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Abstract. Our experience with using the tuple space abstraction in context-aware applications, evidenced that the traditional
Linda matching semantics based on value equality are not appropriate for this domain, where queries often require the ability to
match on value ranges, deal with uncertainty, and perform data aggregation. Originally developed as the core tuple space layer
for the LME middleware, LGHTS provides a flexible framework that makes it easy to extend the tuple space in many ways,
including changing the back-end implementation, redefining the matching semantics, and providing new constructs. In this paper,
we describe the design and programming interfacelfILS, and show how its flexible architecture can be easily extended to
define novel constructs supporting the development of context-aware applications.
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1. Introduction well as reactive and transactional features on top of
LIGHTS.
The tuple space model, originally introduced by Lin- In LIGHTS, the lack of distribution and other so-

da[9]and once popular in parallel programming,isnow phisticated features is compensated by a design that
experiencing a second wave of popularity in the con- fosters high degrees of customization and flexibility.
text of distributed and multi-agent systems. Commer- In essence, the tuple space abstraction provided by
cial systems (e.g., TSpaces [1], JavaSpaces [2], GigaS- LIGHTSwas conceived asfaamework (in the object-
paces [3]) as well as academic ones (e.g., MARS [6], oriented sense) rather than a closgstem. The core,
TuCSoN [15], Klaim [14], LME [13]) are currently built-in instantiation of such framework provides the
available. traditional Linda abstractions, similarly to many other
Inthis paper we presentlGHTS, anew, lightweight, ~ Systems. At the same time, however, the modularity
customizable tuple space framework. Differently from @nd encapsulation provided by its object-oriented de-
many of the above systemsdHTSwas designed with ~ Sign leaves room for customization, empowering the
minimality and extensibility in mind, by focusing on ~ Programmer with the ability to easily change perfor-
providing support for the basic Linda operationslpa ~ Mance aspects (€.g., changing the tuple space engine)
cal implementation of a tuple space, which can be used ©f Sémantic features (€.g., redefine matching rules or
directly (e.g., for supporting coordination among co- add new features). This flexibility and extensibility,
located agents) or as a stepping stone for a more SOphis_togethgr with its small footprint and simple design, are
ticated distributed tuple space implementation. Indeed, the defining features ofiGHTS. _
LIGHTSwas originally developed by the last author as N particular, in this paper we extendauTSwith
the core local tuple space support for theisystem, a number of constructs that are expressly conceived

which builds distributed federation of tuple spaces as [© SUPPort context-aware applications. As we discuss
in more detail later, tuple spaces can be exploited to

store not only application data, but also contextual data
*Corresponding author. E-mail: balzarot@elet.polimi.it. like location, data collected by sensors, and other data
LA preliminary version of this paper appeared in [16]. acquired from the physical environment. This choice
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empowers application programmers with the ability to
deal with both kinds of data — application and context —
under a single, unified paradigm, therefore leveraging
off the advantages of the tuple space model, e.g., in
terms of decoupling. Nevertheless, context-aware ap-

plications demand matching rules and tuple space ac- matches the tuple defined earlier.

cess capabilities normally not found in available tuple
space systems, like the ability to match on ranges of
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are values; the fields of the previous tuple are all actuals,
while the last two fields of "f 00", ?i nteger,

?f 1 oat ) are formals. Formals act like “wild cards”,
and are matched against actuals when selecting a tuple
from the tuple space. For instance, the template above
If multiple tuples
match a template, the one returnedihyis selected
non-deterministically. Tuples can also be read from the

values, express uncertainty about data, and perform da- tuple space using the non-destructiv p) operation.

ta aggregation. In this work, we show how these ca-
pabilities can be easily built as extensions to our tuple
space framework.

Therefore, in this work we put forth two contribu-
tions. First, we present the overall architecture and pro-
gramming interface of IGHT Sand describe its mecha-
nisms supporting customization and extension. Then,

Bothin andrd are blocking, i.e., if no matching tuple is
available in the tuple space the process performing the
operation is suspended until a matching tuple becomes
available. Atypical extension to this synchronous mod-
el is the provision of a pair of asynchronous primitives
inp andrdp, calledprabes, that allow non-blocking
access to the tuple space. Moreover, some variants of

we exploit these mechanisms to design and implement Linda (e.g. [17]) provide alsbulk operations, which

extensions geared towards context-aware applications
The latter not only demonstrates the versatility of our
framework, but also provides expressive and efficient
constructs delivering the power of the tuple space ab-
straction in this novel application domain, to a level
currently not found in available tuple space platforms.
The paper is organized as follows. Section 2 is a
concise overview of Linda. Section 3 presents the ap-

can be used to retrieve all matching tuples in one step.
3. LighTS: A lightweight, customizable tuple
space framewor k

In this section we present the core features of
LIGHTS, followed by the mechanisms for customizing

plication programming interface and overall design of and extending the framework, which are exploited in
LIGHTS, illustrating how the framework can be easily Section 4 to build new extensions features useful for
extended both in terms of performance and semantics. context-aware applications.

Section 4 discusses the extensions we developed to ad-

dress some of the requirements posed by context-aware 3.1. Programming tuple space interactionsin LighTS

applications. Section 5 briefly reports aboutimplemen-
tation details and availability of the software package.
Section 6 placesIGHTSin the context of related work.
Finally, Section 7 ends the paper with brief concluding
remarks.

2. Lindain anutshell

In Linda, processes communicate through a shared
tuple spacethat acts as a repository of elementary data
structures, otuples. A tuple space is a multiset of tu-

The core of LGHTSis constituted by two packages.
Thel i ght s. i nt er f aces package contains the in-
terfaces that model the fundamental concepts of Lin-
da (i.e., tuple spaces, tuples, and fields). Instead, the
I i ght s package contains a built-in implementation
of these interfaces, providing the base for extending the
framework.

3.1.1. Tuple spaces
Figure 1 show$ the interfacel Tupl eSpace,
which must be implemented by every tuple space ob-

ples, accessed concurrently by several processes. Eaclject. The interface contains the basic Linda operations

tuple is a sequence of typed fields, ag frf oo, 9,
27.5 ), containing the information being communi-

cated. Tuples are added to a tuple space by performing

anout(t) operation, and can be removed by executing
in(p). Tuples are anonymous, thus their selection takes
place through pattern matching on the tuple content.
The argumenp is often called aemplate or pattern,
and its fields contain eithectualsor formals. Actuals

described in Section 2, i.e., insertiomut ), blocking
queries i n, r d), probes i np, r dp), and bulk oper-

2Lindaimplementations often include alsoemaloperation which
provides dynamic process creation and enables deferred evaluation
of tuple fields. For the purposes of this work, however, we do not
consider this operation further.

3Exceptions are omitted for the sake of readability.
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ations put g, i ng, rdg). Tuple spaces are expect-
ed to be created with a name, enabling an application
to manage multiple tuple spaces, as suggested in [7].
The name of a tuple space can be retrieved through the
methodget Nane. Finally,| Tupl eSpace provides
also a methodount that returns the number of tuples
currently in the tuple space.

Being an interfacel Tupl eSpace specifies only
a syntactic contract between the implementor and the
user of the implementing object, and nothing can be
said about the semantics of the actual implementation.
Therefore, for instance it is not possible to prescribe
that accesses to the tuple space must be mutually ex-
clusive, as usually required by Linda. This is an in-
trinsic limitation in expressivenes of the Java language
(and other object-oriented approaches). Nevertheless,
the built-in Tupl eSpace class, which implements
| Tupl eSpace, behaves like a traditional Linda tuple
space by preserving atomicity of operations. Moreover,
tuple insertion is performed by introducing in the tuple
space aopy of thet upl e parameter, to prevent side
effects through aliasing. Since tuples may contain com-
plex objects, copying relies on the semantics of Java se-
rialization, which already deals with aliases inside ob-
ject graphs. Upon insertion, a deep copy ofttlupl e
parameter is obtained through serialization and imme-
diate deserialization. A similar process is performed
when a non-destructive read operatior( r dp, or
r dg) is performed. Nevertheless, otupl eSpace
implementation can be configured to reduce the impact
of serialization and trade space for speed, by storing
a copy of the byte array containing the serialized tu-
ple together with the tuple itself. This way, read op-
erations are faster since they need to perform only a
deserialization step to return their result. The desired
configuration is specified at creation time through the
constructor, which also enables setting the name of the
tuple space.

3.1.2. Tuples

Figure 1 shows the interfadeTupl e, which pro-
vides methods for manipulating tuples. Afield at a giv-
en position in the tuple (from 0 foengt h()- 1) can be
read get ), changedget ), or removedenoveAt ).
A new field can be appended at the end of the tuple
(add), as well as at any other positionr(sert At ).
The fields composing the tuple can also be read collec-
tively into an array get Fi el ds). No syntactic dis-
tinction is made between tuples and templates — they
are both Tupl e objects.
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public interface ITupleSpace {
String getName () ;
void out (ITuple tuple);
void outg (ITuple[] tuples);
ITuple in(ITuple template);
ITuple inp(ITuple template);
ITuple[] ing(ITuple template);
ITuple rd(ITuple template);
ITuple rdp(ITuple template);
ITuple[] rdg(ITuple template);
int count (ITuple template);
}
public interface ITuple {
ITuple add(IField field);
ITuple set (IField field, int index);
IField get (int index);
ITuple insertAt (IField field,
ITuple removeAt (int index);
IField[] getFields();
int length();
boolean matches (ITuple tuple);
}
public interface IField {
Class getType();
IField setType (Class classObj);
boolean matches (IField field);

int index);

public interface IValuedField extends IField {
boolean isFormal () ;
java.io.Serializable getValue();
IValuedField setValue (java.io.Serializable obj);

}
Fig. 1. The core interfaces of &HTS.

The key functionality, however, is provided by the
mat ches method, which is expected to embody the
rules governing tuple matching and therefore is the
one whose redefinition enables alternative semantics.
This method is assumed to be automatically invoked
by the run-time whenever a match must be resolved,
and to proceed by comparing the tuple object on which
mat ches isinvoked —behaving as a template — against
the tuple passed as a parameter. By virtue of encapsu-
lation, the matching rule implementediimt ches is
entirely dependent on the template’s class, implement-
ingl Tupl e. Nevertheless, by virtue of polymorphism
and dynamic typing, the behavior of the run-time is
the same regardless of the details of the matching rule,
since the only assumption it makes is to operate on a
template implementingTupl e.

The default semantics ofat ches as implemented
in the built-in Tupl e is the traditional one. When
mat ches is invoked on a template against a parameter
t upl e itreturnst r ue if:

1. the template and the tuple have the same arity,
and
2. thei" template field matches thi&" tuple field.

Field matching is described next.
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3.1.3. Fields | Tuple t1 = new Tupl e();
Figure 1 shows the interfaces representing tuple t 1. add(f 1);
fields. | Fi el d provides the minimal abstraction of t 1. add(f 2);
a typed tuple field. Methods are provided for ac-
cessing the field’'s typeget Type, set Type). As
with | Tupl e, | Fi el d contains a methooat ches,
where the implementing classes specify the matching
semantics, as exemplified later on.
The features of Fi el d are enough to representa | Tuple t2 = new Tupl e()

In alternative, we can leverage of the fact th@tupl e
methods always return amupl e object (although not
strictly necessary from a purely semantic standpoint)
and combine multiple statements in a single one:

formal but not anactual field, in that there is no no- . add(new Fi el d(). set Val ue(" Davi de"))
tion of a field’s value. This abstraction is provided by . add(new Fi el d(). set Val ue
the interface Val uedFi el d whichextend$ Fi el d (new I nt eger (20));

with the accessors necessary to deal_wnh the value The tuples can be inserted one at a time, or together in
(get Val ue, set Val ue), as well as with a way to a single atomic step, as in:

test whether the current field is a formabk({For mal ).
Note thatset Val ue accepts anybj ect as a pa- ts.outg(new I Tuple[] = {t1, t2});
rameter. Moreover, the field's type is automatically set Templates are created just like tuples:
to the parameter’s class. _
The need for two separate interfaces is not immedi- | Tupl € p = new Tupl e(). add(new Fi el d()

ately evident if one considers only the pragmatic need - Set Type(Stri ng. cl ass)
of supporting the basic Linda operations. As a matter - @dd(new Fi el d(). set Val ue
of fact, the built-inFi el d implements both interfaces. (new I nt eger (10));

However, this separation provides a cleaner decoupling Finally, the probe operation

when matching semantics that do not rely on exact val-

ue match are considered, as in the examples we provide! Tupl € result = ts.rdp(p);

later in this and the next section. The builtnel dis will return a copy of the first tuple inesul t . More
defined so thathi s. mat ches(f ) returnst r ue if: examples are available at [4,5].

1. t hi s andf have the same type;

2. ift hi s andf are both actuals (i.6.sFor mal ()
returnsf al se for both of them) they also have
the same value.

3.2. Additional programming features

The packagd i ghts. util s contains a couple
of programming features that, albeit not fundamental,
Equality of types and values relies on tequal s greatly simplify the programming chore.
method — as usual in Java.

3.2.1. Accessing fields by name
3.1.4. Programming example Tuples often consist of several fields, to enable a

Let us walk through the simple task of inserting two  highly selective pattern matching. However, access to
tuples in a tuple space and retrieving one of them. these fields is based on their position in the tuple, which
We assume a statementport | i ghts. * hasbeen makes programming cumbersome since the binding be-
specified. First, we need to create a tuple space: tween the field and its meaning remains implicitly en-
coded in the field position.

To simplify the programming task of accessing a tu-
ple’s fields, the packagki ghts. utils.|abels
Then, we need to create the two tuples. Fields can be provides support for associating a symbolic name
created as: to a field. Two interfaces| Label edFi el d and
IField f1 = new Fi el d(). set Val ue I Lapel edTup_I e esse_ntiaylly provide accessors for

(" Paol 0" ): s_ettlng and_ retrieving afleld_s label, and for retrieving a

. T . field given its label, respectively. In the same package,
IField f2 = new Fi el d(). set Val ue . .

(new | nt eger (10)); L.at?el ngl el d andLabel ed_TupI e provide spe-

cializations of the core classes in theght s package,
and then assembled in a tuple: providing support for labels.

| Tupl eSpace ts = new Tupl eSpace
(" Aut hors");
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To see why this feature is useful in practice, con- public interface Tuplable {
sideratupld | ast Name, firstNanme, phone, ITuple toTuple();
dept, sal ary ) representing an employee’s data. void setFromTuple (ITuple tuple);
Printing the full name of the employee followed by her )

salary IS normallyach|eved by: public class ObjectTuple extends Tuple {

" public ObjectTuple(Class c);
public Tuplable getObject();
public String getClassName () ;

System out. println(t.get (0)+"
+t. get (1)+", "+t.get (4));

Assuming the proper labels have been attached to the !
tuple fields, the code above can be rewritten into the

more understandable: Fig. 2. Types for flattening objects into tuples — and vice versa.

Systemout. println(t. get("Last name") code responsible for flattening the object. Transform-
+ "+t.get ("First name")+", ing the object into a tuple and inserting it in the tuple
"+t.get("Salary"); space can then be done straightforwardly as in

As we discuss later on, this simple functionality be- ts. out (e. t oTupl e());
comes key in providing enhanced expressiveness in
some of advanced features discussed in the rest of this
paper.

where we assume, for instance, thatis of type
Enpl oyee and implement3upl abl e by providing
the appropriate code.

Retrieving an object back from a tuple is only a
little more complicated. The necessary processing
must be encoded by the programmer into the method
set Fr onTupl e, which allows to set an object’s at-
tributes based on the content of the parameter tuple.
However, this requires the programmer to manually
create an “empty” copy of the object and set its at-
tributes, each time. To further simplify the process,
LIGHTSprovides thébj ect Tupl e class, which ex-
tends the defaulfupl e implementation by providing
the ability to “remember” the type of the object a tuple
was originally created from. With this facility, a tuple
can be read from the tuple space and the corresponding
object recreated as in

3.2.2. From objectsto tuples — and back

Using the tuple space abstraction in the context of
an a object-oriented language like Java often forces the
programmer to face clashing programming needs. Ac-
cording to the base principles of object-orientation, ob-
jects must encapsulate their own data to prevent unau-
thorized access and to avoid undesired side effects. On
the other hand, tuples must expose all of their fields
to allow pattern matching. Consider an instance of a
classEnpl oyee holding information about the name
of an employee, her phone number, the department she
is with, and her monthly salary. If this information
is to be stored in a tuple space, there are usually two
alternatives. The first one is to represent it as a tu-
ple with a single field containing thEnpl oyee ob- nj ect Tupl e ot = (Obj ect Tupl e)
ject. However, this solution greatly limits the power ts. rd(t enpl at e);
of pattern matching, preventing queries as “find allthe i f (ot. get O assNane. equal s
employers working in R&D earning less than $1000 ("Enpl oyee")) e = (Enpl oyee)
a month”. The alternative is for the programmer to ot . get Obj ect ();
manually “flatten” the object into a tuple (e.g., with
the same format we used when discussing labels) each
time anout is performed, and perform the opposite
process each time a tuple is retrieved from the tuple
space, which is clearly undesirable and awkward. To
help the programmer deal with this frequent and error-
prone task in a more organized waygHTSprovides
support through the interfadaupl abl e and the class
oj ect Tupl e, shown in Fig. 2.

To enable flattening of an object into a tuple, the
object must implement the interfadeipl abl e. The 4Implementation of the default constructor is a requirement for
methodt oTupl e contains the application-dependent usingvj ect Tupl e.

The implementation ofet Obj ect first invokes the
default constructor of the objetand then automati-
cally callsset Fr oniTupl e on the newly created in-
stance by passinghi s as the tuple parameter from
which to reconstruct the object state.

Clearly, the solution we just described still re-
quires the programmer to write the code determining
how the flattening process is performed, since this is
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application-dependent. However, it greatly improves Tupl eSpaceFact ory, to be derived by the actual

the quality and readability of the resulting code, by adaptation package, enables selection of the appropri-
properly encapsulating this code into the definition of ate set of adapter classes at start-up. To illustrate these
the object, rather than dispersing it into the application features, an adapter for TSpaces is included in the cur-

code. rent LGHT Sdistribution. Also, a tuple space adapter
. . for J2ME has been implemented, which again confirms
3.3. Customizing LighTS not only the versatility of the framework, but also that

its inherent simplicity eases its deployment even on de-

The LiGHTSframework is designed to provide the yjces with tight resource constraints, like those often
minimal set of features implementing a Linda-like tu-  found in context-aware applications.

ple space and, at the same time, to offer the necessary
building blocks for customizing and extending it. We
now discuss the most relevant customization opportu-
nities, which are exploited in the extension packages

3.3.2. Changing the matching semantics
Tuple space systems vary considerable in terms of

included in the LlcHTSdistribution. their matching semantics. For instance, TSpaces en-
ables the use of subtyping rules in matching field types,
3.3.1. Changing the tuple space engine and relies on the (re)definition of tegjual s method
The tuple space implementation in the ght s for matching field values. Instead, JavaSpaces matches
core package is very simple Notably, the da- two fields by comparing their serialized forms. Also,

ta structure holding tuples is simply an in-memory @ JavaSpaces tuple (emtry in Sun’s jargon) is repre-
java.util.Vector object, which is scanned lin-  sented by a class, and therefore subtyping rules among
early upon a query operation. This design is tuplestake partinmatching. InTSpaces, thisis enabled
motivated by the need to support deployment on only if tuples are derived from a specific root class,
resource-constrained devices — a requirement of the otherwise itis not allowed by defadlupl e class. Fi-
LIMEproject — and admittedly may not perform reason- nally, TSpaces requires two matching tuples to have the
ably in other scenarios. same arity, while JavaSpaces lifts this constraintwhen a
Nevertheless, the information hiding provided by the tuple is a subtype of another. This short comparison ev-
core interfaces greatly simplifies the task of realizing idences that several variations are possible, with trade-
more sophisticated implementations (e.g., providing offsin expressiveness, ease of use, and integration with
persistence, checkpointing, or more scalable matching object-orientation. As a consequence, committing to a
algorithms), with little or no impact on the application  particular choice may end up hampering development
code. At one extreme, one could even sneak a com- of some applications.
mercial system (e.g., TSpaces or GigaSpaces) behind LicHTSwas designed since the beginning with
the LIGHT Sinterfaces, e.g., to enable the development this problem in mind. The default matching in
of applications that can be deployed on top of differ- LicHTSrelies on theequal s method, disallows field

ent tuple spaces engines. In a research context, this or tuple subtyping, and requires equal tuple arity. Nev-
is particularly useful to evaluate different alternatives ertheless, théi ght s. ext ensi ons package con-

without the need to fully rewrite the application. tains several examples that show how easy it is to pro-

To simplify this development strategy,i ght s. vide alternative semantics, by exploiting interfaces and
adapt er s provides the building blocks necessary other aspects of our object-oriented design. Here, we
to replace the built-in implementation ihi ght s. briefly describe some of these extensions.

The classesTupl eSpace, Tupl e, andFi el d in
such package provide wrappers that on one hand
implement the required i ghts interfaces, and
on the other contain an adapter object implement-
ing the required functionality, and to which inter-
face operations are delegafed The abstract class

Field matching

As an example of how to redefine matching between
fields, the clasSubt ypeFi el d, takes subtype com-
patibility into account. Providing this feature is as
simple as subclassirig ght s. Fi el d and redefining
mat ches by including the additional constraint

5Space limitations force us to redirect the reader looking for more . .
details to the online documentation and source [4]. get Ty pe(). i sAssi gnabl eFrom
SExtensions are not supported by adapters. (field. getType)
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wherefi el d is the input parameter afat ches.
Analogously, Not Equal Fi el d supports matching
on inequality. Modifications can be more complex.
For instance, the same package contains aRegx
exFi el d that allows matching of string fields using
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enpt y are available respectively to match a laser print-
er and one with a queue with zero jobs, and that a third
field takes care of matching a value of 15. With these
definitions, which we omit due to space limitations, we

can easily search for the desired printer:

regular expressions and requires additional attributes ggg| eanTupl e tenpl ate = new

and methods for setting and compiling the expression
using the Java libraries.

Tuple matching

Pattern matching between tuples can be redefined | Tupl e tuple =

similarly. Prefi xTupl e extendsTupl e by allow-

ing a template of arity to return a successful match
against any tuple whose firgtfields match, in order,
with the template ones — a need that often arises in
practice in tuple space based applications. Incidental-
ly, this also provides a straightforward way to retrieve
all tuples in the tuple space. Again, the only change
required is in the implementation oft ches.

Another useful feature, with a more complex im-
plementation, is provided ool eanTupl e, which
extendsTupl e to enable pattern matching by using
arbitrary boolean expressions over a tuple’s fields — not
just theirANDconjunction as in standard matching. Let
us consider an application where printers are modeled
as a tuplg/ ki nd, numJobs, ppm), and the pro-

Bool eanTupl e(). add(f 1).
add(f 2). add(f 3);
t enpl at e. set Mat chi ngExpr essi on
("l aser && (enmpty || #3)");
ts.rdp(t enpl at e);

It is worth noting how the advantages brought by the
customization of the matching semantics we described
thus far are not limited to the tuple space access us-
ing the traditional Linda operations, but may extend to
other constructs provided by alternative models. For
instance, several systems offer reactive features, either
event-based as in TSpaces, JavaSpaces, MARS [6], and
TuCSoN [15], or state-based as imvE [13]. In all
these systems, some kind of reaction whose behavior
is specified by the programmer, is triggered when a tu-
ple matching a given template is manipulated through
an operation or observed in the tuple space. Redefin-
ing the template used in these operations may greatly
enhance their expressive power.

At the same time, special care is needed if these cus-

grammer needs to find a laser printer such that either tomized features are being used in a distributed set-
its spool queue is empty or it can print at 15ppm. The ting. Consider even a simple client-server scheme,
programmer can obviously compensate for the absence where a tuple space is being accessed remotely by

of an ORoperator by performing multiple queries in
seguence — in our case, one for a laser printer with an
empty queue and, if this fails, one for a laser printer at
15ppm. However, besides forcing the programmer to
use a more verbose programming idiom, this solution
is rather inefficient, since it requires multiple traversals
of the tuple space. The problem is exacerbated in the
case of the bulk operationsig andi ng, whereall the
multiple queries must be executed.

Instead,Bool eanTupl e behaves as a tradition-
al tuple but in addition it provides set Mat chi ng
Expr essi on method that allows users to specify a
template in the form of a logical formula. A valid
formula must be a well-formed boolean expression,
which can contain any combination AND, OR, and
NOToperators, specified using the Java syntax. The
fields involved in the expression can be specified either
by using their position in the tuple, prepended byhe
character, or, ifthey are instanced afbel edFi el d,
by using directly their label.

For instance, with reference to the previous example,
let us assume that two actual fields labdleger and

several clients. If the client uses an extension (e.g.,
RangeFi el d or a programmer-defined one) in a
query operation, the corresponding code must be some-
how present on the server host for the tuple space to
be able to apply the desired matching. Pre-deploying
the classes is possible only under the assumption of a
closed system: if programmers are able to define their
own extensions, appropriate mechanisms (e.g., involv-
ing code mobility [8]) must be in place.

Finally, many other extensions are clearly possi-
ble. One could easily implement SQL- or XML-based
matching, and many others. Thus far, the development
of extensions has been driven by pragmatic needs that
arose in our experiences when usingiTSin com-
bination with the WeEmiddleware. In the next sec-
tion, we illustrate some extensions we found useful in
developing context-aware applications.

4. Supporting context-awareapplications

As we discussed in the introduction, the tuple space
abstraction is well-suited for context-awareness. Con-
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text data can be stored in the tuple space, and made the users within 500m, or those withinmeters from

accessible by leveraging of the nice decoupling proper-

the point(z, y). Often, even these queries are too pre-

ties of the Linda approach. Nevertheless, the standard cise, in that the user may have enough information only

matching based on exact values is largely insufficient
for context-aware applications. Indeed, the motivation
for the work described in this paper came from an ex-
perience in building a simple location-aware applica-
tion in LiME [12], in which we realized precisely the
aforementioned shortcomings of the traditional tuple
space model. Here we describe briefly the outcomes
of this experience, in that they provide the rationale for
the features we describe in this section.

The work in [12] describes a simple location-aware
application supporting collaborative exploration of ge-

ographical areas, e.g., to coordinate the help in a disas-

ter recovery scenario. Users are equipped with portable
computing devices and a localization system (e.g.,
GPS), are freely mobile, and are transiently connected
through ad hoc wireless links. The key functionality
provided is the ability for a user to request the display-
ing of the current location and/or trajectory of any oth-
er user, provided wireless connectivity is available to-
wards her. The implementation exploits tuple spaces as
repositories for context information—i.e., location data
in this case. The IMEprimitives are used to seamlessly
perform queries not only on a local tuple space, but on
all the spaces in range. For instance, a user’s location

to formulate requests as informal as “find the sensors
recording a hot temperature”, or “find the users close to
me”. Moreover, context-aware applications frequently
pose another requirement, namely, the neeadgre-
gation. Data comes from multiple sources, with multi-
ple formats, and at different levels of abstraction. On
one hand, it is useful to store the raw data in the tuple
space, to provide applications or agents to process it
directly. However, in other situations, it is desirable to
access the data through some higher-level view, where
the values contributed by multiple tuples are accessed
as a single, aggregated value (e.g., the average), or
where tuples with a given format (e.g., holding a lo-
cation’s coordinates) are interpreted in a different way
(e.g., distance from a given point).

These needs sometimes surface also in conven-
tional applications, but they are definitely exacerbat-
ed and more fundamental in context-aware ones. In
the rest of this section we present our extensions to
LIGHT Sfulfilling these requirements and therefore sup-
porting the development of context-aware applications.

4.1. Matching on value ranges

In context-aware applications, many queries require

can be determined by performing a read operation for to determine whether a given value from contextual data
the location tuple associated to the given user identifier. (e.g., temperature from a sensor) is within an allowed
The “lesson learned” distilled from this experience is range (e.g., 35-3&). Building this capability on top
simple and yet relevant: tuple spaces can be success-of a conventional system that provides only exact value
fully exploited to store not only the application data matching entails considerable programming effort and
needed for coordination, but also data representing the computational overhead. For instance, a common hack
physical context. The advantage is the provision of a is to retrieve tuples by matching on the other fields, and
single, unified programming interface — the coordina- explicitly code in the application the matching on the
tion primitives — for accessing both forms of data, there- field involving a value range.
fore simplifying the programmer’s chore. Interesting- LiIGHTSovercomes this limitation by leveraging the
ly, in this experience the idea was demonstrated using mechanisms for extensionwe illustrated in the previous
the distributed tuple space implementation provided by section. The clasRangeFi el dintheext ensi ons
LIME, but the conclusion we just made fully holds also  package provides methods for specifying the lower and
in the case where an entirely local tuple space is used upper bounds of the value range and whether they are
to coordinate the activities of co-located multi-agents. included in it, as shown in Fig. 3. The snippet below
Nevertheless, as discussed in [12], the traditional shows how to match over the aforementioned tempera-
matching semantics of Linda, based on comparing the ture range, withoutincluding the lower bound of 3%
exact values of tuple fields, is insufficient for the needs RangeFi el d rf new RangeFi el d()

of context-aware applications. Indeed, context-aware
queries rarely revolve around exact values. For in-
stance, in a sensor monitoring application, it may be
required to find the identifiers of all the temperature

sensors registering a value between 20 and 25 degrees. Tupl e resul t

Or, in the application of [12] it may be needed to find

. set Lower Bound

(new Fl oat (35),

. set Upper Bound

(new Fl oat (38), true);
tupl espace. rdp

(new Tupl e(). add(rf));

fal se)
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public class RangeField extends TypedField ({
public RangeField()
public RangeField setLowerBound (Comparable low, boolean included)
public RangeField setUpperBound (Comparable up, boolean included)
public Comparable getLowerBound ()
public Comparable getUpperBound ()
public boolean isLowerBoundIncluded ()
public boolean isUpperBoundIncluded ()
public boolean matches (IField field)

Fig. 3. The clas®angeFi el d.

Bounds can be represented by any object imple- at 0°Ceverybody agrees that it is definitedgid — and

menting the interfacg ava. | ang. Conpar abl e. similarly hot when boiling at 100C. But what about
RangeFi el d extends | i ghts. ext ensi ons. water at 78C? Modeling this situation entails defining
TypedFi el d — a convenience abstract class that the fuzzy sets, i.e., the intuitive concepts used in the
serves the only purpose of implementing tH& el d logic descriptions — e.ghot, warm, andcold in our
interface — by simply adding attributes holding infor-  case. Moreover, each set must be associated to a mem-
mation about bound values and redefinmat ches bership function. Figure 4 shows a possible choice for

with the trivial constraint necessary to check that the example where the value TG(that is callectrisp)
field being compared against falls in the required range. belongs to two different fuzzy sets or, in other words,
As the reader can see, the extent of modifications nec- “water at 75C” is at the same timaarm andhot. with

essary to implement the required semantics is minimal two different degrees of membership
and extremely simple, while the impact on expressive- To enable reasoning, fuzzy logic also provides op-

ness is remarkable. ) . .

erators to combine fuzzy predicates in more complex
formulas. These are adaptations of the well-known in-
tersection AND), union OR), and complemeniNOT),

In several applications the power of range matching t© deal with degrees of truth expressed as real numbers.

is not enough, as users may not have the knowledge More details can be found in [11].
required to formulate precise queries. For instance, a In LIGHTS, the tuple space contains crisp val-
user may request to find a restaurant thatdase to her, ues, which applications can query using conven-
without bothering about estimating a reasonable range tional matching or the fuzzy matching provided by
based on the urban density of the surrounding area. | i ght's. ext ensi ons. fuzzy.
Indeed, people commonly describe an object property
using words like “hot”, “far”, “tall”, or “cheap”. Al- _
though intuitive, these concepts bear a high degree of 4-2-2. Programming model _ _
imprecision and uncertainty, and cannotbe modeledus- N our AP, fuzzy sets and their membership func-
ing the traditional set theory. Nevertheless, the problem fions are combined in what we callfazzy term. A

4.2. Fuzzy matching: Dealing with uncertainty

can be tackled successfully by using fuzzy logic. collection of fuzzy terms represents, in programming
terms, duzzy type. As the reader may argue, matching
4.2.1. Basics of fuzzy logic based on fuzzy logic requires the fuzzy type of two

Unlike conventional logic, in fuzzy logic[11] apred-  fields to match.
icate may assume any value in a continuous range, usu-  The following code snippet shows how to model the
ally defined between O (totally false) and 1 (totally true). water temperature example with our API:
From a set theoretical standpoint, this means that each
logic element belongs to a particular set with a certain FuzzyTermft =
degree of membership. The function that defines the =~ New FuzzyTer n(" war nt',
mapping between the elements of a particular universe ~ nNew Pi Functi on(50. 0f , 25. 0f );
of discourse and their degree of membership to a given Fl oat FuzzyType tenp =
set is callednembership function. new Fl oat FuzzyType

For example, let us consider the problem of char- (" Tenperature", -100, 100)
acterizing water temperature. When water is freezing .addTerm(ft);
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Membership value

A
Warm Hot
1.0 Cold ¥ .
0.5
T T T >
25 50 75 Temp

Fig. 4. Membership functions and fuzzy sets.

The first line defines a new fuzzy term representing FuzzyField ff = new FuzzyFi el d()

the warm concept. A term is defined by a name and . set Type(Fl oat)

a membership function, in this caséPaFunct i on . set FuzzyType(t enp)
centered at 50Cand with a width of 25C, yielding . set FuzzyVal ue(new
the bell shape in Fig. 4. Our library provides several FuzzyVal ue(" war nt'));

pre-canned functions (€. i angl e, Tr apezoi d, aFuzzyFi el d is created. First, the type of the crisp
Ranp, Step, ...), and enables the programmer 10 5 es is set, to enable “pre-filtering” of matching val-
easily create her own, by implementing the interface o5 _ the basic type matching requirement of Linda is
I Member shi pFuncti on. still in place. Then, the fuzzy type defined above for

The second line creates a new fuzzy type, and binds temperature is associated to the field, followed by the
to it the previously created term. (Details represent- «yarm” concept. Fuzzy concepts are represented by an
ing hot andcold are omitted.) A fuzzy type is char-  instance of the clasguzzyVal ue, which enables the
acterized by a name and two parameters delimiting its programmer to specify a fuzzy concept. In addition,
domain. In general, the crisp values in a fuzzy type FuzzyVal ue provides the machinery to specify con-
could be of any nature, and thereforé&azzyType cepts like “very hot” or “somewhat cold” and automat-
class is provided whose elements can be@njyect ically adjust the corresponding membership function.
instance. In practice, however, real numbers are used Space limitations prevent us from going into further de-
most of the times. Therefore, we provide a subclass tails: anyway, this is performed using well-known tech-
Fl oat FuzzyType, used in the example. nigues [11]. Figure 6 illustrate pictorially the differ-
ence between traditional matching and matching with
fuzzy values.

The true power of fuzzy logic, however, is un-
leashed only wherFuzzyFi el ds are used in a
FuzzyTupl e. As usual, aFuzzyTupl e match-
es another tuple only if all the fields match in or-
der. However, in this case the conjunction of the re-
sult of pairwise field matching is not performed us-
ing the boolean operatoAND, but with its fuzzy

4.2.3. Integrating fuzzy logic and tuple spaces

We are now ready to describe how to exploit
fuzzy matching in WGHTS. The full APl provid-
ed by our extension is illustrated by the UML di-
agram in Fig. 5. Two new classes are provided,
FuzzyFi el d andFuzzyTupl e, which implement
respectivelyl Fi el d andl Tupl e and enable use of

fuzzy logic at two different levels. counterpart. The methoBuzzyTupl e. mat ches
A FuzzyFi el d can be included in a conventional  ges not rely onFuzzyFi el d. mat ches, as this
template, e.g., bi ght's. Tupl e object. Inthiscase,  jmplements| Tupl e. mat ches and therefore re-

the overridden methodat ches evaluates based on  tyrns a boolean. Instead, it relies on the method

fuzzy logic, and returns true only if the membership FuzzyFi el d. f uzzyMat ches, which returns a
value of the crisp data found in the field being compared float representing the degree of membership of the crisp
is higher than a given threshold that can be chosen by value inthe fuzzy set specified ByzzyVal ue. Ifthe

the user. AFuzzyFi el d is still characterized by  tuple contains also traditional fields, themt ches
type and value, although these are expressed in a fuzzy method is invoked, and the boolean return value con-
fashion. In the following code snippet verted to0. Of if fal se, ortol. Of if true. The
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FuzzyType

<<create>> FuzzyType(name: String)
getName() : String
addTerm(fuzzyTerm: FuzzyTerm) : void

FuzzyTerm FuzzyTuple

| <<create>> FuzzyTerm(term: String) getFuzzyTypeByName(name: String)

getTerm(name: String) : FuzzyTerm

getTerms() : Iterator

getMembershipValue(term: String,crispObject: Object) : float
getTermsNumber() : int

gertTerm(crispObject: Object) : FuzzyTerm

FloatFuzzyType

0 ipFunction getCrispObjectByName(name: String,tuple: ITuple) : Object
ipFunction: ipFunction) : void getOperatorByName(term: String)
getTerm() : String calc(formula: String,tuple: ITuple) : float
|setTerm(term: String) : void String tuple: ITuple) : float
FuzzyField matches(tuple: ITuple) : boolean
setT| rold: float) : void

<<create>> FuzzyField() getThreshold() : float

sef(field: IField) : IField getAdvancedQuery() : String

<<create>> FloatFuzzyType(name: String,min: float,max: float)

<<create>> FloatFuzzy Type(name: String,min: float,max: float,units: String)

() : void
setSmallerFunction() : void
setGreaterFunction() : void
getUnits() : String
getMax() : float

getMin() : float

p String,crispValue: float) : float
getTerm(crispValue: float) : FuzzyTerm
generateTrianglePartition(terms: String[]) : void
generatePiPartition(terms: String[]) : void

isNearly(crisp: float,reference: float) : float

isGreater(crisp: float,reference: float) : float

isSmaller( crise: float,reference: float) : float

tFy Val
getFuzzyValue() i setAdvancedQuery(query: String) : void
F 'Threshold() : fl
getFuzzyThreshold() : float v getAndOperator)
Fu. e alue: FuzzyValue) : FuzzyField getOrOperator()
tFuzzy Threst float) : FuzzyField

setAndOperator() : FuzzyTuple

getFuzzyType() : FuzzyType
setFuzzyType(fuzzyType: FuzzyType) : IField
matches(field: IField) : boolean
fuzzyMatches(field: IField) : float

(oString : String

setOrOperator() : FuzzzTupIe

<<Interface>> FuzzyValue
IMembershipFunction <<create>> FuzzyValue(value: String)
getMembershipValue(object: Object) : float setValue(value: String) : void

getValue() : String
setModifier(modifier: String) : void

getModifier() : String

Fig. 5. The UML class diagram of the packdgeght s. ext ensi ons. fuzzy.

Template | A’ || 33

—

A || Teaperamse t Hoo |'I.:"-'|rr.-s|shr|

| | 133 | Template

(traditional tuple) T T

T My moph

|

@False é L1 Eil\'.l..""n' {E}L‘l L]

f | ] ]

I I I B —
Realtuple [ °A’ | [ 33Celsius || 100m | Reslmple |[ A" |[ 33Cebuus || 100m | |
1 |
TupleSpace TigleSguor
Fig. 6. Replacing traditional matching (left) with matching based on fuzzy values (right).
float values are then combinedbyzzy Tupl e. ma- The reader has probably noticed the analogy with the

t ches using the default fuzzgNDoperator, orauser- ~ Bool eanTupl e class we described in Section 3.3.2.
defined one. This feature enables the formulation of IndeedFuzzyTupl e extend$Bool eanTupl e, and
complex fuzzy queries, possibly mixed with conven- overrides the methodet Mat chi ngExpr essi on
tional ones, e.g., retrieving the reading from a sensor to enable the definition of arbitrary predicates. Some
that is close and is recording a cold temperature. important differences must be underlined, however.
Finally, FuzzyTupl e also provides a simple lan-  First, the introduction of thé s operator that returns
guage that enables one to write more complex and flex- he degree of membership to the giieazzyTer m

ible queries using operators other thaXD, also pro-
vided by our library. This way, it is possible to write
the equivalent of logical formulas, as in:

(Di stance is not Far) ||
(Price is Cheap)

Second,FuzzyTupl e supports not only arbitrary
boolean expressions, but also expressions that involve
user-defined fuzzy operators, as we discussed above.
Third, the values that are involved in the expressions
(e.g., Far and Cheap) can be fuzzy values. Ta-
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ble 1 provides a concise albeit informal comparison of
the expressive power provided by conventional tuples,
Bool eanTupl es, andFuzzyTupl es.

4.3. Aggregating data

A need often arising in context-aware applications
is the one for the ability to deal with aggregated infor-
mation. This is addressed indHTSby two distinct
mechanisms, one enabling aggregation over fields in
the context of a given tuple, and the other enabling
aggregation over multiple tuples contained in the tuple
space. In both cases, the application programmer is
provided with a way to specify the portion of data to be
aggregated and the semantics of the data transformation
involved. Both mechanisms are described next.

4.3.1. Aggregating fields: Virtual tuples

A concise example helps in defining the need we
address. Let us consider a tuple space containing lo-
cation information, where each tuple holds the loca-
tion of a user expressed in Cartesian coordinates. (This
solution was actually used in the experience described
in [12].) The task of selecting the users at a given
distance should be ideally as simple as specifying a
template with the required distance. In practice, how-
ever, it involves computing/(z — z0)2 + (y — yo)2,
where(z, yo) are the coordinates of the agent issuing
the query andz, y) those of a location tuple. Since the
Linda semantics does not provide a form of matching
based on a function of two or more fields, this match-
ing must be specified entirely outside the tuple space
framework, as part of the application logic.

LicHTStackles the problem by decoupling the rep-
resentation of the tuples stored in the tuple space from
those manipulated by the application, by meand of
tual tuples. Again, an example is useful in clarifying
their use. Let us consider the possibility of allowing the
programmer to “see” theoncrete tuples stored in the
tuple space inthe form= ( ?User | D, ?i nt, ?i nt
) as if they were insteadrtual tuples in the formp’ =
( ?User | D, ?i nt ), where the second field of is
the sum of the last two fields of If this were possible,
ardg(t) using the virtual tuple¢ = ( ?User | D, 50
) could match the concrete tuplés ul5’ , 20, 30 )
and(’ u23’, 1, 49 ). By substituting sum with dis-
tance, we would have found a solution to the aforemen-
tioned problem of localizing users. Figure 7 illustrates
the concept graphically.

Using our LGHTSextension, this feature can be pro-
vided by the following code snippet:

D. Balzarotti et al. / The LighTStuple space framework and its customization for context-aware applications

| Tupl e vt new Vi rtual Tuple(t) {
public | Tuple virtualize

(I Tupl e tuple) {
| Tupl e res new Tupl e(). add
(t upl e. get (0));
| Val uedFi el d f
tupl e. get (1);
int vl ((I nt eger) f. get Val ue()).
i nt Val ue();
f = (I Val uedFi el d) tupl e. get (2);
int v2 (I nt eger) f.get Val ue()).
i nt Val ue();
res. add(new Fi el d(). set Val ue(new
I nt eger (v1+v2)));
return res;

}

= (I Val uedFi el d)

1

vt . add(new Fi el d(). set Type
(User I D. cl ass))
. add(new Fi el d(). set Type
(I nt eger. cl ass))
.add(new Fi el d(). set Type
(I nt eger. cl ass));

The first line creates a neVi r t ual Tupl e and ini-
tializes it with the template used at the application lev-
el —the virtual tuple, in our case= ( ?User | D, 50).

The last three lines define instead the template that fil-
ters out the concrete tuples actually present in the tuple
space. To enable matching, the concrete tuples must
be somehow transformed to fit the format of the virtual
tuple. The transformation is specified by the method
vi rtual i ze,whichinthe example code above is de-
fined using an anonymous inner class. When a match
is requested ont , its overriddermat ches method
decides whether the tuple being compared is a match by
first comparing it with the standard rules againsts
fields. If this match is successful, the concrete tuple
is transformed by callingi r t ual i ze, and matched
against the virtual tuple. This latter matching is gov-
erned by the semantics of thmt ches method associ-
ated to the dynamic type of, and its result determines
the overall matching outcome.

4.3.2. Aggregating tuples: Tuple space views

Tuple virtualizers provide an elegant way to cus-
tomize on the fly the tuple representation, therefore en-
abling also aggregation over the tuple fields. Never-
theless, their scope is limited to a single tuple, whereas
context-aware applications often demand aggregation
over multiple tuples. A typical example is provided
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Table 1
Comparing the expressive power of various matching semantics
Class Field Composition
Tupl e Logical AND
Bool eanTupl e (default) LogicalAND
Bool eanTupl e (usingset Mat chi ngExpr essi on)  Any expression containing boolean operators
FuzzyTupl e (default) FuzzyAND
FuzzyTupl e (usingset Mat chi ngExpr essi on) Any expression containing boolean and fuzzy operators
Tenpite | [Teer] 0]
(lraditiogal tuple)
Template @ True @ True
Template | [UserX] | 20 || 31 | (virtual tple) T T
(traditional tuple) T T T . .
J7 J7 J7 v1r%1)allze
—
@ True @ True @ False A
L1 [
Real tuple |[UserX] | 20 |[[ 30 | Realtuple |[UserX||[ 20 |[ 30 |

"......... TupleSpace "......... TupleSpace

Fig. 7. Replacing traditional matching (left) with matching against a programmer-deifirtad tuple (right).

by environmental monitoring, where the data indepen- A view is created by simply invoking its constructor
dently collected by multiple sensors is often averaged that, as shown in Fig. 8, expects as parameters the tuple
before being provided to applications, to make the data space the view is built upon as well as the rules to
more resilient to transient variations. Imagine an ap- maintain it. Once the view is created, as shown in the
plication that receives tuple containing data sensed by figure only ther dp andr dg operations are available,
multiple sensors (e.g., for temperature, light, acoustic since it is not possible to manipulate directly the view.
phenomena) and stores them in the tuple space. Data The transformation from the concrete tuples in the
is sometimes accessed in its raw form, and sometimes tuple space to those in the view is encapsulated in
in aggregate form (e.g., through its average). It would the set ofAggr egat or objects passed as a param-
be useful if the programmer were able to see this sec- eter to the constructor. Each of these object effec-
ond option again as a tuple space, without the need to tively defines a function from a set of tuples in the
manually compute over and over the aggregation by concrete tuple space (specified by the template) to an-
herself. other set of tuples to become part of the tuple space
This problem is dealt with in iIGHTSby introducing view. The abstract clas&ggr egat or, also shown
the notion of atuple space view defined over a tuple in Fig. 8, provides accessors for the template, as
space. The tuples contained in a tuple space view are well as an abstract methaggr egat e that is ex-
obtained from a subset of those in the original tuple pected to embody the aforementioned programmer-
space, through an automatic, application-defined trans- defined function. When an operation is invoked on
formation. Ina sense, a view realizes on the tuple space the Tupl eSpaceVi ew, this method is automatical-
what a virtual tuple does on a single tuple, by providing ly called and supplied with the set of concrete tu-
avirtual tuple space built on top of the concrete tuple  ples matching the template. In turaggr egate
space associated to it. returns the virtual tuples logically belonging to the
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public class TupleSpaceView {
public TupleSpaceView (ITupleSpace ts,
public ITuple rdp(ITuple template);
public ITuple[] rdg(ITuple template);
}

IAggregator([] a);

public abstract class Aggregator {
public void setTemplate (ITuple template);

public ITuple getTemplate();
abstract ITuplel]
}

aggregate (ITuple(]

tuples);

Fig. 8. Dealing with tuple space view3upl eSpaceVi ewandAggr egat or .

Tupl eSpaceVi ew. The Aggr egat or class con-
tains a built-in template matching all tuples in the tu-
ple space, defined usirigy ef i X Tupl e. Therefore,

if no template is set, theggr egat e method operates
on all the tuples in the target tuple space. Figure 9
illustrates the concept.

Note how the behavior of theggr egat e method
does not necessarily entail collapsing multiple tuples
into one or more. For instance, in some cases it
maybe useful to “join” multiple tuples containing val-
ues about different physical entities into one or, in turn,
“split” long tuples into their individual values. For
instance, with reference to the aforementioned envi-
ronmental monitoring application, imagine that the ap-
plication needs to determine whether there are peo-
ple in a given area, based on whether there is a high
temperature and a high noise. Using the conventional
features, the application should retrieve all the tuples
with high temperature and all those with high noise,
and then manually check whether one or more rooms
exist that belong both tuple sets. Using views, the
programmer can specify how to combine temperature
and light readings from the same room in a single tu-
ple, and then query the view as desired, e.g., using a
fuzzy template Room=*, t enper at ur e=hi gh,
noi se=hi gh ). Therefore, ultimately, the nature of
the transformation performed kBggr egat e is en-
tirely up to the programmer.

In our current implementation, thaggr egat e
methods are called every time a read operation is in-
voked, therefore re-building the view dynamically each
time. This straightforward solution guarantees that the
view is always consistent with the tuple space it builds
upon, butit may generate a performance problem in the
case the tuple space contains a large number of tuples
and the view operations are invoked frequently. An
alternative strategy is to cache the result of previous
executions of theggr egat e method. This solution
avoids unnecessary computation if the associated tuple
space has not changed, but it requires a tighter inte-

gration between th€upl eSpaceVi ewclass and the
tuple space holding the concrete tuples, since the lat-
ter must somehow notify the former when a tuple of
relevance for the view has been inserted or removed,
and therefore the view must be recomputed. This lat-
ter design can be easily accommodated by constraining
Tupl eSpaceVi ewto operate in conjunction with a
subclass offupl eSpace (or any other class imple-
mentingl Tupl eSpace) providing the necessary cou-
pling. We are currently investigating more optimized
solutions to based on this ideas.

As an example of how to program and exploit tu-
ple space views, consider a context-aware application
monitoring a physical environment containing sever-
al sensors. Each sensor records the temperature and
inserts it in the tuple space together with its location,
using a tuple{ x, y, tenp ). Suppose we are in-
terested in retrieving the average value in the square
zone defined bYxmin, Ymin) 8Nd (Tmax, Ymax)s €.9.,
because a fire is reported in that area and finer-grained
monitoring is necessary. First, we need to define the ag-
gregation function computing the average temperature.
This is accomplished by extending tAggr egat or
class and implementing tleggr egat e method:

cl ass AvgAggr egat or extends
Aggregat or {
public | Tupl e[] aggregate
(I Tupl e[] tuples) {

float res = 0;
for (int i=0; i<tuples.size; i++)
res =res + tuples[i]

.get ("tenp"). get Val ue();
res = res/tuples. size;
| Tuple[] t = {new Tupl e(). add
(new Fi el d(). set Val ue(new
Fl oat (r es)))};
return t;
}
}
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aggregate

TupleSpaceView

aggregate

Fig. 9. Aggregating multiple tuples using a tuple space view.

Next, we create a template using tRangeFi el d
class we introduced in Section 4.1 to select only those
tuples whose location belongs to the desired zone, and
instantiate our aggregator by restricting its operation to
these tuples, by passing it the template just defined.

RangeFi el d xf new RangeFi el d()
. set Lower Bound(new Fl oat (xni n),
true)
. set Upper Bound(new FI oat (xrmax),
true);
RangeFi el d yf new RangeFi el d()
. set Lower Bound(new FI oat (ymi n),
true)
. set Upper Bound(new Fl oat (ymax),
true);
| Tupl e tenpl ate new Tupl e(). add(xf)
. add(yf). add(new Fi el d()
. set Type(Fl oat . cl ass));
Aggregator a new AvgAggr egat or ()
. set Tenpl at e(t enpl at e);

Now, we are ready to generate the view by passing the
tuple space s it operates upon and our aggregator:

Tupl eSpaceVi ew vi ew = new
Tupl eSpaceVi emt s, {a});

We can now read from the tuple space view as if it were
a normal tuple space, containifgl oat ) tuples, as
defined by our aggregator:

| Tupl e avgTenpl ate new Tupl e()
. add(new Fi el d(). set Type(Fl oat .
cl ass));
| Tuple t

vi ew. rdp(avgTenpl at e);

Table 2
A simple performance test on tuple insertion and reading.
In each run, we insert several tuples watht, and then read
them in sequence wittd. The firstfield is an integer counter
(on which pattern matching is performed), while the second
is a byte array. Tests are ran 5 times and results averaged.
Tuple sizes are in bytes, times are in seconds. The test
machine is a Pentium 4, 2.4 GHz, 1 Gbyte RAM running
Sun’s JRE 1.4.2 under Debian Linux

#tuples tuple size LighTS TSpaces GigaSpaces
100 1000 0.749 0.786 2.536
1000 1000 1.871 4.394 5.534
10000 1000 62.781 120.015 26.611
1000 100 1.806 4.207 5.473
1000 10000 2.111 4.386 5.899
1000 100000 4.166 9.369 10.172

5. Implementation

LIGHTSis implemented in Java, using J2SE 1.4. The
corel i ght s package is only about 150 lines of code.
The adapt er s and ext ensi ons (and especially
thef uzzy package) bring the total number of lines
to 1,500. The sizes dgfar files are 15Kbytes and
75Kbytes respectively, demonstrating the small foot-
print of the system.

Without the pretense to be accurate and exhaustive,
but with the only intent to get a feel of the performance
of LIGHTS, Table 2 reports some tests we ran against
some well-known commercial systems. These prelim-
inary data show how IGHTSis always faster than its
competitors, which confirms that its lightweight de-
sign pays off. In part, this can be attributed to the
fact that the systems considered do not distinguish be-
tween local and remote communication, always using
inter-process communication — a clear loss when only
a local tuple space is needed. The one case in Table 2
where LGHTSIis slower than GigaSpaces is probably
determined by the techniques exploited in this system
to deal with scalability. Definitive results would need
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to take into account more sophisticated usage profiles —
which is nonetheless outside the scope of this paper.

6. Related work

The limitations of the simple matching mechanism
provided by Linda are well-known, have been discussed

D. Balzarotti et al. / The LighTStuple space framework and its customization for context-aware applications

tures that provide considerable power to the program-
mer. First, in eLinda the matching rule is specified at
the tuple level and for the whole tuple space, while in
LIGHTSit can be defined at the level of a tuple or even
a field. This provides a more fine-grained and flexible
redefinition, in that it enables the combination of dif-
ferent matchers in the same query operation. Second,
our aggregation mechanisms provide a more decoupled

by several authors, and in some cases have been em-design, as they sharply separate the transformation that

bodied in Linda variants.
We already illustrated the matching alternatives pro-

vided by the most popular Java-based tuple space sys-

defines how a tuple or tuple space is “seen” by the ap-
plication (through, respectively, virtual tuples and tuple
space views) from the logic (re)defining the matching

temsin Section 3.3.2. Other systems provide even more (contained in thevat ches methods). Finally, some

powerful mechanism, as in XMLSpaces [18] where
special XML fields allow matching operation based
on XPath queries. As we have shown in this paper,
LIGHTSdoes not focus on a specific matching strate-
gy, rather it provides the fundamental building blocks
enabling this and other forms of matching.

On the other hand, IGHTSis not the first system
providing the ability to customize the matching rules.
For instance, Objective Linda [10] provides a scheme
where tuple objects can contaimat ch method pro-
vided by the programmer, and therefore enabling cus-
tomized matching rules. A similar scheme is employed
by TSpaces, and is borrowed byaHTSas well. An
overview of the matching facilities provided by various
tuple space systems is presented in [20]. Unfortunate-
ly, as the authors point out, existing solutions are often
very limited and not flexible enough to cope with many
common programming needs.

The authors of [20], however, in the same paper
propose a system that turns out to be the work most
closely related to IGHTS. The system, called eLin-
da and further detailed in [19], embodies a notion
of Programmable Matching Engine (PME) enabling
the developer to add customized matchers to the tuple
space and use them in conjunction with Linda query
primitives. For example, a PME can be extended
with a matcher able to select, among all tuples, the
one with the maximum value associated to a given
field, marked with the symbot. The matcher can
then be used to customize the execution of a query,
asini n. maxi mum(?fi el d1, ?=fi el d2),which
returns the tuple of arity two with the maximum value
in the second field. Besides selecting tuples, PMEs
enable also the definition of matchers transforming tu-
ples, e.g., returning a tuple that contains the sum of the
values contained in a given field.

We maintain that IGHTSprovides a more flexible
design than eLinda, and comes with a number of fea-

of the extensions we proposed, most notably arbitrary
boolean expressions and fuzzy matching, provide high-
ly expressive and useful features that we argue are not
easily — or not at all — implementable using the mech-
anisms found in eLinda.

7. Conclusion

In this paper we presenteddHTS, a lightweight,
customizable framework supporting the tuple space ab-
straction made popular by Linda, and exploited its flex-
ible architecture to provide dedicated constructs for the
development of context-aware applications. We illus-
trated the architecture and application programmingin-
terface of LGHTS, motivated the use of tuple spaces for
context-aware applications and the related challenges,
and showed how novel support for this domain can be
easily built on top of LGHTS.

Future work will address optimizations and exten-
sions of the mechanisms we described here. Moreover,
integration in the iMEmiddleware for mobile comput-
ing will enable us to evaluate, in a more comprehensive
way, the impact of our abstractions on the development
of context-aware applications.

LIGHTSis released as open source under the LGPL
license, and is available at [4].
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