
Web Intelligence and Agent Systems: An international journal 5 (2007) 215–231 215
IOS Press

The LighTS tuple space framework and its
customization for context-aware applications

Davide Balzarotti∗, Paolo Costa and Gian Pietro Picco
Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy

Abstract. Our experience with using the tuple space abstraction in context-aware applications, evidenced that the traditional
Linda matching semantics based on value equality are not appropriate for this domain, where queries often require the ability to
match on value ranges, deal with uncertainty, and perform data aggregation. Originally developed as the core tuple space layer
for the LIME middleware, LIGHTS provides a flexible framework that makes it easy to extend the tuple space in many ways,
including changing the back-end implementation, redefining the matching semantics, and providing new constructs. In this paper,
we describe the design and programming interface of LIGHTS, and show how its flexible architecture can be easily extended to
define novel constructs supporting the development of context-aware applications.

Keywords: Tuple space, context-awareness, fuzzy logic

1. Introduction

The tuple space model, originally introduced by Lin-
da [9] and once popular in parallel programming, is now
experiencing a second wave of popularity in the con-
text of distributed and multi-agent systems. Commer-
cial systems (e.g., TSpaces [1], JavaSpaces [2], GigaS-
paces [3]) as well as academic ones (e.g., MARS [6],
TuCSoN [15], Klaim [14], LIME [13]) are currently
available.

In this paper,1 we present LIGHTS, a new, lightweight,
customizable tuple space framework. Differently from
many of the above systems, LIGHTSwas designed with
minimality and extensibility in mind, by focusing on
providingsupport for the basic Linda operations in alo-
cal implementation of a tuple space, which can be used
directly (e.g., for supporting coordination among co-
located agents) or as a stepping stone for a more sophis-
ticated distributed tuple space implementation. Indeed,
LIGHTSwas originally developed by the last author as
the core local tuple space support for the LIMEsystem,
which builds distributed federation of tuple spaces as

∗Corresponding author. E-mail: balzarot@elet.polimi.it.
1A preliminary version of this paper appeared in [16].

well as reactive and transactional features on top of
LIGHTS.

In LIGHTS, the lack of distribution and other so-
phisticated features is compensated by a design that
fosters high degrees of customization and flexibility.
In essence, the tuple space abstraction provided by
LIGHTSwas conceived as aframework (in the object-
oriented sense) rather than a closedsystem. The core,
built-in instantiation of such framework provides the
traditional Linda abstractions, similarly to many other
systems. At the same time, however, the modularity
and encapsulation provided by its object-oriented de-
sign leaves room for customization, empowering the
programmer with the ability to easily change perfor-
mance aspects (e.g., changing the tuple space engine)
or semantic features (e.g., redefine matching rules or
add new features). This flexibility and extensibility,
together with its small footprint and simple design, are
the defining features of LIGHTS.

In particular, in this paper we extend LIGHTSwith
a number of constructs that are expressly conceived
to support context-aware applications. As we discuss
in more detail later, tuple spaces can be exploited to
store not only application data, but also contextual data
like location, data collected by sensors, and other data
acquired from the physical environment. This choice

1570-1263/07/$17.00 2007 – IOS Press and the authors. All rights reserved



216 D. Balzarotti et al. / The LighTS tuple space framework and its customization for context-aware applications

empowers application programmers with the ability to
deal with both kinds of data – application and context –
under a single, unified paradigm, therefore leveraging
off the advantages of the tuple space model, e.g., in
terms of decoupling. Nevertheless, context-aware ap-
plications demand matching rules and tuple space ac-
cess capabilities normally not found in available tuple
space systems, like the ability to match on ranges of
values, express uncertainty about data, and perform da-
ta aggregation. In this work, we show how these ca-
pabilities can be easily built as extensions to our tuple
space framework.

Therefore, in this work we put forth two contribu-
tions. First, we present the overall architecture and pro-
gramming interface of LIGHTSand describe its mecha-
nisms supporting customization and extension. Then,
we exploit these mechanisms to design and implement
extensions geared towards context-aware applications.
The latter not only demonstrates the versatility of our
framework, but also provides expressive and efficient
constructs delivering the power of the tuple space ab-
straction in this novel application domain, to a level
currently not found in available tuple space platforms.

The paper is organized as follows. Section 2 is a
concise overview of Linda. Section 3 presents the ap-
plication programming interface and overall design of
LIGHTS, illustrating how the framework can be easily
extended both in terms of performance and semantics.
Section 4 discusses the extensions we developed to ad-
dress some of the requirements posed by context-aware
applications. Section 5 briefly reports about implemen-
tation details and availability of the software package.
Section 6 places LIGHTSin the context of related work.
Finally, Section 7 ends the paper with brief concluding
remarks.

2. Linda in a nutshell

In Linda, processes communicate through a shared
tuple space that acts as a repository of elementary data
structures, ortuples. A tuple space is a multiset of tu-
ples, accessed concurrently by several processes. Each
tuple is a sequence of typed fields, as in〈 "foo", 9,
27.5 〉, containing the information being communi-
cated. Tuples are added to a tuple space by performing
anout(t) operation, and can be removed by executing
in(p). Tuples are anonymous, thus their selection takes
place through pattern matching on the tuple content.
The argumentp is often called atemplate or pattern,
and its fields contain eitheractuals or formals. Actuals

are values; the fields of the previous tuple are all actuals,
while the last two fields of〈 "foo", ?integer,
?float 〉 are formals. Formals act like “wild cards”,
and are matched against actuals when selecting a tuple
from the tuple space. For instance, the template above
matches the tuple defined earlier. If multiple tuples
match a template, the one returned byin is selected
non-deterministically. Tuples can also be read from the
tuple space using the non-destructiverd(p) operation.
Bothin andrd are blocking, i.e., if no matching tuple is
available in the tuple space the process performing the
operation is suspended until a matching tuple becomes
available. A typical extension to this synchronous mod-
el is the provision of a pair of asynchronous primitives
inp and rdp, called probes, that allow non-blocking
access to the tuple space. Moreover, some variants of
Linda (e.g. [17]) provide alsobulk operations, which
can be used to retrieve all matching tuples in one step.2

3. LighTS: A lightweight, customizable tuple
space framework

In this section we present the core features of
LIGHTS, followed by the mechanisms for customizing
and extending the framework, which are exploited in
Section 4 to build new extensions features useful for
context-aware applications.

3.1. Programming tuple space interactions in LighTS

The core of LIGHTSis constituted by two packages.
Thelights.interfaces package contains the in-
terfaces that model the fundamental concepts of Lin-
da (i.e., tuple spaces, tuples, and fields). Instead, the
lights package contains a built-in implementation
of these interfaces, providing the base for extending the
framework.

3.1.1. Tuple spaces
Figure 1 shows3 the interfaceITupleSpace,

which must be implemented by every tuple space ob-
ject. The interface contains the basic Linda operations
described in Section 2, i.e., insertion (out), blocking
queries (in, rd), probes (inp, rdp), and bulk oper-

2Linda implementations often include also anevaloperation which
provides dynamic process creation and enables deferred evaluation
of tuple fields. For the purposes of this work, however, we do not
consider this operation further.

3Exceptions are omitted for the sake of readability.



D. Balzarotti et al. / The LighTS tuple space framework and its customization for context-aware applications 217

ations (outg, ing, rdg). Tuple spaces are expect-
ed to be created with a name, enabling an application
to manage multiple tuple spaces, as suggested in [7].
The name of a tuple space can be retrieved through the
methodgetName. Finally,ITupleSpace provides
also a methodcount that returns the number of tuples
currently in the tuple space.

Being an interface,ITupleSpace specifies only
a syntactic contract between the implementor and the
user of the implementing object, and nothing can be
said about the semantics of the actual implementation.
Therefore, for instance it is not possible to prescribe
that accesses to the tuple space must be mutually ex-
clusive, as usually required by Linda. This is an in-
trinsic limitation in expressivenes of the Java language
(and other object-oriented approaches). Nevertheless,
the built-in TupleSpace class, which implements
ITupleSpace, behaves like a traditional Linda tuple
space by preserving atomicity of operations. Moreover,
tuple insertion is performed by introducing in the tuple
space acopy of thetuple parameter, to prevent side
effects through aliasing. Since tuples may contain com-
plex objects, copying relies on the semantics of Java se-
rialization, which already deals with aliases inside ob-
ject graphs. Upon insertion, a deep copy of thetuple
parameter is obtained through serialization and imme-
diate deserialization. A similar process is performed
when a non-destructive read operation (rd, rdp, or
rdg) is performed. Nevertheless, ourTupleSpace
implementation can be configured to reduce the impact
of serialization and trade space for speed, by storing
a copy of the byte array containing the serialized tu-
ple together with the tuple itself. This way, read op-
erations are faster since they need to perform only a
deserialization step to return their result. The desired
configuration is specified at creation time through the
constructor, which also enables setting the name of the
tuple space.

3.1.2. Tuples
Figure 1 shows the interfaceITuple, which pro-

vides methods for manipulating tuples. A field at a giv-
en position in the tuple (from 0 tolength()-1) can be
read (get), changed (set), or removed (removeAt).
A new field can be appended at the end of the tuple
(add), as well as at any other position (insertAt).
The fields composing the tuple can also be read collec-
tively into an array (getFields). No syntactic dis-
tinction is made between tuples and templates – they
are bothITuple objects.

public interface ITupleSpace {

String getName();

void out(ITuple tuple);

void outg(ITuple[] tuples);

ITuple in(ITuple template);

ITuple inp(ITuple template);

ITuple[] ing(ITuple template);

ITuple rd(ITuple template);

ITuple rdp(ITuple template);

ITuple[] rdg(ITuple template);

int count(ITuple template);

}

public interface ITuple {

ITuple add(IField field);

ITuple set(IField field, int index);

IField get(int index);

ITuple insertAt(IField field, int index);

ITuple removeAt(int index);

IField[] getFields();

int length();

boolean matches(ITuple tuple);

}

public interface IField {

Class getType();

IField setType(Class classObj);

boolean matches(IField field);

}

public interface IValuedField extends IField {

boolean isFormal();

java.io.Serializable getValue();

IValuedField setValue(java.io.Serializable obj);

}

Fig. 1. The core interfaces of LIGHTS.

The key functionality, however, is provided by the
matches method, which is expected to embody the
rules governing tuple matching and therefore is the
one whose redefinition enables alternative semantics.
This method is assumed to be automatically invoked
by the run-time whenever a match must be resolved,
and to proceed by comparing the tuple object on which
matches is invoked – behaving as a template – against
the tuple passed as a parameter. By virtue of encapsu-
lation, the matching rule implemented inmatches is
entirely dependent on the template’s class, implement-
ingITuple. Nevertheless, by virtue of polymorphism
and dynamic typing, the behavior of the run-time is
the same regardless of the details of the matching rule,
since the only assumption it makes is to operate on a
template implementingITuple.

The default semantics ofmatches as implemented
in the built-in Tuple is the traditional one. When
matches is invoked on a template against a parameter
tuple it returnstrue if:

1. the template and the tuple have the same arity,
and

2. theith template field matches theith tuple field.

Field matching is described next.



218 D. Balzarotti et al. / The LighTS tuple space framework and its customization for context-aware applications

3.1.3. Fields
Figure 1 shows the interfaces representing tuple

fields. IField provides the minimal abstraction of
a typed tuple field. Methods are provided for ac-
cessing the field’s type (getType, setType). As
with ITuple,IField contains a methodmatches,
where the implementing classes specify the matching
semantics, as exemplified later on.

The features ofIField are enough to represent a
formal but not anactual field, in that there is no no-
tion of a field’s value. This abstraction is provided by
the interfaceIValuedFieldwhich extendsIField
with the accessors necessary to deal with the value
(getValue, setValue), as well as with a way to
test whether the current field is a formal (isFormal).
Note thatsetValue accepts anyObject as a pa-
rameter. Moreover, the field’s type is automatically set
to the parameter’s class.

The need for two separate interfaces is not immedi-
ately evident if one considers only the pragmatic need
of supporting the basic Linda operations. As a matter
of fact, the built-inField implements both interfaces.
However, this separation provides a cleaner decoupling
when matching semantics that do not rely on exact val-
ue match are considered, as in the examples we provide
later in this and the next section. The built-inField is
defined so thatthis.matches(f) returnstrue if:

1. this andf have the same type;
2. if thisandf are both actuals (i.e.,isFormal()

returnsfalse for both of them) they also have
the same value.

Equality of types and values relies on theequals
method – as usual in Java.

3.1.4. Programming example
Let us walk through the simple task of inserting two

tuples in a tuple space and retrieving one of them.
We assume a statementimport lights.*has been
specified. First, we need to create a tuple space:

ITupleSpace ts = new TupleSpace
("Authors");

Then, we need to create the two tuples. Fields can be
created as:

IField f1 = new Field().setValue
("Paolo");

IField f2 = new Field().setValue
(new Integer(10));

and then assembled in a tuple:

ITuple t1 = new Tuple();
t1.add(f1);
t1.add(f2);

In alternative, we can leverage of the fact thatITuple
methods always return anITupleobject (although not
strictly necessary from a purely semantic standpoint)
and combine multiple statements in a single one:

ITuple t2 = new Tuple()
.add(new Field().setValue("Davide"))
.add(new Field().setValue

(new Integer(20));

The tuples can be inserted one at a time, or together in
a single atomic step, as in:

ts.outg(new ITuple[] = {t1, t2});

Templates are created just like tuples:

ITuple p = new Tuple().add(new Field()
.setType(String.class)
.add(new Field().setValue

(new Integer(10));

Finally, the probe operation

ITuple result = ts.rdp(p);

will return a copy of the first tuple inresult. More
examples are available at [4,5].

3.2. Additional programming features

The packagelights.utils contains a couple
of programming features that, albeit not fundamental,
greatly simplify the programming chore.

3.2.1. Accessing fields by name
Tuples often consist of several fields, to enable a

highly selective pattern matching. However, access to
these fields is based on their position in the tuple, which
makes programmingcumbersome since the binding be-
tween the field and its meaning remains implicitly en-
coded in the field position.

To simplify the programming task of accessing a tu-
ple’s fields, the packagelights.utils.labels
provides support for associating a symbolic name
to a field. Two interfaces,ILabeledField and
ILabeledTuple essentially provide accessors for
setting and retrieving a field’s label, and for retrieving a
field given its label, respectively. In the same package,
LabeledField andLabeledTuple provide spe-
cializations of the core classes in thelights package,
providing support for labels.



D. Balzarotti et al. / The LighTS tuple space framework and its customization for context-aware applications 219

To see why this feature is useful in practice, con-
sider a tuple〈 lastName, firstName, phone,
dept, salary 〉 representing an employee’s data.
Printing the full name of the employee followed by her
salary is normally achieved by:

System.out.println(t.get(0)+" "
+t.get(1)+", "+t.get(4));

Assuming the proper labels have been attached to the
tuple fields, the code above can be rewritten into the
more understandable:

System.out.println(t.get("Last name")
+" "+t.get("First name")+",
"+t.get("Salary");

As we discuss later on, this simple functionality be-
comes key in providing enhanced expressiveness in
some of advanced features discussed in the rest of this
paper.

3.2.2. From objects to tuples – and back
Using the tuple space abstraction in the context of

an a object-oriented language like Java often forces the
programmer to face clashing programming needs. Ac-
cording to the base principles of object-orientation, ob-
jects must encapsulate their own data to prevent unau-
thorized access and to avoid undesired side effects. On
the other hand, tuples must expose all of their fields
to allow pattern matching. Consider an instance of a
classEmployee holding information about the name
of an employee, her phone number, the department she
is with, and her monthly salary. If this information
is to be stored in a tuple space, there are usually two
alternatives. The first one is to represent it as a tu-
ple with a single field containing theEmployee ob-
ject. However, this solution greatly limits the power
of pattern matching, preventing queries as “find all the
employers working in R&D earning less than $1000
a month”. The alternative is for the programmer to
manually “flatten” the object into a tuple (e.g., with
the same format we used when discussing labels) each
time anout is performed, and perform the opposite
process each time a tuple is retrieved from the tuple
space, which is clearly undesirable and awkward. To
help the programmer deal with this frequent and error-
prone task in a more organized way, LIGHTSprovides
support through the interfaceTuplable and the class
ObjectTuple, shown in Fig. 2.

To enable flattening of an object into a tuple, the
object must implement the interfaceTuplable. The
methodtoTuple contains the application-dependent

public interface Tuplable {

ITuple toTuple();

void setFromTuple(ITuple tuple);

}

public class ObjectTuple extends Tuple {

public ObjectTuple(Class c);

public Tuplable getObject();

public String getClassName();

}

Fig. 2. Types for flattening objects into tuples – and vice versa.

code responsible for flattening the object. Transform-
ing the object into a tuple and inserting it in the tuple
space can then be done straightforwardly as in

ts.out(e.toTuple());

where we assume, for instance, thate is of type
Employee and implementsTuplable by providing
the appropriate code.

Retrieving an object back from a tuple is only a
little more complicated. The necessary processing
must be encoded by the programmer into the method
setFromTuple, which allows to set an object’s at-
tributes based on the content of the parameter tuple.
However, this requires the programmer to manually
create an “empty” copy of the object and set its at-
tributes, each time. To further simplify the process,
LIGHTSprovides theObjectTuple class, which ex-
tends the defaultTuple implementation by providing
the ability to “remember” the type of the object a tuple
was originally created from. With this facility, a tuple
can be read from the tuple space and the corresponding
object recreated as in

ObjectTuple ot = (ObjectTuple)
ts.rd(template);

if (ot.getClassName.equals
("Employee")) e = (Employee)
ot.getObject();

The implementation ofgetObject first invokes the
default constructor of the object4, and then automati-
cally callssetFromTuple on the newly created in-
stance by passingthis as the tuple parameter from
which to reconstruct the object state.

Clearly, the solution we just described still re-
quires the programmer to write the code determining
how the flattening process is performed, since this is

4Implementation of the default constructor is a requirement for
usingObjectTuple.



220 D. Balzarotti et al. / The LighTS tuple space framework and its customization for context-aware applications

application-dependent. However, it greatly improves
the quality and readability of the resulting code, by
properly encapsulating this code into the definition of
the object, rather than dispersing it into the application
code.

3.3. Customizing LighTS

The LIGHTSframework is designed to provide the
minimal set of features implementing a Linda-like tu-
ple space and, at the same time, to offer the necessary
building blocks for customizing and extending it. We
now discuss the most relevant customization opportu-
nities, which are exploited in the extension packages
included in the LIGHTSdistribution.

3.3.1. Changing the tuple space engine
The tuple space implementation in thelights

core package is very simple5. Notably, the da-
ta structure holding tuples is simply an in-memory
java.util.Vector object, which is scanned lin-
early upon a query operation. This design is
motivated by the need to support deployment on
resource-constrained devices – a requirement of the
LIMEproject – and admittedly may not perform reason-
ably in other scenarios.

Nevertheless, the information hiding provided by the
core interfaces greatly simplifies the task of realizing
more sophisticated implementations (e.g., providing
persistence, checkpointing, or more scalable matching
algorithms), with little or no impact on the application
code. At one extreme, one could even sneak a com-
mercial system (e.g., TSpaces or GigaSpaces) behind
the LIGHTSinterfaces, e.g., to enable the development
of applications that can be deployed on top of differ-
ent tuple spaces engines. In a research context, this
is particularly useful to evaluate different alternatives
without the need to fully rewrite the application.

To simplify this development strategy,lights.
adapters provides the building blocks necessary
to replace the built-in implementation inlights.
The classesTupleSpace, Tuple, andField in
such package provide wrappers that on one hand
implement the requiredlights interfaces, and
on the other contain an adapter object implement-
ing the required functionality, and to which inter-
face operations are delegated6. The abstract class

5Space limitations force us to redirect the reader looking for more
details to the online documentation and source [4].

6Extensions are not supported by adapters.

TupleSpaceFactory, to be derived by the actual
adaptation package, enables selection of the appropri-
ate set of adapter classes at start-up. To illustrate these
features, an adapter for TSpaces is included in the cur-
rent LIGHTSdistribution. Also, a tuple space adapter
for J2ME has been implemented, which again confirms
not only the versatility of the framework, but also that
its inherent simplicity eases its deployment even on de-
vices with tight resource constraints, like those often
found in context-aware applications.

3.3.2. Changing the matching semantics
Tuple space systems vary considerable in terms of

their matching semantics. For instance, TSpaces en-
ables the use of subtyping rules in matching field types,
and relies on the (re)definition of theequals method
for matching field values. Instead, JavaSpaces matches
two fields by comparing their serialized forms. Also,
a JavaSpaces tuple (orentry in Sun’s jargon) is repre-
sented by a class, and therefore subtyping rules among
tuples take part in matching. In TSpaces, this is enabled
only if tuples are derived from a specific root class,
otherwise it is not allowed by defaultTuple class. Fi-
nally, TSpaces requires two matching tuples to have the
same arity, while JavaSpaces lifts this constraint when a
tuple is a subtype of another. This short comparison ev-
idences that several variations are possible, with trade-
offs in expressiveness, ease of use, and integration with
object-orientation. As a consequence, committing to a
particular choice may end up hampering development
of some applications.

LIGHTSwas designed since the beginning with
this problem in mind. The default matching in
LIGHTSrelies on theequals method, disallows field
or tuple subtyping, and requires equal tuple arity. Nev-
ertheless, thelights.extensions package con-
tains several examples that show how easy it is to pro-
vide alternative semantics, by exploiting interfaces and
other aspects of our object-oriented design. Here, we
briefly describe some of these extensions.

Field matching
As an example of how to redefine matching between

fields, the classSubtypeField, takes subtype com-
patibility into account. Providing this feature is as
simple as subclassinglights.Fieldand redefining
matches by including the additional constraint

getType().isAssignableFrom
(field.getType)



D. Balzarotti et al. / The LighTS tuple space framework and its customization for context-aware applications 221

wherefield is the input parameter ofmatches.
Analogously,NotEqualField supports matching
on inequality. Modifications can be more complex.
For instance, the same package contains also aReg-
exField that allows matching of string fields using
regular expressions and requires additional attributes
and methods for setting and compiling the expression
using the Java libraries.

Tuple matching
Pattern matching between tuples can be redefined

similarly. PrefixTuple extendsTuple by allow-
ing a template of arityl to return a successful match
against any tuple whose firstl fields match, in order,
with the template ones – a need that often arises in
practice in tuple space based applications. Incidental-
ly, this also provides a straightforward way to retrieve
all tuples in the tuple space. Again, the only change
required is in the implementation ofmatches.

Another useful feature, with a more complex im-
plementation, is provided byBooleanTuple, which
extendsTuple to enable pattern matching by using
arbitrary boolean expressions over a tuple’s fields – not
just theirANDconjunction as in standard matching. Let
us consider an application where printers are modeled
as a tuple〈 kind, numJobs, ppm 〉, and the pro-
grammer needs to find a laser printer such that either
its spool queue is empty or it can print at 15ppm. The
programmer can obviously compensate for the absence
of an ORoperator by performing multiple queries in
sequence – in our case, one for a laser printer with an
empty queue and, if this fails, one for a laser printer at
15ppm. However, besides forcing the programmer to
use a more verbose programming idiom, this solution
is rather inefficient, since it requires multiple traversals
of the tuple space. The problem is exacerbated in the
case of the bulk operationsrdg anding, whereall the
multiple queries must be executed.

Instead,BooleanTuple behaves as a tradition-
al tuple but in addition it provides asetMatching
Expression method that allows users to specify a
template in the form of a logical formula. A valid
formula must be a well-formed boolean expression,
which can contain any combination ofAND, OR, and
NOToperators, specified using the Java syntax. The
fields involved in the expression can be specified either
by using their position in the tuple, prepended by the#
character, or, if they are instances ofLabeledField,
by using directly their label.

For instance, with reference to the previous example,
let us assume that two actual fields labeledlaser and

emptyare available respectively to match a laser print-
er and one with a queue with zero jobs, and that a third
field takes care of matching a value of 15. With these
definitions, which we omit due to space limitations, we
can easily search for the desired printer:

BooleanTuple template = new
BooleanTuple().add(f1).
add(f2).add(f3);

template.setMatchingExpression
("laser && (empty || #3)");

ITuple tuple = ts.rdp(template);

It is worth noting how the advantages brought by the
customization of the matching semantics we described
thus far are not limited to the tuple space access us-
ing the traditional Linda operations, but may extend to
other constructs provided by alternative models. For
instance, several systems offer reactive features, either
event-based as in TSpaces, JavaSpaces, MARS [6], and
TuCSoN [15], or state-based as in LIME [13]. In all
these systems, some kind of reaction whose behavior
is specified by the programmer, is triggered when a tu-
ple matching a given template is manipulated through
an operation or observed in the tuple space. Redefin-
ing the template used in these operations may greatly
enhance their expressive power.

At the same time, special care is needed if these cus-
tomized features are being used in a distributed set-
ting. Consider even a simple client-server scheme,
where a tuple space is being accessed remotely by
several clients. If the client uses an extension (e.g.,
RangeField or a programmer-defined one) in a
query operation, the correspondingcode must be some-
how present on the server host for the tuple space to
be able to apply the desired matching. Pre-deploying
the classes is possible only under the assumption of a
closed system: if programmers are able to define their
own extensions, appropriate mechanisms (e.g., involv-
ing code mobility [8]) must be in place.

Finally, many other extensions are clearly possi-
ble. One could easily implement SQL- or XML-based
matching, and many others. Thus far, the development
of extensions has been driven by pragmatic needs that
arose in our experiences when using LIGHTSin com-
bination with the LIMEmiddleware. In the next sec-
tion, we illustrate some extensions we found useful in
developing context-aware applications.

4. Supporting context-aware applications

As we discussed in the introduction, the tuple space
abstraction is well-suited for context-awareness. Con-



222 D. Balzarotti et al. / The LighTS tuple space framework and its customization for context-aware applications

text data can be stored in the tuple space, and made
accessible by leveraging of the nice decoupling proper-
ties of the Linda approach. Nevertheless, the standard
matching based on exact values is largely insufficient
for context-aware applications. Indeed, the motivation
for the work described in this paper came from an ex-
perience in building a simple location-aware applica-
tion in LIME [12], in which we realized precisely the
aforementioned shortcomings of the traditional tuple
space model. Here we describe briefly the outcomes
of this experience, in that they provide the rationale for
the features we describe in this section.

The work in [12] describes a simple location-aware
application supporting collaborative exploration of ge-
ographical areas, e.g., to coordinate the help in a disas-
ter recovery scenario. Users are equipped with portable
computing devices and a localization system (e.g.,
GPS), are freely mobile, and are transiently connected
through ad hoc wireless links. The key functionality
provided is the ability for a user to request the display-
ing of the current location and/or trajectory of any oth-
er user, provided wireless connectivity is available to-
wards her. The implementation exploits tuple spaces as
repositories for context information – i.e., location data
in this case. The LIMEprimitives are used to seamlessly
perform queries not only on a local tuple space, but on
all the spaces in range. For instance, a user’s location
can be determined by performing a read operation for
the location tuple associated to the given user identifier.
The “lesson learned” distilled from this experience is
simple and yet relevant: tuple spaces can be success-
fully exploited to store not only the application data
needed for coordination, but also data representing the
physical context. The advantage is the provision of a
single, unified programming interface – the coordina-
tion primitives – for accessing both forms of data, there-
fore simplifying the programmer’s chore. Interesting-
ly, in this experience the idea was demonstrated using
the distributed tuple space implementation provided by
LIME, but the conclusion we just made fully holds also
in the case where an entirely local tuple space is used
to coordinate the activities of co-located multi-agents.

Nevertheless, as discussed in [12], the traditional
matching semantics of Linda, based on comparing the
exact values of tuple fields, is insufficient for the needs
of context-aware applications. Indeed, context-aware
queries rarely revolve around exact values. For in-
stance, in a sensor monitoring application, it may be
required to find the identifiers of all the temperature
sensors registering a value between 20 and 25 degrees.
Or, in the application of [12] it may be needed to find

the users within 500m, or those withinr meters from
the point(x, y). Often, even these queries are too pre-
cise, in that the user may have enough information only
to formulate requests as informal as “find the sensors
recording a hot temperature”, or “find the users close to
me”. Moreover, context-aware applications frequently
pose another requirement, namely, the need foraggre-
gation. Data comes from multiple sources, with multi-
ple formats, and at different levels of abstraction. On
one hand, it is useful to store the raw data in the tuple
space, to provide applications or agents to process it
directly. However, in other situations, it is desirable to
access the data through some higher-level view, where
the values contributed by multiple tuples are accessed
as a single, aggregated value (e.g., the average), or
where tuples with a given format (e.g., holding a lo-
cation’s coordinates) are interpreted in a different way
(e.g., distance from a given point).

These needs sometimes surface also in conven-
tional applications, but they are definitely exacerbat-
ed and more fundamental in context-aware ones. In
the rest of this section we present our extensions to
LIGHTSfulfilling these requirements and therefore sup-
porting the development of context-aware applications.

4.1. Matching on value ranges

In context-aware applications, many queries require
to determine whether a given value from contextual data
(e.g., temperature from a sensor) is within an allowed
range (e.g., 35–38◦C). Building this capability on top
of a conventional system that provides only exact value
matching entails considerable programming effort and
computational overhead. For instance, a common hack
is to retrieve tuples by matching on the other fields, and
explicitly code in the application the matching on the
field involving a value range.

LIGHTSovercomes this limitation by leveraging the
mechanisms for extension we illustrated in the previous
section. The classRangeField in theextensions
package provides methods for specifying the lower and
upper bounds of the value range and whether they are
included in it, as shown in Fig. 3. The snippet below
shows how to match over the aforementioned tempera-
ture range, without including the lower bound of 35◦C:

RangeField rf = new RangeField()
.setLowerBound
(new Float(35), false)
.setUpperBound
(new Float(38), true);

ITuple result = tuplespace.rdp
(new Tuple().add(rf));



D. Balzarotti et al. / The LighTS tuple space framework and its customization for context-aware applications 223

public class RangeField extends TypedField {

public RangeField()

public RangeField setLowerBound(Comparable low, boolean included)

public RangeField setUpperBound(Comparable up, boolean included)

public Comparable getLowerBound()

public Comparable getUpperBound()

public boolean isLowerBoundIncluded()

public boolean isUpperBoundIncluded()

public boolean matches(IField field)

}

Fig. 3. The classRangeField.

Bounds can be represented by any object imple-
menting the interfacejava.lang.Comparable.
RangeField extends lights.extensions.
TypedField – a convenience abstract class that
serves the only purpose of implementing theIField
interface – by simply adding attributes holding infor-
mation about bound values and redefiningmatches
with the trivial constraint necessary to check that the
field being compared against falls in the required range.
As the reader can see, the extent of modifications nec-
essary to implement the required semantics is minimal
and extremely simple, while the impact on expressive-
ness is remarkable.

4.2. Fuzzy matching: Dealing with uncertainty

In several applications the power of range matching
is not enough, as users may not have the knowledge
required to formulate precise queries. For instance, a
user may request to find a restaurant that isclose to her,
without bothering about estimating a reasonable range
based on the urban density of the surrounding area.
Indeed, people commonly describe an object property
using words like “hot”, “far”, “tall”, or “cheap”. Al-
though intuitive, these concepts bear a high degree of
imprecision and uncertainty, and cannot be modeled us-
ing the traditional set theory. Nevertheless, the problem
can be tackled successfully by using fuzzy logic.

4.2.1. Basics of fuzzy logic
Unlike conventional logic, in fuzzy logic [11] a pred-

icate may assume any value in a continuous range, usu-
ally defined between 0 (totally false) and 1 (totally true).
From a set theoretical standpoint, this means that each
logic element belongs to a particular set with a certain
degree of membership. The function that defines the
mapping between the elements of a particular universe
of discourse and their degree of membership to a given
set is calledmembership function.

For example, let us consider the problem of char-
acterizing water temperature. When water is freezing

at 0◦Ceverybody agrees that it is definitelycold – and
similarly hot when boiling at 100◦C. But what about
water at 75◦C? Modeling this situation entails defining
the fuzzy sets, i.e., the intuitive concepts used in the
logic descriptions – e.g.,hot, warm, andcold in our
case. Moreover, each set must be associated to a mem-
bership function. Figure 4 shows a possible choice for
our example where the value 75◦C(that is calledcrisp)
belongs to two different fuzzy sets or, in other words,
“water at 75◦C” is at the same timewarm andhot, with
two different degrees of membership.

To enable reasoning, fuzzy logic also provides op-
erators to combine fuzzy predicates in more complex
formulas. These are adaptations of the well-known in-
tersection (AND), union (OR), and complement (NOT),
to deal with degrees of truth expressed as real numbers.
More details can be found in [11].

In LIGHTS, the tuple space contains crisp val-
ues, which applications can query using conven-
tional matching or the fuzzy matching provided by
lights.extensions.fuzzy.

4.2.2. Programming model
In our API, fuzzy sets and their membership func-

tions are combined in what we call afuzzy term. A
collection of fuzzy terms represents, in programming
terms, afuzzy type. As the reader may argue, matching
based on fuzzy logic requires the fuzzy type of two
fields to match.

The following code snippet shows how to model the
water temperature example with our API:

FuzzyTerm ft =
new FuzzyTerm("warm",
new PiFunction(50.0f,25.0f);

FloatFuzzyType temp =
new FloatFuzzyType
("Temperature",-100,100)
.addTerm(ft);



224 D. Balzarotti et al. / The LighTS tuple space framework and its customization for context-aware applications

Temp

Membership value

25 50 75

0.5

1.0
HotWarm

Cold

Fig. 4. Membership functions and fuzzy sets.

The first line defines a new fuzzy term representing
the warm concept. A term is defined by a name and
a membership function, in this case aPiFunction
centered at 50◦Cand with a width of 25◦C, yielding
the bell shape in Fig. 4. Our library provides several
pre-canned functions (e.g.,Triangle,Trapezoid,
Ramp, Step, . . . ), and enables the programmer to
easily create her own, by implementing the interface
IMembershipFunction.

The second line creates a new fuzzy type, and binds
to it the previously created term. (Details represent-
ing hot andcold are omitted.) A fuzzy type is char-
acterized by a name and two parameters delimiting its
domain. In general, the crisp values in a fuzzy type
could be of any nature, and therefore aFuzzyType
class is provided whose elements can be anyObject
instance. In practice, however, real numbers are used
most of the times. Therefore, we provide a subclass
FloatFuzzyType, used in the example.

4.2.3. Integrating fuzzy logic and tuple spaces
We are now ready to describe how to exploit

fuzzy matching in LIGHTS. The full API provid-
ed by our extension is illustrated by the UML di-
agram in Fig. 5. Two new classes are provided,
FuzzyField andFuzzyTuple, which implement
respectivelyIField andITuple and enable use of
fuzzy logic at two different levels.

A FuzzyField can be included in a conventional
template, e.g., alights.Tuple object. In this case,
the overridden methodmatches evaluates based on
fuzzy logic, and returns true only if the membership
value of the crisp data found in the field being compared
is higher than a given threshold that can be chosen by
the user. AFuzzyField is still characterized by
type and value, although these are expressed in a fuzzy
fashion. In the following code snippet

FuzzyField ff = new FuzzyField()
.setType(Float)
.setFuzzyType(temp)
.setFuzzyValue(new
FuzzyValue("warm"));

aFuzzyField is created. First, the type of the crisp
values is set, to enable “pre-filtering” of matching val-
ues – the basic type matching requirement of Linda is
still in place. Then, the fuzzy type defined above for
temperature is associated to the field, followed by the
“warm” concept. Fuzzy concepts are represented by an
instance of the classFuzzyValue, which enables the
programmer to specify a fuzzy concept. In addition,
FuzzyValue provides the machinery to specify con-
cepts like “very hot” or “somewhat cold” and automat-
ically adjust the corresponding membership function.
Space limitations prevent us from going into further de-
tails: anyway, this is performedusing well-known tech-
niques [11]. Figure 6 illustrate pictorially the differ-
ence between traditional matching and matching with
fuzzy values.

The true power of fuzzy logic, however, is un-
leashed only whenFuzzyFields are used in a
FuzzyTuple. As usual, aFuzzyTuple match-
es another tuple only if all the fields match in or-
der. However, in this case the conjunction of the re-
sult of pairwise field matching is not performed us-
ing the boolean operatorAND, but with its fuzzy
counterpart. The methodFuzzyTuple.matches
does not rely onFuzzyField.matches, as this
implementsITuple.matches and therefore re-
turns a boolean. Instead, it relies on the method
FuzzyField.fuzzyMatches, which returns a
float representing the degree of membership of the crisp
value in the fuzzy set specified byFuzzyValue. If the
tuple contains also traditional fields, theirmatches
method is invoked, and the boolean return value con-
verted to0.0f if false, or to1.0f if true. The



D. Balzarotti et al. / The LighTS tuple space framework and its customization for context-aware applications 225

FuzzyField

<<create>> FuzzyField()

set(field: IField) : IField

getFuzzyValue()

getFuzzyThreshold() : float

setFuzzyValue(fuzzyValue: FuzzyValue) : FuzzyField

setFuzzyThreshold(threshold: float) : FuzzyField

getFuzzyType() : FuzzyType

setFuzzyType(fuzzyType: FuzzyType) : IField

matches(field: IField) : boolean

fuzzyMatches(field: IField) : float

toString() : String

FuzzyTuple

getFuzzyTypeByName(name: String)

getCrispObjectByName(name: String,tuple: ITuple) : Object

getOperatorByName(term: String)

calc(formula: String,tuple: ITuple) : float

parse(formula: String,tuple: ITuple) : float

matches(tuple: ITuple) : boolean

setThreshold(threshold: float) : void

getThreshold() : float

getAdvancedQuery() : String

setAdvancedQuery(query: String) : void

getAndOperator()

getOrOperator()

setAndOperator() : FuzzyTuple

setOrOperator() : FuzzyTuple

FuzzyType

<<create>> FuzzyType(name: String)

getName() : String

addTerm(fuzzyTerm: FuzzyTerm) : void

getTerm(name: String) : FuzzyTerm

getTerms() : Iterator

getMembershipValue(term: String,crispObject: Object) : float

getTermsNumber() : int

gertTerm(crispObject: Object) : FuzzyTerm

FuzzyValue

<<create>> FuzzyValue(value: String)

setValue(value: String) : void

getValue() : String

setModifier(modifier: String) : void

getModifier() : String

FloatFuzzyType

<<create>> FloatFuzzyType(name: String,min: float,max: float)

<<create>> FloatFuzzyType(name: String,min: float,max: float,units: String)

setNearlyFunction() : void

setSmallerFunction() : void

setGreaterFunction() : void

getUnits() : String

getMax() : float

getMin() : float

getMembershipValue(term: String,crispValue: float) : float

getTerm(crispValue: float) : FuzzyTerm

generateTrianglePartition(terms: String[]) : void

generatePiPartition(terms: String[]) : void

isNearly(crisp: float,reference: float) : float

isGreater(crisp: float,reference: float) : float

isSmaller(crisp: float,reference: float) : float

FuzzyTerm

<<create>> FuzzyTerm(term: String)

getMembershipFunction() : IMembershipFunction

setMembershipFunction(membershipFunction: IMembershipFunction) : void

getTerm() : String

setTerm(term: String) : void

<<Interface>>

IMembershipFunction

getMembershipValue(object: Object) : float

Fig. 5. The UML class diagram of the packagelights.extensions.fuzzy.

’A’             33

33 Celsius’A’

== =True FalseTrue

TupleSpace

Template

Real tuple

   (traditional tuple)

    100m

      133

Fig. 6. Replacing traditional matching (left) with matching based on fuzzy values (right).

float values are then combined byFuzzyTuple.ma-
tches using the default fuzzyANDoperator, or a user-
defined one. This feature enables the formulation of
complex fuzzy queries, possibly mixed with conven-
tional ones, e.g., retrieving the reading from a sensor
that is close and is recording a cold temperature.

Finally, FuzzyTuple also provides a simple lan-
guage that enables one to write more complex and flex-
ible queries using operators other thanAND, also pro-
vided by our library. This way, it is possible to write
the equivalent of logical formulas, as in:

(Distance is not Far) ||
(Price is Cheap)

The reader has probably noticed the analogy with the
BooleanTuple class we described in Section 3.3.2.
Indeed,FuzzyTuple extendsBooleanTuple, and
overrides the methodsetMatchingExpression
to enable the definition of arbitrary predicates. Some
important differences must be underlined, however.
First, the introduction of theis operator that returns
the degree of membership to the givenFuzzyTerm.
Second,FuzzyTuple supports not only arbitrary
boolean expressions, but also expressions that involve
user-defined fuzzy operators, as we discussed above.
Third, the values that are involved in the expressions
(e.g., Far and Cheap) can be fuzzy values. Ta-



226 D. Balzarotti et al. / The LighTS tuple space framework and its customization for context-aware applications

ble 1 provides a concise albeit informal comparison of
the expressive power provided by conventional tuples,
BooleanTuples, andFuzzyTuples.

4.3. Aggregating data

A need often arising in context-aware applications
is the one for the ability to deal with aggregated infor-
mation. This is addressed in LIGHTSby two distinct
mechanisms, one enabling aggregation over fields in
the context of a given tuple, and the other enabling
aggregation over multiple tuples contained in the tuple
space. In both cases, the application programmer is
provided with a way to specify the portion of data to be
aggregatedand the semantics of the data transformation
involved. Both mechanisms are described next.

4.3.1. Aggregating fields: Virtual tuples
A concise example helps in defining the need we

address. Let us consider a tuple space containing lo-
cation information, where each tuple holds the loca-
tion of a user expressed in Cartesian coordinates. (This
solution was actually used in the experience described
in [12].) The task of selecting the users at a given
distance should be ideally as simple as specifying a
template with the required distance. In practice, how-
ever, it involves computing

√
(x − x0)2 + (y − y0)2,

where(x0, y0) are the coordinates of the agent issuing
the query and(x, y) those of a location tuple. Since the
Linda semantics does not provide a form of matching
based on a function of two or more fields, this match-
ing must be specified entirely outside the tuple space
framework, as part of the application logic.

LIGHTStackles the problem by decoupling the rep-
resentation of the tuples stored in the tuple space from
those manipulated by the application, by means ofvir-
tual tuples. Again, an example is useful in clarifying
their use. Let us consider the possibility of allowing the
programmer to “see” theconcrete tuples stored in the
tuple space in the formp = 〈 ?UserID,?int,?int
〉 as if they were insteadvirtual tuples in the formp ′ =
〈 ?UserID,?int 〉, where the second field ofp′ is
the sum of the last two fields ofp. If this were possible,
ardg(t) using the virtual tuplet = 〈 ?UserID,50
〉 could match the concrete tuples〈 ’u15’,20,30 〉
and〈 ’u23’,1,49 〉. By substituting sum with dis-
tance, we would have found a solution to the aforemen-
tioned problem of localizing users. Figure 7 illustrates
the concept graphically.

Using our LIGHTSextension, this feature can be pro-
vided by the following code snippet:

ITuple vt = new VirtualTuple(t) {
public ITuple virtualize

(ITuple tuple) {
ITuple res = new Tuple().add
(tuple.get(0));
IValuedField f = (IValuedField)
tuple.get(1);
int v1 = ((Integer) f.getValue()).
intValue();
f = (IValuedField) tuple.get(2);
int v2 = ((Integer) f.getValue()).
intValue();
res.add(new Field().setValue(new
Integer(v1+v2)));
return res;

}
};
vt.add(new Field().setType

(UserID.class))
.add(new Field().setType
(Integer.class))
.add(new Field().setType
(Integer.class));

The first line creates a newVirtualTuple and ini-
tializes it with the template used at the application lev-
el – the virtual tuple, in our caset = 〈 ?UserID,50 〉.
The last three lines define instead the template that fil-
ters out the concrete tuples actually present in the tuple
space. To enable matching, the concrete tuples must
be somehow transformed to fit the format of the virtual
tuple. The transformation is specified by the method
virtualize, which in the example code above is de-
fined using an anonymous inner class. When a match
is requested onvt, its overriddenmatches method
decides whether the tuple being compared is a match by
first comparing it with the standard rules againstvt’s
fields. If this match is successful, the concrete tuple
is transformed by callingvirtualize, and matched
against the virtual tuplet. This latter matching is gov-
erned by the semantics of thematchesmethod associ-
ated to the dynamic type oft, and its result determines
the overall matching outcome.

4.3.2. Aggregating tuples: Tuple space views
Tuple virtualizers provide an elegant way to cus-

tomize on the fly the tuple representation, therefore en-
abling also aggregation over the tuple fields. Never-
theless, their scope is limited to a single tuple, whereas
context-aware applications often demand aggregation
over multiple tuples. A typical example is provided



D. Balzarotti et al. / The LighTS tuple space framework and its customization for context-aware applications 227

Table 1
Comparing the expressive power of various matching semantics

Class Field Composition

Tuple Logical AND
BooleanTuple (default) LogicalAND
BooleanTuple (usingsetMatchingExpression) Any expression containing boolean operators
FuzzyTuple (default) FuzzyAND
FuzzyTuple (usingsetMatchingExpression) Any expression containing boolean and fuzzy operators

UserX 20

20UserX

== =True FalseTrue

TupleSpace

Template

Real tuple

   (traditional tuple)

    30

      31

UserX 50

20UserX 30

== True True

Template

Template

Real tuple

(traditional tuple)

(virtual tuple)

virtualize

UserX 50

TupleSpace

Fig. 7. Replacing traditional matching (left) with matching against a programmer-definedvirtual tuple (right).

by environmental monitoring, where the data indepen-
dently collected by multiple sensors is often averaged
before being provided to applications, to make the data
more resilient to transient variations. Imagine an ap-
plication that receives tuple containing data sensed by
multiple sensors (e.g., for temperature, light, acoustic
phenomena) and stores them in the tuple space. Data
is sometimes accessed in its raw form, and sometimes
in aggregate form (e.g., through its average). It would
be useful if the programmer were able to see this sec-
ond option again as a tuple space, without the need to
manually compute over and over the aggregation by
herself.

This problem is dealt with in LIGHTSby introducing
the notion of atuple space view defined over a tuple
space. The tuples contained in a tuple space view are
obtained from a subset of those in the original tuple
space, through an automatic, application-defined trans-
formation. In a sense, a view realizes on the tuple space
what a virtual tuple does on a single tuple, by providing
a virtual tuple space built on top of the concrete tuple
space associated to it.

A view is created by simply invoking its constructor
that, as shown in Fig. 8, expects as parameters the tuple
space the view is built upon as well as the rules to
maintain it. Once the view is created, as shown in the
figure only therdp andrdg operations are available,
since it is not possible to manipulate directly the view.

The transformation from the concrete tuples in the
tuple space to those in the view is encapsulated in
the set ofAggregator objects passed as a param-
eter to the constructor. Each of these object effec-
tively defines a function from a set of tuples in the
concrete tuple space (specified by the template) to an-
other set of tuples to become part of the tuple space
view. The abstract classAggregator, also shown
in Fig. 8, provides accessors for the template, as
well as an abstract methodaggregate that is ex-
pected to embody the aforementioned programmer-
defined function. When an operation is invoked on
theTupleSpaceView, this method is automatical-
ly called and supplied with the set of concrete tu-
ples matching the template. In turn,aggregate
returns the virtual tuples logically belonging to the



228 D. Balzarotti et al. / The LighTS tuple space framework and its customization for context-aware applications

public class TupleSpaceView {

public TupleSpaceView(ITupleSpace ts, IAggregator[] a);

public ITuple rdp(ITuple template);

public ITuple[] rdg(ITuple template);

}

public abstract class Aggregator {

public void setTemplate(ITuple template);

public ITuple getTemplate();

abstract ITuple[] aggregate(ITuple[] tuples);

}

Fig. 8. Dealing with tuple space views:TupleSpaceView andAggregator.

TupleSpaceView. TheAggregator class con-
tains a built-in template matching all tuples in the tu-
ple space, defined usingPrefixTuple. Therefore,
if no template is set, theaggregatemethod operates
on all the tuples in the target tuple space. Figure 9
illustrates the concept.

Note how the behavior of theaggregate method
does not necessarily entail collapsing multiple tuples
into one or more. For instance, in some cases it
maybe useful to “join” multiple tuples containing val-
ues about different physical entities into one or, in turn,
“split” long tuples into their individual values. For
instance, with reference to the aforementioned envi-
ronmental monitoring application, imagine that the ap-
plication needs to determine whether there are peo-
ple in a given area, based on whether there is a high
temperature and a high noise. Using the conventional
features, the application should retrieve all the tuples
with high temperature and all those with high noise,
and then manually check whether one or more rooms
exist that belong both tuple sets. Using views, the
programmer can specify how to combine temperature
and light readings from the same room in a single tu-
ple, and then query the view as desired, e.g., using a
fuzzy template〈 Room=*, temperature=high,
noise=high 〉. Therefore, ultimately, the nature of
the transformation performed byaggregate is en-
tirely up to the programmer.

In our current implementation, theaggregate
methods are called every time a read operation is in-
voked, therefore re-building the view dynamically each
time. This straightforward solution guarantees that the
view is always consistent with the tuple space it builds
upon, but it may generate a performance problem in the
case the tuple space contains a large number of tuples
and the view operations are invoked frequently. An
alternative strategy is to cache the result of previous
executions of theaggregate method. This solution
avoids unnecessary computation if the associated tuple
space has not changed, but it requires a tighter inte-

gration between theTupleSpaceView class and the
tuple space holding the concrete tuples, since the lat-
ter must somehow notify the former when a tuple of
relevance for the view has been inserted or removed,
and therefore the view must be recomputed. This lat-
ter design can be easily accommodated by constraining
TupleSpaceView to operate in conjunction with a
subclass ofTupleSpace (or any other class imple-
mentingITupleSpace) providing the necessary cou-
pling. We are currently investigating more optimized
solutions to based on this ideas.

As an example of how to program and exploit tu-
ple space views, consider a context-aware application
monitoring a physical environment containing sever-
al sensors. Each sensor records the temperature and
inserts it in the tuple space together with its location,
using a tuple〈 x, y, temp 〉. Suppose we are in-
terested in retrieving the average value in the square
zone defined by(xmin, ymin) and(xmax, ymax), e.g.,
because a fire is reported in that area and finer-grained
monitoring is necessary. First, we need to define the ag-
gregation function computing the average temperature.
This is accomplished by extending theAggregator
class and implementing theaggregate method:

class AvgAggregator extends
Aggregator {
public ITuple[] aggregate

(ITuple[] tuples) {
float res = 0;
for (int i=0; i<tuples.size; i++)
res = res + tuples[i]
.get("temp").getValue();

res = res/tuples.size;
ITuple[] t = {new Tuple().add
(new Field().setValue(new
Float(res)))};
return t;

}
}



D. Balzarotti et al. / The LighTS tuple space framework and its customization for context-aware applications 229

template

template

template

aggregate

aggregate

aggregate

...

Aggregator

Aggregator

Aggregator

TupleSpace TupleSpaceView

Fig. 9. Aggregating multiple tuples using a tuple space view.

Next, we create a template using theRangeField
class we introduced in Section 4.1 to select only those
tuples whose location belongs to the desired zone, and
instantiate our aggregator by restricting its operation to
these tuples, by passing it the template just defined.

RangeField xf = new RangeField()
.setLowerBound(new Float(xmin),
true)

.setUpperBound(new Float(xmax),
true);

RangeField yf = new RangeField()
.setLowerBound(new Float(ymin),
true)

.setUpperBound(new Float(ymax),
true);

ITuple template = new Tuple().add(xf)
.add(yf).add(new Field()
.setType(Float.class));

Aggregator a = new AvgAggregator()
.setTemplate(template);

Now, we are ready to generate the view by passing the
tuple spacets it operates upon and our aggregator:

TupleSpaceView view = new
TupleSpaceView(ts,{a});

We can now read from the tuple space view as if it were
a normal tuple space, containing〈 Float 〉 tuples, as
defined by our aggregator:

ITuple avgTemplate = new Tuple()
.add(new Field().setType(Float.
class));

ITuple t = view.rdp(avgTemplate);

Table 2
A simple performance test on tuple insertion and reading.
In each run, we insert several tuples without, and then read
them in sequence withrd. The first field is an integer counter
(on which pattern matching is performed), while the second
is a byte array. Tests are ran 5 times and results averaged.
Tuple sizes are in bytes, times are in seconds. The test
machine is a Pentium 4, 2.4 GHz, 1 Gbyte RAM running
Sun’s JRE 1.4.2 under Debian Linux

#tuples tuple size LighTS TSpaces GigaSpaces

100 1000 0.749 0.786 2.536
1000 1000 1.871 4.394 5.534
10000 1000 62.781 120.015 26.611
1000 100 1.806 4.207 5.473
1000 10000 2.111 4.386 5.899
1000 100000 4.166 9.369 10.172

5. Implementation

LIGHTSis implemented in Java, using J2SE 1.4. The
corelights package is only about 150 lines of code.
The adapters and extensions (and especially
the fuzzy package) bring the total number of lines
to 1,500. The sizes ofjar files are 15Kbytes and
75Kbytes respectively, demonstrating the small foot-
print of the system.

Without the pretense to be accurate and exhaustive,
but with the only intent to get a feel of the performance
of LIGHTS, Table 2 reports some tests we ran against
some well-known commercial systems. These prelim-
inary data show how LIGHTSis always faster than its
competitors, which confirms that its lightweight de-
sign pays off. In part, this can be attributed to the
fact that the systems considered do not distinguish be-
tween local and remote communication, always using
inter-process communication – a clear loss when only
a local tuple space is needed. The one case in Table 2
where LIGHTSis slower than GigaSpaces is probably
determined by the techniques exploited in this system
to deal with scalability. Definitive results would need



230 D. Balzarotti et al. / The LighTS tuple space framework and its customization for context-aware applications

to take into account more sophisticated usage profiles –
which is nonetheless outside the scope of this paper.

6. Related work

The limitations of the simple matching mechanism
provided by Linda are well-known,have been discussed
by several authors, and in some cases have been em-
bodied in Linda variants.

We already illustrated the matching alternatives pro-
vided by the most popular Java-based tuple space sys-
tems in Section 3.3.2. Other systems provide even more
powerful mechanism, as in XMLSpaces [18] where
special XML fields allow matching operation based
on XPath queries. As we have shown in this paper,
LIGHTSdoes not focus on a specific matching strate-
gy, rather it provides the fundamental building blocks
enabling this and other forms of matching.

On the other hand, LIGHTSis not the first system
providing the ability to customize the matching rules.
For instance, Objective Linda [10] provides a scheme
where tuple objects can contain amatch method pro-
vided by the programmer, and therefore enabling cus-
tomized matching rules. A similar scheme is employed
by TSpaces, and is borrowed by LIGHTSas well. An
overview of the matching facilities provided by various
tuple space systems is presented in [20]. Unfortunate-
ly, as the authors point out, existing solutions are often
very limited and not flexible enough to cope with many
common programming needs.

The authors of [20], however, in the same paper
propose a system that turns out to be the work most
closely related to LIGHTS. The system, called eLin-
da and further detailed in [19], embodies a notion
of Programmable Matching Engine (PME) enabling
the developer to add customized matchers to the tuple
space and use them in conjunction with Linda query
primitives. For example, a PME can be extended
with a matcher able to select, among all tuples, the
one with the maximum value associated to a given
field, marked with the symbol=. The matcher can
then be used to customize the execution of a query,
as inin.maximum(?field1, ?=field2), which
returns the tuple of arity two with the maximum value
in the second field. Besides selecting tuples, PMEs
enable also the definition of matchers transforming tu-
ples, e.g., returning a tuple that contains the sum of the
values contained in a given field.

We maintain that LIGHTSprovides a more flexible
design than eLinda, and comes with a number of fea-

tures that provide considerable power to the program-
mer. First, in eLinda the matching rule is specified at
the tuple level and for the whole tuple space, while in
LIGHTSit can be defined at the level of a tuple or even
a field. This provides a more fine-grained and flexible
redefinition, in that it enables the combination of dif-
ferent matchers in the same query operation. Second,
our aggregation mechanisms provide a more decoupled
design, as they sharply separate the transformation that
defines how a tuple or tuple space is “seen” by the ap-
plication (through, respectively, virtual tuples and tuple
space views) from the logic (re)defining the matching
(contained in thematches methods). Finally, some
of the extensions we proposed, most notably arbitrary
boolean expressions and fuzzy matching, provide high-
ly expressive and useful features that we argue are not
easily – or not at all – implementable using the mech-
anisms found in eLinda.

7. Conclusion

In this paper we presented LIGHTS, a lightweight,
customizable framework supporting the tuple space ab-
straction made popular by Linda, and exploited its flex-
ible architecture to provide dedicated constructs for the
development of context-aware applications. We illus-
trated the architecture and application programming in-
terface of LIGHTS, motivated the use of tuple spaces for
context-aware applications and the related challenges,
and showed how novel support for this domain can be
easily built on top of LIGHTS.

Future work will address optimizations and exten-
sions of the mechanisms we described here. Moreover,
integration in the LIMEmiddleware for mobile comput-
ing will enable us to evaluate, in a more comprehensive
way, the impact of our abstractions on the development
of context-aware applications.

LIGHTSis released as open source under the LGPL
license, and is available at [4].

Acknowledgements

The work described in this paper is partially sup-
ported by the Italian Ministry of Education, Universi-
ty, and Research (MIUR) under the VICOM project,
by the National Research Council (CNR) under the
IS-MANET project, and by the European Community
under the IST-004536 RUNES project.



D. Balzarotti et al. / The LighTS tuple space framework and its customization for context-aware applications 231

References

[1] www.almaden.ibm.com/cs/TSpaces.
[2] www.sun.com/software/jini/specs/jini1.2html/js-title.html.
[3] www.gigaspaces.com.
[4] lights.sourceforge.net.
[5] lime.sourceforge.net.
[6] G. Cabri, L. Leonardi and F. Zambonelli,MARS: A Pro-

grammable Coordination Architecture for Mobile Agents,
IEEE Internet Computing, 2000.

[7] N. Carriero, D. Gelernter and L. Zuck,Bauhaus-Linda. In
Object-Based Models and Languages for Concurrent Systems,
LNCS 924. Springer, 1995.

[8] A. Fuggetta, G.P. Picco and G. Vigna, Understanding Code
Mobility, IEEE Trans on Software Engineering 24(5) (May
1998), 342–361.

[9] D. Gelernter, Generative Communication in Linda,ACM Com-
puting Surveys 7(1) (Jan 1985), 80–112.

[10] T. Kielmann,Object-Oriented Distributed Programming with
Objective Linda, in First Int. Workshop on High Speed Net-
works and Open Distributed Platforms, St. Petersburg, Russia,
June 1995.

[11] G.J. Klir, B. Yuan and U.H. Saint Clair,Fuzzy Set Theory:
Foundations and Applications, Prentice Hall, 1997.

[12] A.L. Murphy and G.P. Picco,Using Coordination Middleware
for Location-Aware Computing: A LIME Case Study, in Proc.
of the 6 th Int. Conf. on Coordination Models and Languages
(COORD04), LNCS 2949, Springer, February 2004, 263–278.

[13] A.L. Murphy, G.P. Picco and G.-C. Roman,LIME: A

Middleware for Physical and Logical Mobility, in Proc. of the
21 st Int. Conf. on Distributed Computing Systems (ICDCS),
May 2001, 524–533.

[14] R. De Nicola, G. Ferrari and R. Pugliese, KLAIM: A Kernel
Language for Agents Interaction and Mobility,IEEE Trans on
Software Engineering 24(5) (1998).

[15] A. Omicini and F. Zambonelli,Tuple Centres for the Coordi-
nation of Internet Agents, in Proc. of the Symp. on Applied
Computing (SACfl99), February 1999

[16] G.P. Picco, D. Balzarotti and P. Costa,LIGHTS: A Lightweight,
Customizable Tuple Space Supporting Context-Aware Appli-
cations, in Proc. of the 20 th ACM Symp. on Applied Com-
puting (SAC05), Santa Fe (New Mexico, USA), March 2005.
ACM Press.

[17] A. Rowstron, WCL: A coordination language for geographi-
cally distributed agents,World Wide Web Journal 1(3) (1998),
167–179.

[18] R. Tolksdorf and D. Glaubitz,Coordinating Web-Based Sys-
tems with Documents in XMLSpaces, in Proceedings of the 9 th
Int. Conf. on Cooperative Information Systems (CoopIS’01),
Springer, 2001, 356–370.

[19] G. Wells,A Programmable Matching Engine for Application
Development in Linda, PhD thesis, University of Bristol, UK,
2001.

[20] G. Wells, A. Chalmers and P. Clayton,Extending the Matching
Facilities of Linda, in Proceedings of the 5 th Int. Conf. on
Coordination Models and Languages (COORDINATION’02),
Springer, 2002, 380–388.


