over again. First, I find a proof in terms
of the sequence of operations executed by the program. The
proof seems natural, and there appears to be no nice way of
expressing it in terms of assertions about states. However,
I persevere, and one of two things happens: I either find an
assertional proof that is simpler and more elegant than the
operational one—a proof that sheds new light on why the
program works—or else I discover an error in the proof and
a corresponding bug in the algorithm. The latter happens
quite often; it is easy to make a mistake when reasoning
about the sequence of operations executed by a concurrent
program.

I have had a similar experience specifying properties of
programs. When describing a program informally, I tend
to speak in terms of operations rather than states—i.e., in
terms of verbs rather than nouns. Saying that the program
displays a number on the terminal seems more natural than
saying that it changes the terminal’s state. However, when
I try to specify something more precisely, I find myself
talking about states. Trying to say exactly what it means
to display a number on a terminal, [ am led to talk about
the state of the screen.

This experience made me decide to base an axiomatic sys-
tem for describing concurrent programs upon states rather
than operations.
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1.5. Why Temporal Logic?

Having decided upon a state-based axiomatic method, why
should | use temporal logic? People have been specifying
and reasoning about sequential programs for years using
ordinary, nontemporal forms of logic. Why does the intro-
duction of concurrency require the use of temporal reason-
ing?

To describe a sequential program, we need consider the
state at only two times: before the program is executed and
afterwards. The program can be considered as a function
from an initial to a final state, so it can be specified in terms
of input and output conditions. The simple before/after
temporal reasoning that is used need not be made explicit.

This is not true for concurrent programs. For example,
consider the following two program statements, where the
angle brackets denote atomic operations. (An atomic opera-
tion of a concurrent program is one that is indivisible with
respect to concurrently executed operations.)

Si:(z:=2z+1)

Sg: begin
(z:=z+y+1);
(z=2-y)

end

Statements S; and S, produce the same mapping from
initial to final states. They satisfy exactly the same input
and output conditions, so they are completely equivalent
when used in a sequential program. However, consider the
following concurrent program, where the cobegin indicates
that its two clauses are to be executed concurrently.

cobegin (y:=y—7) 0 S coend

Substituting S, for S yields a program that increments z by
one, while substituting .S; for S yields a program that incre-
ments z by either one or eight—the latter possibility oc-
curring if the statement { y := y — 7} is executed between
the execution of the two statements of S,. Hence, S, and
S3, wbich satisfy identical input/output conditions, are not
equivélent when they appear as part of a concurrent pro-
gram.

This example shows that, when describing a concurrent pro-
gram, we cannot restrict our attention to what is true before
and after its execution; we must also consider what happens
during its execution. To prove simple safety properties,
one need consider only properties that are true at all times
during the program's execution. Since “at all times” is
also a simple temporal concept, one can reason about these
safety properties with no explicit temporal reasoning, as in
[9] and [17]. However, the more complex temporal reason-
ing needed for liveness properties cannot be left implicit; it
must be explicitly described. °

Pnueli was the first to recognize the usefulness of temporal
logic for reasoning about liveness properties of concurrent
programs [19], although Burstall had earlier suggested ap-
plying temporal logic to program verification [1].

1.6. What Isn’t Temporal Logic Good For?

Like any formal system, temporal logic has its limitations.
One limitation is obvious, but I will state it anyway: tem-
poral logic will not make the specification and verification
of concurrent programs easy. Designing a concurrent pro-
gram is a difficult task; no formalism can make it easy.
What temporal logic does provide is a method for speci-
fying precisely what the program should do and analyzing
rigorously what it will do. This method can be applied
with varying degrees of rigor, ranging from an informal
specification that serves only to guide the designer, to a
completely formal specification with a machine-verified cor-
rectness proof of the implementation. Rigorous reasoning
in any formal system is difficult and time consuming, but
it is the only way I know to eliminate the subtle timing-
dependent errors that are endemic to concurrent programs.

Our temporal logic also has less obvious limitations. Its
expressiveness has been carefully limited so it is just ade-
quate for its intended purpose: specifying and reasoning
about a concurrent program. Its limited expressiveness is
what makes temporal logic so good for this purpose be-
cause it prevents one from saying things that could get him
into trouble. However, it means that our temporal logic is
worthless for many other purposes. For example, it cannot
express the statement that two programs are equivalent.
This is becanse two programs are equivalent if they have
the same set of possible behaviors, and our temporal logic
cannot express the notion of possibility. -

In general, temporal logic is not good for comparing pro-
grams or describing sets of programs. When specifying and
reasoning about a single program, the only relevant com-
parison between programs is that a lower-level version cor-
rectly implements a higher-level one. There is only one
program that concerns us: the implementation running on
the computer. It is this single program that one specifies
and reasons about with temporal logic.

2. WHAT'IS TEMPORAL LOGIC?

2.1. What Is Temporal Logic Talking About?

Viewed formally, temporal logic consists of a language of
formulas and a set of axioms and inference rules for deter-
mining which formulas are theorems. However, a formal
description does not tell us what temporal logic is really
about. Just as Peano’s axioms would be meaningless if we
didn’t know they were about the integers, temporal logic is
meaningless without an understanding of the models that
underlie it.

We model a program as a set of {finite or infinite) behaviors
of the form

ay az ajz
89— 8 82— -,

where the s; are stales and the a; are actions. For now,

think of each behavior as a possible execution of some single
program written in a Pascal-like language with constructs
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for expressing concurrency. For the sake of euphony, I will
refer to this Pascal-like language simply as “Pascal”.

A state consists of a possible “snapshot” taken in the middle
of an execution, containing all the information needed to
resume execution right from that point. Thus, the state
must describe the value of each program variable, the con-
tents of the subroutine-calling stack, the value of each “pro-
gram counter”, efc. An action is a specific atomic action of
the program—for example, the execution of some particular
atomic assignment statement. The behaviors in the model
represent all possible executions of the program.

We think of the behavior
ay @z ag
8o — 8, — 8 — -,
as describing an execution that starts at time zero in state
8y, is In state g, at time one, etc. Time zero is regarded as
the present, all later times as the future.

Observe that we are modeling concurrency as the interleav-
ing of atomic actions. Computer scientists often feel that
something is lost by sequentializing a concurrent program
in this way, and that one should instead use a partial or-
dering among the actions. However, so long as we are talk-
ing only about safety and liveness properties, there is no
loss of generality in considering totally ordered sequences
of actions. Our model includes all possible sequences, and
a partial ordering is completely equivalent to the set of all
total orderings consistent with it. The real assumption im-
plicit in the model is the existence of atomic actions. Since
this assumption is made in virtually all formal models of
concurreflcy, I will not discuss it here. As you will see,
temporal logic requires only that at some sufficiently low
level—perhaps at the level of microcode —the program'’s
execution be accurately described by a collection of atomic
actions.

2.2. How Do You Speak Temporal Logic?

It would be appropriate here to define exactly. what the
formulas of temporal logic are, and how each formula is
interpreted as a statement about the-underlying model.
However, rather than bore you with formalism, I will de-
scribe the language of temporal logic informally. A more
formal definition can be found in the appendix of {11].

In the temporal logic that [ use, assertions are constructed
from state predicates, action predicates, the usual logical
operators, and the single temporal operator <J. A state
predicate is an assertion about a state, a typical example
being

(z > 0) A (control at program location [},

which asserts that the state is one in which: (i) the value of
the variable z is positive and (ii) the program counter indi-
cates that control i3 at a certain location I. This assertion
is true for some states and false for others.

An action predicate i3 an assertion about an action. The
action predicates we need have the form

this is an action of 7,

where 7 is some part of the program, such as a particular
subroutine or while loop. Although needed to formalize
the concepts, action predicates play a minor role in speci-
fying and reasoning about a program. For simplicity, they
will be largely ignored from now on.

Temporal relations are expressed with the operator <. The
formula A< Bisinterpreted to mean that B remains true at
least as long as A does. You can remember this by thinking
of < as a temporal < operator, where A < B means that
the length of time for which A holds continuously is < the
length of time that B holds. Thus, (z = 6) d(y > 7)
asserts that if z has the value 8 from time O through time
27, then the value of y is greater than 7 from time O through
time 27. If the value of z becomes different from 8 at time
28, then this formula asserts nothing about the value of y
from time 28 on. The < operator is related to the more
usual until operator by A J B = B until ~A.

An important type of temporal formula is one of the form
true I A. It asserts that A remains true at least as long
as true does—in other words, A remains true forever. This
assertion is written [J A, and is read “henceforth A”. An-
other important type of formula has the form ~ 0O~ A
and asserts that it is not the case that A is always false—in
other words, A must eventually become true. This asser-
tion is written © A and read “eventually A”. (While most
speakers of English would say that “A does not always
remain false” is equivalent to “A eventually becomes true”,
some computer scientists disagree. If you are one of them,
see [10] for an explanation.)

A temporal logic formula is interpreted as an assertion
about a single behavior of the program. It may be true
of some behaviors and false of others. We say that the
formula is satisfied by a program, or that it is true for
the program, if it is true of every behavior in our model
of the program. A temporal logic specification consists of
a collection of temporal formulas that the program must
satisfly—i.e., formulas that must be true for every possible
program behavior.

2.3. What Did You S...5...S...Say?

While the exact form of our temporal logic formulas need
not concern us here, they have one crucial property that
must be discussed: they cannot detect “stuttering”. To see
what this means, let o be the behavior
o g ag
8 —* 8 — 8 — -,
and let o' be another -behavior which is the same as o except
that some particular transition 8;_; X 8; is replaced by the
stuttering sequence
a; o a; a; ag
8iml > 8imp = 84— ™ 7t T 8i T 8.

No temporal logic formula can distinguish between o and
o’. In other words, any formula in our temporal logic is
true for the behavior o if and only if it is true for ¢’. This

-fact is easily proved from the formal semantics given in [11].

A little experimentation should also convince you that it is
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impossible to construct an assertion from state predicates
and the operator <1 that can distinguish between these two
behaviors.

Not only can a temporal logic assertion not detect the
addition of identical copies of a tramsition, but it cannot
detect the replacement of a transition by a sequence of
transitions if the state and action predicates from which it
is constructed cannot distinguish between the original state
and action and the interposed states and actions. More
precisely, let o be as above, but this time let o’ be the same
as o except with the transition s;_, b 8; replaced by the
sequence

1 2 3 41 42
al a¥ at aj ot
1 2 3 i 42 i
8, -3 8, -3 8, ~3 . 85y = 8.

Let A be any temporal logic assertion such that none of
the state predicates appearing in A can distinguish between
8;—1 and the various ,-._1, and none of the action predicates
appearing in A can distinguish between a; and the various
a!. In other words, for every j: each state predicate ap-
pearing in A is true for the state s_, if and only if it is true
for the state 8;_;, and similarly for each action predicate
appearing in A. In this case, A is true for o if and only if

it is true for o’.

When most computer scientists see that our temporal logic

cannot detect stuttering, they want to overcome this deficiency

by making the logic expressive. Many of them have done
this—usually by adding a nezt operator, where nezt A means
that A is true after the next action. I have very definite
reasons for not adding a nezt operator or any other operator
to increase the expressiveness of this temporal logic. We
use an abstract logic instead of reasoning directly about
the underlying model because the logic does not let us talk
about irrelevant properties of the model. Peano’s axioms
prevent us from saying such things as “8 is rounder than 7”
by giving us no means of expressing them. Using the nest
operator, one could write a specification for a queue that
includes the requirement “putting an element in the queue
should take exactly 17 steps”. The number of steps in a
Pascal implementation is not a meaningful concept when
one gives an abstract, high level specification of a queue. It
is just as irrelevant as the roundness of an integer, since it
is a property of a specific representation of the operation,
not of the operation itself.

When one talks about the next state, one really means
the next state in which a significant change occurs—where
significant means visible at the level of detail of the speci-
fication. For example, in saying that an element is added
to the queue in the next state, one means that the element
will be added to the queue before certain other parts of

_the state change. This can be expressed .in temporal logic

without using the nezt operator. It takes a little time to get
used to expressing properties in this way, without the nezt

operator, but it is worth it. You will see that increasing the

expressiveness of our temporal logic with a nezt operator
would destroy the entire logical foundation for its use in
hierarchical methods,

3. SPECIFICATIONS

3.1. What Good is a Specification?

A specification serves as a contract between the i mplement-
er of a program module and the user of that module. This
contract has two functions:

1. It allows the implementer to design the module,
knowing that his only responsibility is to meet the
requirements imposed by the specification.

2. It allows the user to write programs that call upon
the module, knowing that he need worry only about
the correctness of his programs, and can assume
that the module will behave as specified.

How can one be sure that a specification method really
serves these functions? How do we know that the specifi-
cation tells the implementer and the user everything they
need to know? In principle, we know that these functions
are satisfied if

1. The implementer can formally prove that his im-
plementation satisfies the specification.

2. The user, given only the specification of the module,
with no knowledge of how it is implemented, can
formally prove the correctness of his programs that
use the module.

Even if complete formal verification is not attempted, the
fact that a method permits this kind of logical reasoning
ensures that it will produce precise, unambiguous specifica-
tions. )

In an ideal world, a specification is written once, and the
implementer and user need never talk to each other again.
In practice, like any real contract, a specification must be
renegotiated if the implementer realizes he has promised
more than he can deliver, or if the user realizes that the
specified module does not meet his needs. Contracts are no
less useful if they are renegotiated. I believe that whenever
a system is “too complicated to be formally specified”—
its sole specification being several hundred thousand lines
of Pascal code— it is because the system evolved without
the implementer/user paradigm, so there was no one to
negotiate on behalf of the users.

3.2. An Example

The method I advocate for writing temporal logic specifi-
cations is described in detail in [11]. In this section, I will
present a rough sketch of the way it works by considering
a simple example. Other specification methods based upon
temporal logic are discussed at the end of the section.

The example is a FIFO (First-In-First-Out) queue. There
are two operations performed on the queue: PUT, which
inserts an element at the tail of the queue, and GET, which
removes an element from the head of the queue. More
precisely, PUT and GET are two subroutines that are called
to perform these operations. They can be called concur-
rently by two different processes, but, for simplicity, [ as-
sume that each can be called by only one process at a time.
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We must decide what GET should do if it finds the queue
empty. In a sequential program, this is treated as an anom-
alous condition—for example, by returning a special error
value. However, for a concurrent program, there is the
additional possibility of waiting for another process to put
something in the queue. This possibility is more interesting,
since it exists only for concurrent programs, so we choose
it.

You should be very suspicious when someone uses a queue
to illustrate a specification method. Many methods have
queues built in as primitive concepts, sometimes implicitly
in the form of sequences, so it is not surprising that they can
very easily specify a queue. A good way to judge whether
the example is biased is to compare the specifications of
different kinds of queues: FIFO versus LIFO (Last-ln-First-
Out), unbounded versus bounded, waiting on a GET to
an empty queue versus returning an error value, efc. If
two programs that have very similar informal descriptions
require very different specifications, then the method may
be difficult to use in practice.

3.3. State Functions

We want to think about programs in terms of states, so a
specification should be written in terms of states. The basic
object mentioned in a specification is the astate function,
which is a function that assigns a value to any program
state. In specifying a queue, there are many ways of choos-
ing the state functions, but the different choices I might
make all produce specifications that are easily shown to be
equivalent. -Here, 1 will use the following three main state
functions:

queue: The current contents of the queue.

putarg: When PUT is called, putarg equals the element
to be inserted into the queue. After the element
is put on the queue, putarg assumes a special
value NULL. Thus, putarg serves to “remember”
both the argument with which PUT is called
and whether or not PUT has finished inserting
an element into the queue.

getval: The analogue of putarg for the GET operation.
It equals NULL when GET is called, and equals
the element removed by GET when queue is
changed.

These descriptions of the state functions are not part of
the specification; they are just comments to help you un-
derstand it. The specification simply declares queue, putarg
and getval to be state functions, and indicates what type
of values they may assume. Formally, the specification has
the form '

there exist state functions queue, putarg, ... such
that ... .

Two other, less interesting, state functions are needed: -

in(PUT) and in(GET). These are boolean-valued state
functions that are true when control is inside a call to the
PUT and GET subroutines, respectively. They are thus
functions of “program counter” values. A few other state

functions are needed to specify how arguments and values
are passed in calls to PUT and GET, but | will ignore them.

3.4. Specifying Safety Properties

Recall that an axiomatic specification consists of a list of

properties, also called axioms, each of which must be satisfied
by every possible behavior of the implementation. 1 will

describe only the interesting axioms for the queue, omitting

the initial conditions and some simple safety properties that

describe the passing of arguments and values in subroutine

calls. The complete specification, which is not very long,

can be found in (11].

The only ‘interesting safety property is one that describes
how the three major state functions are allowed to change.
There are two occasions on which gqueue can change:

(a) When PUT adds the current value of putarg to the
end of the queue, setting putarg to NULL.

(b) When GET removes an element from the front of
the queue, changing the value of getval from NULL
to that element.

These are also the only interesting changes that can occur
to putarg and getval. More precisely, (a) describes the only
time pularg can change when control is in the PUT sub-
routine and (b) describes the only time getval can change
when control is in the GET subroutine.

This restriction on when these three state functions are
allowed to change is expressed more or less as follows, where
* denotes concatenation. (The notation of [11] has been
changed a bit to make the property less compact and easier
to read.)

allowed changes to gqueue
putarg when in(PUT)
getval when in(GET)
(a) in(PUT),4 A (putarg,, % NULL) —
(putarg,,,, = NULL) A (queue,,,, == queue,;y * putargy,)
(b) in(GET),,; A (getval,y = NULL) A (queue,;, not empty)

—

(getval ., 7% NULL) A (queueyy = getval,,,,, * queue,,,)

This property states that for any transition &;—; il 8; in
the behavior

a, ag ag
80— 8) — 8y — -+

if one of the following holds:

- the value of the state function queueis not the same
in states s;, and s;, or

— the value of putarg is not the same in 8;—; and s,
and in(PUT) is true for state s;_,, or

- the value of getval is not the same in s;_, and s;,
and fn(GET) is true for state s;_,,

then the transition must be either of type {a) or type (b).
It is a type (a) transition if the predicate in(PUT) A
(putarg £ NULL) is true for state s;_,, pufarg equals
NULL in state s;, and the value of queue in state 8; equals
the concatenation of its value in state s;_, with the value
of putarg in state 8;_,. It is a type (b) transition if the
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predicate in(GET) A (getval = NULL) A gueue not empty
is true for state 8;_;, getval is not NULL in state s;, and the
value of queue in state 8;—, equals the value of getval+ queue
in state s;.

To specify a LIFO queue, one requires that the new element
be added to the head rather than the tail of the queue,
which is done by simply replacing gueue,, * putarg,,, in (a)
with putarg, * queue,y . A queue of maximum length 23
is specified by adding the condition

length of queue,, < 23

to the “precondition” of (a). To allow the GET subroutine
to return a special value EMPTY when the queue is empty,
one just adds the following allowed transition.

(¢} in(GET),;q A (getval,;q = NULL) A (queue,q empty)
— getval ,, = EMPTY

Our allowed changes property states that queue changes
atomically when an element is added to. or removed from
the queue by the PUT and GET operations. It looks just
like a constructive specification which says that adding or
removing a queue is a single atomic action. If this is so,
how can the property be valid for a Pascal implementation
in which the PUT subroutine requires 42 program steps to
add an element to the queue?

Although the syntax of the allowed changes statement
makes it look like a constructive specification, it is actually
a temporal logic formula that can be expressed using only
the temporal operator <. Writing it as such a formula
is not easy (the genmeral method is given in [11]), but we
never have to; we just reason directly about the allowed
changes statement. Being a temporal logic formula, it
cannot distinguish between the transition s;_, ld 8; and
the sequence of transitions

1 2 3 41

a; as o a;
1 2 3 V 42 [
sl De?, gl = . g Wy

when the state functions that appear in it—namely, queue,
putarg, getval, in(PUT) and in(GET)— have the same value
for each state s_, as they do for s;_;.

Although the allowed changes property asserts that the
state function gueue must change atomically, it does not
say anything about how many steps it takes the PUT sub-
routine to perform the operation. Remember that queue is
not a program variable; it is a state function whose value
is a function of the values of program variables, program
counters, etc. Each of the PUT subroutine’s 42 program
steps may change variable and program counter values.
However, the state functions queue and putarg must be
defined in such a way that they are changed by only one of
those steps.

To prove the correctness of an implementation, .one must
define the state functions queue, putarg and getval so they
change atomically even if the program moves data around
in small pieces. This may seem like magic, but it really isn't
hard. You can see how it is done in [11], where these state
functions are defined for an implementation in which the
data are moved one bit at a time. The idea does not seem

so strange if we remember that all assertional methods for
proving safety properties involve finding an invariant—a
boolean state function whose value does not change during
program execution. Instead of finding state functions that
do mot change at all, verifying the specification requires
finding state functions that change only the way the al-
lowed changes statement permits them to. In principle,
these state functions can always be defined—in fact, there
are usually many different ways of doing so. ln practice,
the appropriate definitions are just as hard to find as the
invariants for proving safety properties. If the program is
complex, or if its correctness is based upon subtle interac-
tions among the processes, proving its correctness will not
be easy. No method wil] make it easy to prove the correct-
ness of a complex concurrent program.

1 have indicated how this method of specifying safety prop-
erties fulfills the first function of a specification: allowing
one to prove the correctness of an implementation. How
does it achieve the second function: allowing one to prove
safety properties of programs that call the PUT and GET
subroutines? Proving safety properties requires finding in-
variants. The invariants for programs that use PUT and
GET will be functions not only of the program’s variables
and program counter values, but of the state functions
queue, putarg and getval as well. The allowed changes
statement in the queue module’s specification, which con-
strains how these state functions can change, will be used
in the proof of invariance.

3.5. Liveness Properties

Safety properties state what the program may or may not
do, not what it must do. The allowed changes statement
specifies how state functions are allowed to change; it does
not say that they must change. Liveness properties assert
that the program must do something. Temporal logic was
applied to programs especially for reasoning about liveness
properties, so it is not surprising that it excels at specifying
these properties.

The liveness property we require of the GET subroutine is
that if the queue is nonempty, then GET will eventually
exit. Letting after(GET) be the state function that is true
when the GET subroutine is at its exit point, this require-
ment is stated simply as

in(GET) A (queue not empty) D < after GET .

(Remember that ¢ A means that A eventually becomes
true.) The obvious liveness property for the PUT sub-
routine is that it must terminate, stated simply as

in(PUT) D © after PUT .

However, this specifies that there is always room in the
queue for another element, so the queue must have an un-
bounded capacity. A more realistic specification would
state that the queue must have room for at least 17 ele-
ments, so PUT will exit if it finds fewer than 17 elements
on the queue. This is stated formally as

in(PUT) A (length of queue < 17) D < after PUT .



664 L. Lamport

How one proves that an implementation satisfies these live-
ness properties is described in (18] and will not be discussed
here. The same techniques allow one to use the liveness
properties of the PUT and GET subroutines to deduce live-
ness properties of programs that call them.

3.6. Other Temporal Logic Specification Methods

There has been considerable interest in using temporal logic
to specify concurrent programs, and several methods have
been proposed. Since these methods are all based upon
temporal logic, they are in some sense formally equivalent.
However, they are quite different in practice.

One method, described in [6] and (7], involves making tem-
poral logic assertions about histories. Instead of using a
state function queue, it uses as state functions the sequence
of values with which PUT has been called and the sequence
of values returned by GET. This approach is appealing for
two reasons. First, it produces some very simple specifi-
cations. For example, when this method is used to speci-
fy a queue, the property that corresponds to our allowed
changes statement is that the sequence of values returned
by GET is a subsequence of the sequence of values with
which PUT has been called. Second, talking about the se-
quence of inputs and outputs seems like a natural way to
describe a subroutine.

However, these sequences of values are really behaviors dis-
guised as state functions. I have already indicated that it
is easy to make errors when reasoning informally in terms
of behaviors, so I am suspicious of formal methods based
upon them. Moreover, the simplicity of the specifications is
deceptive. While specifying a FIFO queue is simple, a spec-
ification of a LIFO queue in terms of history sequences is no
simpler than the one described above. Methods based upon
history sequences will work well for specifying FIFO queue-
ing disciplines, but will not work so well with more compli-
cated interactions. These methods may be appropriate in
certain areas, such as communication protocols.

Another approach to temporal logic specification has been
advocated by Schwartz and Melliar-Smith [21]. Their ap-
proach, which might be called a “more temporal” one, differs
from the method I have advocated by replacing many of
the state functions with temporal assertions. A more tem-
poral specification of a queue might use the state function
queue, but not putarg and getval. Instead of asserting that
queue can change by adding to it the value of putarg, such
a specification asserts that the value with which PUT was
most recently called can be added to queue. The state func-
tion putarg is replaced by the temporal construction “with
which PUT was most recently called”.

While the state function queue seems natural, the state
functions putarg and getval seem rather contrived. Replac-
ing them with temporal assertions is quite appealing. Un-
fortunately, the resulting temporal logic specification seems
difficult to understand. I introduced the state functions
putarg and getval to eliminate the complex temporal logic
formulas that arise when they are not used. More recently,
Schwartz, Melliar-Smith and Vogt have developed a new

way of writing temporal logic specifications, called inter-
val logic, that seems to yield more understandable speci-
fications [22]. 1 have also been working on a method of
eliminating explicit mention of state functions like putarg
and getval by the use of temporal expressions, but, in my
approach, these temporal expressions turn out to be state
functions in disguise.

4. HIERARCHY

4.1. The Hierarchy of Specifications

People have finite capacities; they can keep only so much
in their minds at once. For a system to be understandable,
it should have a high level specification simple enough to
understand in its entirety. However, the thousands of lines
of code in its implementation cannot be comprehended all
at once. Therefore, the system’s description must be struc-
tured so it can be read in small pieces. This is done with a
hierarchy of specifications. At each level of the hierarchy,
the system is described as a number of interacting modules,
where a module is a collection of related procedures.

As an example, consider a system for sending messages from
computer S to computer R. A message is sent by calling
a PUT subroutine in computer S, and it is received by
calling a GET subroutine in computer R. At the highest
level, the system is described as a queue—sending is viewed
as putting a message on the queue, and receiving is viewed
as taking one off the queue. The entire system is regarded
as a single module at this level.

At the next lower level of the hierarchy, which I will call
the protocol level, the message-passing system is described
in terms of three modules:

e A transmission module that performs the actual
transfer of messages from computer S to computer
R. Its implementation consists of code in both
computers plus the actual transmission line.

e A sender module in computer S that accepts calls
to PUT and calls the transmission module to send
the messages to computer R.

o A receiver module in computer R that accepts calls
to GET and in turn calls the transmission module
to receive the messages coming from S.

At the level below the protocol level, each of these three
modules is described as a set of interacting modules. For
example, the sender module might consist of two concur-
rently active modules: one that handles calls to GET and
puts messages on an internal queue, and another that takes
messages from this queue and passes them to the trans-
mission module. This process of hierarchical refinement
continues down to a level whose modules are implemented
directly in Pascal.

The high-level specification describes the message-passing
system in terms of state functions like gqueue and putarg.
The three modules of the protocol level are specified in
terms of other state functions, perhaps including the fol-
lowing:
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squeue: a queue of messages that have been given to the
sender module by calls to PUT, but have not
yet been sent to the receiver.

rqueue: a queue of messages received by the receiver
module, but not yet fetched by calls to GET.

mag:  the message currently in transit, or NULL if
there is none.

‘What does it mean for the protocol-level specification to be
a refinement of the high-level specification? Recall that the
high-level specification has the form

there exist state functions queue, putarg, ... such
t,hatAl, ...,Am y

where the A; are temporal logic formulas. The protocol-
level specification likewise has the form

there exist state functions squeue, rqueve, mag, ...
such that B,, ..., B,,

where the B; are also temporal logic formulas. For the
protocol-level specification to be a correct refinement of
the high-level specification, the existence of state functions
squeue, rquete, msg, ... satisfying properties By, ..., B,
must imply the existence of state functions queuve, putarg,

satisfying properties A,, ..., A,,. How do we prove
that this is the case?

To prove the existence of gueue, ..., we must define them
in terms of squeue, rqueue, mag, ... . For example, we

might define gueue to be the concatenation of

- rqueue
- mag if it is not NULL
~ squeue.
When we substitute for gueue, putarg, ... their definitions
in terms of squeue, rqueue, mag, ... , the assertions A,

of the high-level specification become assertions A} about
the state functions of the protocol-level specification. The
protocol-level specification is a correct refinement of the
high-level specification if these assertions Aj are true—
more precisely, if they follow from the truth of properties
By, ..., B,. An example of how this is done can be found
in [11], where the protocol-level specification describes the
alternating-bit protocol.

In summary, to prove that a lower level specification

B: there exist state functions g,, ..., g, such that
B,...,B,

is a correct refinement of a higher level specification

A: there exist state functions f), ..., f, such that
Aly ety Am ’

we must find expressions Fi(g,, ..., g,) such that each for-
mula A}, obtained from A by performing the substitutions

fl' - Fl{gly'--y gl)

follows logically from the axioms By, ..., B,.

Now consider a still lower-level specification

C': there exist state functions k, ..., h; such that
Ci,...,Cp

We prove it to be a correct refinement of specification B by
finding substitutions

g; +— Gj(hl, ...,hp)

which yield formulas Bj that can be proved from C,, ..., C,.
It follows that the formulas A} obtained from the A, by the
substitutions

fl' - FI'(Gl(hly ey h!)y ""Gl(hly vy h!))

can be proved from Bj, ..., B, which in turn can be proved
from C,, ..., Cp,. Hence, if specification B is a correct
refinement of specification A and specification C is a correct
refinement of specification B, then specification C is, as ex-
pected, also a correct refinement of specification A. This
means that if each refinement is correct, then proving that
the program correctly implements the lowest level specifica-
tion shows that it correctly implements every specification
in the hierarchy:

The definition of what it means for a hierarchical refine-
ment to be correct makes sense because both the higher-
and lower-level specifications are assertions about the same
Pascal model. The mapping between levels of the hierar-
chy is a mapping between state functions; higher-level state
functions are defined in terms of lower-level ones. Refining
a specification means giving a more detailed description
of the program state—a simple, well-understood concept.
This is in contrast to the behavioral approach, in which
refinement requires that actions be decomposed into se-
quences of simpler actions—a much more complicated con-
cept.

4.2. The Hierarchy of Programming Languages

I have interpreted the temporal logic formulas in a speci-
fication as assertions about a Pascal implementation, and
have indicated how one can prove that a Pascal program
correctly implements the specification. However, computers
don’t execute Pascal programs; they execute machine lan-
guage programs. It would be nice to prove not only that
the Pascal program correctly implements the specification,
but that a machine language program correctly implements
the Pascal program.

The Pascal program was described by a model consisting of
sequences of atomic actions—i.e., a behavioral mode]. In
it, the execution of an atomic statement such as

(z:=z+1)

is a single atomic action. However, in a machine Ianguage
version of the program, executing this statement could take
42 program steps (most of them performing the synchroniza-
tion needed to guarantee atomicity). What does it mean
for these 42 machine language steps to implement a single
Pascal action? Do we need behavioral methods to couple
the Pascal view to the machine language view?

Of course, the answer is no. Just as putting an element on
a queue can be an atomic action in the high-level specifica-
tion and be implemented by 42 Pascal operations, so can
the execution of an assignment statement be atomic at the
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Pascal level and be implemented by 42 machine language
instructions. Although we have been thinking of Pascal
executions as our underlying model, we can just as well let
the underlying model consist of execution sequences of a
machine language program. In this model, a state consists
of an assignment of values to all machine registers and
memory locations, while an action is the execution of a
single machine language instruction.

With this underlying model, the Pascal program can be
viewed as a specification of a machine language program.
Just like queue in our high-level specification, the variable
z is a state function in the Pascal program/specification—
a function of the values of machine registers and memory
locations. Even though incrementing z may require several
machine language instructions {for example, z might be
a multiple precision integer that occupies more than one
memory location), the state function z can be defined in
such a way that its value changes atomically.

This sounds good in principle, but how does it really work?
When we write a temporal logic specification, we are writing
temporal logic formulas, or constructs like the allowed
changes statement that can be translated directly into
temporal logic formulas. It is not clear how one translates
a Pascal program into a temporal logic specification of a
machine language program.

A semantics for a programming language is a way of as-
signing a meaning to every legal program in the language.
In a temporal logic semantics, the meaning of the program
is a temporal logic specification, which is a collection of
temporal logic axioms. To give a temporal logic semantics
for Pascal, one must define a method for translating from
Pascal statements to temporal logic axioms. For example,
an atomic assignment statement

l:{z=z+1)
might yield the safety axiom

allowed changes to z while in(!)
(g — (ZTnew = Zaa +1) A after(l),,

and the liveness axiom

in(l) O O after(l) .

Defining how one translates from any arbitrary statement
in a complex programming language into temporal logic
formulas is a difficult task that has not been attempted. It
has been done for some simple constructs in an idealized
language, but this work has not yet appeared.

Machine language versions of individual Pascal programs
are usually produced by a compiler. Instead of verifying
each machine language program individually, one wants
to show that the compiler is correct. A temporal logic
semantics for Pascal defines what it means for the compiler
to be correct—namely, that the machine language program
it produces is always a correct implementation of the Pascal
program it is given. However, there is still a big step from
this to proving the correctness of a real compiler.

Of course, the hierarchy need not stop with the machine
language program. We can just as well choose a register
transfer model in which the atomic actions are the setting
of individual registers inside the computer. The machine
language program can then be viewed as a higher-level
speciﬁca;tion of a register transfer “program”. Proving the
correctiess of the register transfer implementation of a
machine language program involves proving that the com-
puter correctly implements its machine-language descrip-
tion. This is the first step in hardware verification: proving
the correctness of the register-transfer-level design.

One can proceed further into the hierarchy of descriptions
of the computer. Since our model of temporal logic in-
volves discrete actions, it would appear that we must stop
at the level of physical electronics, where a flip-flop assumes
a countinuous range of voltage levels instead of a binary
value. However, the temporal logic operator < is meaning-
ful even when time is continuous; our temporal logic does
not rule out such an underlying model. (This is a further
advantage of eschewing the nezt operator.) The refinement
process can continue until we reach a level where quantum
effects appear. Because a quantum-mechanical state is a su-
perposition of the states that temporal logic formulas talk
about [4], I have no idea how one could use temporal logic
at the quantum level.

Several researchers have investigated the use of temporal
logic for specifying and verifying hardware [3],[13],[16]. An
assertional method is proposed-in (23] that, while not ex-
pressed in temporal logic, is compatible with our method.
It seems clear that the design of VLSI circuits could benefit
greatly from the hierarchical approach made possible by
temporal logic.

5. SOME CONCLUDING REMARKS

I have not yet used the word “distributed”. How one specifies
and reasons about a system is independent of whether or
not it is distributed. Although they may require different
implementation techniques and different programming lan-
guages, distributed and nondistributed systems can be de-
scribed in the same logical framework. It is shown in [12]
that no special methods are needed to reason about dis-
tributed systems. You have just seen that one high-level
specification describes both a distributed message-passing
system and a shared memory queue; only their implemen-
tations differ.

One important aspect of specification was ignored in the
queuc example. The actions of PUT and GET were specified
in terms of certain operations on the data structures—
for example, the concatenation operation *. The question
of how these operations are specified was not considered.
A complete specification. method must permit the precise
definition of arbitrary data structures and the operations
on them. Fortunately, a large body of research has been
devoted to this topic—it.e., research on “abstract data types”
and “algebraic specification” [5]. The goal of this work has
been to specify programs, which is possible in the sequen-
tial case where programs can be described by the relation
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between their input and output, so they can be specified
purely in terms of operations on data structures. Concur-
rent programs cannot be specified in this way, which is why
temporal logic was introduced. However, these algebraic
methods can specily operations on the values assumed by
state functions, while temporal logic specifics how the state
functions change.

Concurrent systems are inherently complex and are often
plagucd by timing-dependent synchronization errors that
are impossible to find by conventional testing methods.
There is reason to suspect that over 90 percent of the
“crashes” in some systcms are due to such synchroniza-
tion errors. Rigorous, formal reasoning is the best way to
eliminate them. Computers are much better than people
at formal reasoning, so a formal correctness proof should
be checked by a computer. The temporal logic reasoning 1
have described can be formalized and used as the basis for
a mechanical verification system.

Mechanical verification is now feasible for small systems
[14], but it is expensive. Further development of verification
systems is needed before they can be applicd to large con-
current programs. Fortunately, temporal logic is useful
without mechanical verification. Writing a formal specifi-
cation can be helpful even with no attempt at verification
because it forces one to understand preciscly what the sys-
tem is supposed to do. Informal reasoning—the kind that
mathematicians have been using for centuries——can catch

many Crrors.
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