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Abstract

We describe a unified framework for generating a single high-quality still image (“snapshot”) from a short video clip.
Our system allows the user to specify the desired operations for creating the output image, such as super-resolution, noise
and blur reduction, and selection of best focus. It also provides a visual summary of activity in the video by incorporating
saliency-based objectives in the snapshot formation process. We show examples on a number of different video clips to
illustrate the utility and flexibility of our system.
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Video Snapshots: Creating High-Quality
Images from Video Clips

1 INTRODUCTION

O FTEN the most important photographic moments
are unexpected and difficult to predict—the proud

grandfather wanting to capture his grandson’s first home
run or a delighted mother trying to catch that perfect
smile from her daughter. The typical capture scenario is
for the photographer to stay ready, finger on the trigger,
trying to time the shutter release perfectly. Unfortunately,
these important moments are often missed, leaving a
photographer frustrated with a photograph taken just
a bit too early or a touch too late. In other cases, there is
no one right instant; the moment can only be captured
in a still image by combining multiple instances in time.

In these situations, a good alternative is is to take a
video to capture the whole action. This is an increasingly
available option as practically all cameras and phones
today have a video mode. The video provides a tempo-
rally dense sampling of the action that ensures not only
that the right moment is never missed, but that it can be
revisited later on.

Unfortunately, using a video camera in lieu of a still
camera comes at a cost. Even high-end video cameras
today have a much lower resolution and higher noise
levels than still cameras. And since the best camera is the
one that you have with you, it is increasingly likely that
these short videos are shot on cellphones, smartphones,
or iPods with low-quality cameras. Moreover, video clips
on these portable devices are compressed aggressively.
As a result, a single video frame has a much lower
quality than a corresponding photograph shot with a still
camera, making it not very satisfying to use directly.

In this work, we consider the problem of creating a
single high-quality still image—a snapshot—from a video
clip. The snapshots we produce have higher resolution,
lower noise, and less blur than the original video frames.
Our system models scene motion and saliency, and can
produce either a snapshot of a single moment in time
where scene motion is suppressed (Fig. 1c), or a snapshot
that summarizes the motion of salient objects and actions
(Fig. 1d).

We assume the input to our system is a short video
clip and a user-specified reference frame. We request a
user-specified reference frame because picking the most
important moment in a video is a subjective activity that
depends on the goals, intentions, and preferences of the
user. Our algorithm first aligns neighboring frames in the
video to the reference frame, and then combines these
frames using a Bayesian multi-image enhancement for-
mulation to perform super-resolution, denoising, sharp-

ening, and/or motion summarization.
Previous work either uses all of the aligned frames

equally to generate a restored image, or selects a single
frame for each pixel to create a composition (such as
digital photomontage [1]). In contrast, our algorithm
combines each image and pixel contribution differently
using a set of importance-based weights. Our primary
contribution is a novel importance-based framework that
bridges the gap between traditional multi-image super-
resolution and multi-image compositing. It can create
images where stationary, non-salient parts of a scene
are enhanced by combining data from multiple frames,
while the salient, moving objects are enhanced using
support from a single frame. Furthermore, by computing
per-pixel, per-frame weights, we incorporate aspects of
lucky imaging, where poor-quality frames in the video are
not weighted as heavily when computing the resulting
snapshot [2].

2 RELATED WORK

Image enhancement techniques such as super-resolution
and denoising have a long history in image processing
and computer vision. Also, recent work on image fusion
has looked at the problem of using user-defined prefer-
ences to fuse a collection of images into a single pho-
tomontage. Our work is related to both these problems,
and in this section we briefly review these areas.

2.1 Image enhancement

Since the early work of Tsai and Huang [3], image
super-resolution has been studied extensively. Park et
al. [4] present a comprehensive survey of a number
of methods in super-resolution. Super-resolution is in-
herently an ill-posed problem, and early work focused
on using multiple low-resolution frames with aliasing
to create a high-resolution image. The image formation
process is modeled as a warping and subsampling of the
high-resolution image, and these techniques explicitly
invert this process to solve for a higher-resolution image
that is consistent with the warped and blurred low-
resolution observations [5]. Often, the parameters of the
warping and subsampling are assumed to be known; this
requirement can be removed by marginalizing over these
parameters in a Bayesian framework [6], [7]. However,
these techniques depend on the aliasing in the low-
resolution frames, and because cameras often band-limit
the high-frequencies to minimize aliasing, there is a
theoretical limit [8], [9] on the amount of resolution
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(a) Example video frames (b) Bicubic upsampling (c) Video snapshot with (d) Video snapshot with
motion suppression motion summarization

Fig. 1. Comparisons of frame enhancement. (a) Four frames from a short clip showing a man jumping from a cliff.
Each of these frames has low resolution, high noise and compression, and captures the man at only one time instant.
(b) Bicubic upsampling one particular frame of interest. Note the high frequency texture on the rocks on the left and
the trees on the right are lost, and there are blocking artifacts in the water. Our framework leverages the multiple
frames in the video to produce a super-resolved, denoised snapshot. We can do this while suppressing the motion of
the jumping man (c) to freeze the motion in time, or while summarizing the motion (d) to capture the activity in a single
image. Note that in both these results the rocks and trees are sharper, and the blocking artifacts in the water have
been removed.

enhancement (approximately an upsampling factor of 2)
that these methods can provide.

More recent work has generalized super-resolution to
scenes with arbitrary motion by using non-local means
methods [10] or by using high-quality optical flow meth-
ods to estimate per-pixel motion [11]. Parallel to the
work on multi-image super-resolution, researchers have
also looked at the problem of super-resolving a single
image. This problem is less constrained than multi-image
super-resolution, and this is often dealt with by making
use of dictionaries of images patches [12], [13], or sparse
priors [14]. Another way to constrain this problem is
to use the fact that image patches often recur (possibly
at different scales and orientations), and recent work
has used this to spatially super-resolve images [15], and
spatio-temporally upsample videos [16].

Our work leverages the information in all the frames
of the video clip to create a super-resolved video snap-
shot. Similar to classic multi-frame super-resolution [5],
we estimate the snapshot by modeling the warping and
subsampling, and explicitly inverting them. However,
unlike most work on super-resolution where all the
pixels in the video clip are treated in the same way, we
introduce the notion of importance-based weights that
encode the influence each pixel has on the final snapshot.
This allows us to perform a number of other operations

in the multi-image super-resolution framework.

Like super-resolution, image denoising is a well stud-
ied problem in image processing, and we refer the
reader to Chatterjee and Milanfar [17] for a survey of
recent work. Early work in image denoising made use
of the sparsity of coefficients when transformed into the
wavelet domain [18], [19]; here large wavelet coefficients
were assumed to correspond to image structure and
were retained, while small coefficients were removed.
Edge-preserving filters [20], [21] have also been used to
smooth noise out while retaining image structure. Priors
based on natural image statistics have been incorporated
in image denoising [22]. More recently, researchers have
looked at making use of image sparsity in the spatial
domain for image denoising. This has led to a class of
algorithms where an image is modeled as consisting
of a small set of patches. The K-SVD algorithm [23]
learns an over-complete dictionary for image patches
that can then be used for denoising [24]. In non-local
means methods [25], patches across the image are aggre-
gated, using weights based on their similarity, to smooth
noise out. While all these techniques were proposed
for single images, they have been used subsequently
for video clips. Many video denoising techniques use
motion estimation to align spatial neighborhoods. Once
aligned, these frames can be merged using weights
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based on spatio-temporal bilateral filter weights [26] or
denoised using a temporal extension of non-local means
techniques [27].

Like other video denoising techniques, we combine
multiple frames to denoise video clips and create a video
snapshot. However, we use a combination of weights
based on sharpness, saliency, motion accuracy, etc. that
allows us to incorporate a number of other effects into
the denoised snapshot.

2.2 Image fusion

Agarwala et al. [1] propose a system that combines
multiple images to create a single photomontage. In their
system, users define objectives – locally by using strokes,
or globally by specifying attributes to be used – that are
used to decide which image each pixel in the photomon-
tage is copied from. Similarly, “Salient Stills” [28] create
a single image by fusing multiple images using different
global criteria. While our goal is similar to this class
of techniques, our work differs from them in its ability
to automatically combine image-enhancement as well as
photomontage-style image fusion in the same unifying
framework.

3 IMPORTANCE-BASED IMAGE ENHANCE-
MENT

Given multiple video frames and one user-selected ref-
erence frame, our goal is to generate a clean, enhanced
version of the reference frame. We adopt an image for-
mation model that maps the restored image to the origi-
nal frames that are deemed “degraded”. This image for-
mation model is popular in multi-image restoration tech-
niques such as super-resolution (e.g., [5]). The restoration
process uses multiple degraded observations to invert
this image formation model and estimate the high-
quality input. Our framework introduces importance-
based weights into this inversion process. While our
framework can be easily applied to any linear image
formation model, we will discuss it here in the context
of multi-image super-resolution.

Given a set of N video frames Lk, k = 1, 2, · · ·N of
resolution h × w, multi-image super-resolution seeks to
combine the frames to obtain a single high-resolution
sh × sw image H . The standard super-resolution prob-
lem [29] assumes a generative image formation model
given by:

Lk = Ds(P (TkH)) + η, (1)

where T encodes the camera motion, P denotes the
camera’s anti-aliasing filter, Ds is a decimation by factor
s, and η is the observation noise.
Ds, P , and T are all linear operators and can be

combined into a single operation Mk(·) = Ds(P (Tk(·))).
Under the assumption of zero-mean Gaussian noise,
i.e., η ∼ N(0, σ2

η), this reduces to solving for H by

k=1k=0 k=3 k=4

B

A

k=2
output image

A

B

input video frames

Fig. 2. Manipulating the weights in Eqn. 4 allows us to
handle multi-image enhancement operations while pre-
serving salient objects. The weights for blue patches A
in all the frames are equal (i.e., W 0 = · · · = W 4),
and the output patch A is a linear combination of all
the input patches Ak as in Eqn. 2. The weights for the
green patches B are non-zero only in frame 0 (i.e.,
W 0 = 1,W 1 = · · · = W 4 = 0), and the output patch B
is copied as is from it.

minimizing the following energy function:

Ed =
N∑
k=1

||(Lk −MkH)||2/σ2
η. (2)

While multi-image super-resolution is better con-
ditioned than single-image super-resolution, errors in
alignment, saturation, noise, etc. can make solving Eqn. 2
ill-posed. This is often handled by regularizing the so-
lutions with a prior. By using a sparse prior on the
distribution of image gradients that is based on natural
image statistics [30], the total energy to minimize has the
form:

Et =
N∑
k=1

||Lk −MkH||2/σ2
η + λ(∇H)0.8. (3)

Eqn. 3 represents the standard multi-image super-
resolution problem. The high-resolution image H can
be solved for using iterative re-weighted least squares
(IRLS) [31].

In this formulation, every output pixel H(xh, yh) is
a linear combination of all the aligned input pixels
Lk(xl, yl), k = {1, 2, · · ·N}. In many scenarios this is
ideal; for example, the noise in the low-resolution frames
is most suppressed when all frames are combined. How-
ever, in some cases, some frames (or some regions of
frames) are inherently more important than others (e.g.,
a smiling face or a moving object), and it is usually
desirable to preserve them in the final result.

This idea is the basis of image fusion algorithms such
as digital photomontage [1], where every output pixel
H(xh, yh) is set to exactly one of the corresponding input
pixels Lk(xl, yl). The choice of which pixel is picked is
decided by user-specified objectives. In contrast to multi-
image enhancement, this approach preserves important
regions, but at the cost of retaining the resolution and
noise of the input frames.

Our goal is to combine aspects of these two ap-
proaches – multi-image super-resolution and image fu-
sion – in a single framework that combines multiple
low-importance pixels while preserving important pixels
as is. To bridge this gap we introduce the notion of
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importance-based weights into the restoration equation:

Et =
N∑
k=1

||Wk {Lk −MkH} ||2/σ2
η + λ(∇H)0.8. (4)

Wk(x, y) encodes the importance of each (low-resolution)
input pixel Lk(xl, yl), and decides how they are com-
bined to produce the (high-resolution) output pixels
H(xh, yh) that they are aligned with. The incorporation
of these weights allows us to generalize Eqn. 3 in many
different ways. For instance, by using equal weights,
i.e., Wk(xl, yl) = 1∀k, Eqn. 4 reduces to the original
multi-image super-resolution problem of Eqn. 3. On
the other hand, using sparse weights, i.e., Wk(xl, yl) ∈
{1, 0},

∑
kWk(xl, yl) = 1, Eqn. 4 reduces to the digital

photomontage framework. More importantly, since the
weights are defined per-pixel, we can combine both
of these scenarios in the same image, as illustrated in
Fig. 2. By setting the weights appropriately, some parts
of the output image can be enhanced by combining
multiple frames, while the others can be preserved from
an individual frame.

While the importance-based enhancement of videos
has been discussed in terms of super-resolution in Eqn. 4,
it can be easily generalized beyond this operation. Many
imaging operations, including filtering, denoising, de-
blurring, stitching, and compositing can be expressed as
a linear processing of the input video pixels, and for the
appropriate choice of operator Mk, have the same form
as Eqn. 4.

4 CREATING VIDEO SNAPSHOTS

Based on these ideas we now discuss how to create
snapshots from a video clip. We assume that the cam-
era motion in the video is well-approximated by an
affine tranform. Given an input video clip and the user-
specified reference frame, we detect interest points [32]
in the video frames, and estimate an affine motion model
using RANSAC [33]. We assign the weights for each
frame based on three different spatial features – motion
confidence, local sharpness, and temporal saliency –
and time. Finally, we combine the different importance
weights, and use them to solve Eqn. 4 for the output
snapshot.

4.1 Motion confidence

Motion estimation is a challenging problem, and even
state-of-the-art algorithms make errors while handling
general scenes with arbitrary camera motion. To ensure
that these errors do not lead to artifacts in the snapshots,
we use weights based on the re-projection error of
the estimated motion. To make this motion confidence
measure robust to noise and compression artifacts, we
first blur the frames using a low-pass Gaussian filter with
σ = 1.0 to create the smoothed frames L′ref and L′k. We
then warp the filtered reference frame L′ref to the kth

frame using the estimated motion T−1k and assign the
motion confidence as:

Wm
k = N(T−1k (L′ref )− L′k; 0, σ2

m), (5)

where σm = 0.01. Filtering the images ensures that the
differences between pixels of the blurred images cor-
respond to the spatially-weighted differences between
neighborhoods of pixels in the original images.

4.2 Local sharpness
Motion blur (due to camera or scene motion) and defo-
cus blur (due to an out-of-focus camera) often degrade
the quality of a video. While creating a snapshot, we
avoid pixels that are blurred by using the local sharpness
measured at every pixel as weights. Our local sharpness
measure estimates the high-frequency content in the
neighborhood of a pixel, and is computed as a difference
of Gaussians of each input frame:

W ls
k = |Lk −Gσ ⊗ Lk|, (6)

where Gσ is Gaussian filter with standard deviation 3.

4.3 Temporal saliency
To preserve object motion in the video, we use a tem-
poral saliency measure that detects and preserves salient
regions in the scene. Many measures have been proposed
for both spatial [34] and spatio-temporal saliency [35].
We use a simpler variation of the “flicker conspicuity”
measure used by Itti and Baldi [35]. Our method esti-
mates temporal saliency as the deviation of the video
frames from an estimated background model. We first
align all the video frames and median filter them to re-
move moving objects and create a background model for
the video. We assign saliency weights to the input pixels
based on how much they deviate from this background
model. To ensure that this measure detects moving ob-
jects while staying robust to noise, compression artifacts,
and small frame misalignments, we first blur the median
image and the video frames using a low-pass Gaussian
filter (with standard deviation set to 2.0) to create the
smoothed frames L′k and L′median. The saliency weights
are then set as:

W sal
k = 1−N(T−1k (L′median)− L′k; 0, σ2

sal), (7)

where σsal = 0.03. Note that because we use deviations
from the median image to detect salient objects, all
stationary (and even very slow-moving objects) will not
register as being salient, and will be retained as part of
the background in the final snapshot.

While saliency can be used to capture moving peo-
ple and objects, and summarize actions in snapshots,
sometimes a user might want to create snapshots where
the moving parts have been removed, i.e., a “clean-plate”
image. For example, while filming a building, the pedes-
trians photographed walking back and forth in front of
it are often undesirable elements that the photographer



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

(a) Example video frames

(b) rsaliency = 0 (c) rsaliency = 1 (d) rsaliency = 6

Fig. 3. Exponentiating the feature weights makes them sparse, resulting in some pixels in the output snapshot being
reconstructed from very few frames. This is illustrated on this video (35 frames, 960× 540 resolution) of a bicyclist (a).
The saliency measure picks out the moving bicyclist. (b) When the exponent for the saliency measure is 0, the weights
are uniform, all the frames are combined, and the bicyclist is blurred out. (d) As the exponent is increased to 6, the
saliency weights become sparse, and the bicyclist is reconstructed from single frames. The non-salient regions of the
image are not affected by this, and continue to be estimated from all the frames. Credit: Vimeo user markusarulius.

might want to remove. To be able to do this in our
framework, we use the notion of anti-saliency which is
defined as:

W isal
k = 1−W sal. (8)

This formulation gives higher weights to stationary parts
of the scene while removing transient objects.

4.4 Time

Artists and scientists often use tools such as shear,
blur, and action lines [36] to create the perception of
movement in static images. We manipulate the saliency
weights estimated from Eqn. 7 using time to create
perceptual cues about the motion of the salient objects
in the snapshot. In particular, we use three different
weighting schemes:

1) Sampling. Saliency weights are retained at peri-
odic frames and set to 0 at all other frames, i.e.,
W samp
k = W sal

k δ(k − ik0). In video clips where the
object motion is very small, this makes sure that
the snapshot is not cluttered.

2) Linear Ramp. Saliency weights are scaled linearly
from the first frame to the last, i.e., W ramp

k = kW sal
k .

Gradually accentuating the salient object over time
creates cues for the direction of motion.

3) Overlaying. When regions identified as salient in
different frames overlap spatially, only the latter
of the regions is retained and all the others are
removed, i.e.,

W over
k (x, y) = 0, if W sal

l (x, y) > β (9)
∀l = {k + 1, · · · , N}

This creates the impression of motion in the di-
rection of time. Alternatively, we can reverse this

to create the impression of motion against time by
setting the weights as:

W rev−over
k (x, y) = 0, if W sal

l (x, y) > β (10)
∀ l = {1, · · · , k − 1}

4.5 Combining feature weights

To combine the weights computed on each feature, we
normalize them to the [0, 1] range, scale and exponentiate
them, and finally sum them:

W ′k =
∑
f

αf (W
f
k )
rf + ε, (11)

where ε is a small number (set to 0.001) that ensures that
every input pixel is given a non-zero weight. By varying
the exponent rf in Eqn. 11, we can smoothly transition
between uniform (rf = 0) and sparse weights (rf →
∞). This allows us to unify multi-image enhancement
and photomontage in a single framework. The effect of
manipulating this exponent is illustrated in Fig. 3. The
salient regions of each frame all have high weights, while
all other regions have uniformly low weights. When
the saliency weights are raised to exponent zero, all
the frames are combined to denoise the video; however,
this blurs the salient regions out. As the exponent is
increased, the difference in the weights of the salient and
non-salient regions is accentuated until they are copied
directly from the input video into the output snapshot.
Meanwhile, regions of the video that are never salient
and have uniformly low weights (ε in Eqn. 11) continue
to be reconstructed by combining multiple frames. In
practice, we found that rf = 6 worked well for our
examples.
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Enhancements / Super- Noise Sharpening Motion Salient Temporal
Videos resolution reduction suppression object summary effects

jump (Fig. 1) X X X X X
ditchjump (Fig. 3) X X X

dunks (Fig. 4) X X X X X
mural (Fig. 5) X X X
focus (Fig. 6) X X X

calendar (Fig. 7) X X
foliage (Fig. 7) X X X

basketball (Fig. 8) X X X X X
dive (Fig. 9) X X X X X

bounce (Fig. 11) X X X
walk (Fig. 12) X X X X X

TABLE 1
A summary of the enhancements we apply to our input videos.

4.6 Normalizing weights

To ensure that the error at each output snapshot pixel is
weighted equally in the total energy, we normalize the
weights. This is done by first warping the weights by
the motion estimated on the video frames, normalizing
them, and then unwarping them:

Wk = (Tk)
−1

{
Tk(W

′
k)/

N∑
k=1

Tk(W
′
k)

}
. (12)

4.7 Image Prior

In traditional image enhancement, every pixel in the out-
put image is a linear combination of approximately the
same number of input image pixels. As a result, in most
cases, the prior used in Eqn. 3 is spatially constant. How-
ever, in our case, the application of the spatially-varying
weights changes the support of each output pixel. To
take this into account, we use a spatially-varying image
prior. We identify the number of input pixels that are
aligned with, and contribute to the reconstruction of each
output snapshot pixel; in practice, we test for this by
thresholding the weights Wk by 0.1/K, i.e., 10% of the
value that a uniform weight would take. We scale the
prior term by the inverse of the number of input pixels
that contribute to each snapshot pixel. Incorporating this
spatially varying prior into our framework leads to a
graceful transition between very little regularization at
pixels with large data support, and more regularization
at pixels with small or no data support.

5 RESULTS

We now present the results of enhancing a number of
short video clips using our framework. These clips and
our results are also available in full-resolution as com-
panion material to this submission. All these videos clips
were either captured with low-quality video cameras
or downloaded from the video sharing website Vimeo
(http://www.vimeo.com). They range in length from 11
frames to 31 frames and have a combination of low-
resolution, high camera noise, and compression artifacts.

The enhancements and effects we apply to each of them
are summarized in Table 1.

We assume that the motion in the video clip is well
modeled by an affine camera model. For each video
clip, we estimate the inter-frame motion by fitting an
affine model to interest points. The motion and the video
frames are then used estimate the importance weights.
With the exception of Figs. 3, 7, and 11, all results are
produced using a super-resolution factor of 2. The anti-
aliasing point spread function (P in Eqn. 1) is set to
a Gaussian filter with σ = 1.2 and the noise level (ση
in Eqn. 4) is automatically estimated from the reference
frame using the method of Liu et al. [37]. Finally, we put
the weights and the estimated motion together to set up
the energy function of Eqn. 4. We solve for the output
video snapshot by minimizing this energy function using
conjugate gradients. We perform 5 iterations of IRLS for
every result and each IRLS iteration uses 10 iterations
of conjugate gradients. The time taken to compute a
snapshot is almost completely dominated by the time
spent in minimizing Eqn. 4; this depends approximately
linearly on the resolution of the output snapshot and the
number of input frames being used. Our unoptimized
C++ solver takes anywhere from 6 minutes on our
smallest example (Fig. 4) to 15 minutes on our largest
example (Fig. 8) on an i7 2.67 GHz PC.

The quality of results from super-resolution closely
depends on the accuracy of the motion estimation. This
is especially true of video with complex camera motion
and moving objects in the scene. By using weights based
on motion confidence we ensure that only pixels where
the motion estimates are reliable are used. Because they
are computed with respect to the reference frame, motion
confidence weights also help in suppressing moving ob-
jects in the video, while moving objects in the reference
frame are preserved in their position. The results of using
motion confidence in our framework are illustrated in
Figs. 1, 4, 8, 9, 10, and 12.

Blur caused by camera shake or the wrong focal
settings is one of the most common problems with
photographs. While the short exposure time of video
clips alleviates the effect of camera motion to an extent,
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(a) Example video frames

(b) Single-image (c) Multi-image (c) Video snapshot (X 2) (d) Video snapshot (X 2)
super-resolution (X 2) [13] super-resolution (X 2) [5] with motion confidence with saliency, sampling,

and overlaying

Fig. 4. (a) In this clip of a basketball player dunking (25 frames, 640 x 480 resolution), the original video suffers from
low resolution and high noise. (b) Upsampling the reference frame using the single-image super-resolution technique
of Yang et al. [13], improves the resolution a little but does not reduce the noise. (c) By combining multiple frames, multi-
frame super-resolution [5] produces a result that has more detail on the wall and low noise, but motion of the player
causes him to disappear from the result. (d) Using the motion confidence as weights preserves the high-resolution,
low-noise background and captures the player. (e) Using saliency weights and temporal-overlaying summarizes the
player’s movement while retaining the high-quality background. Credit: Vimeo user A.S. Saint Pantaléon Basket.

it is not unusual to capture a video sequence and to later
find out that intermittent frames are blurred. Estimating
the blur kernel (which is spatially-varying in most cases)
and deconvolving the image is a very difficult vision
problem. Instead, we use local sharpness weights to au-
tomatically identify and reconstruct the output snapshot
from only the sharpest pixels in the video clip. This
approach also has the advantage that it handles variation
in scene texture gracefully; smooth, low-texture regions
will have uniformly low sharpness values and can be
estimated from many frames, while textured regions and
strong edges are reconstructed from only the sharpest
pixels. Local sharpness weights can be used to create
the sharpest possible snapshot in the case of motion blur
(Fig. 5), as well as an all-in-focus image from a clip with
varying defocus blur (Fig. 6).

Motion is often a critical component of video se-
quences, and the depiction of motion in static images
has a long history in artistic and scientific visualization.
However, most work on image enhancement avoids the
issue of moving objects in a video. By using saliency
weights in our framework, we are able to combine
multiple frames and create a high-resolution, low-noise,
sharp background while retaining the salient moving
objects from individual frames. This results in high-
quality still images that summarize the entire video clip
in a single static snapshot (Figs. 1, 3, 4, 8, 9, 10, 11, 12,
and 13). We can also use saliency in conjunction with

time-based weighting to create different depictions of
motion (Fig. 11). Finally, we can also use anti-saliency
weights to completely remove transient elements of the
video clip and produce high-quality snapshots of just the
background (Fig. 12, and 13).

We have compared the quality of our results against
single-image super-resolution and multi-image super-
resolution. For single-image super-resolution, we com-
pare against the work of Yang et al. [13], that uses a
learned sparse dictionary of image patches to super-
resolve images. As is expected, leveraging multiple
frames almost always produces higher quality results
than using a single image. For multi-image enhance-
ment, we compare against the standard super-resolution
technique of Irani and Peleg [5] that models the image
formation process in a way that is similar to ours,
and can be thought of as the standard approach to
multi-image super-resolution without the use of our
importance-based weights. By weighting the important
pixels in the video appropriately, our framework pro-
duces snapshots with the same or better quality as
standard multi-image super-resolution. We also compare
our technique to a recent state-of-the-art video super-
resolution method proposed by Liu and Sun [11]. This
technique iteratively solves for the underlying motion,
blur kernel and noise level while using a sparse image
prior as well as priors on the motion and kernel. Fig. 7
shows the results of this comparison for two datasets
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(a) Example video frames (b) Multi-image (c) Video snapshot (X 2) with
super-resolution (X 2) [5] sharpness weights

Fig. 5. When photographing a scene with a moving camera, it is often the case that some of the frames, possibly
even the desired frames captured, are motion blurred. (a) This is illustrated on this video clip of a mural captured with
a hand-held video camera (21 frames, 640 x 360 resolution), where the reference frame has the best composition
of the scene, but is motion blurred. (b) Most of the frames in this video clip are blurred and combining all of them to
super-resolve the reference frame [5] results in a blurry image. (c) Using the local sharpness weights in our framework
ensures that pixels from only the sharp frames are propagated to the reference frame, resulting in a sharp snapshot.

from their work. As can be seen from the results, when
our assumption of approximately affine camera motion
is met, our technique produces results that are qualita-
tively similar to those of Liu and Sun. In addition, our
technique gives the user the freedom to go beyond basic
enhancement, and depict interesting events and actions
in the final snapshot.

6 DISCUSSION AND FUTURE WORK

In this paper, we have shown how to generate sharp,
high-quality snapshots from lower-resolution, lower-
quality videos. Our framework aligns images, computes
per-pixel weights based on temporal saliency, alignment,
and local image statistics, and fuses them. Our approach
is flexible and can perform super-resolution, noise reduc-
tion, sharpening, and spatio-temporal summarization by
changing only a few parameters. We believe this is a big
step forward in increasing the ease with which users can
create high-quality still photographs from short video
clips. The importance of this work increases as the
cost and effort of capturing video continues to decrease
thanks to inexpensive, and portable consumer devices.

Our results suggest several areas for future work.
While our approximation of camera motion using an
affine transformation worked well for our video clips,
motion estimation in complex videos is still a challeng-
ing task. As the alignment quality degrades, fewer sam-
ples can be aligned and averaged, reducing our method’s
ability to enhance image quality. We are investigating
hierarchical motion estimation algorithms, e.g., Kang et
al. [38], to address this issue. We are also investigating
extensions of our importance-based weighting schemes
to image enhnacement methods that don’t require ex-
plicit motion estimation [25], [16]. Extremely poor qual-

ity videos pose a challenge to our system because very
high noise levels and compression artifacts corrupt both
the alignment as well as the importance measures.

In addition to the weights discussed in this paper,
there are other weights that would be interesting to
use in our framework, such as resampling / distortion
weights [28], [2]. Using feature detection methods, one
could also automatically find weights that indicate the
presence of faces, smiles, and open / closed eyes. Our
framework is general and allows any type of impor-
tance weights and user-defined combinations thereof
to be used to create compelling video snapshots. Our
importance-based enhancement can also be generalized
to any application that involves a linear processing of
video pixels. In the future we would like to investigate
applications such as image stitching and compositing. It
would also be interesting to perform some of our pro-
cessing in the gradient domain; certain enhancements,
e.g., removing blocking artifacts in compressed video,
could benefit from the seamless edits that are possible
with gradient domain methods.

Lastly, our final snapshots are based on a user-
specified reference-frame. This could be replaced by an
algorithm that automatically selects “good” reference
frames (for e.g., Fiss et al. [39]) based on factors such
as image quality and scene semantics.
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(a) Example video frames (b) Bicubic upsampling (X 4) (c) Liu and Sun [11] (X 4) (c) Video snapshot (X 4)

Fig. 7. Comparing our results with a state-of-the-art video super-resolution technique [11], shows that, when the
camera motion in the input video is approximately affine, our technique is able to produce results that are qualitatively
similar. The top row shows the calendar sequence, where the camera zooms outs and translates. Here both the
techniques produce results where the details are resolved clearly (for e.g., the text “Maree Fine”). The bottom row
shows the foliage sequence, where the camera pans, and there is scene motion in the video. We are able to suppress
this scene motion by using our motion confidence weights, and produce a snapshot that has more detail than the
bicubic-upsampled result.

(a) Example video frames

(b) Single-image (c) Video snapshot (X 2) with (d) Video snapshot (X 2) with
super-resolution (X 2) [13] motion confidence saliency and sampling

Fig. 8. (a) This video clip of a basketball game (31 frames, 640 x 360 resolution) has a lot of camera noise as can be
seen on the walls. (b) Single-image super-resolution (using the method of Yang et al. [13]) can sharpen the reference
frame but is unable to remove the noise and blocking artifacts. (c) Using our framework in combination with motion
confidence weights produces a low-noise 1280 x 720 snapshot where the moving players and the basketball are
preserved in their positions in the reference frame. (d) By using saliency weights in combination with time-sampling
we can retain the high-quality background from (b) while clearly showing which players moved, and how the basketball
arcs. Credit: Vimeo user Charles Skoda.
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(a) Example video frames

(b) Single-image (c) Video snapshot (X 2) with (d) Video snapshot (X 2) with
super-resolution (X 2) [13] motion confidence saliency, time-sampling

and overlaying

Fig. 9. (a) This video clip of a diving girl (28 frames, 640 x 480 resolution) has noise and compression artifacts.
(b) Upsampling the reference frame using the single-image technique of Yang et al. [13] marginally improves the
resolution but can not handle the noise and blocking artifacts. Using our framework, we can combine the original video
frames to upsample and denoise the reference frame. We do this while either (c) suppressing the motion, or while (d)
summarizing the entire dive in the snapshot. Credit: Vimeo user DHS Swim & Dive.

(a) Example video frames

(b) Single-image (c) Video snapshot (X 2) with (d) Video snapshot (X 2) with
super-resolution (X 2) [13] motion confidence saliency and time-sampling

Fig. 10. (a) This juggling video (24 frames, 640 x 480 resolution) has low resolution and a high noise level. (b) Single-
image super-resolution [13] only improves the resolution marginally and can not handle the noise. Our method is able
to improve the resolution markedly (note how the letters on the blackboard are clearer), while also lowering the noise in
the image (the noise near the duster in the bottom right is reduced). We do this while either (c) capturing the moment
in the reference frame, or while (d) depicting the motion of the ball and the hands. Credit: Vimeo user BCCP Video.
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(a) Example video frames

(b) Video snapshot (c) Video snapshot (d) Video snapshot (e) Video snapshot
with saliency and with saliency and with saliency and with saliency and

time-sampling linear time weights time overlaying reverse-time overlaying

Fig. 11. Our framework enables video snapshots with time-based effects. (a) In this clip of a bouncing ball (11 frames,
960×540 resolution), the input frames (shown at half size) can be combined with (b) time-sampling weights to discretely
sample some of the frames, with (c) temporal weights that increase linearly to emphasize the direction of motion, or
with (d,e) weights that overlay each instant of the ball on top of the previous or next instances. While these effects are
applied to the ball, the other (background) pixels in the snapshots are generated by combining all the frames.

(a) Example video frames

(b) Video snapshot (X 2) (c) Video snapshot (X 2) (d) Video snapshot (X 2)
with motion confidence with saliency and sampling with anti-saliency

Fig. 12. (a) In this video clip of a man walking from the left to the right (13 frames, 640 x 360 resolution), (b)
using motion-confidence weights produces a result where the man is preserved as in the original frame, while the
background is super-resolved. (c) Using saliency-based weights captures the man in each position, and summarizes
his motion. (d) Using anti-saliency weights removes the man completely to produce a high-quality image of only the
background.
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(a) Example video frames

(b) Video snapshot (X 2) with (c) Video snapshot (X 2) with (d) Video snapshot (X 2) with
saliency saliency, sampling, and overlaying anti-saliency

Fig. 13. (a) This is video clip of traffic at a busy roundabout (20 frames, 640 x 360 resolution). (b) Using saliency
weights produces a snapshot that captures all the vehicles in the video. However, because of the number of moving
objects in the scene, this result looks crowded. (c) By using saliency with time-based sampling and overlaying, we
can reduce this clutter while capturing the traffic in the clip. (d) We can also create a “clean-plate” snapshot of just the
background by using anti-saliency weights to remove most of the moving objects. Credit: Vimeo user Vietnam720.
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