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a b s t r a c t

Wepresent a new variationalmethod formesh segmentation by fitting quadric surfaces. Each component
of the resulting segmentation is represented by a general quadric surface (including plane as a special
case). A novel energy function is defined to evaluate the quality of the segmentation, which combines
both L2 and L2,1 metrics from a triangle to a quadric surface. The Lloyd iteration is used to minimize the
energy function, which repeatedly interleaves between mesh partition and quadric surface fitting. We
also integrate feature-based and simplification-based techniques in the segmentation framework, which
greatly improve the performance. The advantages of our algorithm are demonstrated by comparing with
the state-of-the-art methods.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Compact and faithful representation of 3D objects is crucial
for various applications in computer graphics, computer vision
and CAD/CAM community. Nowadays freeform surfaces are
popularly represented by triangular meshes, which can easily
be obtained with high accuracy and complexity thanks to the
rapid development of 3D digital data acquisition devices. But
such meshes are too raw to be directly used in the subsequent
process due to the lack of a high-level representation, even with
preprocessing such as denoising, simplification or remeshing.

Mesh segmentation is one of the most effective ways to com-
pute a high-level shape representation. E.g., in reverse engi-
neering, the input scanned data are first segmented into simple
surface patches, and the intersection curves of adjacent patches
are then computed to form the boundary representation (B-Rep)
[1–3]. Other applications, such as texture atlas generation [4,5],
remeshing [6,7] and compression [8] can also benefit from mesh
segmentation.

Most previous shape segmentation approaches are based on
local clustering or boundary detection techniques. However, their
greedy nature tends to make the segmentation unsatisfactory.
Cohen-Steiner et al. [6] have introduced the Variational Shape
Approximation (VSA) framework, which segments the input mesh
surface into planar patches. The quality of the segmentation is
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measured by the sum of the normal derivation of each cluster
from its corresponding planar proxy. Lloyd iteration [9] is used
to minimize the energy function. Wu and Kobblet extend the
VSA framework by introducing spheres and circular cylinders as
basic fitting primitives [10]. Other primitives, such as ellipsoidal
surfaces [11], developable patches [12] are also studied.

Quadric surfaces are preferred for surface approximation
in many applications because they have low algebraic degree
and their shapes are easy to control [13]. In this paper, we
shall present a new algorithm to segment input mesh surfaces
(especially scanned or tessellated industrial CAD models) into
non-overlapping patches, each patch approximated by a general
quadric surface; see Fig. 1 for an example.

This paper is an extension of our previous work [14]. Instead
of using only L2 or L2,1 metrics separately, we introduce a novel
error function that measures both the geometric distance and the
normal derivation between a patch of a mesh surface and a fitting
quadric surface. We will demonstrate the advantages of the new
error function over the previous work which uses only the L2 met-
ric in Section 6. The efficiency of our algorithm is further improved
by using the feature information and themesh simplification tech-
niques. The main contributions of this paper include:
• a variational mesh segmentation framework based on fitting

general quadrics (including planes as a special case);
• a new error function for fitting quadric surface from original

mesh triangles, where both L2 and L2,1 distance are considered;
• a new method for smoothing irregular boundary curves be-

tween adjacent segmented regions using a graph-cut method;
• enhancements of the variational segmentation framework, in-

cluding feature-based and simplification-based segmentation.

http://dx.doi.org/10.1016/j.cad.2012.04.005
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
mailto:yandongming@gmail.com
mailto:wenping@cs.hku.hk
mailto:yangliu@microsoft.com
mailto:zhouwang.yang@gmail.com
http://dx.doi.org/10.1016/j.cad.2012.04.005


D.-M. Yan et al. / Computer-Aided Design 44 (2012) 1072–1082 1073
Fig. 1. Quadric surface segmentation of a crankmodel. (a) Themeshmodel with 100 K faces. (b) Segmentation result with 666 regions. The color of each segmented patch is
randomly generated for visualization purpose. (c) Fitting result, different colors indicate different kind of quadric surfaces in (d). (d) Color index for different kinds of quadric
surfaces. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
1.1. Related work

Mesh segmentation has been studied extensively in the past
years. The aim ofmesh segmentation is to partition the inputmesh
into ‘‘meaningful’’ components. The definition of ‘‘meaningful’’
can totally be different according to different applications. In the
following we shall briefly discuss the existing work related to our
approach.

1.1.1. Mesh segmentation
Traditional mesh segmentation algorithms are based on the

local property of surfaces. Surface elementswith similar properties
are grouped together to form larger patches [15]. This kind of
approaches can be regarded as local clustering based methods, or
greedy approaches. Compared with traditional algorithms, some
recent variational approaches showpowerful approximation ability
and better segmentation quality.
Greedy approaches. Region growing is the most popular method in
the literature for surface segmentation [1,16–18]. A set of seed
points are first selected and for each seed grows a region until all
the surface elements are assigned to a region. Local surface prop-
erties, such as principle curvatures, are always used as criteria for
growing regions with the similar attribute. Region growing based
methods always stop at boundaries with high curvature, e.g., a flat
ellipsoid, which will be over segmented by such approaches.

Hierarchical clustering based methods merge the pair of regions
from bottom to top hierarchically [19–23]. At the beginning, each
face of the mesh is assigned as a single region. In each step, a pair
of adjacent regions with least merging error is merged to form a
new region. The algorithm is repeated until some stopping criteria
is met. This kind of approaches have problems in blending regions
between two smooth surfaces, which may be merged in the early
stage.

Hierarchical decomposition based methods, also known as mesh
splitting, segment mesh surfaces into meaningful components in
a top-down manner. Many region splitting algorithms are based
on the minima rule and part salience theory [24,25]. The feature
curves on mesh surfaces are first detected and used as part of
boundaries of final segmentation. Various meaningful metrics are
defined for different applications [26–30]. This approach, tends to
segment surface at concave regions. Some meaningful parts may
be over segmented by this approach.

Region growing, hierarchical clustering and hierarchical de-
composition are regarded as greedy approaches, because once the
segmentation is done for a triangle element, it will not be changed
in the later process. However,mesh segmentation can be treated as
an energy minimization problem, where an energy function is de-
fined and optimized for the segmentation. Because of its optimiza-
tion nature, thismethod is often referred as variational method. The
planarity and developability of surface regions are usually used as
error metrics to define energy functions [31,6,12,32–35].
Variational approaches. Cohen-Steiner et al. [6] propose a new
shape approximation algorithm by clustering face normal of the
mesh, where consistent energy minimization is applied to drive
down the approximation error. To keep the connectivity of each
region, a distortion minimization flooding algorithm is developed.
This method is efficient but only planar surfaces are used as fitting
primitives, which tends to produce too many planar polygons for
segmentation purpose. This work is extended in several ways by
introducing higher order or special type of surface elements [11,
10,14]. In [11], ellipsoidal surface is used as the only type of
primitive to approximate a given mesh by minimizing a combined
energy function. The segmentation boundaries are smoothed by
a constrained relaxation of the boundary vertices. To reduce the
number of surface elements, Wu and Kobbelt [10] extend [6]’s
work by introducing sphere, circular cylinder and rolling ball patch
as basic primitives. The number of elements is reduced a lot but the
type of basic primitives are still too restrictive to represent both
CAD and free-form objects. Yan et al. [36] apply the variational
segmentation framework for segmenting the laser scanned tree
data into cylindrical components and then reconstruct the branch
models of trees.

1.1.2. Surface fitting
Surface fitting is a key step in many mesh segmentation

algorithms. A detailed survey of surface fitting techniques is out
of the scope of this paper. We shall focus on low-degree algebraic
surface fitting approaches, specifically, quadric surface fitting.

Since there is no closed-form for computing foot point on
quadric surfaces, direct fitting, which minimizes the Euclidean
distance, is a non-linear optimization problem [37,38], which is
too inefficient in practice. Given an implicit surface f (x) = 0,
the most well-known fitting method is to use algebraic distance
f (x) to approximate geometric distance, but this approximation is
too biased even in simple cases [39,40]. Taubin approximates the
Euclidean distance from a point to a quadric surface by a first order
approximation f (x)

|▽f (x)| [41]. By using this first order distance, the
fitting problem can then be solved as a generalized eigenvector
problem by a further approximation. Instead of considering
only the geometric distance, many approaches introduce the
normal deviation in the fitting algorithm [42–45]. Kanai et al.
present a quadric fitting algorithmwhich combines both algebraic
distance and gradient [46]. Instead of fitting only discrete sampled
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point data, they integrate the error function over the triangular
meshes. The proposed fitting algorithm is then used to construct
a hierarchical implicit surface structure. Since only algebraic
distance is used, and the gradient vector is not normalized, the
fitting results behave bad in high curvature region (see Fig. 11). In
this paper, we propose a new error function, which is a hybrid of a
first order approximation of the geometric distance and the normal
difference between the polygon face and the normalized gradient
of the fitting surface. The new error function gives better fitting
results (see Section 6).

1.2. Outline

The remainder of this paper is organized as follows. Section 2
derives the problem formulation of variational shape segmen-
tation. A new error function for quadric surface fitting is in-
troduced in Section 3, and the variational segmentation frame-
work is introduced in Section 4. Section 5 presents two acceler-
ation techniques to improve the efficiency of the segmentation
algorithm. We present experimental results in Section 6 and draw
our conclusion in Section 7.

2. Problem formulation

Let M be a finite set of triangles {tj}mj=1 that constitute a
connected mesh surface. A partition of M is denoted by R =

{Ri}
n
i=1, where

n
i=1 Ri = M and Ri


Rj = ∅ for any i ≠ j.

All the triangles of a subset Ri form a connected component. Each
subsetRi is also called a region, or a cluster, which is fitted by a best
fitting geometric proxy, denoted by Pi = {si, fi(x)}, where si ∈ Ri
is the seed triangle of the proxyPi and fi(x) = 0 is a general quadric
surface, which can also be a plane. The objective function of this
partition, for a fixed n > 0, is defined by

E(R) =

n
i=1

E(Ri, Pi) =

n
i=1


tj∈Ri

E(tj, fi), (1)

where E(tj, fi) is a metric measuring the cost of the triangle tj with
respect to the fitting surface fi(x) = 0. The optimal partition R is
a minimizer of Eq. (1). The metric E(tj, fi) is application dependent
and should be defined so that the optimal partition satisfies the
requirement of that application.

The above objective function Eq. (1) can be minimized by
Lloyd’s algorithm [6]. Given an initial partition, two alternative
steps, i.e., surface fitting and mesh partition, are performed to
minimize the same energy function consistently. In the surface
fitting step, Eq. (1) is minimized by fitting a quadric proxy to
each region Ri. In the partition step, Eq. (1) is minimized again
by reassigning each triangle to its ‘nearest’ proxy to form a new
partition.

3. Metric for quadric surfaces

The implicit equation of a quadric surface f (x) = 0, where
x = [x, y, z]T ∈ R3 is a 3D point, can be written as

f (x) = CT
· F, (2)

where C = [c0, c1, . . . , c9]T is the vector of unknown coefficients
of the quadric surface and F = [1, x, y, z, xy, xz, yz, x2, y2, z2]T .
Both of them are ten dimensional vectors.
3.1. Triangle-quadric error metric

We take both L2 and L2,1 distance between a triangle t
and a quadric surface f (x) into account. The hybrid distance is
defined by

E(t, f ) = Ed(t, f ) + ωEn(t, f ), (3)

where Ed measures the squared Euclidean distance (L2) and En
measures the normal deviation (L2,1) from t to f . It is known that
the exact distance between a point and a quadric surface can
be computed by solving a 6th-degree univariate equation. Since
we want to integrate the square distance over triangles instead
of summing the distances of discrete samplings, it is difficult
to use this exact computation which will be too inefficient. By
balancing both the efficiency and accuracy, we use a first order
approximation [41] instead of the exact distance. The hybrid
distance between a triangle and a quadric surface is approximated
by the following formula respectively:

Ed(t, f ) =


t

f (x)2

|∇f (x)|2
· dσ , (4)

En(t, f ) =


t


∇f (x)
|∇f (x)|

− nt

2

· dσ ,

where nt is the unit normal vector of t .

3.2. Quadric surface fitting

A straight forward way to minimize the energy function
E(Ri, Pi) for each region requires to solve a non-linear least square
optimization problem, which is quite time consuming. In this
paper, we propose an alternative method to solve this problem
efficiently in two steps.

3.2.1. Initial surface fitting
Given a region Ri, we first compute an initial quadric surface

f 0i (x) using the algorithm presented in [14], which only takes the
L2 component into account. The objective function is defined by

E ′(Ri, Pi) =


tj∈Ri

Ed(tj, f 0i )

≈


tj∈Ri


tj
f 0i (x)2dσ

tj∈Ri


tj
|∇f 0i (x)|2dσ

=
CT
0MtC0

CT
0NtC0

,

where CT
0 is the unknown coefficient vector of f 0i , and Mt ,Nt

are coefficient matrices. Hence, the minimization of E ′ is reduced
to computing the eigenvector of Mt − λNt associated with the
minimum eigenvalue [47].

3.2.2. Least-square fitting
The initial fitting step results in a good guess of the unknown

quadric surface. In the second step, we compute the gradient
∇f 0i (ctj) for each triangle tj ∈ Ri at the barycenter ctj of tj. We
use this one point approximation of the gradient for each triangle
by substituting |∇f 0i (ctj)| into Eq. (4). The energy function of each
region Ri is approximated as below:

E(Ri, Pi) ≈


tj∈Ri


tj

f (x)2

|∇f 0i (ctj)|2
· dσ

+ ω

tj∈Ri


tj


∇f (x)

|∇f 0i (ctj)|
− nt

2

· dσ .



D.-M. Yan et al. / Computer-Aided Design 44 (2012) 1072–1082 1075
Fig. 2. Flowchart of the variational segmentation framework.

With this simplification, the optimization of the energy function
for each region Ri is reduced to a linear least square problem,
which is similar to that proposed in [46]. We use Cholesky
decomposition to solve the resulting linear equation system.
Results show that this approximation works well for various
models. The details of the formulation is given in Appendix.

3.3. Error function for plane

We also use the planar surface as a basic fitting primitive
since it is the most commonly used surface type in geometric
modeling and processing applications. Both L2 and L2,1 distance
can be exactly computed for planer surfaces. Given a planar surface
represented by f (x) = nT

· x + d = 0, |n| = 1. The error function
for a plane is then defined by

Ed(t, f ) =
|t|
6

(d21 + d22 + d23 + d1d2 + d2d3 + d3d1)

En(t, f ) = |t| · |n − nt |
2,

where d1, d2, d3 are the orthogonal distances from three vertices
of t to the plane and |t| is the area of t .

4. Variational shape segmentation

In this section, we shall describe the implementation details
of the presented algorithm. Our segmentation algorithm consists
of four main steps: (1) preprocessing; (2) initialization; (3) opti-
mization and (4) postprocessing. The flowchart of our algorithm is
shown in Fig. 2.

4.1. Preprocessing

In this step, the input mesh M is first uniformly scaled into
the unit cube [0, 1]3. Then we pre-compute the matrix entries for
each triangle (see Appendix) which will be used in quadric surface
fitting.

4.2. Initialization

An initial partition is required to start the global optimization.
To initialize,we randomly selectn seed faces {si}ni=1. Then each seed
face si defines an initial planar proxy Pi which is the plane passing
through the seed face. Then the global optimization starts. Users
could also set n = 1 at the beginning and then progressively insert
new components.
4.3. Optimization

Theminimization of Eq. (1) is achievedby the Lloyd iteration [6].
The Lloyd iteration terminates when the convergence of Eq. (1) is
observed or a maximal number of iteration is reached (30 in all
experiments).

4.3.1. Re-grouping
Each time when we have a set of best fitting proxies {Pi}

n
i=1

and their corresponding seed triangles {si}ni=1, wewant to assign all
the triangles to their ‘‘nearest’’ component to drive down the total
error. We use the distortion-minimizing flooding algorithm [6] in
this step.

The aim of distortion-minimizing flooding is to partition the
input mesh into a set of non-overlapping, connected regions
{Ri}

n
i=1. Given a set of seed triangles {si}ni=1 and their corresponding

proxies {Pi}
n
i=1, we first compute the distance between all the

neighboring triangles of each seed triangle si and its corresponding
proxy Pi. All the tested pairs (tj, Pi) are inserted into a global
priority queuewith a priority equal to E(tj, fi) (Eq. (3)). In each step
the triangle–proxy pair (t̃, P̃ )with the smallest distance is popped
out from the queue. If t̃ is already assigned to a region we continue
the procedure without doing anything; otherwise t̃ is assigned to
the region against which it is tested. Then we test all the unlabeled
neighboring triangles of t̃ with the current proxy P̃ and push these
new triangle–proxy pairs into the queue. This process is repeated
until the queue is empty. Finally we shall get a new partition of the
input mesh. The reader is referred to [6] for more details of this
algorithm.

4.3.2. Surface fitting
Each time when we have a new partition R = {Ri}

n
i=1, we fit

a new quadric surface for each region Ri to minimize the total
error again. We first fit a plane to each region Ri, if the fitting
error is smaller than a pre-specified tolerance (1 × e−6 in all our
experiments), we accept the fitting result and set the surface type
of Ri to plane. Otherwise we fit a quadric surface for this region
again. The result with smaller error is accepted. Once the fitting
surface for each region is updated, we update the seed face for each
region by selecting the face with the smallest error to the fitting
surface.

If the termination condition of the Lloyd iteration is not
met, then we return to the regrouping step. Otherwise we
check whether a new component should be added or the whole
optimization algorithm should be terminated.

4.3.3. Region merging and insertion
We also provide operators for region merging and insertion,

as done in [6]. When the Lloyd iteration terminates, we detect
whether there is any redundant region by testing each pair of
adjacent components. A new quadric surface is fitted to each
pair of adjacent components (Ri, Rj), for which the fitting
error is denoted as Ei,j and the fitting surface is fi,j. A pair
of components is tagged as valid if |Ei,j − (Ei + Ej)| < ε.
If the fitting surface is a pair of planes or a hyperboloid of
two sheets but the projected data points are contained in both
sheets, then fi,j is considered as invalid, because it is not an
appropriate representation [14]. If there are more than one
pair of components that are valid, the pair with the smallest
increasing error is chosen to be merged, i.e. min{Ri,Rj}(|Ei,j −

(Ei + Ej)|).
If the target number of the regions is fixed, an insertion

operation follows after each merging operation, which is called
region teleportation [6]. Otherwise new region can be inserted
directly. We check the validity of the fitting surface of each
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Fig. 3. Illustration of the segmentation process. The segmentation is initializedwith 1 proxy (leftmost), newproxies are progressively inserted. From left to right, 1–6 proxies
and final result with 13 proxies (rightmost).
component. A new component Rnew will be inserted in the region
which is an invalid quadric surface. If all the fitting quadrics
are valid, but the total error E(R) is still larger than a pre-
specified threshold, a new component (or region) Rnew is inserted
following the farthest-point criterion, i.e., we find the region Ri

with maximal fitting error maxi(
Ei

|Ri|
), where |Ri| is the total area

of component Ri. Then we find the face which has the largest
error belonging to Ri and set the face as the new seed face snew .
We also provide user interaction tools to insert a new component
by indicating a region. The new component Rnew is then set to
be the plane containing the seed face snew . The Lloyd iteration is
continued after eachmerging or insertion step. Fig. 3 illustrates the
progressive proxy insertion in the optimization process.

4.4. Post-processing

Global optimization terminates when the input mesh is well
approximated by a set of quadric surfaces. Although our proposed
objective function (Eq. (1)) works well for well structured CAD
models, it still results in non-smooth segmentation boundaries,
especially for free-form shapes. Hence we propose several post-
processing operations to further improve the segmentation quality
in this step, including boundary smoothing, simple quadric type
identification and proxy projection.

4.4.1. Boundary smoothing
After the global optimization stage, the surface mesh M

has been partitioned into non-overlapping regions Ri, each
being fitted by a quadric proxy Pi. Triangle faces next to
the segmentation boundary always have nearly equal errors to
neighboring proxies, often leading to zigzag boundary curves. The
graph cut method has already been used in [27,48,12] to segment
mesh in the fuzzy region and boundary regularization, but only
dihedral angle and edge length are used in their approach, so it
works well mainly in regions with salient features or curvature
discontinuity.We propose a new graph cut based strategywhich is
particularly effective for smoothing boundary curves in a smooth
region of the mesh.

Consider the dual graph of the original mesh, each triangle face
is corresponding to a dual vertex. Given two neighboring regions
R0 and R1, the faces belonging to the neighbor of their common
boundary are marked as belonging to the fuzzy region (Fig. 4 (left)
illustrates the fuzzy region. The neighborhood size can be set by the
user). Let Vf denote the set of the dual vertices of the fuzzy region.
Suppose that the faces in the fuzzy region are removed from R0
and R1. Then the dual vertices of faces in the regions R0 and R1
that are adjacent to Vf are denoted as V0 and V1, respectively.
Fig. 4. Boundary smoothing. Left: un-smoothed boundary and right: smoothed
boundary.

The goal of boundary smoothing is to label the vertices in Vf
with 0 or 1 byminimizing a cost function E(X). This is similar to the
binary labeling problem for edge detection widely used in image
segmentation. The solution X is a binary vector X = (x0, x1, . . .),
xi ∈ {0, 1}. If vi ∈ Vf is labeled with 0, i.e., set xi = 0, then its
corresponding face is assigned to the regionR0; otherwise, the face
is assigned to the region R1.

Let G = {V, E} be an undirected sub-graph of the dual graph
of the mesh M, where V = Vf ∪ V0 ∪ V1 is the set of nodes.
Here E is the set of undirected edges, with each dual edge e =

(vi, vj), (vi, vj ∈ V, i ≠ j) corresponding to an edge shared by
two adjacent faces in V . In Fig. 4 the background is composed of
two regions R0 and R1. The set V0 consists of the green triangles
in R0, the set V1 consists of the red triangles in R1, and the set
Vf consists of those triangles between V0 and V1. Here V0 and V1
are hard constraints to R0 and R1 in the sense that the triangles
in both sets will keep their labels; only the triangles in Vf may be
re-labeled.

The energy function E(X) is defined in a similarway to [49] used
for image segmentation:
E(X) = E1(X) + λE2(X)

=


vi∈V

Ê1(xi) + λ


(vi,vj)∈E

Ê2(xi, xj).

In order to keep the triangle faces in the fuzzy region from
deviating too much from their quadric proxies and improve
boundary smoothness, we consider both the distance from the
boundary faces to their proxies and the edge length along the
boundary. The region energy term E1 is determined by how the
nodes vi in Vf are labeled. Let d0i = d(vi, P0) and d1i = d(vi, P1)
be the distance of vi to proxies P0 and P1. Then we define

Ê1(xi = 0) =


0, vi ∈ V0
∞, vi ∈ V1

d0i
d0i + d1i

, vi ∈ Vf ,

Ê1(xi = 1) =


∞, vi ∈ V0
0, vi ∈ V1

d1i
d0i + d1i

, vi ∈ Vf .
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The term Ê2 is the cost of a dual edge connecting two adjacent
face nodes {vi, vj}, and is defined by

Ê2(xi, xj) =
length(i, j)

length(i, j) + ave_length
|xi − xj|,

where length(i, j) is the length of the common edge shared by
vi and vj, and ave_length is the average edge length of the
mesh M. Clearly, E2(X) becomes larger when the edge length of
the cut boundary resulting from re-labeling is longer. The cost
function E(X) is minimized using themax-flow/min-cut algorithm
described in [50]. Fig. 4 (right) shows the result of boundary
smoothing (λ = 1 by default).

4.4.2. Quadric surface classification
To simplify the final representation, we would like to identify

some commonly used types of special quadrics, such as spheres
and circular cylinders, which have occurred as approximating
proxies. Given the coefficients of proxy Pi, we detect whether
the quadric is nearly a cylinder or a sphere by analyzing the
eigenvalues of the corresponding quadratic form [51]. After type
identification, the region is fitted by a quadric of the special type
that has been identified. Only circular cylinders and spheres are
considered as special types in our current implementation.

4.4.3. Proxy projection
As the final step of post-processing, the vertices of each region

Ri of the partitionedmeshM are projected onto the corresponding
proxyPi ofRi. The computation of foot points on a plane, sphere or
cylinder is straightforward. If the quadric surface belongs to some
other types, we compute the exact foot point by solving a 6th-
degree univariate equation [51]. For an interior vertex of a region
Ri, its projected position is the foot point on the proxy of Ri; if a
mesh vertex is shared by two or more regions, the final position is
the average of its foot points on all the proxies the vertex belongs
to.

5. Enhancements

We propose two accelerating techniques in order to efficiently
segment models with sharp features or with large size. The
improvements include feature-based and simplification-based
segmentation, which are optional in our system.

5.1. Feature-based segmentation

The input mesh is first pre-partitioned by feature skeletons. In
our approach, we simply use the dihedral angle to detect feature
edges, but any other feature detection technique can be used
instead. All the edgeswith a dihedral angle exceeding a threshold θs
(30◦ in our implementation) are marked as features. Starting from
a randomly selected triangle, we perform greedy region growing
to gather neighboring triangles that do not cross sharp edges. This
process is repeated until all the triangles are assigned to a group. In
the initialization step, we set the initial number of the components
to the number of groups formed by feature loops; see Fig. 5(a) & (b)
for example of feature edges and pre-partition, respectively. In the
partition step, the flooding algorithm is restricted not to cross the
feature edges. This simple strategy helps to improve the efficiency
of the segmentation for CAD meshes.

5.2. Simplification-based segmentation

Themesh simplification technique is an efficient tool to process
data with huge size [27,28,52]. In this section, we propose a
Fig. 5. Feature-based segmentation of fandisk model. (a) Input model with
feature curves (blue lines); (b) feature-based initialization, 12 initial components;
(c) segmentation result, 22 components, taking only half time as comparedwithout
using feature information; (d) fitting result, refer to Fig. 1(d) for the meaning of
different color. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

simplification-based approach to improve the efficiency of our
variational segmentation algorithm. The input mesh M is first
simplified to a low resolution versionM′ in the preprocessing step.
We first segment the simplified mesh M′. Then the segmentation
result of M′ is mapped to the original mesh which serves as an
initial segmentation. The final result is obtained by optimizing
the segmentation again on the original mesh. The process of
simplification-based segmentation is illustrated in Fig. 6.

6. Experimental results

We present the experimental results of our algorithm in this
section. The input meshes are assumed to be 2-manifold with
arbitrary topology, closed or with open boundaries. All examples
are tested on a PC with Intel Xeon 2.66 GHz CPU and 2.00 GB RAM.

Our algorithm works well for tessellated CAD models, which
exhibit well defined feature structures. Figs. 1, 3, 5 and 7
demonstrate several such results of feature-based segmentation.
The crank model shown in Fig. 1 contains more than 100 K
triangles. It takes more than one hour to segment this model
without using features, while it takes only minutes for feature-
based segmentation. The base of the lamp model in Fig. 7 is fitted
by two planes and one cylinder if the feature is taken into account
(Fig. 7(c)), otherwise too many proxies will be added since the
global cylinder structure is difficult to be detected from low-
resolution sampling. Table 1 shows the timing of feature-based
segmentation.

Figs. 8 and 14 show two examples of simplification-based
segmentation for scanned CAD models. The timing of the
simplification-based segmentation is given in Table 2. In all the
examples discussed above, we set the normal weight ω = 0.5
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Fig. 6. Simplification-based segmentation of bone model. (a) Input model with
30 K faces; (b) segmentation result of simplified mesh (1 K faces) with 5 patches;
(c) mapping segmentation result from simplified mesh to original mesh; (d) final
segmentation result.

(see Eq. (3)). Notice that we did not apply any boundary smoothing
operation.

The proposed variational framework scales well for free-form
models. Fig. 6 shows an example on a bone model. However, due
to the quadric nature of our fitting algorithm, the segmentation
boundaries for organic models are not as smooth as the those of
CAD models. Hence we further smooth the zigzag boundaries by a
graph-cut based approach (see Section 4.4.1). We show only one
example here (see Fig. 9) due to the space limitation, more results
can be found in [14].
Comparison. First, we compare our quadric surface fitting
algorithm with the previous approach [46]. In their approach, the
algebraic distance is used to approximate the exact L2 distance be-
tween a triangle and a quadric surface. They use (∇f (x) − nt)

2 to
Table 1
Timing Statistics (in seconds) of feature-based segmentation. |M| is the
number of triangles of input mesh; |Ri| is the number of patches; Tnf
and Tf are the timings of segmentation with/without using features
during the segmentation process, respectively.

Model |M| (K) |Ri| Tnf Tf

Fandisk 13 22 12 3
Tesa 22 12 19 4.7
Pawn 24 12 17 7.8
Lamp 38.4 54 25 5

Table 2
Timing statistics of simplification-based segmentation. |M| and |M′

| are the
number of triangles of input mesh M and the simplified mesh M′; |Ri| is the
number of patches; Tnmr and Tmr are the timings of segmentation with/without
using simplification-based segmentation. The column Feature indicateswhether the
feature is used for segmentation.

Model |M| (K) |M′
| (K) Feature |Ri| Tnmr Tmr

Fandisk 13 1 ✓ 22 3 1.8
Tesa 22 2 ✓ 12 4.7 2.6
Cover 13.5 2 × 3 16 7
Part2 20 2 × 9 19 4.9
Part3 40 2 × 11 27 8.2
Bone 30 3 × 5 17 6.1

approximate thenormal deviation,where the gradient vector is not
normalized. The fitting result of their algorithm forces the gradi-
ent to converge to the normalized unit vector. In our approach, we
use a combination of the first order approximation of the L2 dis-
tance [41] and an approximate normalized gradient tomeasure the
normal deviation. We use several simple examples for comparing
our fitting results with that of [46]. As shown in Fig. 11, the input
meshes are sampled from several quadric surfaces, i.e., a saddle,
an ellipsoid and an elliptic cylinder. It is easy to see that our fitting
method obtains better fitting result than [46].

The comparisons with previous variational based approaches
[6,10] are given in Fig. 10. We show that our new method obtains
more faithful segmentation result than using only simple types of
proxy, such as plane, sphere and cylinder. Our algorithm also re-
sults in smaller approximation error than previous approach [14].
We use the Metro tool [53] to measure the symmetric Hausdorff
distance between the fitting surfaces and input meshes.

We also compare our approach with region merging based
method [22]. The region merging based method is fast but the
segmentation relies on the local information of the mesh. The
segmentation result would be inappropriate in blending regions
Fig. 7. Lamp model: (a) input mesh with 38.4 K faces; (b) segmentation result of simplified model (600 faces) with 45 patches; (c) segmentation result of original model;
(d) projecting mesh vertices onto the fitted quadric surfaces; (e) segmentation result without using feature.
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Fig. 8. Part2 Model: (a) input mesh with 20 K faces, (b) segmentation result of simplified mesh (2 K faces); (c) segmentation result of original mesh; (d) projecting mesh
vertices onto the fitted quadric surfaces.
Fig. 9. Boundary smoothing of the bunny model: before (left) and after (right)
smoothing.

and the regions of complex surfaces except plane, sphere and
cylinder. Fig. 12 shows several examples compared with [22].
Fig. 13 shows another comparison with the region merging
method [20]. Our algorithm results in more faithful segmentation
quality due to its optimization nature.
Limitations. Oneof the limitations of thiswork is that the presented
quadric surface fitting algorithm is noise sensitive. An example
is shown in Fig. 14. In this case, the normal component in object
function (Eq. (1)) becomes unreliable, which results in unsatisfied
segmentation boundary.

Another limitation is that we are not able to identify other
surface types of engineering objects, such as tori and blend/fillet.
On the other hand, for the general organic objects, the quadric
surfaces may be too flexible. Fig. 15 shows such an example.

7. Conclusions and future work

We present an efficient variational framework for mesh
segmentation. Each segmented patch is fitted by a quadric surface.
Instead of considering only distance or normal deviation, we
introduce a new errormetric which is a combination of both L2 and
L2,1 metrics. The newmetric results in better segmentation quality
without any postprocessing, especially for CADmodels. Moreover,
the effectiveness of the presented algorithm is demonstrated by
various examples and comparison with previous works.
Fig. 10. Comparison of approximation error. Top row: segmentation of Tesa model: (a) 80 planar proxies [6]; (b) 24 hybrid proxies [10]; (c) 22 quadric proxies [14] and
(d) 22 quadric components by our method. Bottom row: color coding of the RMS Hausdorff errors of corresponding segmentation: (e) 2.1 × 10−2 [6]; (f) 2.8 × 10−2 [10];
(g) 5.9 × 10−3 [14] and (h) ours 3.3 × 10−3 , respectively.
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Fig. 11. Comparison of quadric surface fitting with [46]. Left column: input mesh
surfaces (a) an elliptic cylinder, (b) an ellipsoid and (c) a saddle surface; middle
column: results of [46] and right column: results of our method. The fitted surfaces
are overlaid with the input meshes.

Fig. 12. Comparison with hierarchical clustering approach [22]. Left: result of [22]
and right: our result.

A number of applications can benefit from the output of our
mesh segmentation framework, such as converting mesh surfaces
to B-Reps in CAD/CAM modeling, efficient collision detection for
composite quadric objects. However, we only use the quadric
surface as the basic type of proxy in our framework, which is
not flexible to identify tori or blends in complex CAD models.
In the future, we plan to enrich the types of proxies to handle
more complicated inputs. On the other hand, the presented
algorithm is not able to capture the global structure of the object,
such as symmetries. One interesting problem is to detect global
symmetries in the segmentation framework. Some efforts have
beenmade for detecting simple types of symmetric proxies [54,55].
Furthermore, the extension of our algorithm for handling the point
cloud data is also of interest.
Fig. 13. Comparison with [20] (Part3 model). Left: result of [20] and right: our
result.

Fig. 14. Segmentation of a noisy Carter model (100 K faces), 39 patches.

Fig. 15. The rounded octahedronmodel is segmentedwell by using only the planar
proxies (left). The result of using quadric proxies is unsatisfactory (right).
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Appendix. Entries of quadric surface fitting

Given a quadric surface f (x) = CT
· F = 0, where

x = [x, y, z]T ,
C = [c0, c1, . . . , c9]T ,
F = [1, x, y, z, x2, xy, xz, y2, yz, z2]T .
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The gradient ∇f (x) = [CT
· fx, CT

· fz, CT
· fz]T , where

Fx = [0, 1, 0, 0, 2x, y, z, 0, 0, 0]T ,
Fy = [0, 0, 1, 0, 0, x, 0, 2y, z, 0]T ,

Fz = [0, 0, 0, 1, 0, 0, x, 0, y, 2z]T .

The error function of each region Ri is

E(Ri, Pi) =


tj∈Ri


x∈tj

f (x)2

|∇f 0i (ctj)|2
· dσ

+ ω


x∈tj


∇f (x)

|∇f 0i (ctj)|
− nt

2

· dσ .

In the above formula, the L2 error term can be written as
Ẽd(Ri, Pi) = CTAdC, where

Ad =


tj∈Ri

Aj
d,

Aj
d =

1
|∇f 0i (ctj)|2


x∈tj

(FFT ) · dδ.

Similarly, the normal term can bewritten by Ẽn(Ri, Pi) = CTAnC−

2CTBn + cn, where

An =


tj∈Ri

Aj
n,

Aj
n =

1
|∇f 0i (ctj)|2


x∈tj

(FxFTx + FyFTy + FzFTz ) · dδ,

Bn =


tj∈Ri

Bj
n,

Bj
n =

1
|∇f 0i (ctj)|


x∈tj

(nx
tFx + ny

t Fy + nz
t Fz) · dδ,

and cn is a constant. The matrix entries Aj
d,A

j
n and Bj

n of each
triangle tj can be pre-computed and stored for later use.

The minimization of the total energy function is to solve the
following linear equation system:

(Ad + ωAn)C = ωBn,

which can be solved efficiently by Cholesky decomposition.

References

[1] Besl PJ, Jain RC. Segmentation through variable-order surface fitting. IEEE
Transactions on Pattern Analysis and Machine Intelligence 1988;10(2):
167–92.

[2] Várady T, Martin RR, Cox J. Reverse engineering of geometric models—an
introduction. Computer-Aided Design 1997;29(4):255–68.

[3] Várady T, Facello MA. New trends in digital shape reconstruction. In: IMA
conference on the mathematics of surfaces. p. 395–412. 2005.

[4] Sander PV, Snyder J, Gortler S, Hoppe H. Texturemapping progressivemeshes.
In: ACM SIGGRAPH. p. 409–16. 2001.

[5] Lévy B, Petitjean S, Ray N, Maillot J. Least squares conformal maps for
automatic texture atlas generation. In: ACM TOG, SIGGRAPH. 21. 3. p. 362–71.
2002.

[6] Cohen-Steiner D, Alliez P, Desbrun M. Variational shape approximation. In:
ACM TOG, SIGGRAPH. 23. 3. p. 905–14. 2004.

[7] Marinov M, Kobbelt L. A robust two-step procedure for quad-dominant
remeshing. Computer Graphics Forum (EUROGRAPHICS) 2006;25(3):537–46.

[8] Gotsman C, Gumhold S, Kobbelt L. Simplification and compression of 3D
meshes. In: Proceedings of the European summer school on principles of
multiresolution in geometric modelling. Springer; 2002. p. 319–61.

[9] Lloyd SP. Least square quantization in PCM. IEEE Transactions on Inform
Theory 1982;28:129–37.

[10] Wu J, Kobbelt L. Structure recovery via hybrid variational surface approxima-
tion. Computer Graphics Forum (EUROGRAPHICS) 2005;24(3):277–84.

[11] Simari P, SinghK. Extraction and remeshing of ellipsoidal representations from
mesh data. Graphics Interface 2005;161–8.

[12] Julius D, Kraevoy V, Sheffer A. D-charts: quasi-developable mesh segmenta-
tion. Computer Graphics Forum (EUROGRAPHICS) 2005;24(3):981–90.
[13] Wang W. Modelling and processing with quadric surfaces. In: Farin G,
Hoschek J, Kim M-S, editors. Handbook of computer aided geometric design.
Elsevier; 2002. p. 777–95.

[14] Yan D-M, Liu Y, Wang W. Quadric surface extraction by variational shape
approximation. In: 4th international conference on geometric modeling and
processing—GMP. p. 73–86. 2006.

[15] Petitjean S. A survey of methods for recovering quadrics in triangle meshes.
ACM Computing Surveys 2002;34(2):211–62.

[16] Vieira M, Shimada K. Surface mesh segmentation and smooth surface
extraction through region growing. Computer-Aided Geometric Design 2005;
22(8):771–92.

[17] Lavoué G, Dupont F, Baskurt A. A new CADmesh segmentation method, based
on curvature tensor analysis. Computer-Aided Design 2005;37(10):975–87.

[18] JagannathanA,Miller EL. Three-dimensional surfacemesh segmentation using
curvedness-based region growing approach. IEEE Transactions on Pattern
Analysis and Machine Interlligence 2007;29(12):2195–204.

[19] Garland M, Willmott A, Heckbert P. Hierarchical face clustering on polygonal
surfaces. In: ACM Symposium on interactive 3D graphics. p. 49–58. 2001.

[20] Gelfand N, Guibas LJ. Shape segmentation using local slippage analysis. In:
Symposium on geometry processing. p. 219–28. 2004.

[21] Marinov M, Kobbelt L. Automatic generation of structure preserving
multiresolution models. Computer Graphics Forum (EUROGRAPHICS) 2005;
24(3):479–86.

[22] Attene M, Falcidieno B, Spagnuolo M. Hierarchical mesh segmentation based
on fitting primitives. The Visual Computer 2006;22(3):181–93.

[23] Geng C, Suzuki H, Yan D-M, Michikawa T, Sato Y, Hashima M, Ohta E. A thin-
plate CAD mesh model splitting approach based on fitting primitives. Theory
and Practice of Computer Graphics—TPCG 2010;45–50.

[24] Hoffman D, Richards W. Parts of recognition. Cognition 1984;18:65–96.
[25] Hoffman D, Signh M. Salience of visual parts. Cognition 1997;63:29–78.
[26] Mangan AP, Whitaker RT. Partitioning 3D surface meshes using watershed

segmentation. IEEE Transactions on Vis. and Computer Graphics 1999;5(4):
308–21.

[27] Katz S, Tal A. Hierarchicalmesh decomposition using fuzzy clustering and cuts.
In: ACM TOG, SIGGRAPH. 22. 3. p. 954–61. 2003.

[28] Lai Y-K, Hu S-M, Martin RR. Feature sensitive mesh segmentation. In:
Proceedings of the ACM Symposium solid and physical modeling—SPM. p.
17–26. 2006.

[29] Lee Y, Lee S, Shamir A, Cohen-Or D, Seidel H-P. Mesh scissoring with minima
rule andpart salience. Computer-AidedGeometric Design 2005;22(5):444–65.

[30] Zhang H, Liu R. Mesh segmentation via recursive and visually salient spectral
cuts. Proceeding of Vision, Modeling, and Visualization 2005;429–36.

[31] Sander PV,Wood Z, Gortler S, Snyder J, HoppeH.Multi-chart geometry images.
In: Symposium on geometry processing. p. 146–55. 2003.

[32] Yamauchi H, Gumhold S, Zayer R, Seidel HP. Mesh segmentation driven by
Gaussian curvature. The Visual Computer 2005;21(8–10):649–58.

[33] Yamauchi H, Lee S, Lee Y, Ohtake Y, Belyaev A, Seidel H-P. Feature sensitive
mesh segmentation with mean shift. Shape Modeling International—SMI
2005;236–43.

[34] Carr N, Hoberock J, Crane K, Hart JC. Rectangularmulti-chart geometry images.
In: Symposium on geometry processing. p. 181–90. 2006.

[35] Shatz I, Tal A, LeifmanG. Paper craftmodels frommeshes. TheVisual Computer
2006;22(9–11):825–34.

[36] YanD-M,Wintz J,Mourrain B,WangW, Boudon F, Godin C. Efficient and robust
reconstruction of botanical branching structure from laser scanned points.
11th IEEE International Conference on Computer-Aided Design and Computer
Graphics – CAD/Graphics 2009;572–5.

[37] Ahn SJ, Rauh W, Cho HS, Warnecke HJ. Orthogonal distance fitting of implicit
curves and surfaces. IEEE Transactions on Pattern Analysis and Machine
Interlligence 2002;24(5):620–38.

[38] Atieg A, Watson GA. A class of methods for fitting a curve or surface to
data by minimizing the sum of squares of orthogonal distances. Journal of
Computational and Applied Mathematics 2003;158(2):277–96.

[39] Bookstein FL. Fitting conic sections to scattered data. Computer Graphics and
Image Processing 1979;9:66–71.

[40] Chen Y-H, Liu C-Y. Quadric surface extraction using genetic algorithms.
Computer-Aided Design 1999;31(1):101–10.

[41] Taubin G. Estimation of planar curves, surfaces and nonplanar space
curves defined by implicit equations with applications to edge and range
image segmentation. IEEE Transactions on Pattern Analysis and Machine
Interlligence 1991;13(11):1115–38.

[42] Ohtake Y, Belyaev A, Alexa M, Turk G, Seidel H-P. Multi-level partition of unity
implicits. In: ACM TOG, SIGGRAPH. 23. 3. p. 463–70. 2003.

[43] Nehab D, Rusinkiewicz S, Davis J, Ramamoorthi R. Efficiently combining
positions and normals for precise 3D geometry. In: ACM TOG, SIGGRAPH. 24.
3. p. 536–43. 2005.

[44] Shen C, O’Brien JF, Shewchuk JR. Interpolating and approximating implicit
surfaces from polygon soup. In: ACM TOG, SIGGRAPH. 23. 3. p. 896–904. 2004.

[45] Ohtake Y, Belyaev A, Alexa M. Sparse low-degree implicit surfaces with
applications to high quality rendering, feature extraction, and smoothing. In:
Symposium on geometry proccessing. p. 149–58. 2005.

[46] Kanai T, Ohtake Y, Kase K. Hierarchical error-driven approximation of implicit
surfaces from polygonal meshes. In: Symposium on geometry processing.
p. 21–30. 2006.

[47] Taubin G. An improved algorithm for algebraic curve and surface fitting.
International conference on computer vision—ICCV. p. 658–65. 1993.



1082 D.-M. Yan et al. / Computer-Aided Design 44 (2012) 1072–1082
[48] Katz S, Leifman G, Tal A. Mesh segmentation using feature point and core
extraction. The Visual Computer 2005;21(8–10):649–58.

[49] Li Y, Sun J, Tang CK, Shum HY. Lazy snapping. In: ACM TOG, SIGGRAPH. 23. 3.
p. 303–08. 2004.

[50] Boykov Y, Kolmogorov V. An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision. IEEE Transactions on Pattern
Analysis and Machine Interlligence 2004;26(9):1124–37.

[51] Fitzgibbon AF, Eggert DW, Fisher RB. High-level CAD model acquisition from
range images. Computer-Aided Design 1997;29(4):321–30.
[52] Ji Z, Liu L, Chen Z, Wang G. Easy mesh cutting. Computer Graphics Forum
(EUROGRAPHICS) 2006;25(3):283–91.

[53] Cignoni P, Rocchini C, Scopigno R. Metro: measuring error on simplified
surfaces. Computer Graphics Forum 1998;17(2):167–74.

[54] Podolak J, Golovinskiy A, Rusinkiewicz S. Symmetry-enhanced remeshing of
surfaces. In: Symposium on geometry processing. p. 235–42. 2007.

[55] Li Y, Wu X, Chrysathou Y, Sharf A, Cohen-Or D, Mitra NJ. GlobFit: consistently
fitting primitives by discovering global relations. In: ACM TOG, SIGGRAPH. 23.
3. p. 52:1–12. 2011.


	Variational mesh segmentation via quadric surface fitting
	Introduction
	Related work
	Mesh segmentation
	Surface fitting

	Outline

	Problem formulation
	Metric for quadric surfaces
	Triangle-quadric error metric
	Quadric surface fitting
	Initial surface fitting
	Least-square fitting

	Error function for plane

	Variational shape segmentation
	Preprocessing
	Initialization
	Optimization
	Re-grouping
	Surface fitting
	Region merging and insertion

	Post-processing
	Boundary smoothing
	Quadric surface classification
	Proxy projection


	Enhancements
	Feature-based segmentation
	Simplification-based segmentation

	Experimental results
	Conclusions and future work
	Acknowledgments
	Entries of quadric surface fitting
	References


