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ABSTRACT
Content in microblogging systems such as Twitter is pro-
duced by tens to hundreds of millions of users. This diver-
sity is a notable strength, but also presents the challenge
of finding the most interesting and authoritative authors
for any given topic. To address this, we first propose a
set of features for characterizing social media authors, in-
cluding both nodal and topical metrics. We then show how
probabilistic clustering over this feature space, followed by a
within-cluster ranking procedure, can yield a final list of top
authors for a given topic. We present results across several
topics, along with results from a user study confirming that
our method finds authors who are significantly more inter-
esting and authoritative than those resulting from several
baseline conditions. Additionally our algorithm is compu-
tationally feasible in near real-time scenarios making it an
attractive alternative for capturing the rapidly changing dy-
namics of microblogs.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—information filtering, retrieval
models, selection process; H.3.1 [Information Systems]:
User/Machine Systems—human factors, human information
processing

General Terms
Algorithms, Experimentation, Human Factors

Keywords
Microblogging, Twitter, Authority, Clustering, Ranking
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Users of social media have been called “prosumers” to re-
flect the notion that the consumers of this form of media are
also its content producers. Especially in microblogging con-
texts like Twitter, for any given topic, the number of these
content producers even in a single day can easily reach tens
of thousands. While this large number can generate notable
diversity, it also makes finding the true authorities, those
generally rated as interesting and authoritative on a given
topic, challenging. For example, if one wants to get up to
speed or stay current on a news story like the Gulf of Mex-
ico oil spill that happened over the summer of 2010, who’s
content should they read? How can we identify those people
automatically and reliably for any given topic?

Despite the important role authors serve as signals in mi-
croblogging, this challenge of identifying true authorities is
trickier than it appears at first blush. Perhaps the most
important nuance in the discovery of topical authorities is
avoiding overly general authorities that typically are highly
visible in the network of users because of extremely high val-
ues on metrics like the follower count. As example, consider
again the topic oil spill, which is part of the larger category
of “news”. Top news outlets such as CNN and BBC are au-
thoritative but do not author exclusively or even primarily
on this topic and thus recommending only these users is sub-
optimal. Instead, end users likely are looking for a mix that
includes these larger organizations along with lesser known
authors such as environmental agencies and organizations,
or even the environment departments of the larger news or-
ganization in the case of the oil spill topic.

Furthermore, authors may not even exist prior to an event
and thus while highly authoritative, they are less discover-
able due to low network metrics like the follower count and
amount of content produced to date. Consider the Haiti
earthquake for which Twitter authors such as Haiti Earth-
quake and Haiti Relief Funds are event specific and con-
tributed consistent and detailed content on the event. Due
to these rapidly changing dynamics of users in microblog-
ging sites, traditional algorithms based on PageRank over
the follower graph of users are sensitive to celebrities and in-
sufficient to find true authorities. Additionally, graph based
algorithms are computationally infeasible for near real time
scenarios.

We propose an algorithm that alleviates these shortcom-
ings first by incorporating a number of metrics that account
for the “topical signal” of both the user and the user’s 1-hop
network in the follower graph. For example, we compute a
self-similarity score that identifies how similar an author’s
post was to her previous posts. Low scores on this metric



eliminate authors who post on a wider swathe of topics than
just the topic of interest, whereas high scores on this metric
eliminate spammers. Rather than using network analysis
techniques that might be skewed by disproportionately ac-
tive or popular users, we further propose using probabilistic
clustering to identify a small set of authors with a desirable
configuration across our set of proposed metrics. This yields
a cluster of largely authoritative authors, who can then be
ranked. The full list of proposed metrics and details of our
clustering and ranking procedures are presented in Section
3 and 4, respectively. Our algorithm can run in near real
time and is thus appropriate for large scale social media en-
vironments.
Results of a user study with our method show that it yields

significantly better results than several baseline conditions
(Section 6). Finally, we show the effectiveness of the prob-
abilistic clustering over other clustering alternatives. Thus
the main contribution of this paper is a new method for
distinguishing microblogging authors of high topical value
that incorporates a number of novel author metrics, utilizes
clustering rather than a graph analysis approach to finding
authorities, and works efficiently (and effectively) for large
scale datasets.

2. RELATED WORK
Within the microblogging arena, little work has explored

the issue of authority identification. The notable exception
is TwitterRank, proposed by Jianshu et. al. [20], which
computes the topical distribution of a user based on La-
tent Dirichlet Allocation [2] and constructs a weighted user
graph where edge weight indicates the topical similarity of
the two users. They run a variant of the PageRank [4] al-
gorithm over the directed weighted graph, running the algo-
rithm separately for each topic in order to find authorities
on each topic.
While somewhat similar to TwitterRank, our method dif-

fers in important ways. First, we incorporate a number of
additional features of authors, such as the aforementioned
self-similarity score. Second, clustering offers the potential
advantage over network-based calculations like PageRank
in that it is less prone to skew by a few users with scores
that are orders of magnitude larger than the majority of
the graph (i.e., celebrities). In fact, a clustering approach
might even eliminate unwanted celebrities that do not share
enough additional characteristics with other authorities. Fi-
nally, but importantly, our method is computationally feasi-
ble in near real-time scenarios, making it an attractive choice
for capturing the rapidly changing dynamics of microblogs.
Outside microblogging, finding authoritative users in on-

line services generally has been widely studied, with several
algorithms proposed towards this goal. Amongst the most
popular graph based algorithms are PageRank (Page et. al.
[4]), HITS (Klienberg et. al [14]) and their variations. For
example, Farahat et. al. [7] proposed a model that com-
bined social and textual authority and defined authority
rank based on the HITS algorithm for finding authoritative
hyperlinks on the World Wide Web.
Historically, these and other approaches have been applied

to domains that far predate microblogging. Social network
analysis of Usenet posters revealed the presence of key au-
thors deemed “answer people” (Fisher et. al. [8]). This
analysis used nodal features to find users with high out de-
gree and low in degree, under the assumption that those

that reply to many, but are rarely replied to are those pro-
viding the answers to the questions of the community. Also
predating microblogging, several efforts have attempted to
surface authoritative bloggers. Java et. al. [10], applying
models proposed by Kempe et. al. [13], model the spread of
influence on the Blogosphere in order to select an influential
set of bloggers which maximize the spread of information on
the blogosphere. Java [11] proposed methods to find “blog
feeds that matter” using their folder names and subscriber
counts.

Authority identification has also been explored extensively
in the domain of community question answering (CQA),
with several models proposed. As an example of a net-
work modeling approach, Eugene et. al. [1] used the Com-
munity Question Answering dataset and extracted several
graph features such as the degree distribution of users and
their PageRank, hubs and authority scores to model a user’s
relative importance based on their network ties. They also
take into account textual features of the question and an-
swers using KL-divergence between the language model of
the two texts, their non-stop word overlap, and the ratio
between their lengths.

Others have modeled CQA as a graph induced as a result
of a users’ interactions with other community members [12,
21]. Zhang et. al. [21] modeled CQA as an expertise graph
and proposed Expertise Ranking, similar to PageRank [4].
Jurczyk et. al. [12] identified authorities in Q&A commu-
nities using link analysis by considering the induced graph
from interactions between users.

Still other approaches examined the overall characteristics
of users’ interactions such as the number of answers, num-
ber of questions, number of best answers, votes, and so on.
Bouguessa et. al. [3] proposed a model to identify authori-
tative actors based on the number of best answers provided
by users, while Pal et. al. [17] distinguish experts based on
their preference in answering position and show that experts
are more selective than regular users. Zhang et. al. [21] pro-
posed a measure called Z-score that combines the number
of answers and questions given by a user to a single value
in order to measure the relative expertise of a user. The
Z-score measure is based on the intuition that experts gen-
erally provide a lot more answers than questions. Extending
this approach, topic based models to identify appropriate
users to answer a question has been recently proposed by
Jinwen et. al. [9].

Summarizing related work, the notion of authority find-
ing has been explored extensively in other domains and has
been dominated by network analysis approaches, often in
conjunction with textual analysis. Most of these algorithms
are computationally expensive. Our domain of interest, mi-
croblogging, has seen far less attention, with TwitterRank
the notable effort to date. As mentioned above, we feel our
approach extends research in the domain by proposing a
number of new user metrics and by taking a clustering ap-
proach that is computationally tractable to run in near real
time scenarios.

3. USER METRICS IN MICROBLOGS
In this and the next section we describe our method for

finding authorities. To start we present the list of metrics
extracted and computed for each potential authority (see
Table 1). Given the nature of tweets (e.g., short text snip-
pets, often containing URLs) and the way they are often



used (for light conversation via replies and for information
diffusion via re-tweeting), we focus on metrics that reflect
the impact of users in the system, especially with respect to
the topic of interest.
We categorize tweets into three categories:Original tweet

(OT ), Conversational tweet (CT ), Repeated tweet (RT ).

OT: These are the tweets produced by the author that
are not RT or CT .

CT: Conversational tweet is directed at another user, as
denoted by the use of the @username token preceding the
text or from the meta-data available through the Twitter
API.

RT: These tweets are produced by someone else but the
user copies, or forwards, them in-order to spread it in her
network. These tweets are preceded by “RT @username”.

Additionally we compute metrics around the mentions of
a user (M) as well as their graph characteristics (G). See
Table 1 for the full list of metrics. Most of the metrics are
self-explanatory, but we briefly touch upon some of them
here. A user can mention other users using the “@user” tag.
The first mention in CT and RT is part of the semantic
header, so we discard the first mention in these two cases
to accurately estimate the genuine mentions that an author
makes. Hashtag keywords (OT4) are words starting with
the # symbol and are often used to denote topical keywords
in Twitter.
The self-similarity score (OT3) reflects how much a user

borrows words from her previous posts (on topic and off
topic). In order to compute this score, we first use a stop
word list to remove common words and then consider the
resulting tweets as a set of words. Removing the common
words makes self-similarity more robust. The self-similarity
score S(s1, s2) between two sets of words s1, s2 is defined
as:

S(s1, s2) =
|s1 ∩ s2|

|s1| (1)

The self-similarity score S is not a true metric because it
is asymmetric: S(x, y) ̸= S(y, x). We chose this similarity
score as it is efficient to compute and because we wish to
estimate how much a user borrows words from her previous
posts. Also, the restricted character length of microblogs
does not lead to large variations in number of words per
tweet, so a tf-idf [18] based normalization followed by cosine
similarity would not be most effective [15].
In order to compute the self-similarity score for an au-

thor, we average similarity scores for all temporally ordered
tweets.

S(a) =
2 ·

∑n
i=1

∑i−1
j=1 S(si, sj)

(n− 1) · n (2)

In equation 2, we assume that the n tweets of an author
a are ordered based on increasing timestamp values, s.t.,
time(si) < time(sj) : ∀i < j. A high value of S indicates
that user borrows a lot of words or hyperlinks from her pre-
vious tweets (suggesting spam behavior). A small value in-
dicates that the user posts on a wider swathe of topics or
that she has a very large vocabulary. The self-similarity
score is beneficial in our case as we extracted topics based
on simple keyword matching, which might lead us to miss

ID Feature

OT1 Number of original tweets
OT2 Number of links shared
OT3 Self-similarity score that computes how similar

is author’s recent tweet w.r.t. to her previous
tweets

OT4 Number of keyword hashtags used
CT1 Number of conversational tweets
CT2 Number of conversational tweets where conver-

sation is initiated by the author
RT1 Number of retweets of other’s tweet
RT2 Number of unique tweets (OT1) retweeted by

other users
RT3 Number of unique users who retweeted author’s

tweets
M1 Number of mentions of other users by the au-

thor
M2 Number of unique users mentioned by the au-

thor
M3 Number of mentions by others of the author
M4 Number of unique users mentioning the author
G1 Number of topically active followers
G2 Number of topically active friends
G3 Number of followers tweeting on topic after the

author
G4 Number of friends tweeting on topic before the

author

Table 1: List of metrics of potential authorities. OT
= Original tweets, CT = Conversational tweets, RT
= Repeated tweets, M = Mentions, and G = Graph
Characteristics.

related tweets not containing the exact keywords. S ensures
that such a similarity is established based on co-occurring
terms. A more sophisticated Latent Semantic Analysis [6]
approach would lead to computationally expensive and a
non-real time performance of the overall algorithm.

3.1 Feature List
We combine the metrics in table 1 to create a set of fea-

tures for each user. For a given user, we extract the following
textual features across their tweets on the topic of interest:

Topical signal (TS) =
OT1 + CT1 +RT1

|# tweets| (3)

TS estimates how much an author is involved with the topic
irrespective of the types of tweets posted by her. Another
factor we consider here is the originality of author’s tweets,
which is calculated as follows:

Signal strength (SS) =
OT1

OT1 +RT1
(4)

SS indicates how strong is author’s topical signal, such that
for a true authority this value should approach 1. Addition-
ally, we consider how much an author posts on topic and
how much she digresses into conversations with other users:

Non-Chat signal (C̄S) =
OT1

OT1 + CT1
+λ

CT1− CT2

CT1 + 1
(5)

The intuition behind this formulation of C̄S is that we aim
to discount the fact that the author did not start the con-
versation but simply replied back out of courtesy. This can



be desirable when we wish to find real people (i.e. not for-
mal organizations) who are somewhat more social. Since we
want C̄S < OT1

OT1+CT2
, we can solve for λ, by putting this

constraint in equation 5 to get:

λ <
OT1

OT1 + CT2
· CT1 + 1

OT1 + CT1
(6)

Empirically, λ ≈ 0.05 satisfies the above constraint for most
users in our dataset. Large values of λ can skew the ranking
towards real and socially active people whereas small value
does not. We do not go any further than this in estimating
the effect of λ on model performance.
We compute the impact of an author’s tweet by consider-

ing how many times it has been retweeted by others:

Retweet impact (RI) = RT2 · log(RT3) (7)

RI indicates the impact of the content generated by the
author. This definition of RT3 ensures that we dampen the
impact for an author who has few overzealous users retweet-
ing her content a lot of times. Note that here we consider
0 · log(0) = 0 as the corner case because RT3 = 0 ⇔ RT2 =
0.
In order to consider how much an author is mentioned

with regards to the topic of interest, we consider the mention
impact of the author as follows:

Mention impact (MI) = M3 · log(M4)−M1 · log(M2) (8)

MI is based on a similar formulation as that of RI with the
difference that we take into account a factor that estimates
how much the author mentions others. This ensures that we
incorporate the mentions an author receives purely based on
her merit and not as a result of her mentioning others.
In order to estimate how much influence is diffused by

the user in her network, we take into account the following
feature:

Information diffusion (ID) = log(G3+1)− log(G4+1) (9)

ID is the ratio of number of users activated by the author
and the number of users that activated the author on log-
scale. Here “activated” means tweeting on a topic after an-
other user from the user’s network has tweeted on topic be-
fore the author. We add 1 in this case and rest other cases
in order to avoid a divide by zero operation. This adheres
to the rule of succession as proposed by Laplace. Note that
ID does not take into consideration the advantage an author
with large in-degree and low out-degree might have, namely
that G3 can be a large value whereas G4 remains bounded
by a small number of friends. For such a case to occur an
author must be amongst the early publishers on the topic,
which is a sign of authoritativeness. We experimented with
alternate formulations of ID,

ID1 = log(
G3 + 1

G1 + 1
)− log(

G4 + 1

G2 + 1
) (10)

ID1 normalizes ID on raw count of topical followers and
friends. This formulation leads to less effective results than
the un-normalized version. One reason is that it fails to
capture the prominence of a person as indicated by the raw
counts itself, hence we do not consider the alternate formu-
lation of ID any further.
Additionally, we consider the raw number of topically ac-

tive users around the author, as follows:

Network score (NS) = log(G1 + 1)− log(G2 + 1) (11)

In all these cases, we consider log scaling around the network
parameters because the underlying distribution of network
properties follows a tail distribution with some users with
orders of magnitude larger metric values than others. This
could lead to skew while clustering.

It should be noted that all these features are fairly straight-
forward to compute given an author’s tweets and one hop
network. Additionally these features can be computed in
parallel for all the users making it fit to run in a MapRe-
duce [5] type distributed computing framework.

4. CLUSTERING AND RANKING
We used a Gaussian Mixture Model to cluster users into

two clusters over their feature space. The main motivation
for the clustering was to reduce the size of the target cluster
(i.e., the cluster containing the most authoritative users).
This also makes the subsequent ranking of users more robust
because it is less sensitive to outliers such as celebrities. The
following subsection describes Gaussian Mixture Modeling
in general and how we used it in our setting.

4.1 Gaussian Mixture Model
Clustering based on Gaussian mixture model is probabilis-

tic in nature and aims at maximizing the likelihood of the
data given k Gaussian components. Consider n data points
x = {x1, x2, ..., xn} in d-dimensional space, the density of
any given data point x, can be defined as follows:

p(x|π,Θ) =

k∑
z=1

p(z|π) · p(x|θz) (12)

where π is the prior over the k components and Θ = {θz :
1 ≤ z ≤ k} are the model parameters of the k Gaussian
distributions i.e. θz = {µz,Σz} and P (x|θz) is defined as:

p(x|θz) =
1

((2π)d|Σz|)
1
2

exp{−1

2
(x−µz)

TΣ−1
z (x−µz)} (13)

Under the assumption that the data points are independent
and identically distributed (i.i.d), we can consider the like-
lihood of the observed samples as follows:

p(x|π,Θ) =

n∏
i=1

P (xi|π,Θ) (14)

=

n∏
i=1

k∑
z=1

p(z|π) · p(xi|θz) (15)

In order to maximize this likelihood, we use Expectation
Maximization (EM). EM is an iterative algorithm in which
each iteration contains an E-step and a M-step. In the E-
step, we compute the probability of the k Gaussian compo-
nents given the data points, p(z|xi,Θ) using Bayes theorem:

p(z|xi, π,Θ) =
p(xi|θz) · p(z|π)∑k
z=1 p(xi|θz) · p(z|π)

(16)

In the M-step, we compute the model parameters in order
to maximize the likelihood of the data, as follows:

µz =

∑n
i=1 xi · p(z|xi, π,Θ)∑n

i=1 p(z|xi, π,Θ)
(17)

Σz =

∑n
i=1(xi − µz) · (xi − µz)

T · p(z|xi, π,Θ)∑n
i=1 p(z|xi, π,Θ)

(18)



p(z|π) =
∑n

i=1 p(z|xi, π,Θ)∑k
z=1

∑n
i=1 p(z|xi, π,Θ)

(19)

The EM algorithm is run iteratively until the likelihood
reaches the maximum possible value. The GMM model re-
quires initial estimates of the model parameters θ and prior
probability of the components p(z|π). We use K-means to
derive these initial parameters. In general, GMM performs
better than classical hard clustering algorithms such as K-
means as it is less sensitive to outliers. A drawback of GMM
is that it is sensitive to initial estimates of model parame-
ters. This problem can be eliminated by running GMM with
boosting [19]. Since, this can be computationally expensive,
we simply run 5 instances of GMM (with maximum of 50
iterations each) and pick the one with largest log likelihood
as the best estimate of the underlying clusters.
The above clustering algorithm gives probabilistic assign-

ments of data points belonging to a given cluster p(z|x, π,Θ).
For each cluster, we pick all the points with this probabil-
ity to be greater than 0.9. This is done as we want the
true representative points per cluster. Using these points,
we compute the average TS, RI, MI per cluster and pick
the cluster with the larger TS, RI, MI (or best of 3) as our
target cluster. This simple strategy of determining which
cluster to pick works well in practice. We explored comput-
ing the centroid of the clusters and picking the cluster far-
thest away from the origin using Mahalanobis or Euclidean
distance, but found that approach agreed with our heuristic
(best of 3) every time.

The target cluster typically contains a small number of users
(a few hundred to thousands) which is a huge reduction com-
pared to the actual number of users (ranging from tens of
thousands to hundreds of thousands). In order to rank au-
thors within the target cluster, we explored two potential
methods: List based ranking and Gaussian based ranking.
In order to describe these ranking methods, consider that
we have n data points x = {x1, x2, ..., xn} where each data
point is a d-dimensional vector, i.e., xi = [x1

i , x
2
i , ..., x

d
i ]

T . In
list based ranking, we sort authors on feature f ∈ {1, 2, ..., d}
and get the rank of ith author in this ranked list, denoted
as RL(x

f
i ). The final rank of an author is the sum of ranks

for all the features, RL(xi) =
∑d

f=1 RL(x
f
i ), which is then

used to sort the authors to get a ranked list. Assuming
we want top k authors, this results in time complexity of
O(dn logn). Ultimately we found this list based approach
inferior to Gaussian ranking method that we used, which is
described in the next section.

4.2 Gaussian Ranking Algorithm
We assume features to be Gaussian distributed (which is

true in most case, though with a bit of skew in some cases).
For any given feature f , we compute the µf and σf based
on the points in the target cluster. The Gauss rank RG of
a given data point is then defined as follows:

RG(xi) =

d∏
f=1

∫ x
f
i

−∞
N(x;µf , σf ) (20)

where N(x;µf , σf ) is the univariate Gaussian distribution
with model parameters as µf and σf . The inner integral
in this equation computes the Gaussian cumulative distri-
bution at xf

i . Gaussian CDF is a monotonically increasing
function well suited to our ranking problem as we prefer a

higher value over low value for each feature. Alternately,
if a low value is preferred for some features, then xf

i could

be replaced by −xf
i in the above formula. Gaussian CDF

(for standard normal) can be computed in O(1) time using
a pre-computed table of error functions. This results in an
algorithm with time complexity of O(dn+ k log k) which is
a reduction by a factor of log n for small k over List based
ranking.

Additionally, we explored a weighted version of Gaussian
ranking method. In order to incorporate weights in the
above Gaussian ranker, we consider the following definition
of RG:

RG(xi) =
d∏

f=1

[

∫ x
f
i

−∞
N(x;µf , σf )]

wf (21)

where wf is the weight that we put on feature f . These
ranks help in devising a total ordering under ≤ over all the
users in the target cluster. Using this fact, we observe that
the weights wf are immune to the normalization factor (as
long as the normalization factor is greater than 0). In this
case the normalized rank (with normalization factor N) is

ŔG = R
1
N
G , which doesn’t change the ordering of data points

for N > 0. Hence, the only constraint we put on these
weights is that {∀f : 0 ≤ wf ≤ 1}.

5. DATASET
To serve as test data for our experiments, we collected all

tweets posted on Twitter between 6th-June-2010 to 10th-
June-2010 (5 days overall). These were available through
access to the full Twitter dataset (the “firehose”) granted
to our company. The dataset consists of 89,622,039 tweets.
We extracted tweets on three topics: oil spill, world cup and
iphone using simple substring matching. Note that we could
take a LDA [2] type approach on the tweets extracted based
on string matching to find other tweets with similar latent
topical distribution which would be a more comprehensive
corpus for the given topic. That is extremely resource con-
suming and could take days to complete on the scale of data,
we had. Table 2 presents the basic statistics of the extracted
topical data. The in-degree distribution of the users in our
dataset follows a Pareto distribution with a slight skew. Due
to space constraints we skip a detailed description of the
dataset.

|U | |OT | |CT | |RT |
iphone 430,245 658,323 242,000 129,560
oil spill 64,892 111,000 8,140 29,224

world cup 44,387 308,624 28,612 47,837

Table 2: Dataset statistics. |U |, |OT |, |CT |, |RT | are
overall count of users, original tweets, conversational
tweets and retweets, respectively.

6. RESULTS AND EVALUATION
We compared our model with several baseline models as

described below:

our: Our model as based on the features described in sec-
tion 3.1. Additionally, we use OT2

OT1
, OT3, OT4

OT1
. Based on

these features, we run the methods as described in Section 4.



iphone oil spill world cup
macworld NWF TheWorldGame
Gizmodo TIME GrantWahl
macrumorslive huffingtonpost owen g
macTweeter NOLAnews guardian sport
engadget Reuters itvfootball
parislemon CBSNews channel4news
teedubya LATenvironment StatesideSoccer
mashable kate sheppard Flipbooks
TUAW MotherNatureNet nikegoal
Scobleizer mparent77772 FIFAWorldCupTM

Table 3: List of top 10 authors for the three topics
as computed by our algorithm.

our b1 b2 b3
iphone 282665 1364015 117250 1252
oil spill 462507 871159 417210 840

world cup 29373 32121 18017 277

Table 4: Average number of followers for the top 10
authors of various algorithms.

b1: This model consists of graph properties: RI, MI,
ID, NS. Additionally, we considered page rank as a dimen-
sion of user’s feature vector. In order to compute page rank
we created directed weighted mention graph where an edge
from x to y indicates “how many times x mentions y, aver-
aged for all out links of x”. Typically this results in several
disconnected components. We computed page rank on this
graph with a teleport probability of 0.15 (which ensures that
the Markov chain reaches stationary distribution after suf-
ficient iterations resulting in convergence of the algorithm).
The clustering and ranking algorithm used in our method is
then applied to construct a list of top 10 users.

b2: This model consists of the textual properties of the
users: TS, SS, C̄S, OT2

OT1
, OT3, OT4

OT1
. Our clustering and

ranking algorithm is then applied to construct a list of top
10 users.

b3: In this model, authors that fall outside the target
cluster are randomly selected. This model helps in validating
our target cluster selection criteria.

6.1 Top 10 Ranked Authors
To give a sense of how well our algorithm works, Table 3

presents the list of top 10 users as recommended by our algo-
rithm. Some of these users are large organizations (TIME,
mashable) yet the list contains a lot of real people that are
correspondents of organizations dealing in that topic (Grant
Wahl for world cup) and several small organizations (such as
NWF and LATenvironment for oil spill). These real people
and smaller organizations are fairly on topic (and relevant)
and do not enjoy as high popularity as the topical celebrities
do. The algorithm rejected several celebrities as clustering
disregards these people on several other dimensions or they
are not true representatives of the target cluster (probability
≥ 0.9). For other topics, for example, toy story 3 our algo-
rithm returned leeunkrich (the director of the movie) as the
top user, while rejecting celebrities who tweeted about the
movie. Table 4 shows that the average number of followers
for our model is lesser than b1 and higher than b2 indicat-

Figure 1: Anonymous survey screen shows four
topical tweets of an author and asks evaluators to
rate for Interestingness and Authoritativeness on the
scale of 1-7 (7 being the highest).

Figure 2: Non-anonymous survey screen shows
name and four topical tweets of an author and asks
evaluators to rate for Interestingness and Authori-
tativeness on a scale of 1-7 (7 being the highest).

ing that it strikes a balance between network and textual
properties of the users that influence the topic.

6.2 Model Rating Comparison
In order to evaluate our approach, we conducted a user

study in which results from our model were compared to
those from three baseline models across three topics. From
our model we selected authors that were in the top 20 for
each topic1. From the three baseline models, we selected 10
users each. There was enough overlap between the ranked
lists of authors produced by the four models that it resulted
in 40 authors per topic. Finally, every author evaluation
was made both anonymously (such that the name of the
author was not shown) and non-anonymously. Thus our
experimental design was a 3 (topic) X 4 (ranking method)
X 2 (anonymous) design.

Each participant was shown 40 screens, each with a dif-
ferent author. Each screen asked participants to evaluate
both the author (and her tweets) on “How interesting and
authoritative they found the author and her tweets” using
two 7-point Likert scales. The first 20 screens prompted for
anonymous evaluation (see figure 1) and the next 20 screens
prompted for non-anonymous evaluation (see figure 2). Note
that the only difference between the anonymous and non-
anonymous ratings was that in one case the name of the
author was shown, while in the other it was not shown.

We note here our rationale for having authors rated both
anonymously and non-anonymously. First, this enabled us
to establish a ground truth about the users recommended by
our algorithms without any effect of bias due to ratings being

1We performed an additional comparison within our model
only of those ranked in the top ten versus those in the second
ten.
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Figure 3: Average ratings per model per participat-
ing user. Average is computed by first aggregating
ratings received by top 10 authors of each model by
each participant. This average is computed across
all topics.

made on the status of the author as conveyed by the name
rather than on the quality of the content (the anonymous
case). Second, we could evaluate authors in a real world
way in which user names are known (the non-anonymous
case). From a practical standpoint, anonymous ratings may
be useful when building a reading list of interesting items
for a user, whereas the latter case makes sense when recom-
mending authors for users to follow.
We randomized the order in which the evaluations were

shown such that for each evaluated author we had equal
numbers of anonymous and non-anonymous ratings. Also,
each participant evaluated an author only once either anony-
mously or non-anonymously. 48 users participated in the
survey out of which 25% were female participants and the
average age of all the participants was 32.1 (median = 31)
with standard deviation of 5.9. On average, we received
16 ratings per evaluated author (8 anonymous and 8 non-
anonymous). The inter-rater agreement (Fleiss kappa) be-
tween participants was 0.56, which can be considered as
moderate agreement between participants.
In order to compare the ratings received by the four mod-

els, we computed aggregate ratings given by each respon-
dent to authors of each model. This results in 4 (mod-
els) X 4 (response variables) averages per respondent. The
four response variables were: Anonymous - Interesting (AI),
Anonymous - Authority (AA), Non anonymous - Interesting
(¬AI), Non anonymous - Authority (¬AA). Figure 3 shows
that our algorithm received the highest ratings compared to
the baseline models for all the four response variables.
To establish that the authors of our algorithm received

statistically significantly higher ratings than other models,

iphone oil spill world cup overall
AI 0.018 0.024 0.45 0.002
AA 0.012 0.014 0.59 0.001
¬AI 0.003 0.023 0.006 0.001
¬AA 0.021 0.049 0.024 0.021

Table 5: Our vs b1 model. P-value for paired one
sided t-test of average ratings per model per partic-
ipant. H0 is rejected in all cases except for AI and
AA for world cup.

iphone oil spill world cup overall
AI 0.001 0.011 0.084 0.001
AA 0.001 0.006 0.5 0.001
¬AI 0.024 0.001 0.004 0.001
¬AA 0.018 0.044 0.006 0.001

Table 6: Our vs b1 model. P-value for paired one
sided t-test of best ratings per model per participant.
H0 is rejected in all cases except for AI and AA for
world cup.

we compare the aggregate ratings using one-sided paired t-
tests with the hypothesis: H0: Rating means of the two
models are the same and Ha: Rating mean of our model is
higher with 95% Confidence Interval. Table 5 shows the p-
values of the t-test of our vs the b1 model. We reject H0
in all the cases except for the topic world cup for AI and
AA. Overall, we establish that the average ratings given by
respondents to users of our model are higher than the b1
model. We note here that the other two baseline models
fared worse than b1, and we thus conclude that our model
outperformed all three baseline models.

We also observe from Figure 3 that on average anonymous
ratings are higher than the non-anonymous ones. This indi-
cates that respondents are more conservative in giving good
ratings when author names are known to them, likely be-
cause ratings go down slightly when made on an unrecog-
nized author. Section 6.3 discusses it in detail.

6.2.1 Model Rating Comparison Under Realistic Cir-
cumstances

In most realistic circumstances, we envision that when a
recommendation engine returns a ranked list to a web user,
the web user simply clicks on one of the ranked objects (as
in search). Similarly in our case, we can argue that if we
return a list of 10 authors out of which 9 are bad but one
is extremely good and the user clicks the good author and
finds her to be interesting then the user’s experience with
the recommendation engine is successful and the engine per-
forms well with regards to this user. In order to incorporate
this scenario, we consider the ratings given to best rated au-
thor per model by each respondent and compare these best
ratings rather than comparing the average ratings (as done
previously). Table 6 shows that our model receives signifi-
cantly higher best ratings compared to the b1 model (except
for the two response variables for world cup). Overall, we
conclude that our model performs better than all the other
baseline models even when considering only the top rated
author.

6.3 Anonymous vs Non Anonymous Ratings
Every evaluated author received 8 anonymous and 8 non-



AI vs ¬AI AA vs ¬AA
Uf 0.49 0.84
Unf 0.001 (↓) 0.017 (↓)
Uf (with bad rating) 0.02 (↑) 0.008 (↑)
Unf (with bad rating) 0.77 0.61

Table 7: P-value for paired one sided t-test for
Uf and Unf users between anonymous and non-
anonymous counterparts of response variables. The
up arrows indicate that rating means are higher for
the second response variable whereas down arrow
indicates that rating means are higher for the first
response variable.

anonymous ratings. We computed one sided paired t-tests
on aggregated ratings of authors. The p-value between AI
and ¬AI is < 0.001 indicating that the anonymous ratings
for interestingness are higher than the non-anonymous case.
On the other hand the p-value for AA and ¬AA is 0.17
indicating that there is no significant change in authority
ratings from the non-anonymous to the anonymous case.
This only partially confirms the intuition that respondents
get stricter when rating non-anonymously.
We thus considered two buckets of authors: > 50000 fol-

lowers (Uf - famous authors), ≤ 50000 followers (Unf - non
famous authors). Further we can subdivide them based on
whether they received good or bad ratings. We define good
rating to be ≥ 4. Table 7 summarizes the p-value between
the response variables for the several categories of users.
Even though we expected the rating averages to increase

for Uf , the p-value fails to indicate a statistically significant
change. Our explanation for this is that there is a ceiling
effect in place. For famous authors who received good rat-
ings anonymously, these ratings would not change drastically
(or consistently for all such authors) once their identity is
revealed. On the other hand for the famous authors who
received bad ratings in anonymous case (40% - 50%), their
ratings would consistently increase when their names are
shown (as confirmed by the third row of table 7). As ex-
pected non-anonymous ratings for non-famous authors de-
crease as their names are shown. Overall, we conclude that
while unrecognized users may suffer a bit when their names
are shown, the popular users are getting a boost in their
authority rating simply due to “name value”.

6.4 Top 1-10 versus Top 11-20
Next we compare the ratings received by the top 1-10

and the top 11-20 authors recommended by our algorithm.
Figure 4 indicates that the average rating of the top 1-10
is higher than that of the top 11-20 for all four response
variables. Again using one sided paired t-test, we reject H0
(i.e. rating means are same) for AI and ¬AA. We failed
to reject the null hypothesis for AA and ¬AI slightly (p ≤
0.057). We conclude that the top 10 authors are significantly
better than the next 10.

6.5 Model Precision
In order to compute precision and recall values, we sort

authors based on their aggregate survey ratings (separately
for all 4 response variables) and pick the 10 highest rated
authors. Precision can be computed by counting the number
of authors that were correctly identified to be in top 10 by
the algorithm. Note that in this case recall = precision since
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Figure 4: Average rating received by authors of top
1-10 vs top 11 - 20 recommended by our model.

the two list sizes are the same. Table 8 shows the precision
of our algorithm (≥ 0.6).

Similarly, we compare our model with other models based
on the above idea. In order to do that, we picked authors
recommended by the two models that are to be compared.
These authors are then sorted and the 10 authors with high-
est ratings selected. Precision of our model is then computed
based on how many authors recommended by it and appear
in this top 10 list. Table 9 reports the precision of our algo-
rithm vs the two baseline models. So the first row (and first
column) indicates that 8 out of 10 users predicted by our
model were in top 10 and only 2 from b1, which indicates
that our model is substantially better than b1 (and also b3).

iphone oil spill world cup overall
AI 0.8 0.8 0.6 0.73
AA 0.8 0.7 0.5 0.63
¬AI 0.7 0.7 0.6 0.6
¬AA 0.6 0.7 0.6 0.6

Table 8: Absolute precision (or recall) of our algo-
rithm.

our vs b1 our vs b3
AI 0.8 1
AA 0.6 0.93
¬AI 0.73 0.93
¬AA 0.63 0.87

Table 9: Precision (or recall) of our algorithm vs
b1 and b3 aggregated for the three topics. While
computing precision of our vs b1, authors that were
common in our and b1 were discarded.

6.6 Algorithm Effectiveness
In order to measure effectiveness of the algorithm, we cor-

related ordered list of the top 10 authors as recommended
by our algorithm with the corresponding top 10 list based
on the ratings provided by the survey respondents. Table
10 shows the Pearson correlation2 of our algorithm versus
the ratings provided by respondents. We only report the
correlations while considering ratings on AI and ¬AA as
the criteria to generate ranked list from survey respondents.
Overall the Pearson correlation for the two measures is 0.39,

2Since the rankings are tied in some cases, Pearson corre-
lation is preferred over Spearman [16]. Additionally, the
Spearman values were approximately the same as Pearson
in our case.



our our (Kmeans) our (no clustering)
iphone 0.54 0.40 -0.07
oil spill 0.41 0.29 -0.05

world cup 0.22 0.14 0.06
overall 0.39 0.28 -0.02

Table 10: Pearson correlation of several version of
our algorithm with the AI ratings of survey respon-
dents.

which we consider to be more than satisfactory considering
survey respondents as the ground truth.
In a similar fashion, we can run our algorithm with differ-

ent clustering algorithms and generate the relative ordering
of top 10 authors (as given by our algorithm when GMM
based clustering is used). We see in table 10 that the GMM
based version of our model is more closely related to AI
ratings of respondents than other alternative algorithms (in-
cluding ranking without clustering). With this we conclude
that probabilistic clustering (and clustering in general) is an
important step that helps in eliminating outliers in each fea-
ture dimension and providing robustness to overall ranking.
Additionally, we evaluated the effectiveness of List based

ranking in comparison to Gaussian based ranking. Using
the methodology described above, we record the Pearson on
both measures to be ≈ 0.17, indicating that the Gaussian
based ranking performs much better than the list based.

6.7 Estimating Optimal Weights
We aim to estimate the weight parameters for the weighted

version of Gaussian rank (see Equation 21), such that we
maximize the Pearson correlation with the respondent’s AI
ratings. For each weight vector w, we run our algorithm and
measure the Pearson correlation with the survey-based rat-
ing list of top authors. This correlation is henceforth called
the score of the weight vector w. To find the weights that
maximize the score, we use stochastic hill climbing along
with simulated annealing in the unit hypercube that encloses
all possible weight vectors (recall that weights are bounded
by [0, 1]). We skip the details of the algorithm used due to
space constraints.
Once optimal weights are found per topic, we consider two

hypersphere of radius δ and δ + 0.01 around these optimal
weights. We sample weights that are enclosed in the larger
hypersphere and not in the smaller one and compute the
max score of the weight samples drawn. Figure 5 shows the
distribution of scores as δ is increased around the optimal
weights (ensuring that the weights lie within unit hyper-
cube). Even though the score distribution is very spiky, we
see the overall shape looks like a bell shaped curve. This
also indicates that the best possible model (given our Model
Selection) can at best achieve a correlation of 0.61 (iphone)
and 0.71 (oil spill). The weights that maximize scores for
both the topics leads to a correlation of 0.56 (iphone) and
0.61 (oil spill). The unweighted model achieves 0.54 (iphone)
and 0.41 (oil spill), which is more than satisfactory.
Our overall assessment after manual analysis of the opti-

mal weights lead us to believe that topical signal and men-
tion impact should be assigned slightly higher weights than
other features, though we need to give this a more thorough
treatment before generalizing.
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Figure 5: Score around best possible weights for top-
ics iphone and oil spill.

7. DISCUSSION
The results of the user study confirm that our method

for authority finding yielded authors of greater interest and
authoritativeness than the baseline comparisons. Here we
discuss aspects of the method we used and attributes of
the types of authors that might explain this improvement.
First, to what extent does the popularity of the author mat-
ter when it comes to being interesting and authoritative?
At the outset of the paper, we argued that some combina-
tion of popular and less popular authors is a likely “sweet
spot”. For a systematic comparison, we isolated the role
that name value of authors plays when evaluating their con-
tent. The anonymous and non-anonymous ratings show that
anonymous ratings generally were a bit higher, while lower
rated, but popular authors get a boost when their names
are revealed. From this we conclude that from a perceptual
standpoint, popularity matters and again that the ideal set
of authors contains those with the highest rated authority
regardless of popularity mixed with those who are popular.
In other words, give users authors of quality content and
also authors they recognize.

The precise balance between popular and less popular au-
thors may depend on both topic and timing. When a topic
is pressing and of a certain size (e.g. iphone), popular users
(such as mashable) who don’t tweet exclusively on the topic,
likely are in fact devoting considerable content to the topic.
In other cases, such as world cup, top celebrities such as
Shakira who dominated in terms of retweets and graph char-
acteristics need to be correctly rejected. Our similarity score
metric helped make this distinction between which popular
users were on topic enough to show in the results set.

Returning to the issue of network versus text based fea-
tures, it is important to remember that unlike blogging, mi-
croblogging is a more dynamic environment, in which the



lifetime of a topic can be very short-lived. In order to find
topical authorities in such an environment, a purely graph
based approach can wrongly assign a person with authority
in some other topic, or simply a celebrity with many follow-
ers, to be an authority on the topic of interest. In terms of
common nodal characteristics, our model did in fact yield
authors with follower counts in between models based on
the follower graph and on textual features (Table 4). We do
note, however, that the b1 baseline model, which was based
on graph characteristics, fared considerably better than the
model based on textual features (b2). With respect to nar-
rowing down the list of top authors, probabilistic clustering
appears to be a good choice. In our results, GMM reduced
the set of possible authorities from tens of thousands to a
few hundred. We also showed that this clustering technique
yielded results that correlated more highly with end user
ratings than other clustering techniques.
In terms of the final ranking of users, we saw that au-

thors at the top of our results list (top 10) were in fact
rated more positively than those just down the list (11-20).
This suggests that the Gaussian ranking procedure works
well, and we suspect the improvements seen over list-based
ranking (see section 6.7) would generalize to other social me-
dia contexts. In terms of which features are most important
when ranking users, we tentatively conclude that topical sig-
nal and mention impact should be assigned higher weights
than other features, though exploring this in greater detail
remains an area for future work.

8. CONCLUSION AND FUTURE WORK
In this paper we proposed features and methods that could

be used to produce a ranked list of top authors for a given
topic for identifying topical authorities in microblogging en-
vironments. We proposed a number of features of authors
and observe that topical signal andmention impact are slightly
more important than other features.
We also showed that probabilistic clustering is an effective

way to filter a large chunk of outliers in the feature space
(either long tail or celebrities) and select high authority users
on which ranking can be applied more robustly. Finally, we
show that Gaussian-based ranking is a more effective and
efficient way to rank users. Results of our study shows that
our model is better than the baseline models considered, and
we emphasize that our model can be used in near real-time
scenarios.
For future work, we wish to explore in detail how differ-

ent weights affect the final author rankings and what weight
distribution is most effective for a given problem domain.
As an example, we would like to estimate the influence of
negative weights on features. We would also like to inves-
tigate effective ways to filter large organizations in order to
build a more socially oriented people recommender.
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