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Abstract

The corept of au-basis was introduced in the case of parametrized curves in 1998 and
generalized to the case of rational ruled surfaces in 2001. gFbasis can be used to recover
the parametric equation as well as to derive the implicit equation of a rational curve or surface.
Furthermore, it can be used for surface reparametrization and computation of singular points. In this
paper, we generalize the notion ofuabasis to an arbitrary rational parametric surface. We show
that: (1) theu-basis of a rational surfacevedys exiss, thegeometric significance of which is that
any rational surface can be expressed as the intersection of three moving planes without extraneous
factors; (2) thes-basis is in fact a basis of the moving plane module of the rational surface; and (3)
theu-basis is a basis of the corresponding moving surface ideal of the rational surface when the base
points are local complete intersections. As a by-product, a new algorithm is presented for computing
the implicit equation of a rational surface from thebasis. Examples provide evidence that the new
algorithm is superior than the traditional algorithm based on direct computation of a Grobner basis.
Problems for further research are also discussed.
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1. Introduction

The concept of au-basis was first introduced i€ox et al. (19980 to provide an
implicitization algorithm for planar rational curves. Thebasis of a rational curve consists
of two polynomialsp(x, y, t) andq(x, y, t) which are linear inx, y and have degrege
(v < [n/2]) andn — u in t respectively, whera is the degree of theational curve.

The resultant ofp(x, y, t) andq(x, y, t) with respect ta gives the impli@ equation of

the rational arve. Using a variant form of the Bézout resultant, the implicit equation of a
rational curve can be written as the determinant ofmn- 1) x (n — w) matiix, whereas

the prevous resultant technique writes the implicit equation as am deterninant. Later

it was shown that th@-basis can be used to derive a more compact representation for the
implicit equation of a rational curve with high order of singulariti€hénand Sederberg
2002, and to compute the singular points of a rational cu@bgnand Wang 20039.
Efficient algorithms were also developed to compute thbasis of a rational curve
(zheng and Sederberg001 Chenand Wang2003h.

The idea of gu-basis oiginated in a series of paperg Bederberg and his colleagues,
where a new tdmique calledmoving curves and moving surfacess proposed to
implicitize rational curves and surfacedqderberg et al1994 Sederbeg and Chen1995
Sederbey andSaitg 1995 Sederberg et gl1997 Zhang et al. 1999 Cox et al, 2000.

This idea was subsequently generalized to rational ruled surféiesnétal, 2001
Chenand Wang 20033. The u-basis of a rational ruled surface is defined to be three
polynomialsp(x, y, z, s), q(X, ¥, z,s) andr (X, Y, z, s, t) which are linear irx, y, z, and

the intersection of the three planps= 0,q = 0 andr = 0 gives exactly the parametric
equation of the rational surfad¥s, t). The u-basis can be used not only to recover the
parametric equdon but also to derive the implicit equation of the rational ruled surface by
taking the resultant op andg. It also givesa simple wayto reparametrize a rational
ruled surface Chen 2003. In this paper, we generalize the notion ofugbasisto an
arbitrary rational surface. The main contrilmns of the current paper are as follows. First,
we show that thei-basis of a rational surface always exists. Geometrically, this means
that every rational surface can be expresas the itersection of thee moving planes
without extraneous factors. This is an unexpected result, for after ten years of exploration,
researchers in the geometric modelling community generally believed that this was not
true. Second, we show that tebasis of a general rational surface has properties similar
to tho® of theu-basis of a rational ruled surface. In particular, theasis serves as a basis

of the moving plane module, and when the base points are local complete intersections, it
generates the moving surface ideal correspugmtth the rational surface. Though similar

to the theory developed for rational ruled surface€ienand Wang20033, our results

here apply to arbitrary rational surfaces, awhe of the proofs reque techniques from
commutative algebra. Finally, we use the propertieg-tiases to present a new algorithm

for computing the implicit gquation of a rational surface. Examples seem to show that the
new algorithm is more efficient than the traditional method of computing a Grébner basis
of the mowng surface ideal.

The paper is organized as follows. In the next section, we recall some basic facts
about syzygy modules, moving planes, and base points, and then definebtmsis for
an arbitrary rational surface. Bection 3we prove the existence of thebasis and derive
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some usefl properties for theu-basis. 8nilar to Busé etal. (2003 and Cox (2004,

the nicest case is when the base points are local complete intersections. Based on these
properties, we derive a new algorithm to compute the implicit equation of a rational
surface inSection 4 Examples arprovided to compare the nealgorithm with traditional
algorithms. Finally, inSection 5 we conclude the paper with some problems for further
research.

2. Definition of the u-basis

Let R denote the polynomial rin§[s, t] over the fieldof real numbers an®™ denote
the set oim-dimensional row vectors with entries in the polynomial riRg

A submodule Mof R™ is a sibset ofR™ for which the following condition holds: for
anyfi,fo € M andhg, hy € R, we havehif; + hofa € M. A set of elements; € M,
i = 1,...,k, is cdled agenerding setof M if for any m € M, there existh; € R,
i =1,...,ksuchthat

m = hyfy + - - + hifi. (2.1)

The Hilbert Basis Theorem tells us that every submodilee R™ has a finite generating
set. If for anym € M, the almve exprasion isunique, then{fs, ..., fy} is called a
basisof the moduleM. If a module has a basis, then it is calledree moduleFor any
(f1,..., f) € RK, the set

syz(fy, ..., fi):={(he,....h) € R | hyfy + -+ h fy = 0} (2.2)

is a module overR, called asyzygymodule Cox et al, 1998h). An important result about
syzygy modules is the following.

Proposition 2.1. Let a,b, c,d € RJ[s, t] be four relatively prime polynomials. Then the
syzygy modulesyz(a, b, c, d) is a free nodule of rani3.

Proof. The proof is rather technical and will be given in thppendix [
A rational surface in homogeneous form is defined by
P(Sv t) = (a(sa t)a b(Sv t)v C(Sv t)v d(sa t))v (23)

wherea, b, c,d € R[s, t] are bi-degre€m, n) polynomials and go@, b, c,d) = 1. We
assume tham > n and the rational surfac@ (3 is properly parametrized, i.e., the map

a(s,t) b(s,t) c(st)
d(s, t)’ d(s, t)’ d(s, t))

(s,t) —> <

is birational.
A moving surfaceof degred is a family of algebraic surfaces with parameter pairs
(s, 1):

S(x.y.zs.t) =Y fi(x,y.2bi(s.1) (2.4)
i=1
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where fi(x,y,2),i = 1,...,0 are degreé polynomials, andyj(s,t) € R[s,t],i =
1, ..., 0 are callecblending functionsvhich are linearly indepedent. A moving surface
is said tofollow the rationésurface @.3) if

d'S(a/d, b/d, c/d, s, t) = 0. (2.5)

Note that the implicit equation of the rational surfdr(g, t) is a moving surface d?(s, t).
A movingplaneis a moving surdce of degree 1. The moving plane

A(s, )X + B(s,)y + C(s, 1)z + D(s, t)

will be denoted by (s, t) := (A(s, 1), B(s, t), C(s, 1), D(s, 1)) € R[S, t]%. LetLst be the
set of the mwing planes which follow the rational surfaé¢s, t). ThusLs+ is exactly the
syzygy module sy@, b, c, d).

In this paper, we work over the real numb&sThe one exception is that when we
consider base points, we need to work over the complex nuniheksbase poinof the
rational surfacé®(s, t) is a parameter paiisp, tp) suchthatP(sp, to) = 0. Basepoints are
closely related with the implicit degree of ational surface. Generally, a rational surface
with total degree has implicit degree? —r, wherer is the number of base points counted
with multiplicities, complex ones and points at infiniBederbey andSaito (1995. The
following example illustrates why we should work ov@rinstead ofR when considering
base points.

Example 2.1. One can check that the cubic triangular parametrization
P(s.t) = (a.b.c.d) = (s(s* + 1), st (s + D>, %)

has an imficit equationx? — 4y® + 4xyz— yZ* = 0 of degree 5. OveR, theonly base
pointis(s, t) = (0, 0) of multiplicity 2. This gives an implicit degree 0f%3- 2 = 7, which
is wrong because we ignored the complex base pésmts = (+i, 0) of multiplicity 1.
Using these, the implicit dgee is the correct numbef3- 2 —1—1=15.

We say thaa basepoint of (2.3) is alocal complete intersectioifi in a neighborhood of
the basgoint, the ideal generated lay b, c, d can be generated by two polynomials. Local
complete intersection base points are discuss€bi(2004. The aticle Cox (2009 also
discusses multiplicities.

Several of our results involve conditions on fivéte base pointsf the parametrization.
By the above convention, this refers to alat and complex base points which are finite,
i.e., which correspond to parameter valsgsof a point in the affine plan€?.

Now we define theu-basis of the rational surfac2.@).

Definition 2.1. Letp, g, r € Lst be three moving planes such that
[p,q,r] = «P(s, 1) (2.6)

for some nonzero constant Thenp, q, r are said to form a-basis of the rational surface
(2.3). Here[p, q, r] is theouter product of p, q, andr defined by

P2 P3 P2 P1 P3 P4a| (P1 P2 P4 pP1 P2 P3
[P,0.r1= |02 O3 Ca|,— |01 O3 Caf, |01 G2 Ca|,— |01 C2 O3/ |. (2.7)
o I3 Ia 1 ra3 ra i rp Iy rh ro 13
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Furthemore,p, g, r are said to form aninimal u-basis of the rational surface2(3) if

1. among all the triples dd, g, r satisfying @.6), deg(p) + deg(q) + deg(r) is smallest,
and

2. among all the triples gd, g, r satisfying €.6) anditem 1, deg(p) + deg,(q) + deg,(r)
is smallest.

Here, deg(p) = max<j<a(deg(pi)) whenp = (p1, p2, p3, pa), anddeg(q), deg(r),
deg,(p), deg,(q), deg,(s) are defined similarly.

Sametimes we refer to the three polynomials
p=p:-X, g=q-X, r=r-X, X=(XYy,z1),

as theu-basis of the rational surfac2.@).

The above definition is a natural generalization of the definition ofith®sis for a
rational ruled surface. In the next section, we will prove the existence qf thasis and
derive some properties which are similar to those foptHasis of a rational ruled surface.

Remark 2.1. Geometrically, Eg. 2.6) means that the rational surfad&’s,t) can be
represented as the intersection of three moving plagneg andr without extraneous
factors. This generalizes the resulSaderberg et a(1994, where it was shown that any
rational curve is the intersgon of two moving lines. While the result in the curve case
was disovered ten gars ago, the surface case has been a mystery for a long time, and
many in the geometric modellincommunity doubted the existence of a general theory of
u-bases. However, we will shoim the next section that the-basis always asts, that is,

the generalization for #hsurfice case is also true!

Remark 2.2. One can similarly define a-basis for a total degree rational surface. For
a friangular surface of total degree if among all the tiples of p, g, r satisfying @.6),
degp) + degq) + degr) is smallest, themp, g, r are called aminimal u-basisof the
triangular rational surface.

Weiillustrate an example of the above definition.
Example 2.2. Given the canonical Steiner surface
P(s,t) = (a,b,c,d) = (2st, 2t, 25, §% + t? + 1),
one can easily verify that
p=(0,st1+s%-2s), q=(0,1+t%st,—2t), r=(l—s00)

gives au-basis of the Steiner surface. Let us show that they form a minirtzsis.

To do so, we firshotice that the two lowestedjree movig planes are; = (1, —s, 0, 0)
andra = (1, 0, —t, 0). We clam that for anyrz = (rs1, rs2, r3s, rsa) € R[s, t1%,re,ro, 13
cannot be a-basis. In fact, from

[ra, ro, r3](raast, raat, raas, —raist —rast —rass) = «P(s, t)

one has = rzsand—ra1St—rast —rass = k(s2+t2+ 1). The later equation cannot hold
since setting = t = 0 on both sides of #heguation gives G= « # 0. This means that at
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most one of the:-basis elements has degree 1, so the other elements have degree greater
than orequal to 2. Thug, g, r form a minimalu-basis.

3. Existence and propertiesof u-bases

In this section, we will first prove the existence ptbases, and then explore some
properties of thet-basis of a rational surface, especially the property that it serves as the
basis of the moving plane modulg ;. We also &plore the relation between the-basis
and the moving surface ideal. This is where tasults for general rational surfaces differ
from the results for rational ruled surfacesdamwhere local complete intersection base
points become important. For some results in this section, the proofs are the same as for
rational ruled surface case, and for these we refer the rea@éreioand Wang 20033 for
details. However, it must be emphasized that the results are all new for a general rational
suface.

Theorem 3.1. For any rational surface as defined {8.3), therealways exist three moving
planesp, g, r suchthat (2.6) holds. In fact, any basip, q,r of syza, b, c, d) satisfies

(2.6).

Proof. Since a, b, c,d are relatively prime, byProposition 2.1 the syzygy module
syz(a, b, c, d) isfree. Letp, q, r be a basis of sya, b, c, d). Natice thatp, q, r are moving
planes followingP(s, t), that is, asdur dimensional vectorg, q, r are all perpendicular to
P(s, t). HerceP(s, t) is parallel to[p, g, r], that is, there exist polynomials h € R[s, t],
whereh andh are relatively prime, such that

hip,q,r1 = hP(s,t).

Since gedh, h) = 1 andgeda, b, ¢, d) =1, h must be a nonzero constant, so that
without loss of generality, we may assumme= 1. Since(—b, a, 0, 0), (—c, 0, a, 0) and
(—d, 0,0, a) all belong toL s, there exist polynomialbjj € R[s,t],i, j = 1,2, 3 such
that

(—¢,0,a,0) = ha1p + h22q + haar,

(—=d,0,0,a) = hg1p + hz2q + haar.

Forming the outer product of the above three vector polynomials, one has
aP(s, t) = dethij)[p, ,r] = dethij)h P(s, 1),

where dethjj) is the determinat of the matrix(hg )ax3. Thush|a?, and sinilarly we
haveh|b?, h|c? andh|d2. Therdore h| gcd@?, b2, ¢, d?) = 1, i.e.,h must be a nonzero
constant. The theorem is thus proved]

Now we eplore some properties gf-bases. We first study the relation between the
u-basis and the moving plane modulg:.
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Theorem 3.2. Letp, g, r be au-basis of the rational surfac@.3). Thenp, g andr give a
basis for the modulkes: (thusLst is a free nodule), i.e., for anyl(s, t) € Ls¢, there exist
polynomials h(s, t), i = 1, 2, 3, suc that

[(s,t) = hip + h2oq + har (3.2)

and the above expression is unique. Furthermaieg (hip), deg(h2q), deg(hsr) are
bounded byleg () +deg (p)+deg (q)+deg (r)—n,anddeg,(h1p), deg,(h2q), deg,(har)
are bounded byeg,(I) + deg,(p) + deg,(q) + deg,(r) — m.

Proof. The proof is similar to the proof of Theorem 4 @henand Wang(20033 and is
based on aeries of lemmas similar to Lemmas 2, 3 and £hrenand Wang20033. The
only difference is that here the polynoméals) € R[s] is defired by(a, b, ¢, d) NR[s] =
(9). O

Remark 3.1. For atriangular surface of total degree the u-basis has the same property
as above. Furthermore, dégp), degh»>q) and deghar) are bounded by de&b +degp) +
degq) + degr) — n.

Remark 3.2. There is one important difference betweebases for curves and surfaces.
For a curve prametrization, tha-basisp, g defined inCox et al.(19983 has the poperty
that if a moving lind follows the parametrization, then there are unique polynorhjats,

i =1, 2 such hat

[(t) = hip + hoq, deghip) < degl) and degh2q) < deql).

These degree bounds are much stronger than those giVéearem 3.2The eason is that
in the curve case, the-basis remains a basis of the syzygy module after homogenization.
To see that this can fail in the surface case, recall fremample 2.2hat

p = (0,st, 1+ % —2s), q= (0, 1+1t2 st —2t), r=(1,-s,0,0)
is a minimalu-basis ofthe Steiner surface

P(s, t) = (2st, 2t, 25, 5% + t2 + 1).
When wehomogenize using the new variahigthe -basis becomes

P =0 stu’+s% —2su), §=(0,u®+t?st —2tu), T=(u,—s,0,0).

Itis easy to see thalhe moving plané = (0, s, —t, 0) cannot be expressed asifs, t, ul-

linear combination of, § andT. In fact, the homogeneous syzygy module is not a free
module, and this explains why we do not get the strong degree bounds as in the curve
case. The moral is that in order to getebasis of a surface, we must work with the affine
variabless, t. (Actually, there are some special surfaces which have homogepeloases.
These are calledpecial u-basedn Cox (2004 Sedion 5).)

An immediate onsequence ofheorems 3.And3.2is:

Corollary 3.1. p,g and r form a p-basis if and only ifp,q and r are a basis of
syz(a, b, c, d).
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Remark 3.3. From the above corollary, a-basis can be obtained by computing a basis
for the syzygy module sya, b, c, d). We alsonote thaiTheorems 3. And3.2 are closely
relaed to the Hilbert—Burch theorem, as discusselisenbud 1995 Sedion 204).

Next we dscusslie relationship of the-basis and the ideal correspondindA, t).
Theorem 3.3. Let
| :=(dx—a,dy—b,dz—c) C R[x, VY, z5,1] (3.2)
be the ideal corresponding to rational surfat®23), and g(s) € R[s] be the polynomial
defined bya, b, ¢, d) NRR[s] = (g). Then
g(p.q,r) 1 c(p,q,r). (3.3)
In particular, if the rational surfaceP(s,t) has no s-finite base points (i.e., the
s-aordinates of the base points are finite), thea:I(p, g, r).
Proof. The proofis similar to the proof of Theorem 6@henand Wang20033. O
We now introduce theénoving suréce ideal
I”:=({dx—a,dy—b,dz—c,dw — 1) NR[X, Y, z5s,t]. (3.4)
This name is justified by the following:

Theorem 3.4. Let I’ be the mowg surface ideal and ) be the polynomial as defined
in TheoremB8.3 Then I is a prime ideal, and ¢5) ¢ |’. Furthermore, f € |’ if and
only if f = 0is a noving surface following the rational surfacB(s, t). In particular, if
f(x, y, 2) = Ois the imgicit equation of the rational surfade(s, t), then f(x,y, z) € I".

Proof. Again, the proof is similar to e proof of Lemma 5 and Theorem 7 in
Chenand Wang20033. O

The relationship of the ideal generated by thdéasis and the moving surface idéal
is characterized by thfolowing theorem.

Theorem 3.5. Let I’ be the ideal defined iB3.4) and g(s) be the polynomial defined in
TheorenB.3 Then

e¢]

I"=(p.a.r): g% = J(p.q.r): g"
N

-~ o

={f | gNf e (p, q,r)for some N> 0}. (3.5)

In particular, if all finite base points of the rational surfad¥s, t) are local complete
intersections, then

I"=(p.q.r). (3.6)

The proof of Theorem 3.5follows the strategy used to prove Theorem 8 in
Chenand Wang(20033, which used lemmas 6-8 irChenand Wang(20033. However,
the key lemma-Lemma 6 in Chenand Wang (20033—should be replaced by the
following lemma.
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Lemma 3.1. Fix a parameter value s= s. Suppose, for any parameter t, the matrix
with columnsp, g, r has rank at least two atsp,t). Let @ = p(X,V,2 %,t), o =
qx,y,z,%,t) and np = r(x,Y,z %,t). Thensyz(po, go,ro) C R[X,VY, z,t]® is
generated by1 = (o, — po, 0), V2 = (=0, 0, po) andvs = (0, ro, —qo)-

Proof. We will study the Kogul complex ofpo, qo, ro over thering R = R[X, Y, z, t]3.
This consists of the maps

fo o fo 0
—0o —po 0 1o [ }
0 0 —po —% Po Jo fo
0— R R P R (Po. go. o) —> 0.

We will show that this sequence Exact meaning that, at each position, the image of
the incoming map equals the nullspace & tlutgoing map. Note that the lemma follows
immediately once we prove exactness.

Our proof will use methods from commutative algebra. In particular, given a point
p = (Xo, Yo, 20, to), we will use e local ring

f
sz{g‘f,geR,g(p);éO}.

Then thdocalized Koszul complég obtained from the above Koszul complex by replacing
Rwith Rp. Standard results in commutative algebra show that the original Koszul complex
is exact if and only if all of the localized Koszul complexes are exact.

First suppose thapo, do, ro do not all vanish ap. Then inR,, we have(po, go, ro) =
Rp. In this stuation, Exercise 15 fim Sedion 4 of Chapter 6 ofCox et al.(19983 implies
that the localized Kos# complex is exact.

Next suppose thapo, do, ro all vanish atp. This means thatp lies in the variety
V(po, do, fo) C C*. We will show thatV (po, do, ro) has dimensiorcl. The key point
is that the equationpg = o = ro = 0 give alinear system irnx, y, z whose matrix
consists of the columns, g, r evaluated atso, t). We wiite this matrix as

()

whereA is a 3x 3 matrix, B is a 1 x 3 matrix,and all entries lie ilR[t]. In this notation,
the equationspp = gp = ro = 0 can be expressed as

Xy 2A=-B. 3.7

According toDefinition 2.1, de{ A) = —«d(s, t), and the ther 3x 3 minors of M give
a(so, t), b(s, t), c(sp, t) up to sign. Now fix a parameter valtec C and consider the
following cases:

1. (s0, 1) is not a base point dP. If d(sp, t) # 0, then detA) # 0 att, so that 8.7) has a
unique solution. On the other handdifsp, t) = 0, then one o&(sp, t), b(s, t), c(So, t)
must be nonzero. This means that,a¥l has rank 3 yefA has rank<3. It follows that
(3.7) is inconsistent. Hence we have at most 1 solution wisant) is not a base point.
Putting these solutions together as we Magyves a solution set of dimensiorl.
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2. (%0, 1) is a basoint of P. This means that the above matit has rank<3 att. Since
M always has rank 2 by hypothesis, the rank is exactly 2tatif A also has rank 2 at
t, then B.7) has a 1-dirensional space of solutions, whileAfhas rank<2, the system
is inconsistent. Thus each of tha&econtributes a solution set of dimensiern.

Since here are only finitely many/s in the second case, it follows that all solutions form
a varidy of dimension<1, as claimed.

It follows that in the local ringRp, the three Eements pg, go, ro generate an ideal
whose variety has dimension at most 1. Since these polynomials varpsthatvariety is
nonempty and hence has dimension at leasinte each equation drops the dimension
by at most 1. It follevs that the dimension is exactly 1. Then standard results in
commutative algebra (specifically, Corollary 1.6.14(b), Theorem 2.1.2(c), and Theorem
2.1.9 ofBruns and Herzo@993) imply that the localized Koszul complex is exact]

We can explain the rank condition appearingliemma 3.1in terms of bas points as
follows.

Lemma 3.2. The finitebase points oP(s, t) are all local complete intersections if and
only if the matrixwith column9, g, r has rank at leas for all finite values of st.

Proof. This follows from the argument given in Case 2 of Remark 5.1Buoké efal.
(2003. O

Now we sketbt theproof of Theorem 3.5

Forany f e I’, there exists a nonnegative integérsuchthatgN f € (p,qg,r) by a
lemma similar 6 Lemma 8 inChenand Wang20033. So f € (p, q,r) : (gV) and hence
I”c (p,q,r):g>.

On the othehand, for anyf € (p,q,r) : g°, there exists a nonnegative integér
suchthat f € (p,q,r) : (gN). SogNf € (p.qg,r) c I’. By Theorem 3.4f € I’. Thus
(p,q,r):g*® C I'. Thereforethe first equality in 8.5) holds.

The proof of 8.6) follows by an argument similarot the proof of Theorem 8 in
Chenand Wang20033. O

Remark 3.4. The above theorems are also valid for flhéasis of a triangular rational
suface.

Remark 3.5. For arational ruled surface, all base parae local complete intersections,
and thus 8.6) always holds. While for a general rational surfac g maynot be true.

4. Implicitization algorithm

From the heorems presented in the last section, we can devise a new algorithm to
compute the implicit equation of the rational surféts, t).

Algorithm MU-BASISIMP

Input: The parametric equation of a rational surface, assumed to be proper.
Output: The implicit equation of the rational surface.
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Step 1 Conpute the implicit degree of the rational surfaBés, t) = (a(s,t), b(s,t),
c(s, 1), d(s,t)) and let it bel. Thusl is the nunber of intersection points of a
random line

a1X + By + »1Z+ 81 = aoX + oy + y2z+ 52 =0

with the surface. The values corresponding to intersection points are roots of the
resutant

h(s) = Regaia + B1b + y1¢ + 81d, aoa + B2b + yoC + 82d, 1).

Howeverh(s) has extraneous roots coming from the base points. To remove them,
make a different random choicg, .. ., 5s. Using these inftte above resultant
formula, we get a polynomidi(s) having the same extraneous root$1és). Then

it follows easily that

| = degh(s)) — deggcdh(s), h(s)))

since he parametrization is proper. Now go to the next step.

Step 2 For atensor product surface of bi-degrée, n), if | = 2mn (or for a triangular
surface of total degrem, if | = n2), thenP(s, t) does not have base points and the
Dixon resultant (or the classical multivagatsultant for a triangular surface) gives
the implicit equation oP(s, t). Let F(X, y, z) be ths resultant and go t&tep 7.
Otherwise, go to the next step.

Step 3 Conpute au-basisp, g, r for the rational surfac®(s, t) and the polynomiadj(s)
defined inTheorem 3.3Now setJ := (p,q,r), wherep = p-X,q = q-X,
r=r.X, forX =(x,y,z 1). Then @ to the net step.

Step 4 Compute a Grébner basis fal under a monomial order such thiais greater
than any monomial irs, X, y, z and s is greater than any monomial ir, y, z.
Let F(x,y,2) be the polynomial in the Grébner basis which involves only
X, Y,z (if any). If degF) = I, then go toStep 7. Otherwise relabel J :=
(p,q,r)(RI[x, Y, z,s] and @ to the nat step.

Step 5 Compute a Grobner basis for the idehl g under a monomial order such theits
greater than any monomial i y, z. Then elabelJ := J : g and go to the next
step.

Step 6 Let F(X, y, z) be the polynomial in the Grobner basis dfwhich involvesonly
X, Y, z (if any). If deg'F) = I, then go toStep 7. Otherwise, go t&tep 5.

Step 7 Output F(x, y, 2).

Remark 4.1. By Theorems 3.4nd3.5, we know that the implicit equatiofr lies in the
saturation(p, g.r) : g*°. ThusF € (p,q,r) : gN for some integeN > 0. This proves
termination and correctness of the algorithm.

The minimalN for whichF € (p, q,r) : gN tells us how many times the loop 8teps
5and6 is performed. We obtain the a priori bouhd < | as follows. Sincé is the degree
of F, wecan divided' F by dx — a, dy — b, dz— c to obtain

d'F e (dx —a,dy—Db,dz—c).
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Ifi +j +k <1, then multiply by x'yl zZK and usedx(dx — a) + a, etc.,to obtain
a'bickd'-1-XF ¢ (dx —a,dy—b,dz—c).

It follows that(a, b, ¢, d)' F ¢ (dx—a, dy—b,dz—c). Sinceg € (a, b, ¢, d), we sedhat
o F € (dx—a,dy—b,dz—c), and therF € (p,q.r) : g follows from Theorem 3.3
However,N < | might not the optimal bound. We have tested dozens of examples, and
in every example, we found thatfNF < (p, g, r) for some integeN < my — 1, wheremy
is the highest multiplicity of the base points of the rational surfa¢et). We mnjecture
that this is always true, though we have not been able to find a proof.
Another approach would be to replace the looftieps 5 and6 with a computation of
the saturation ofp, q,r) N R[X, V, z, s] with respect tag, say uing thesat command
from theelim.1ib library of Singular However, he minimalN that works forF may be
strictly smaller than the saturation exponent pf g, r) N RR[X, Yy, z, s] with respect ta).

In the presence of base points, the examples we have tested indicate that the above
algorithm may be more efficient than the traditional technique based on directly computing
a Grébner basis for the idedl’, especially for rational surfaces of low degree. The
complexity of this algorithm is not easy to determine, given the many Grdbner basis
computations involved. If we ignore the size of the coefficients, then we can informally
explain the efficiency of the algorithm as follows. While computing the Grobner basis
of 1" involves six variable, y, z, w, s, t and four polynomials, computing the Grébner
basis for the idealp, g, r) involves only five variableg, y, z, s, t and three polynomials.
Furthemore, computingg(s) and syza, b, c, d) is relatively efficient since only two
variabless, t are involved. For low degree rational surfaces, the examples seem to suggest
that the degree of the-basis is also low. Thus computation costs decrease.

The computations were performed on a PC machine with Pentium 4 2.40 GHz CPU and
256 MB RAM using the symbolic computation softweéBmgular

Example 4.1. Consider tle cubic pararetric surface defined by

a =gt —t? b=—s+s°+st?,

c=—t+st+s’t—t?, d=-t4t+t%
It has four base pointél, 0, 1), (—1,0, 1), (0,0, 1), and(0, 1, 0), all simgde, so that its
implicit degree is 3 — 4 = 5. A u-basis is computed as
p=[-25°—5+20,2°—1 —s+1],
g=[-2ts—3t+s+1,02ts+2t —s—1, —t+ 1],
r=[ts+ 2t +4s* + 6s° — 45— 4,
—2t,—2ts—t —4s* — 453+ 4s+ 2, ts+t + 25° — 2).
Since all the base points are local complete intersections, the implicit equation of the
parametric surface can be obtained by computing the Grobner basis of thépdeal ):
F(x,y,2) = 8x> — 5x*y — 4x3y? — 12x*z + 10x3yz + 4x%y?z — 2x37% + x°yZ
+ 4xy?Z? + 11x%Z° — 10xy Z — 4y?Z° — 6xZ* + 4y 7 + 2° + 193y
+ 4x2y? — 22x37 — 46x%yz — 12xy?z + 47x%Z° + 38xyZ + 8y?Z?
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—3X%Z —10yZ + 72* + 2x3 + 2x%y + 4xy? — 12x%°z — 8xyz
— 4y?7 + 14xZ 4 5yZ — 52° + 2x% — Xy + 4xz
~522 - 2x+y+3z-1=0.

The computation time is negligible. If one computes the Grobner basis, dhen the
computation time is 31 ms (milliseconds).

Example4.2. Consider tle cubic pararatric surface defined by

a=1t%—3t3 - 5st? — 3%t — <8,

b = —5t? + 2st’> — 3s? — 5s’t — 5s°,

c =t2 + 5t3 — 5st? + 5% — 55%t + 3s°,

d = —4t? — 2t3 + 4st? + 3s% — 45%t — 55°.

The base poings, t) = (0, 0) has multiplicity 4, and the degree of the implicit equation

is 32 — 4 = 5. One can check that the base point i®eal complée intersection, so the
implicit equation can be obtained by computing the Grébner basis of the (dealr).

The computation time was 31 ms. However, it took 5562 ms to compute the Grobner basis
of I'.

Example 4.3. Consider the lgjuadratic surface parametrized by

a=4— 4% 4st+4s’ — 352,  b=1-2t>—5st+ 3%t — 35%t2,
c=—5+st+55% — 5522,  d =1+ 52— st+4 25’ —4s’t2,
The only base point occurs at= oo, t = 0 and has multiplicity 2. Hence the implicit
degree of the surface is22—2 = 6. Again the base point is a local complete intersection.

Theu-basis was computed in 125 ms and the Grébner bas$is of, r ) in 31 ms. However,
it took 36 172 ms to compute the Grébner basi$’of

Example4.4. In our final example, consider the biquadratic surface parameterized by

a=t2+st+ 252 — 2%, b=t + 2st+ st® 4+ 25 — $%t + 25°t2,
C = —t?+ st+ 2st? + 2% — §’t — 25%t2, d = 2st — 2st? — 252t — s%t2,

P(s, t) has a base point &, t) = (0, 0) of multiplicity 4, and the implicit degree d®(s, t)
is 4. One can compute@basis as

p=[—85>+11s® — 45+ 4, 55> — 65> + 85 — 4, 3s° — 55° — 45, 4% + §% + 2],
q = [—22953Q@s — 50278 + 139288 — 17471%+ 194136

13116@s + 155206 — 870552 + 85766 — 194136

65580s + 104928 — 52233 + 88955k,

13116@s + 100556 — 696442 — 58603 + 97064,
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r = [—1344390s? + 34075368 — 22657890 — 5710808° — 1815632
— 23392736 — 4984080 13443905 — 251958365 -+ 10711400
+ 3569255° + 10741942 + 18408656 + 4984080
1344390s? — 17483628s — 11946490 + 21415533
— 89263K2 + 4984088, —113912465 + 6590790
+ 2855404° + 60752032 + 9704573 — 2492040.

Since he 2 x 2 minors of the matrixwith columnsp, q andr vanishsimultaneously
at (0, 0), thebase point0, 0) is not a local complete intersection. In fact, the generator
F(x,y,2 of {(p,q,r)R[x, Y, z] is not the implicit equation oP(s, t) (rather, it is the
implicit equation multiplied by an extraneous factor). To get the exact implicit equation, we
proceed withSteps 5 and6. We compute a Grobner basis fdr: g under a monomial order
suchthats is greater than any monomial i y, z. Then the polynomial in the Grébner
basis which involves only, y, zis the implicit equation oP(s, t):

F(X,y,2) = 3583&" — 128483y + 678%y? — 23036 y° + 11804*
— 58603z + 4160X°yz + 528 y’z — 5900y°z 4 26134°Z>
— 6027XyZ + 18146/%7° + 3467 + 14158/ 7 + 355&*
+ 53373 — 3632K%y — 66840k y? + 44040/° — 4938%?z
+ 84030 yz— 22648’z — 28557 + 1079y 7 — 9813
+ 60282 — 85025y + 60041y + 2323% z — 134537+ 188067
— 27627 + 33238/ — 76762+ 7028= 0.

The total computation time was 47 ms. However, it took 843 ms to compute the Grébner
basis ofl’.

5. Conclusionsand problemsfor further research

In this paper, we generalize the notion ofiebasis to an arbitrary rational parametric
suface. We show that th@-basis of any rational surface always exists, the geometric
significance of which is that any rational surface can be expressed as the intersection of
three moving planes without extraneous factors! We also show thathasis serves
as a basis of the moving plane module of thdonal surface. The relationship of the
u-basis and the moving surface ideal is also discussed. Based on the relationship, a new
technique for computing the implicit equation of a rational surface is presented. Examples
indicate that the new algorithm may be more efficient than the algorithm based on direct
computation of a Grébner basis of the moving surface ideal.

However, there are still some interesting problems worthy of further research. We list
them below.

e Is there a more efficient method for computinghases, especially minimal-bases?
Currently, we rely on syzygy module computations.

e What can be said about the degrees of the polynomials in a mininbalsis?
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Is there a more efficient method for ddng the implicit equation from a minimal
u-basis? Right now, we have to compute a Grébner basis of the(igdealr).

We mnjecture inRemark 4.1that the minimalN suchthath F € (p,q,r) NR[s]
satisfiesN < mp — 1. It would be nice to have a proof or counterexample.

Do u-bases have other applications? For example, can we use a mjnitvess to
compute the singular locus of a rational surface?

It is aninteresting problem to analyze the complexity of the algorithm and compare it
with a drect Grobner basis computation.

e In the curve case, the resultant ofiabasis gives thémplicit equation. It this true in
the surface case? Example 2.2we saw thathe Steiner surface has a minimabasis
given by

p=sty+(1+s)z—-2s, q=1A+t})y+stz—2t, r=x-sy.

Using the classical multivariate resultant, one can compute that

Regp,q,r) = y*F(x,y, 2),

whereF(x, y,z) = 0 is the implicit equation of the Steiner surface. The extraneous
factory? is mysterious but may be related to the failure of theasisto be a basis of

the homogenized syzygy module. More work is needed to understand this extraneous
factor.

¢ Inthe surface case, the resultant Res— a, dy — b, dz— c¢) vanisheddentically when
there are baspoints. However, the resultant Rg@sq, r) of a u-basis need not vanish
identically in this situation. A preliminary analysis suggests the following:

(1) When a finite base point blows up to a liryénig on the surface, the resultant of the
wn-basis is unaffected. Furthermore, this case occurs if and only if the base point is
a local complete intersection.

(2) When a finite base point blows up to a plane curve lying on the surface (but on not
aline), the resultant of tha-basis acquires an extraneous factor consisting of the
equation of the plane to some (currently unknown) power.

(3) When a finite base point blows up to a space curve lying on the surface (but not on
a plane)the resultant of the-basis vanisheglentically.

We do not yet understand how base points at infinity affect Res, r).
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Appendix

The proof of Proposition 2.1uses standard results and techniques in commutative
algebra. We include a proof for the convenience of readers in the geometric modeling
community who wish to learn more commutative algebra.

Proof. Let F be a field. We will prove the more general result that given polynomials
f1,..., fk € R= F[s, t], the syzygy module sy41, ..., fx) is afree module.

A finitely generatedr-module M is said to beprojectiveif there is another finitely
generatedR-moduleN such ttat there is arkR-module isomorphism

M@ N~ RS, for somes > 1.

SeeCox et al.(1998a p. 230) andEisenbud(1995 p. 615) for more background on
projective modules.

The Quillen—Suslin Theorem asserts evprgjective module over a polynomial ring
is free. This result was conjectured by Serre in 1955 and, in the case of two variables
considered here, was proved by Seshadriin 1958. Quillen and Suslin independently showed
that Sere’s conjecture is true fan variables in 1976 se€ox et al.(1998a p. 231).

Hence it siffices to prove that sy, . . ., fx) is projective For this,we need taliscuss
local rings. Gven apoint p € F2, thelocal ring of R at p is defired by

f
Rp = {5‘ f,geR, g(p)s«éO}.
Then define théocal syzygy modulby
syzy(f1..... fi) = {(h1,.... ) € RS [ hafy+ -+ hfi = 0},

This is now a submodule d?',‘). By Eisenbud1995 Ex. 4.11 on p. 136), sy41, ..., fk)
is projective if and only if syg(f1,..., fk) is free for all p € F2. (In general, given an
R-moduleM, one can define itlcalization My. Thenone says tha¥ is locally freeif all
of its localizations are free. The aboveeesise from Eisenbud asserts thaMfis finitely
generated, thel locally free if and only if it is projective.)

It follows that we need only prove that S‘nyl, ..., fy)isfreeforallp F2. For this,
we use lhe ideal

lp=(f1,..., fx) ={hafa+---+hefc | hy, ..., hx € Rp} C Rp.
We first dispose of two easy cases:

o If Iy = {0}, then everyf; = 0, in which case syg( fi,..., T = R‘é is free.

e If Iy = Rp, thenCox et al.(1998a Ex. 6(b) on p. 231) implies that syzf1, ..., fi) is
projective. But over a local ring, every projective module is freeCmx et al.(1998a
Theorem (4.13) on p. 231).

Hence we may assume tH&% # I # Rp.
Every finitely generate@®p-moduleMp has a minimal free resolution

.+ —> RS —> Ry > R3 > M, — 0.
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Minimal means that the maﬁ?J — Mp is determined by a minimal set of generators of

Mp, the mapRtF’, — Rg is determined by a minimal set of generators of the syzygies on the
minimal generators, and so on. Free resolutions are discus€axiat al.(1998a Chater
6, Section 1), and minimal free restins over local rings are discussedHisenbud
(1995 Lemma 19.4 on p. 473).

Suppose for the moment that tley,-module Ry /1, has a minimal resolution of the
form

0— RS — R) — Ry — Ry/lp — 0. (5.1)

Here, the mapR, — Rp/Ip uses the nmimal generator ofRy/1p given by the coset
of 1in Rp/Ip, R} — Rp comes from minimal generators b, andRy — Rg comes
from minimal generators on the syzygies on the minimal generatorg.dfhe fact that
the reslution ends atR® means that the syzygies on the minimal generatork,aire
free. By Cox et al.(1998a Ex. 6(a) on p. 231), it follows that the syzygies on any set of
generators of;, are projective and hence free since we are working over a local ring. Thus
syzy(fa, ..., fk) is free provided we can prove the existence of a free resolution of the
form (5.1).

We will prove this using theAuslander—-Buchsbaum formuylavhich computes the
number of free modules in the minimal free resolution. If the free resolutiolNhasnzero
free modules, then we say that fiiojective dimensiois N — 1. For example, ing.1), we
haveN = 3 if Rg # {0}, andN < 3 in any case. In this language, proving.{) means
showing thatR, /1, has projective dimensiog 2.

According toEisenbud(1995 Theorem 19.9 on p. 475), the Auslander—-Buchsbaum
formula for the projective dimension &,/1, is

projective dimensior= depthim, Rp) — depthimp, Rp/Ip), (5.2)
where
mp = {h e Ry | h(p) =0}

is the ungue maximal ideal oRp.

In general, depth is a sophisticated cept, but for a Cohen—Macaulay ring, depth is
the same ss.codimension byEisenbud 1995 p. 452), and byEisenbud 1995 Proposition
18.9 on p. 452), every polynomial ring is Cohen—Macaulay. Then

depﬂ'(mp, Rp)COdirT(mp, Rp) = 2, (53)

where the last equality follows sineey, defines the poinp and Ry, is a two-dimensional
local ring (sinceRK(s, t] has two variables).
Combining 6.2) and 6.3), we obtain
projective dimensior= deptiimp, Rp) — depthimp, Rp/1p)
< depthmp, Rp)
As noted above,his proves the existence 0b.0) and complées the proof of the
theorem. O
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Finally, we should remark thaProposition 2.1is false in three variables. IR =
F[s, t, u], thenitis easy to show that the syzygy module

syz(s, t,u) C R®
has minimal generators given by
(tv _S, O)s (uv O, _S)s (07 us _t)

If the syzygy module were free, then there would be no nontrivial syzygies on the minimal
generators. Thus

u(ta =S, 0) - t(ua Oa _S) + S(Oa u, _t) = (Oa 07 0)

proves that sy, t, u) is not free ovelR = K[s, t, u].
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