12. The Byzantine Generals

DANNY DOLEV, LESLIE LAMPORT, MARSHALL PEASE,
and

ROBERT SHOSTAK

ABSTRACT

Reliable computer systems must handle malfunctioning components that
give conflicting information to different parts of the system. This situation
can be expressed abstractly in terms of a group of generals of the Byzantine
army camped with their troops around an enemy city. Communicating only
by messenger, the generals must agree upon a common battle plan. How-
ever, one or more of them may be traitors who will try to confuse the others.
The problem is to find an algorithm to cnsuse that the loyal generals will
reach agrecment. It is shown that, using only oral messages, this problem
is sofvable if and only if more thun two-thirds of the generals are loyal, so
a single traitor can confound two loyal generals, With unforgeable written
messages, the problem is solvable for any number of gencrals and possible
traitors. The solution for a general distributed system requires conncctivity
of more than twice the number of traitors, while in the casc of unforgeable
written messages, connectivity larger than the number of traitors suffices.
Applications of the solutions to reliable computer systems are then dis-
cussed.

1. INTRODUCTION

A reliable computer system must be able to cope with the failure of one of
more of its components. A failed component may exhibit a type of behavio:
that is often overlooked—namely, sending conflicting information to differcnt

This work was supported in part by the National Acronzutics and Space Administration undv
contract number NAS1-15428 Mod. 3, and the Ballistic Missile Defense Systems Command unde
contract number DASGO0-78-C-0046, and the Army Research Office under contract numb:

DAAG29-79-C-0102.

348

THE BYZANTINE GENERALS 349

s of the system. The problem of coping with this type of failure is expressed
ractly as the Byzanting Generals Problem. We devote the major part of the
pter to a discussion of this abstract problem, and conclude by indicating how
ter solutions can be used in implementing a reliable computer system.

. We imagine that several divisions of the Byzantine Army are camped outside

‘g enenty city. each division commanded by its own gencral. The generals can

communjcate with one another only by messenger. After observing the enemy,
dey must decide upon a common plan of action. However, some of the generals
may be traitors, trying to prevent loyal generals from reaching agreement. The
generals must have an algorithm to guarantee that:

coNpITION A. All loyal generals decide upon the same plan of action.

The loyal generals will all do what the algorithm says they should, but the
tritors may do anything they wish. The algorithm must guarantee Condition A
regardless of what the traitors do.

The loyal generals should not only reach agreement, but should agree upon
a reasonable plan. We therefore also want to insure that:

conDITION B, A small number of traitors cannot cause the loyal generals to
sdopt a bad plan.

Condition B is hard to formalize, since it requires saying precisely what a
tud plan is, and we will not attempt to do so. Instead, we consider how the
encrals reach a decision. Each general observes the enemy and communicates
his obscrvations to the others, Let v(i) be the information communicated by
she ith general. Each general uses some method for combining the values v(1),

., v(n) into a single plan of action, where n is the number of generals.
Condition A is achieved by having all generals usc the same method for com-
bining the information, and Condition B is achieved by using a robust method.
For example, it the only decision to be made is whether to attack or retreat,
then #(J) can be General [’s opinion of which option is best, and the final
Jdecision can be based upon a majority vote among them. A small number of
traitors can affect the decision only if the loyal generals were almost equally
divided between the two possibilities, in which case neither decision could be
<illed bad.

While this approach may not be the only way to satisfy Conditions A and B,
itis the only one that we know of. It assumes a method by which the generals
communicate their values ¢(i) to one another. The obvious method is for the
“h general to send ©(i ) by messenger to each other general. However, this does
ot work because satisfying Condition A requires that every loyal general obtain
the same values » (1), . . ., ¢(n), and a fraitorous general may send different




350 CONCURRENCY CONTROL AND RELIABILITY IN DISTRIBUTED SYSTEMS

values to different generals. For Condition A to be satisfied, the following must
be truc. |

CONDITION 1. Every loyal gencral must obtain the smme information vl
L v{m). ’

Condition | tmplics that a general cannot necessarily use a value of p(i)
o!alaincd direetly from the ith general, since a traitorous ith general may send
different values to different gencrals, This means that, unless we are careful, in
mecting Condition 1 we might introduce the possibility that the generals use &
‘falue of v (i) different from the one sent by the ith gencral—cven though the
ith general is loyal. We must not allow this to happen if Condition B is 1o he
met., For example, we cannot permit a few traitors to cause the loyal generals
to base their decision upon the values “‘retreat’”, . . . , “‘retreat’ if every loyal

general sent the value “‘attack.’” We therefore have the following requirement,
for cach i:

CONDITION 2. If the ith general is loyal, then the value that he sends must be
used by every loyal general as the value of z(i).

We can rewrite Condition 1 as the condition that, for every i (whether or not
the ith general is loyal):

CONDITION 1. Any two loyal generals use the same value of ©(i ).

Conditions 1" and 2 are both conditions on the single value sent by the ith
g'eneral. We can therefore restrict our consideration to the problem of how a
single general sends his value to the others. We phrase this in terms of a com-

manding general sending an order to his lieutenants, obtaining the following
problem,

'Byzamine Generals Problem: A commanding general must send an order to
his # — 1 lieutenant generals such that;

CONDITION IC1. All loyal lieutenants obey the same order.
CONDITION IC2. If the commanding general is loyal, then every loyal lieutenant
obeys the order he sends.

Conditions IC 1 and IC2 are called the interactive consistency conditions. Note

that if the commander is loyal, then IC1 follows from 1C2. However, the com-

mander need not be loyal.
To solve our original problem, the ith general sends his value of o(i) by

THE BYZANTINE GENERALS 351

using a solution to the Byzantine Generals Problem to send the order “usc #(i)
as my value,” with the other generals acting as the Heutenants.

2. IMPOSSIBILITY RESULTS

The Byzantine Generals Problem seems deceptively simple. Tts difficulty is in-
dicated by the surprising Fact that, i the generals can send only oral messages,
then no solution wiltk work unless more than two-thirds of the generals are loyal,
In particular, with only three generals, no solution can work in the presence of
a single tritor, An oral message is onc whose contents are completely under
the control of the sender, so that a traitorous sender can transmit any possible
message. Such a message corresponds to the type of message that computers
normally send to one ancther, In Section 4, we will consider signed, writien
messages, for which this is not true.

We now study that, with oral messages, no solution for three gencrals can
handle a single traitor. For simplicity, we consider the case in which the only
possible decisions are “‘attack’ or *‘retreat.”” Let us first examine the scenario
pictured in Fig. 12.1, in which the commander is loyal and sends an *“attack™
order, but Licutenant 2 is a traitor and reports to Licutenant 1 that he received
a “‘retreat”’ order, For Condition IC2 to be satisfied, Lieutenant | must obey
the order to attack.

Now consider another sccnario, shown in Fig. 12.2, in which the commander
is a traitor and sends an ‘‘attack’” order to Lieutenant 1 and a “‘retreat’” order
to Lieutenant 2. Lieutepant 1 does not know who the traitor is, and cannot tell
what message the commander actually sent to Licutenant 2. Hence, the scenarios
in these two pictures appear exactly the same to Lieutenant L. If the traitor lies
consistently, then there is no way for Lieutenant 1 to distinguish between these
two situations, so he must obey the “‘attack’ order in both of them. Hence,
whenever Lieutenant | receives an ‘‘attack’ order from the commander, he
must obey it.

However, a similar argument shows that if Lieutenant 2 receives a *‘retreat”
order from the commander, then he must obey it ¢ven if Lieutenant 1 tells him

COMMANDER

Fig. 12.1. Lieutenant 2 a traitor.




352 CONCURRENCY CONTROL AND RELIABILITY IN DASTRIBUTED SYSTEMS

COMMANDER

211

“‘retreat’’

““he sasd ‘retreat

Fig. 12.2. The commander a traitor.

that the commander said “‘attack.”” Therefore, in the scenario of Fig, 12.2.
Licutenant 2 must obey the “‘retreat’” order while Licutenant 1 obcys the “‘al-
tack’” order, thereby violating Condition ICt. Hence, no solution exists for
three generals that works in the presence of a single traitor.

This argument may appear convincing, but we strongly advise the reader to
be very suspicious of such nonrigorous reasoning. Although this result is indeed
correct, we have seen equally plausible “*proofs’ of invalid results. We know
of no area in computer science or mathematics in which informal reasoning is
more likely to lead to errors than in the study of this type of algorithm. For a
rigorous proof of the impossibility of a three-general solution that can handle a
single traitor, we refer the reader to refercnce 2.

Using this result, we can show that no solution with fewer than 3m + |
generals can cope with m traitors.* The proof is by contradiction—we assume
such a solution for a group of 3m or fewer generals, and use it to construct a
threc-general solution to the Byzantine Gencrals Problem that works with one
traitor, which we know to be impossible. To avoid confusion between the two
algorithms, we will call the generals of the assumed solution Albanian gencrals,
and those of the constructed solution will be called Byzantine gencrals. Thus.
starting from an algorithm that allows 3m or fewer Albanian generals to cope
with m traitors, we will construct a solution that allows three Byzantine generals
to handle a single traitor.

The three-general solution is obtained by having cach of the Byzantine gen-
erals simulate approximately one-third of the Albanian generals, so that each
Byzantine general is simulating at most m Albanian gencrals. The Byzantine
commander simulates the Albanian commander plus at most m — 1 Albanian
licutenants, and each of the two Byzantine lieutcnants simulates at most m
Albanian lieutenants. Since only one Byzantine general can be a traitor, and he
simulates at most m Albanians, at most, m of the Albanian generals are traitors.

Hence, the assumed solution guarantees that IC1 and IC2 hold for the Albanian .

* H . . .
More precisely. no such solution exists for three or more generals, since the problem is trivial fof
two generals.

THE BYZANTINE GENERALS 353

generals. By I1C1, all the Albanian licutenants being simulated by a loyal By-
zantine lieutenant obcy the same order, which is the order he is to obey. 1t is
casy to check that Conditions IC1 and IC2 of the Albanian generals solution
imply the corresponding conditions for the Byzantine generals, so we have
constructed the required impossible solution.

One might think that the difficulty in solving the Byzantine Generals Problem
stems from the requirement of rcaching cxact agreement. We now demonstrate
that this is not the case by showing that reaching approximate agreement is just
as hard as reaching exact agreement. Let us assume that instead of trying to
agree on a precise battle plan, the generals must agree only upon an approximate
time of attack. More precisely, we assume that the commander orders the time
of the attack, and we reguire the following two conditions to hold:

coNDITION IC1?. All loyal lieutenants attack within ten minutes of one an-
other.

conDITION IC2*. If the commanding general is loyal, then every loyal licu-
tenant attacks within ten minutes ol the time given in the
commander’s order,

(We assume that the orders are given and processed the day before the attack,
and the time at which an order is received is irrelevant—only the attack time
given in the order matters.)

Like the Byzantine Generals Problem, this problem is unsolvable unless more
than two-thirds of the generals are loyal. We prove this by first showing that if
there were a solution for three generals that coped with one traitor, then we
could construct a three-general solution to the Byzantine Generals Problem that
also worked in the presence of one traitor. Suppose the commander wishes to
send an “*atiack™ or ‘‘retreat’” order. He orders an attack by sending an attack
time of 1:00, and orders a retrcat by sending an retreat time of 2:00, using the
assumed algorithm. Each lieutenant uses the following procedure to obtain his
order.

1. After recciving the attack time from the commander, a licutenant does one
of the following:
If the time is 1:; 10 or earlier, then attack.
if the time is 1:50 or later, then retreat.
Otherwise, continue to Step 2.

2. Ask the other licutenant what decision he reached in Step 1.
If the other lieutenant reached a decision, then make
the same dccision he did.
Otherwise, retreat.




354 CONCURRENCY CONTROL AND RELIABILITY IN DISTRIBUTED SYSTEMS

It follows from [C2' that, if the commander is loyal, then a loyal lieutenant
will obtain the correct order in Step 1, so I1C2 is satisfied. If the commander is
loyal, then IC1 follows from 1C2, so we need only prove ICI under the as-
sumption that the commander is a traitor. Since there is at most one traitor, this
means that both lieutenants are loyal. If follows from IC1' that, if one lieutcnant
decided to attack in Step 1, then the other cannot decide to retreat in Step [.
Hence, they will both either come to the same decision in Step 1, or at least
one of them will defer his decision until Step 2. In this case, it is easy to see
that they both arrive at the same decision, so IC1 is satisfied. We have therefore
constructed a three-general solution to the Byzantine Generals Problem that
handles one traitor, which is impossible. Hence, we cannot have a three-generul
algorithm that maintains IC1" and IC2' in the presence of g traitor.

The method of having one general simolate m others can now be used to
prove that no solution with fewer than 3m + 1 generals can cope with m traitors.
The proof is similar to the one for the original Byzantine Generals Problem,
and is left to the reader.

3. A SOLUTION WITH ORAL MESSAGES

We have shown above that, for a solution to the Byzagltine Generals Problem
using oral messages to cope with m traitors, there must be at least 3m + |
generals. We now give a solution that works for 3m + 1 or more generals.
However, we first specify exactly what we mean by “‘oral messages.” Each
general is supposed to execute some algorithm that involves sending messages
to the other generals, and we assume that a Yoyal general correctly executes his
algorithm. The definition of an oral message is embodied in the following as-
sumptions which we make for the generals” message system.

Al. Every message that is sent is delivered correctty.
A2. The receiver of a message knows who sent it.
A3. The absence of a message can be detected.

Assumptions Al and A2 prevent a traitor from interfering with the commu-
nication between two other gencrals, since by Al he cannot interfere with the
messages they do send, and by A2 he cannot confuse their intercourse by intro-
ducing spurious messages. Assumption A3 will foil a traitor who tries to prevent
a decision by simply not sending messages. The practical implementation of
these assumptions is discussed in Section 6. Note that assumptions A1-A3 do
not imply that a general hears any message sent between two other generals.

The algorithms in this section and in the following one tequire that each
general be able 1o send messages directly to every other general. In Section 5,
we describe algorithms which do not have this requirement.

THE BYZANTINE GENERALS 355

A traitorous commander may decide not to send any order. Since the lieuten-
ants must obey some order, they need some default order to obey in this case.
We let RETREAT be this defauit order.

We inductively define the Oral Message algorithms as OM (1) for all non-
negative integers m, by which a commander sends an orderton — | licutenants.
We will show that OM (m) solves the Byzantine Generals Problem for 3m + |
or more gencrals in the presence of at most m traitors. We will find it more
convenient to describe this algorithm in terms of the licutenants “‘obtaining a
value’” rather than “‘obeying an order.” '

The algorithm assurmes a function majority with the propesty that, if a majorty

of the values v; equal v, then majority (vy, '~ , Uy -] equals v. (Actually, it
assumes a sequence of such functions—one for each n.) There are two natural
choices for the value of majority (v, - "=, Uy 1}

}. The majority value among the u; if it exists, otherwise the value RE-

TREAT.
2. The median of the »;, assuming that they come from an ordered set.

The following algorithm requires only the aforementioned property of majority.

Algorithm OM (0):

1. The commander sends his value to every licutenant.
2 Each lieutenant uses the value he receives from the commander, or uses
the value RETREAT if he receives no value.

Algorithm OM(m), m > O

1. The commander sends his value to every lieutenant.

2. Foreach i, let v, be the value Lieutenant / receives from the commiander.
or else be RETREAT if he receives no value. Lientenant i acts as the
commander in algorithm OM (s — 1) to send the value #; 1o gach of
the 1 — 2 other lieutenants. .

3. For each i, and each j # i, let v, be the value Licutenant i received
from Lieutenant j in Step 2 using Algorithm OM({m — 1)), or else
RETREAT if he received no such value. Licutenant i uses the value
majority (v, *© " s Uy )

To execute 3, every processor must know when to apply the majority function,
in other words, when to stop waiting for more values to come. To do this, one
can use some sort of time-out fechnigue, as we wilt discuss in Section 6. Note
that recently, Fischer, Lynch, and Paterson® proved that there is no way to r;ach
any agteement unless we assume some bound on the time at which a rehiable
processor responds.




356 CONCURRENCY CONTROL AND RELIABILITY IN DISTRIBUTED SYSTEMS

Fig. 12.3. Algorithm OM(1)—Lieutenant 3 a traitor.

To understand how Algorithm OM (m) works, we consider the case m = 1,
n = 4. Figure 12.3 illustrates the messages received by Licutenant 2 when the
commander sends the value v and Lieutenant 3 is a traitor. In the first Step of
OM (1), the commander sends » to all three licutenants. In the second Step.
Licutenant 1 sends the value ¢ to Lieutenant 2, using the trivial algorithm
OM(0). Also in the second Step, the traitorous Licutenant 3 sends Lieutenant
2 some other value x. In Step 3, Lieutenant 2 then has ¢, = 25 = 1, and v, =
x, so he obtains the correct value v = majority (v, v, x).

Next, we see what happens if the commander is a traitor. Figure 12.4 shows
the values received by the lieutenants if a traitorcus commander sends three
arbitrary values x, y, and z to the three leutenants. Each lieutenant obtains V|
= x, V; = y, and V3 = z, so they all obtain the same value majority (x, v, 2)
in Step 3, regardless of whether or not any of the three values x, v, and z are
equal.

The recursive algorithm OM (m) invokes n — 1 scparate executions of the
algorithm OM (m — 1), each of which invokes n — 2 executions of OM(m —
2), etc. This means that for m > 1, a lieutenant sends many separaie messages
to cach other lieutenant. There must be some way to distinguish between these
different messages. The reader can verify that all ambiguity is removed if each

COMMANDER

Fig. 12.4. The algorithm OM{1}—The commander a traitor.

THE BYZANTINE GENERALS 357

heutenant i prefixes the number 7 to the value ¢; that he sends in Step 2. As the
secursion C‘unfolds,” the algorithm OM(m — k) will be called (n — 1),

_. . {n — k) times to send a value prefixed by a sequence of & licutenant’s
munsbers. This implies that the algorithm requires sending an exponential number
of messages. There exist algorithms which require only a palynomial number
of messages,”® but they are substantially more complex than the one we present.

To prove the correctness of the algorithm OM(m) for arbitrary m. we first
prove the following lemma.

Lemma I: For any m and k, Algorithm OM (m) satisfies Condition 1C2 if
there are more than 2k + m generals, and at most & traitors.

Proof- The proof is by induction on m. Condition IC2 only specifies what
must happen if the commander is loyal. Using Al, it is easy to sce the trivial
adieorithm OM(0) works if the commander is loyal, so the lemma is true m =
). We now assume it is tre for m — 1, m > 0, and prove it for m.

In Step 1, the loyal commander sends a value v to all n - 1 licutenants. In
Step 2, each loyal licutenant applies M(m — 1) with n — 1 generals. Since by
hypothesis n > 2k + m, we have n — 1 > 2k + (m — 1), s0 we can apply
the induction hypothesis to conclude that cvery loyal lieutenant gets v, = @ for
cach loyal Lieutenant j. Since there are at most & traitors, and # — 1 > 2k +
{m — 1) = 2k, a majority of the n — 1 licutenants are loyal, Hence, each loyal
licutenant has majority (¢7, - - . #, .} = v in Step 3, proving 1C2.

The following thcorem asserts that Algorithm OM (m) solves the Byzantine
(ienerals Problem.

Theorem I: For any 1, Algorithm OM (m) satisfies Conditions IC1 and 1C2
if there are more than 3m generals, and at most m traitors.

Proof: The prool is by induction on m. If there are no traitors, then it s
casy to see that OM(0) satisfies IC1 and IC2. We theretore assume that the
theorem is true for OM{m — 1) and prove it for OM (m), m > 0.

We first consider the case in which the commander is loyal. By taking & equal
to m in Lemma 1, we see that OM (m) satisfies 1C2. Condition IC] follows
from IC2 if the commander is loyal, so we necd only verify ICL in the case
that the commander is a traitor.

There are at most m traitors and the commander is one of them, so at most
m — 1 of the lieutenants are traitors. Since therc are more than 3m generals,
there are more than 3m — 1 licutenants, and 3m — 1 > 3(m — I). We may
therefore apply the induction hypothesis to conclude that OM(m — 1) satisfies
conditions IC1 and IC2. Hence, for each j, any two loyal licutenants get the




368 CONCURRENCY CONTROL AND RELIABILITY IN DISTRIBUTED SYSTEMS

same value for #, in Step 3. (This follows from IC2 if one of the two licutenants
is Licutenant j, and from IC1 otherwise.) Hence, any two loyal licutenants get
the same vector of values vy, * * * , v, — 1, and therefore obtain the same value
majority {1y, -+ -, v, _,) in Step 3, proving IC1,

4. A SOLUTION WITH SIGNED MESSAGES

As we saw from the scenario of Fig. 12.1 and 12.2, it is the traitors’ ability to
lie that makes the Byzantine Generals Problem so difficult. The problem be-
comes easier to solve if we can restrict that ability. One way to do this is to
allow the generals to send unforgeable signed messages. More precisely, we
add to A1-A3 the following assumption.

A4.(a) A loyal general’s signature cannot be forged, and any alteration of
the contents of his signed messages can be detected.
(b} Anyone can verify the authenticity of a general’s signature.

Note that we make no assumptions about a traitorous general’s signature. In
particular, we allow his signature to be forged by another traitor, thereby per-
mitting coliusion among the traitors,

Having introduced signed messages, our previous argument that four generals
are required to cope with one traitor no longer holds. In fact, a three-generl
solution does exist. We now give an algorithm that copes with m traitors for
any number of generals. (The problem is vacuous if there are fewer than m +
2 generals.)

In our algorithm, the commander sends a signed order to each of his lieuten-
ants. Each lieutenant then adds his signature to that order and sends it to the
other lieutentants, who add their signatures and send it to others, and so on.
This means that a lieutenant must effectively receive one signed message, make
several copies of it, and sign and send those copies. It does not matter how
these copies are obtained—a single message might be photocopied, or else each
message might consist of a stack of identical messages which are signed and
distributed as required. '

Our algorithm uses a function choice, which is applied to a set of orders to
obtain a single one. It is defined as follows:

If the set V consists of the single element o,
then choice (V) = v,
otherwise choice (V)Y = RETREAT

In the following algorithm, we let x:i denote the value x signed by general
{. Thus, v:j:i denotes the value ¢ signed by j, and then that value #:j signed

THE BYZANTINE GENERALS 359

ny . We let general O be the commander. In this algorithm, each lieutenant
n;uimains a set ¥, containing the sct of properly signed orders he has received
o far, (If the commander is loyal, then this set should never contain more than
1+ single element.) Do not confuse ¥V, the set of orders he has received, with
the set of messages that he has received. There may be many different messages
with the same order. We assume the existence of a bound on the time it takes
comrect processors to sign and relay a message. Thus, it implics the existence
of some phases such that, if a message with r signatures arrives after phase r,
then only faulty processors relayed it, so it can be ignored. This assumption
Joes not necessarily mean complete synchronization of the processors.

Algorithm SM(m)
Initially V; = ¢.

. The commander signs and sends his value to cvery lieutenant at phase 0.
2. Foreach i
A. If Lieutenant i receives a message of the form ¢ :0 from the commander
at phase 0, and he has not yet received any order, then: (i) He lets V;
equal {}. (ii) He sends the message v:0:/ to every other licutenant.
B. If Lieutenant { receives a message of the form ¢: 07,0+ - -y atk, |
< k = m, V, contains at most one value, ¢ is not in the set V}, and
the signatures belong to the different licutenants, then: (i} He adds v
to V.. (i} If & < m, then he sends the message

other than j, - - - , ji.
3. For each {: At the end of phasc m he obeys the order choice (V;).

Observe that the a]go.ri[hm requires m + 1 phases of message exchange, Note
that in Step 2, Lieutcnant 7 ignores any message containing an order v that is
already in the set V., and accepts at most two different orders originated by the
commander.

Moreover, Lieutenant / ignores any messages that do not have the proper
form of a value followed by a string of different signatures. If packets of identical
messages arc used to avoid having to copy messages, this means thal‘he throws
away any packet that does not consist of a sufficient number of identical, prop-
erly signed messages. (There should be (i — &k — 23w —k —~3), ... (n -
m — 2) copies of the message if it bas been signed by & licutenants.)

Figure 12.5 illustrates algorithm SM(1) for the casc of thrce gencrals, when
the commander is a traitor. The commander sends an ““attack’ order to one

- lieutenant and a “‘retreat’™ order to the other. Both lieutenants receive the two




360 CONCURRENCY CONTROL AND RELIABILITY IN DISTRIBUTED SYSTEMS

COMMANDER

Hattack':0:1

“attack:0" ‘retreat:)”

“retreat’ 027

Fig. 12.5. Algorithm SM{1)—The commander a traitor.

orders in Step 2, so after step 2 ¥V, = V, = {*‘attack,”” “‘retreat’’}, and they
both obey the order choice ({“attack,” “‘retreat’’}). Observe that here, unlike
the sitnation in Fig. 12.2, the lieutenants know the commander is a traitor
because his signature appears on two different orders, and A4 states that only
he could have generated those signatures. '

In algorithm SM (m), a licutcnant signs his name to acknowledge his receipt
of an order. If he is the mth lieutenant to add his signature to the order, then
that signature is not relayed to anyone else by its recipient, so it is superfluous.
{More precisely, assumption A2 makes it unnecessary.) In particular, the lieu-
tenants need not sign their messages in SM(1).

We now prove the correctness of our algorithm.

Theorem 2: For any m: Algorithm SM(m) solves the Byzantine Generals
Problem, if there are at most m traitors.

Proof:  We first prove IC2. If the commander is loyal, then he sends his
signed order v:0 to every lieutenant in Step I. Every loyal lieutenant will
therefore receive the order » on time in Step 2A. Moreover, since no traitorous
lieutenant can forge any other message of the form v : 0, a loyal lisutenant can
receive no additional order in Step 2B. Hence, for each loyal licutenant i, the
set V; obtained in Step 2 consists of the single order , which he will obey in
Step 3 by property | of the choice function. This proves 102,

Since IC1 follows from IC2 if the commander is loyal, to prove IC1 we need
only consider the case in which the commander is a traitor. Two loyal lieutenants
i and j obey the same order in Step 3 if the function choice applied to the sets
of orders ¥, and V; that they receive in Step 2 induces the same value. Therefore,
to prove IC1 it suffices to prove two parts: one, if a loyal licutenant i puts
exactly one order  into ¥} in Step 2, then every loyal lieutenant will put exactly
the same order v into V; in Step 2; two, if V; has two elements for some loyal
licutenant j, then ¥, has two elements for any other loyal licutenant .

To prove the first part, we must show that j receives a propetly signed message

containing that order. If / receives the order v in Step 2A on time, then he sends

THE BYZANTINE GENERALS 361

it to j in Step 2A(ii), so that j receives it on time {(by Al). If i adds the order
to V¥, in Step 2B, then he must receive a first message of the form ¢: 00,2+ +
If j is one of the j,, then by A4 he must already have received the order #. If
not, we consider two cases;

\ & < m: In this case, i sends the message v 02y » 110 j, 50 j must
receive the order v. ‘

k = m- Since the commander is a traitor, at most m — | of the licutenants
are traitors. Hence, at least one of the leutenants ji, -+ . j, is loyal.
This loyal lieutenant must have sent j the value o when he first received
it, so j must, therefore, receive that value.

™

Similar arguments prove that if any loyal lieutenant i decides 10 put two orders
in V,. then every other loyal lieutenant will decide to do so.
This completes the proof.

During the algorithm. every loyal licutenant relays to every other licutcnum
4l most two orders. Therefore, the total number of messages exchanged is
bounded by 2n(n — 1), where n is the total number of gencerals. By using more
phases and more sophisticated algorithms, one can reduce the total number of
messages to O(n + m?) as shown in reference 5.

5. MISSING COMMUNICATION PATHS

Thus far, we have assumed that a general (or lieutenant) can send messages
directly to every other general {or lieutenant). We now remove .this assumption.
Instead, we supposed that physical barriers place some restnctions on who can
send messages to whom. We consider the generals to form the nodes of a
simple,* finite, undirected network graph G, where an arc between two nodes
indicates that those two generals can send messages directly to onc another. We
now extend algorithms OM (#2) and SM (m), which assumed G to be completely
connected, to more general graphs. o
The commander sends his value through routes in the network. For simplicity,
assume that every message contains the information about the route through
which it is supposed to be delivered. Thus, betore sending a message. the
commander chooses a route and sends the message containing the route. The
receiving lieutenant, however, does not know in adv;mc:c the route through
which it is going to receive the message. Notice that a traitor may also change
the routing through which the message is supposed to be delivered. Morcover.

*A simple graph is one in which there is at most one are joining any two nodes, and every are
connects two distinct nodes.




362 CONCURRENCY CONTROL AND RELIABHITY IN DISTRIBUTED SYSTEMS

a traiter may also produce many false copies of the message it is supposed to
relay, then send them through various routes of its own choice.

A traitor may change the record of the route to prevent the receiving licutenant
identifying it as the source of faulty messages. To ensure the inclusion of trai
tors’ names in the routes, assume that, after a loyal lieutenant receives a message
to relay, he makes sure the licutenant from which the message has arrived is
supposed to relay it to him. Only then does he relay the message to the next
licutenant along the route to the receiving lieutenant,

A network has connecriviry k if, for every pair of nodes, there exists & node-
independent paths connecting them.

To extend our oral message algorithm OM (m), we need the following defi-
nition, where two generals are said to be neighbors if they are joined by an arc,

Definition; Let {a,, - -+ , a,.} be the set of copies of the commander’s value
received by Lieutenant i. Let U; be a set of lieutenants that does not contain the
commander himself. A set U, is called a set of suspicious lieutenants determined
by lieutenant i if every message «; that did not pass through lieutenants in U,
carries the same value.

Algorithm Purifying (m, ay, **+ , a,, i)

1. If a set U; of up to m suspicious generals exists, then the purified value is
the value of the messages that did not pass thorugh U If no message is
left, the value is RETREAT.

2. If there is no set U; of cardinality up to m, then the purified viaue is
RETREAT.

Notice that if more than one set of suspicious generals exists, then there may
be many purified values, but because of the way the algorithm will be used, a
plurality of possible valucs will pose no problem. Before proving that the Pu-
rifying Algorithm actually does the right filtration, consider application of the
Purifying Algorithm to the network shown in Fig. }2.6.

The network contains 10 generals, and at most 2 traitors, Assume that s and
u are the faulty generals. The commander s sends the value a to Lieutenants |
and 2, and the value b to the other lieutenants. Assume that Lieutenant | receives
s's value through the following paths:

:sl

c 521
csul
15741

: 58517

Tl
ST R R

THE BYZANTINE GENERALS 363

—
™
1 / 3 7

R A

6

Fig. 12.6. Ten generals with two traitors, s is the commander.

The Purifying Algorithm provides the purified value a to Lieutenant 1. by choos-
ing {7, 8} as the set of suspicious generals. Similarly, Lieutenant 2 obtains the
value a. But the rest of the network obtain the value » by choosing {1, 2} as

the set of suspicious generals. ‘
The following theorem proves that, with sufficient connectivity, all of the
loyal licutenants obtain the same value if the commander is loyal.

Theorem 3: Let G be a network of generals which contains at most 7 traitors,
and the connectivity of which is at least 2m + 1. If a loyal commander sends
2m + 1 copies of its value to every lieutenant, through disjoint paths. then, by
use of the Purifying Algorithm, every loyal lieutenant can obtain the com-
mander’s value.

Proof: The loyal commander sends every lieutenant 2m + 1 copies of a

value, through disjoint paths. It sends the same valuc to all lieutenants. Let a,




364 CONCURRENCY CONTROL AND RELIABILITY IN DISTRIBUTED SYSTEMS

', a, be the set of all of the copies of the commander’s value that Lieutenant
i receives. There arc at most m traitors; therefore, at most m values might be
lost. This implies that the number of copies, r, is at least m + 1. At least m +
1 of the messages are relayed through routes which contain only loyal generals;
each one of the loyal lieutenants relays the message faithfully without changing
it. This implies that at least m + 1 of the reccived copics carry the onginal
value. Note that, if the commander were a traitor, then the above reasoning
would fail to hold.

It may be that the number of copies received is much more than m + 1, and
even that the majority of them carry a faulty value. The task of Licutenant 7 is
to find the correct value out of this mess. It does this by applying the Purifying
Algorithm. Observe that the technique, deseribed at the beginning of the Section,
of adding the names of the generals along the route to the message, enables i
to differentiate among the values. Every message which passed through traitors
contains at least ane name of a traitor; more precisely, every list of generals
added to a message contains at least the name of the last traitor that relayed it.

Step 1 of the Purifying Algorithm requires one to look for a set U; of up to
m generals with the property that all of the values which have not been relayed
by generals from this set are the same. The network contains at most m traitor
generals, and by assumption, the commander is loyal. Therefore, Licutcnant i
should be able to find such a set U;; it may be that the set he finds is not exactly
the set of traitors, but U, necessarily eliminates the wrong values. The set U,
cannot climinate the correct values, because there are at least m + 1 independent
copies of them and U; can climinate at most m independent copies. This com-
pletes the proof of the theorem.

In the case where the commander is a traitor, Theorem 3 does not ensure the
ability to rcach a unique agreement on a value. But the way we will use it in
algorithm OM (m) will overcome the faultiness of the commander.

To obtain Byzantine Agreement in a network with connectivity k, k = 2m
+ 1, we improve algorithm OM () as follows: whenever a general sends a
message 1o another, he sends it through 2m + | disjoint paths; whenever a
lientenant has to receive a message, he uses the Purifying Algorithm to decide
on a purified value. Call the improved algorithm OM’ (m).

To prove the validity of the algorithm OM’ (m), observe that the same general
can be used again and again as a relay in the disjoint paths between pairs of
generals, even if he was a commander in previous recursions, Moreover, even
being a traitor does not matter for the simple reason that the total number of
independent paths that would be atfected by traitors will never exceed m1.

Theorem 4. Let G be a network of n generals with connectivity & = 2m +
I, where n = 2m + 1. If there arc at most m traitors, then Algorithm OM’(m)
{with the above modifications) solves the Byzantine Generals Problem.

THE BYZANTINE GENERALS 365

Fig.12.7. T is the set of traitors.

Proof. The proof is essentially the same as the proof of Theorem 1, using
Theorem 3 everywhere to show that, when a loyal leutcnant sends a value,
cvery other loyal licutenant agrees on it. The fact that we use the \‘vholc net_wprk
to relay the information again and again climinates any loss of connectivity,
and enables us to obtain the desired result. The details are left to the reader.

To show that Theorem 4 is the best possible, we prove that the conneclivity
of 2m + 1 is necessary for solving the Byzantine General Problem.

The case in which the number of traitors is not fess than half of the connec-
tivity is easier to visualize, and is proved in Lemma 2. Figure 12.7 describes
the case schematically. The basic idea is that, if the traitors arc not less tr}an
half of the bottleneck, then they can prevent the loyal generals from reaching
an agreement by behaving as a filter. Every message that passes. from right to
left would be changed to carry one value, and every message 1n the reverse
direction would carry another value. This behavior can cause ail of Fhe. gencrals
on the right side to agree on a different value from those on the left side,

Lemma 2: The Byzantine General Problem cannot be solved in a net.wnrk
of 1 generals if the number of traitors is not less than half the connectivity of

the network.

Proof: Let G be a network with connectivity k, and tet 5, -+, s, bea
set of generals which disconnect the network into two non-empty parts, G, and
G.. Assume that the subset s, = - - , s, is the set of traitors, where m = k/2.

Consider the following cases for the various locations in which the commander
can be.

Assume the commander s is in the subnetwork G, and that he sends the
value @ to all of the lieutenants in the network. The traitors can follow the
doctrine: change every message which passes from G to G, to carry the vgluc
b and leave every other value as . Change the messages passing l?uck from
G, to G, to carry the value a. In this situation, every lieuscnant in G can
consider 5 to be a loyal general, and thus agree on a. Simitarly. the processors

Sways ** ", 5 choose a. But every receiver in G, cannot consider § a traito




366 CONCURRENCY CONTROL AND RELIABILITY IN DISTRIBUTED SYSTEMS

They are able to ignore the conflicting values they have received by ignoring
either the set s,  ** , 5, OF 8,01, * =" 8- On the other hand, they cannot
agree on a value, because each of the values can be correct, depending upon
what the commander has said and which generals are traitors. Since m = k, the
lieutenants in G, will choose b, in contradiction to IC2. The case where the
commander is in G, is identical by symmetry.

Assume now that the commander is in the set s, = - - . 5. If the commander
is loyal and sends the same vatue a to every lieutenant, then by reasoning,
similar to the previous casc, the traitors can prevent agreement. If the com-
mander is a traitor, he can send the value a to G, and b to G,. Thus, similarly
to the previous case every decision implics violation of IC2. For a more rigorous
proof see reference 3.

Our extension of Algorithm OM{m) requires that the graph G be 2m + |
connected, which is a rather strong connectivity hypothesis. In contrast, Algo-
rithm SM(m) is easily extended to allow the weakest possible connectivity
hypothesis. Let us first consider how much connectivity is nceded for the By-
zantine Generals Problem to be solvable. IC2 requires that a loyal lieutenant
obey a toyal commander. This is clearly impossible if the commander cannot
communicate with the lieutenant. In particular, if every message from the com-
mander to the lieutenant must be relayed by traitors, then therc is no way lo
guarantee that the lieutenant gets the commander’s order. Similarly, IC1 cannot
be guaranteed if there are two lieutenants who can only communicate with one
another via traitorous intermediaries.

The weakest connectivity hypothesis for which the Byzantine Generals Prob-
lem is solvable is that the subnetwork formed by the loyal generals be connected.
We will show that, under this hypothesis, the algorithm SM(» — 2} is a so-
lution, where # is the number of generals—regardless of the number of traitors.
Of course, we must modify the algorithm so that generals only send messages
to where they can be sent. More precisely, in Step 1, the commander sends his
signed order only to his ncighboring lieutenants; and in Step 2B, lieutenant i
only sends the message to every neighboring licutenant not among the j,.

We prove the following more general results, where the diameter of a network
is the smallest number d such that any two nodes are connected by a path
containing at most d arcs.

Theorem 5: For any m and d, if there are at most # traitors and the network
of loyal generals has diameter d, then Algorithm SM(m + d — 1) (with the
above modification) solves the Byzantine Generals Problem.

Proof: The proof is quite similar to that of Theorem 2, and will just be
sketched. To prove 1C2, observe that, by hypothesis, there is a path from the

THE BYZANTINE GENERALS 367

loyal commander to a licutenant { going through o — 1 or fewer loyal leutenants.
Those lieutcnants will correctly relay the order until it reaches i. As before,
assumption A4 prevents a traitor from forging a diflerent order.

To prove IC1, we assume that the commander is a traitor and must show that
all loyal lieutenants have received a unique order, or cvery one decides on
RETREAT. The idea is exactly as above. Suppose [ receives an order 1:0: j;:

- :j, not signed by j. If & < m, then i will send it to every neighbor who
has not already received that order, and it will be rclayed 1o j within d — 1
more steps. If & = m, then one of the first /m signers must be loyal, and must
have sent it to all of his neighbors, whereupon it will be relayed by loyal generals
and will reach j within 4 — 1 steps.

Corollary.  1f the network of loyal generals is connected, then SM(n ~ 2)
{as modified above) solves the Byzantine Generals algorithm for # generals,

Proof:  Let d be the diameter of the network of loyal generals. Since the
diameter of a connected graph is less than the number of nodes, there must be
more than o loyal generals, and fewer than n — d traitors. The result follows
from the theorem by lettingm = n —d — 1.

Theorem 5 assumes that the subnetwork of loyal generals is connected. Its
proof is easily extended to show that, even il this is not the case, if there are
at most m traitors, then the algorithm SM(m + & — 1) has the following two
properties: 1) Any two loyal generals connected by a path of length at most d
passing through only loyal gencrals will obey the same order; and 2) If the
commander is loyal, then any loyal lieutenant connected to him by a path of
length at most m + d passing only through loyal generals will obey his order.

6. RELIABLE SYSTEMS

Other than using intrinsically reliable circuit components, the only way we know
for implementing a reliable computer system is to use several different **pro-
cessors”” to compute the same result, and perform a majority vote on their
outputs to obtain a single value. (The voting may be performed within the
system, or externally by the users of the output.) This is true whether one is
implementing a reliable computer using redundant circuitry to protect against
the failure of individual chips, or a ballistic missile defense system using re-
dundant computing sites to protect against the destruction of individual sites by
a nuclear attack. The only difference is in the size of the replicated *‘processer.™

The use of majority voting to achieve reliability is based upon the assumption
that all the nonfaulty processors will produce the same output. This is true 5o
long as they all use the same input. However, any single input datum comes




368 CONCURRENCY CONTROL AND RELIABILITY IN DISTRIBUTED SYSTEMS

from a single physical component—e.g., from some other circuit in the reliable
computer, or from some radar site in the missile defense system—and a mal-
functioning component can give different valucs to different processors. More-
over, different processors can get different values even from a nonfaulty input
unit, if they rcad the value while it is changing. For example, if two processors
read a clock while it is advancing, then onc may get the old time and the other
the new time. This can only be prevented by synchronizing the reads with the
advancing of the clock.

In order for majority voting to yield a reliable system, the following two
conditions should be satisfied: 1) All nonfaulty, processors must use the same
input value (so that they produce the same output); and 2) 1f the input unit is
nonfaulty, then all nonfaulty processes use the value it provides as input {so that
they produce the correct output). .

These arc just our interactive consistency conditions IC1 and IC2, where the
“‘commander’’ is the unit gencrating the input, the “‘lieutenants’ are the pro-
cessors, and ““loyal’” means nonfaulty.

It is tempting to try to circumvent the problem with a “*hardware™ solution.
For example, one might try to insurc that all proccssors obtain the same input
value by having them all read it from the same wire. However, a faulty input
unit could send a marginal signal along the wire—a signal that can be interpreted
by some processors as a 0 and by others as a 1. There is no way to guarantee
that diffcrent processors will get the same value from a possibly faulty input
device except by having the processors cornmunicate among themselves to solve
the Byzantine Generals Problem.

Of course, a faulty input device may provide meaningless input values. All
that a Byzantine Generals Solution can do is guarantec that all processors use
the same input value. If the input is an important one, then there should be
several separate input devices providing redundant values. For example, there
should be redundant radars as well as redundant processing sites in a missile
defensc system. However, redundant inputs cannot achieve reliability; it is still
necessary to insure that the nonfaulty processors use the redundant data to pro-
duce the same output.

In case the input device is nonfaulty but gives different values because it is
read while its value is changing, we still want the nonfaulty processors to obtain
a reasenable input value. It can be shown that if the functions majority and
choice ate taken to be the median functions, then our algorithms have the prop-
erty that the valuc obtained by the nonfaulty processors lies within the range of
values provided by the input unit. Thus, the nonfaulty processors will obtain a
reasonable value so long as the input unit produces a reasonable range of values.

We have given several solutions, but they have been stated in terms of By-
zantine Generals rather than in terms of computing systems.

n

v

THE BYZANTINE GENERALS 369

REFERENCES

DeMillo, R. A., N. A, Lynch, and M. Merritt, Cryptographic protocals, in Proc. i4ih ACM
SIGACT Symp. on Theory of Computing, pp. 383-400, May 1982,

~ Diflie, W. and M. E. Hellman, New directions in erypragraphy, TEEE Trans. Liform. Theory

i7-22, pp. 644-654, Nov. 1976

Dolev. D. The Byzantine generals strike again, J. Algorithms, vol. 3, pp. 14-30, Jan. 1982

Dalev, ., M. Fischer, R. Fowler, N. Lynch, and R, Strong, Efficient Byzantine agreement
without authentication, fnfo. and Control, vol. 3, pp, 257-274, 1983,

Dolev, D. and R. Reischuk, Bounds on information ¢xchange {or Byzantine agreement, JACM.
vol. 32. pp. 191-204, 1985,

Dalev, D., R. Reischuk, and H. R, Strong, “Eventual® is earlier than “immediate,” Proc. 23rd
Annual IEEE Symp. on Foundutions of Computer Science, pp. 196-203, 1982,

Dolev. D. and H. R. Strong, Authenticated algorithms for Byzanting agreement, SIAM J. on
Comp., vol. 12, pp. 636-666, 1983,

. Fischer, M., N. Lynch, and M. Paterson, Impossibility of distribuied consensus with one faulty

processor, JACM, vol. 32, pp. 374-382, 1985.

. Lampor, L. and P. M. Mclliar-Smith, Swichronizing Clacks in the Presence of Faulrs, Tech,

Rep., Computer Science Lab., SRI Internationat, 1984.

. Lamport, 1.., R. Shostak, and M, Pcase, The Byzantine generals problem, ACM Trans. on

Programming Languages and Svsiems, vol. 4, pp. 382-401, July 1982

. Lynch, N. and M. Fischer, A lower bound for the time to assure imeractive consistency,

Infarmution Processing Letters, vol. 14, pp. 182-186, 1982,

. Pease, M., R. Shostak, and L. Lamport, “*Reaching Agreement in the Presence of Faults,™ /.

ACM 27, vol. 2, pp. 228-234, Apr. 1980.

. Rivest, R. L., A. Shamir, and L. Adleman, A method for obtaining digital signatures and

ouhlic-key cryptogystems, CACM, vol. 21, pp. 120-126, Feb. 1578,




C"-/-‘:”/Q /{ﬁ'}’) -

CONCURRENCY CONTROL
AND RELIABILITY
IN DISTRIBUTED SYSTEMS

Edited by

Bharat K. Bhargava
Department of Computer Science
Purdue University
West Lafayette, Indiana

VAN NOSTRAND REINHOLD COMPANY
New York




	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12

